Experiments on the Multiple Linear
Cryptanalysis of Reduced Round Serpent

B. Collard, F.-X. Standaert*, J.-J. Quisquater
UCL Crypto Group, Microelectronics Laboratory, Louvain-la-Neuve, Belgium

Abstract. In 2004, Biryukov et al. presented a new theoretical frame-
work for the linear cryptanalysis of block ciphers using multiple approx-
imations. Although they provided first experimental results to confirm
the relevance of their approach, a scope for further research was to apply
this framework to other ciphers. In this paper, we present various attacks
against reduced-round versions of the AES candidate Serpent. Our re-
sults illustrate that the hypotheses of Crypto 2004 hold (at least) as long
as the number of approximations exploited in the linear attack are com-
putationally tractable. But they also underline the limits and specificities
of Matsui’s algorithms 1 and 2 for the exploitation of such approxima-
tions. In particular, they show that the optimal application of algorithm 2
requires good theoretical estimations of the approximation biases, which
may be a problem when the linear hull effect is non-negligible. These
results finally confirm the significant reductions of the attacks data com-
plexity that can be obtained from multiple linear approximations.

1 Introduction

The linear cryptanalysis [10] is one of the most powerful attacks against modern
block ciphers in which an adversary exploits a linear approximation of the type:

Plxp] @ Clxc] = K[xk] (1)

In this expression, P, C' and K respectively denote the plaintext, ciphertext and
the expanded key while A[x] stands for Ay, ® Ay, &+ B Aq,, with Ay, -+, Ay,
representing particular bits of A in positions ay,- - ,a, () is usually denoted as
a mask). In practice, linear approximations of block ciphers can be obtained by
the concatenation of one-round approximations and such concatenations (also
called characteristics) are mainly interesting if they maximize the deviation (or
bias) e = p — % (where p is the probability of a given linear approximation).

In its original paper, Matsui described two methods for exploiting the linear
approximations of a block cipher, respectively denoted as algorithms 1 and 2.
In the first one, given an r-round linear approximation with sufficient bias, the
algorithm simply counts the number of times T the left side of Equation 1 is
equal to zero for N pairs (plaintext, ciphertext). If ' > N/2, then it assumes
either K[yx] =01if e > 0 or K[xx] =1 if € < 0 so that the experimental value
(T — N/2)/N matches the theoretical bias. If T < N/2, an opposite reasoning
holds. For the attack to be successful, it is shown in [10] that the number of

available (plaintext, ciphertext)-pairs must be proportional to }2

* Postdoctoral researcher of the Belgian Fund for Scientific Research (FNRS).

In the second method, a r-1-round characteristic is used and a partial de-
cryption of the last round is performed by guessing the key bits involved in the
approximation. As a consequence, all the guessed key bits can be recovered rather
than the parity K[xx] which yields much more efficient attacks in practice. In
addition, since it exploits a r-1-round approximation rather than a r-round one,
it also takes advantage of a better bias which reduces the data complexity.

Among the various proposals to improve the linear cryptanalysis of block
ciphers, Kaliski and Robshaw proposed in 1994 an algorithm using several linear
approximations [7]. However, their method imposed a strict constraint as it re-
quires to use only approximations implying the same bits of subkeys K[xx]. This
restricted at the same time the number and the quality of the approximations
available. As a consequence, an approach removing this constraint was proposed
in 2004 [2] that can be explained as follows. Let us suppose that one has access
to m approximations on r block cipher rounds of the form:

Plxp] @ Clxe] = Klxk] (1 <i<m), (2)
and wishes to determine the value of the binary vector of parity:

Z = (21,22, 2m) = (K[xx], KIxi], - KIXR]) (3)

The improved algorithm associates a counter T; with each approximation, that
is incremented each time the corresponding linear approximation is verified for
a particular pair (plaintext-ciphertext). As for algorithm 1, the values of K[x%]
are determined from the experimental bias (T; — N/2)/N and the theoretical
bias €; by means of a maximum likelihood rule. The extension of algorithm 2 to
multiple approximations is similarly described in [2].

An important consequence of this work is that the theoretical data complexity
of the generalized multiple linear cryptanalysis is decreased compared to the
original attack. According to the authors of [2], the attack requires a number
of texts inversely proportional to the capacity of the system of equations used
by the adversary that is defined as: ¢ = 4 - .1 €7. Therefore, by increasing
this quantity (i.e. using more approximations), one can decrease the number of
plaintext/ciphertext pairs necessary to perform a successful key recovery.

In this paper, we aim to apply the previously described cryptanalytic tools
to the Advanced Encryption Standard (AES) candidate Serpent [1] in order to
confirm the analysis of Crypto 2004 and put forward a number of intuitive facts
about its implementation. Our results confirm the significant reductions of the
attacks data complexity that can be obtained from multiple linear approxima-
tions but also their computational limitations. From a more theoretical point of
view, multiple linear cryptanalysis is also the best understood technique to take
advantage of the linear hull effect [11]. Therefore it allows to fill the gap between
the practical [8] and provable security approaches for block ciphers.

Finally, our results underline the specificities of Matsui’s algorithms 1 and
2 for the exploitation of multiple approximations. In particular, they show that
the optimal application of algorithm 2 requires good theoretical estimations of
the approximation biases, which may be a problem when the linear hull effect is
non-negligible. As a consequence, sub-optimal strategies sometimes have to be
applied. By contrast, our application of algorithm 1 nicely follows the predictions
of [2], even if the approximation biases are underestimated.

The rest of the paper is structured as follows. Section 2 refers to our linear
approximation search algorithm. Section 3 describes preliminary observations on
the linear cryptanalysis of Serpent and highlights the existence of a linear hull ef-
fect. Sections 4 and 5 respectively provide the experimental results of our attacks
against reduced-round Serpent, using algorithms 1 and 2. Finally, conclusions
are in Section 6 and a description of the Serpent cipher is in Appendix A.

2 Linear approximations search

The first step in a linear cryptanalysis attack consists in finding linear approxi-
mations of the cipher with biases as high as possible. But the problem of search-
ing such approximations is not trivial, because of the great cardinality of the set
of candidates. In 1994, Matui proposed a branch-and-bound algorithm making
possible to effectively find the best approximation of the DES [12]. However, for
practical reasons that are out of the scope of this paper, this method hardly
applies to block ciphers with good diffusion such as the AES candidates. As a
consequence, we rely on approximations found with a modified heuristic that is
described in [3]. Although it does not ensure to obtain the best approximations
of Serpent, it provided the best-reported ones in the open literature. Note that,
given a r-round approximation found with the branch-and-bound algorithm, the
first round masks and last round masks can be replaced by any other mask pro-
vided that the biases are left unchanged. Due to the properties of the Serpent
S-boxes, several similar approximations can easily be generated with this tech-
nique. This allowed us to obtain large sets of approximations involving the same
key bits to guess at the cost of dependencies in the linear trails!.

3 Preliminary observations

Prior to the investigation of multiple linear approximations, we performed ex-
periments with single approximations. We started with algorithm 1 of which the
principle is as follows. For each plaintext-ciphertext pair, we evaluate the left
part of equation 1 and increment or decrement a counter given the result. This
way, the counter can be used to evaluate the experimental bias of the approxi-
mation. If the experimental and theoretical biases have the same sign, then we
can presume that the parity of the subkey bits in the right part of Equation 1 is
zero. Otherwise, we guess that this parity is one, so that empirical and theoretical
results match. As it is suggested in [10], this heuristic relies on a maximum like-
lihood approach in which we choose the parity so that theoretical and practical
results fit well. Thus, the unknown parity can be guessed with an arbitrary high

! A linear trail is a set of r 4+ 1 masks describing a r-round approximation [11]

probability by computing the experimental mean of the bias and choosing the
parity that minimizes the distance between theory and practice. As an illustra-
tion, we used a 4-round linear approximation of Serpent with a theoretical bias
of 2712 and observed its experimental value for a number of plaintext-ciphertext
pairs proportional to 224. Figure 1 illustrates that the bias value becomes stable
after approximately 8/¢* encrypted pairs. It also shows that the theoretical bias
(provided by the branch-and-bound algorithm in [3]) was underestimated, which
suggests that the linear hull effect is not negligible in our experiments [11]: there
are several approximations with the same input/output mask that contribute to
the bias in a non negligible way. This effect can cause the complexity of a linear
cryptanalysis attack to be overestimated [6].

x10°
1.2 T

experimental bias
theoretical bias

ol W4

RN

12
o
1)

oall |

0.2

0 2 4 6 8 10 12 14 16
number of texts ('1/52)

Fig. 1: Evolution of the experimental bias w.r.t. the number of known-plaintexts used.

Next to this first experiment, we observed the behavior of 64 linear approx-
imations with various biases, as illustrated in Figure 2. It shows that, provided
a sufficient number of encrypted plaintexts, the approximations separate in two
classes: the ones with positive bias and the ones with negative bias. This exper-
iment suggests the interest of exploiting multiple linear approximations: since
any of these experimental biases provide the adversary with some information
on the block cipher key, it is worth trying to exploit them in an efficient way.

Following Kaliski and Robshaw [7], Biryukov et al. proposed a general ap-
proach to extend Matsui’s linear cryptanalysis to multiple linear approximations
[2]. As in the simple approximation case, an experimental bias is derived for each
approximation in a distillation phase during which counters are extracted from
the data. Then, in the analysis phase, an euclidian distance between the theoret-
ical prediction and the experiment is evaluated for each possible parities of the
key bits involved in the approximations. The parity minimizing this distance is
guessed to be the correct one. The expectation is that the number of encrypted
plaintexts required to achieve a given success rate can be reduced when the
number of approximation is increased, according to the value of the capacity
c=4- Z:ll €7. In the next sections, we experimentally evaluate the extent to
which these expectations can be fulfilled, both for Matsui’s algorithm 1 and 2.

experimental bias

250 500 750 1000 1250 1500
number of texts ('1/52)

Fig. 2: Evolution of 64 experimental biases w.r.t. the number of known-plaintexts used.

4 Experimental attacks with algorithm 1

4.1 Selection of the approximations

A significant drawback of Matsui’s algorithm 1 compared to the second one is
that the adversary does not recover master key bits, but a linear equation involv-
ing key bits in all the cipher rounds. In the context of non-linear key-scheduling
algorithms, this makes the practical exploitation of the attack results difficult
since it does not straightforwardly reduce the complexity of an exhaustive key
search. When using multiple linear approximations, this drawback can be par-
tially relaxed in the following way?. First, the best approximation provided by
the branch-and-bound algorithm is selected. Then, only the input/output masks
are modified in order to generate large sets of equations. Finally, the adversary
progressively increases the size of its system of equations: each time he adds an
equation to the system, he also checks the rank r of the corresponding matrix,
indicating the number of linearly independent relations in his system. By choos-
ing the system of equations such that the independencies between the equations
only relate to meaningful key bits, the adversary ends up with an exploitable
information on the cipher key. For example, if the adversary only modifies the
input masks to generate a system of the form:

P[xp] @ Clxe] = K[xk] (1 <i<m), (4)

he can recover first round key bits. Only one bit (corresponding to the non-
variable part of the trail in the system) has to be guessed additionally. As an
illustration, we performed attacks against 4-rounds of Serpent, using 64 approx-
imations such that the resulting system of equations has rank r = 10.

2 Of course, it remains that algorithm 1 uses a r-round approximation compared to a
r — l-round approximation in algorithm 2 which increases its data complexity.

4.2 Attacks results

Figure 3 depicts the evolution of the distance between the theoretical and exper-
imental biases, for various values of the parity guess and number of encrypted
plaintexts. The correct key candidate is expected to minimize this distance which
is verified in practice: 32/c encrypted plaintexts are sufficient to uniquely deter-
mine the correct parity guess. As expected, increasing the number of encrypted
plaintexts improves the confidence (or reduces the noise) in the attack result. For
example, Figure 4 illustrates the result of a similar attack when 4096/c encrypted
plaintexts are provided to the adversary. Interestingly, the attack result has a
very regular structure underlining the impact of the Hamming distance between
different key candidates: close keys have close biases. However, such figure does
not tell us (or quantify) how much the exploitation of multiple approximations
allowed reducing the attack data complexity.

n=2/c

n=4/c

n=16/c
WWMWWMWWW e
%MWWWWWWWW‘W n=64lc

distance between theoretical and experimental bias

n=128/c

1 (;0 2(;0 3(;0 4(;0 5(;0 6(;0 7(;0 8(;0 9(;0 1 (;00
parity guess

Fig. 3: Evolution of the distance between the theoretical and experimental biases w.r.t.

the parity guess when the number of encrypted plaintexts increases (64 4-rounds ap-

proximations with a capacity of 5.25-107%). The horizontal line in each graph indicates

this distance for the correct parity guess. The scale is the same in each figure.

For this purposes, we ran another set of experiments in which we computed
the gain of the attack. As defined in [2], if an attack is used to recover an n-bit
key and is expected to return the correct key after having checked on the average
M candidates, then the gain of the attack, expressed in bits, is defined as:

2-M-1

Qn 5)

v = —logs

3.5

w

25 "q

N

distance between theoretical and experimental bias

0 260 460 660 860 10‘00
parity guess

Fig. 4: Evolution of the distance between the theoretical and experimental biases (same

as Figure 3) w.r.t. the parity guess when using 4096/c encrypted plaintexts.

Intuitively, it is a measure of the remaining workload (or number of key candi-
dates to test) after a cryptanalysis has been performed. In the context of multiple
linear cryptanalysis attacks, the gain is simply determined by the position of the
correct key (or parity) candidate in the weighted list of candidates obtained from
the analysis phase. For example, if an attack is used to recover 8 key bits and the
correct key candidate is the most likely (resp. second most likely), it has a gain
of 8 bits (resp. 6.42 bits). Importantly, when algorithm 1 is used, the maximum
gain of an attack depends on the rank of its systems of equations.

In Figure 5, the gain of three attacks are given with respect to the data
complexity. The first attack (in red) recovers one bit of parity using only one
approximation (i.e. it is a simple linear cryptanalysis). The second attack (in
green) uses 10 approximations and recovers up to 10 parity bits, while the third
attack (in blue) recovers 10 parity bits using 64 linearly dependent approxima-
tions. As expected, the gain obtained using 64 approximations increases about 8
times faster than with 10 approximations. This example shows the flexibility of-

gain of the attack
o

0

2M2 2M4 2M6 2M8 2120 2022 2724 2726 2728
number of texts

Fig. 5: Evolution of the gain with respect to the number of encrypted plaintexts.

fered by multiple approximations when algorithm 1 is applied: they can be used
both to get a better gain for a fixed number of plaintext or to get a lower data
complexity for a fixed gain. This observation is even better quantified in Figure
6 where the evolution of the gain is given according to the number of encrypted
plaintexts normalized by the capacity (i.e. the number of plaintexs divided by
the joint capacity of the approximations used in the attack). It clearly illustrates
the tradeoff between attack complexity and gain. It also confirms that N o« 1/¢
is the number of plaintexts required for the attack to reach its maximum gain.

gain of the attack

0 f ,
r-2 2n1 270 2M 22 273 2°4 2h5 276 27
number of texts (*1/c)

Fig. 6: Evolution of the gain w.r.t. the number of plaintexts normalized by the capacity.

4.3 Gain versus success rate and further insights

Let us introduce the following definition:

Definition 1 (success rate). The success rate of an attack using n approzi-
mations (for a given number of plaintexts/ciphertexts) is the number of parity
bits guessed correctly among the n parities derived from the distance between the
experimental and theoretical bias values.

Figure 7 represents the evolution of the gain and of the success rate when
the number of encrypted plaintexts increases. Interestingly, we can see that the
gain increases much faster than the success rate. For example, after about 223
encrypted plaintexts, the gain of the attack reaches its maximum, while the
success rate only equals 0.8 at this point. This is a consequence of the linear
dependancies between the approximations. Suppose we are given m linear ap-
proximations:

Plxp] & Clxo] = K[xk] (1 <i<m), (6)

Such that the following relation holds (case of dependant text masks):

XpBDXp® - OXP =XCPDXE D - DXE (7)

Approximation m is linearly dependant in the sense that no additionnal infor-
mation is given in the deterministic case (i.e. if the approximations hold with
probability 1). However, in the probabilistic case, some information can still be
extracted (as shown in [13]), as the bias of the m — th approximation is not nec-
essarily related to the bias of the m — 1 first. When performing multiple linear
approximations cryptanalysis, the left part of each approximation is evaluated
for a large number of plaintext-ciphertexts pairs and then the parity of the right
part (involving subkey bits) is choosen so as to minimize the distance between
experimental and theoretical bias. However, some of the parity guess might be
wrong in which case the system of equations (where p’ is the parity guess for
approximation 1):

K[xg]=p"
can be inconsistent given the linear dependancies, and one or more parity guess
must be changed. This can be verified only if there are linear dependancies
between the approximations. As the consistency check can be performed before
the exhaustive search for the remaining unknown bits, this increases the gain of
the attack. Intuitively, this shows that using more approximations than the rank
of the system in an attack provides an effect similar to an error correcting code:
some parity candidates can be rejected a-priori. By contrast, the success rate of
an attack is expected to remain the same when the number of approximations
increases (provided that the theoretical biases of each approximation are equal).

10 Mu ,H"JWM 1

10.9

o S
~ [o<]
success rate

gain of the attack

Il
o

10.5

2M6 2M8 2120 2122 2124 2126 2128
number of texts

Fig. 7: Evolution of the gain and success rate w.r.t. the number of encrypted plaintexts.

As an illustration, we can study the relation between the success rate and
the gain of an attack. Suppose that at least n’ out of the n approximation parity
are guessed correctly. Obviously, the succes rate is higher than n'/n. In order to
recover the key (and evaluate the gain), we must generate a list of candidates
from the value of the parity bits and then try each candidate until the correct
one is found. This can be done using the following strategy:

— Choose the first candidate so as to minimize the euclidian dis-
tance between theoretical and experimental bias.

— Assume one guess is incorrect; choose one parity bit and take
its complement; try the (1) possible candidates;

— Assume two guesses are incorrect; choose two parity bits and
take their complements; try the (%) possible candidates;

— Assume n — n' guesses are incorrect; choose n — n' parity bits

and take their complements; try the (nfn,) possible candidates;

After n —n' steps, we have necessarily found the correct candidate as there is
maximum n — n' wrong guesses, thus the gain of the attack equals:
n—n' [n
(Zz:é)n (1)) (8)
In this equation, we implicitly assume the independence between the approxima-
tions (i.e. we assume the maximum gain can be n). However, experiments using
up to 416 approximations (including 15 linearly independent ones) show that
this prediction fits reasonably well even when the approximation are not inde-
pendent, as long as the gain does not saturate to its maximum value (see Figure
8). We observe that for a given success rate, the gain of the attack increases with
the number of approximations. This example highlights (from a different point of

view) the advantage of multiple linear approximations compared to single linear
cryptanalysis in which the success rate is equivalent to the gain.

v = —logs

approx: 1-2-4-8-16-32-64-128-256-416 || gain: 15

gain of the attack

0.4 0.5 0.6 0.7 0.8 0.9 1
success rate

Fig.8: Evolution of the gain w.r.t. the success rate for various number of approxima-
tions. This number ranges from 1 to 416 when moving from the bottom curves to the
top curves. The black smooth curves are the theoretical predictions.

5 Experimental attacks with algorithm 2

In this section, we perform experimental attacks against 5-round Serpent us-
ing multiple linear approximations with Algorithm 2. It allows the adversary to
recover subkey bits in the first/last round of the cipher as follows. An attack
against r cipher rounds deals with a linear approximation of the r — 1 last/first
rounds. For each plaintext-ciphertext pair and subkey candidate, the ciphertext
is then partially en/decrypted with the subkey candidate, and the approximation
is evaluated for the partial en/decryption. A counter indexed by the keyguess
value is incremented /decremented according to the parity of the evaluation. For
a wrong candidate, the partial en/decryption is expected to produce a random
output, thus leading to an null experimental bias (meaning that its statistical
evaluation is sufficiently close to zero). For the correct key guess, the experimen-
tal bias is expected to converge toward the theoretical bias. In order to speed-up
the computations, we used the FFT trick proposed in [4].

5.1 Differences between algorithms 1 and 2

Compared with algorithm 1, the exploitation of multiple linear approximations
with algorithm 2 faces an additional problem that we detail in this section. In
multiple linear cryptanalysis, an adversary has a system of m linear approxima-
tions. Each approximation has a theoretical value for its bias €; and the adversary
additionally obtains an experimental value for this bias €. When algorithm 1 is
used, this experimental value is used to minimize the Euclidean distance:

mginZ(ei — (=1)99 .)2, 9)
i=1

where g is the parity guess of the linear approximations. But when algorithm 2
is used, this experimental bias also depends on the round subkey that is used to
perform the first (or last) round partial decryption: €] ;. Therefore, the following
Euclidean distance has to be computed:

mkin (mgin Z(Ei — (=199 - €5 1)?) (10)
=1

The practical consequence of these different conditions can be explained as fol-
lows. While the condition in Equation 9 leads to a correct value for the guess,
even if the theoretical bias values are underestimated, the condition in Equation
10 only leads to a correct key candidate if a good theoretical estimation of these
biases is available. This is due to the key dependencies of the experimental biases
in algorithm 2. Unfortunately, in the context of the Serpent algorithm investi-
gated in this paper, it has been shown in Section 3 that these theoretical values
are not accurate, due to the linear hull effect. As a consequence, the framework
of [2] cannot be straightforwardly applied in our context. This is in contrast, e.g.
with the DES, where such a linear hull effect is negligible [6].

5.2 Attack results

The usual solution to overcome this problem is to look at the maximum experi-
mental bias values. For example, when multiple approximations are considered,
a vector of experimental biases can be derived for each approximation. Then the
average is taken over all the approximations and its maximum value is expected
to indicate the correct key candidate. But the theoretical framework of Crypto
2004 is not applied anymore and such an approach is more closely related to the
experiments of Kaliski and Robshaw [7]. As an illustration, Figure 9 illustrates
the evolution of the experimental biases averaged over 32 4-rounds approxima-
tions, for different numbers of plaintext/ciphertext pairs and 12 bits of keyguess.
Figure 10 shows a comparison between simple and multiple linear cryptanaly-
sis. This latter picture illustrates that multiple linear approximations still allow
reducing the noise level in the modified attacks which improves their efficiency.

experimental bias

i

Il 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
subkey guess

Fig.9: Evolution of the experimental bias averaged over 32 4-rounds approximations for
each guess of the 2'? key guesses, when the number of pairs increases (¢ = 2.08-1077).

On the other hand, increasing the number of linear approximations does not
involve reductions of the data complexity according to the capacity values as
in the previous section. This is caused by the modified analysis phase, in which

ad
15
x
o
IS

w

I
o

2

o

(mean of the) experimental bias

o
o

me }

0 500 1000 1500 2000 2500 3000 3500 4000
subkey guess

Fig. 10: Comparison of the noise levels between simple and multiple linear cryptanalysis
(104 approximations vs. 1 approximation, n=64/c).

the exploitation of the information provided by the different approximations is
not optimal anymore. This fact can be emphasized by investigating the gain
of the attacks, for different number of approximations. For example, Figure 11
illustrates how the gain of three attacks with respectively 2, 8 and 32 approxi-
mations (having the same individual biases) increases. But the benefits are not
as spectacular is in the context of algorithm 1. Namely, the 32-approximations
gain is not increasing 16 times faster than when 2 approximations are used.
Compared to the attack results with algorithm 1 (e.g. in Figure 4), it is finally
interesting to notice that Figures 9 and 10 show no particular structure in the
biases distribution. This is due to the partial en/decryption of one round that
cancels the effects caused by close keys in the Hamming distance sense.

gain of the attack

2r24 2725 2726 2r27 2728 2729 230
number of texts

Fig. 11: Evolution of the gain of algorithm 2 w.r.t. the number of encrypted plaintexts.

6 Conclusion and further works

This paper presented experimental results of multiple linear cryptanalysis at-
tacks against reduced-round versions of the block cipher Serpent. It allowed us
to highlight the following observations:

1. The hypotheses stated in [2] about the possible influence of dependencies
(between the masks or linear trails) generally appear to be reasonably ful-
filled, even for approximations of which a large part of the trail is identical.

2. Our experiments only considered a limited number of approximations. De-
pendencies effects could appear with more approximations. Note that the
number of exploitable approximations is limited anyway, for computational
reasons: because of the approximation matrix rank with algorithm 1 and
because of the amount of partial en/decryptions to perform in algorithm 2.

3. By contrast with previous experiments against the DES, we observed a sig-
nificant linear hull effect, with the following consequences:

(a) Optimal attacks using Matsui’s algorithm 1 closely followed the data
complexities predicted with the capacity value (defined in [2]), even if
the theoretical values of the approximation biases were underestimated.

(b) Optimal attacks using Matsui’s algorithm 2 did not lead to successful
key recoveries because of the lack of good theoretical estimations of the
bias values. Modified heuristics allowed us to take advantage of multiple
approximations. But the improvement of the modified attack complexity
is not following the predictions of the capacity values.

4. More generally, the analysis of Crypto 2004 leads to meaningful results as
long as the branch-and-bound algorithm used to derive the linear approxi-
mations provides the adversary with the best possible biases.

In practice, our experiments finally confirmed the significant improvement
of multiple linear cryptanalysis attacks compared to Matsui’s original attack.
Open questions include the optimal exploitation of multiple approximations us-
ing algorithm 2 when good estimations of the bias values are not available or
the extension of these experiments towards more cipher rounds, e.g. using [9].

Description of the approximations
A detailed description of the linear approximations used in our experiments is

available at the following address:
http://www.dice.ucl.ac.be/ fstandae/PUBLIS/50b.zip

Acknowledgements

This work is partially supported by the Walloon Region under the project
Nanotic-Cosmos and by the Belgian Interuniversity Attraction Pole P6/26 BCRYPT.

References

1. R. Anderson, E. Biham, L. Knudsen, Serpent: A Proposal for the Advanced En-
cryption Standard, in the proceedings of the First Advanced Encryption Standard
(AES) Conference, Ventura, CA, 1998.

2. A. Biryukov, C. De Canniere, M. Quisquater, On Multiple Linear Approzimations,
in the proceedings of CRYPTO 2004, Lecture Notes in Computer Science, vol. 3152,
pp-1-22, Santa Barbara, California, USA, August 2004.

3. B. Collard, F.-X. Standaert, J.-J. Quisquater, Improved and Multiple Linear Crypt-
analysis of Reduced Round Serpent, in the proceedings of InsCrypt 2007, LNCS, pp.
47-61, Xining, China, September 2007.

4. B. Collard, F.-X. Standaert, J.-J. Quisquater, Improving the Time Complezity of
Matsui’s Linear Cryptanalysis, In K.-H. Nam and G. Rhee, editor(s), The Interna-
tional Conference on Information Security and Cryptology - ICISC 2007, Volume
4817 of Lecture Notes in Computer Science, pages 77-88, Springer, November 2007.

5. J. Daemen, V. Rijmen, The Wide-Trail Strategy, in the proceedings of IMA 2001,
LNCS, vol. 2260, pp. 222-238, Cirencester, UK, December 2001.

6. P. Junod, On the Complexity of Matsui’s Attack, in the proceedings of SAC 2001,
LNCS, vol. 2259, pp. 199-211, Toronto, Ontario, Canada, August 2001.

7. B.S. Kaliski, M.J.B. Robshaw, Linear Cryptanalysis using Multiple Approzimations,
in the proceedings of CRYPTO 1994, Lecture Notes in Computer Sciences, vol. 839,
pp. 26-39, Santa Barbara, California, USA, August 1994.

8. L.R. Knudsen, Practically Secure Feistel Ciphers, in the proceedings of FSE 1993,
LNCS, vol. 809, pp. 211-221, Cambridge, UK, December 1993.

9. S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, M. Schimmler, Breaking Ciphers with CO-
PACOBANA - A Cost-Optimized Parallel Code Breaker, in the proceedings of Cryp-
tographic Hardware and Embedded Systems - CHES 2006, Lecture Notes in Com-
puter Science, vol. 4249, Springer, 2006.

10. M. Matsui, Linear cryptanalysis method for DES cipher, in the proceedings of
Eurocrypt 1993, LNCS, vol. 765, pp. 386-397, Lofthus, Norway, May 1993.

11. K. Nyberg, Linear Approzimations of Block Ciphers, in the proceedings of Euro-
crypt 1994, LNCS, vol. 950, pp. 439-444, Perugia, Italy, May 1994.

12. M. Matsui, On Correlation Between the Order of S-boxes and the Strength of DES,
in the proceedings of Eurocrypt 1994, Lecture Notes in Computer Science, vol. 950,
pp. 366-375, Perugia, Italy, May 1994.

13. S. Murphy, The Independence of Linear Approzimations in Symmetric Cryptology,
IEEE Transactions on Information Theory, Vol. 52, pp. 5510-5518, 2006.

A The Serpent algorithm

The Serpent block cipher was designed by Ross Anderson, Eli Biham and Lars
Knudsen [1]. It was an Advanced Encryption Standard candidate, finally rated
just behind the AES Rijndael. Serpent has a classical SPN structure with 32
rounds and a block width of 128 bits. It accepts keys of 128, 192 or 256 bits and
is composed of the following operations:

— an initial permutation IP,

— 32 rounds, each of them built upon a subkey addition, a passage through 32
S-boxes and a linear transformation L (excepted the last round, where the
linear transformation is not applied)

— a final permutation FP.

In each round R;, only one S-box is used 32 times in parallel. The cipher uses 8
distinct S-boxes S; (0 < i < 7) successively along the rounds and consequently,
each S-box is used in exactly four different rounds. Finally, the linear diffusion
transform is entirely defined by XORs (@), rotations (<) and left shifts (K).
Its main purpose is to maximize the avalanche effect within the cipher. If one in-
dicates by X, X1, X5, X3 the 4-32 bits at the input of the linear transformation,
it can be defined by the following operations:

input = Xg, X1, X2, X3

Xo=Xo K 13
Xo=Xo K3
Xi=X1 X000 X,
X3=X3@X2®(X0<<3)
Xi=Xikl1
X=X T7
Xo=X0®d X1 ® X3
Xo=X00 X358 (X;: <7)
Xo=Xo K5
Xo=Xo 22

output :Xo,Xl,XQ,Xg

