
Intel’s New AES Instructions for Enhanced
Performance and Security

Shay Gueron1,2

1 Intel Corporation, Mobility Group, Israel Development Center, Haifa, Israel
2 University of Haifa, Faculty of Science, Department of Mathematics, Haifa, Israel

Abstract. The Advanced Encryption Standard (AES) is the Federal
Information Processing Standard for symmetric encryption. It is widely
believed to be secure and efficient, and is therefore broadly accepted as
the standard for both government and industry applications. If fact, al-
most any new protocol requiring symmetric encryption supports AES,
and many existing systems that were originally designed with other sym-
metric encryption algorithms are being converted to AES. Given the pop-
ularity of AES and its expected long term importance, improving AES
performance and security has significant benefits for the PC client and
server platforms. To this end, Intel is introducing a new set of instructions
into the next generation of its processors, starting from 2009. The new
architecture has six instructions: four instructions (AESENC, AESEN-
CLAST, AESDEC, and AESDELAST) facilitate high performance AES
encryption and decryption, and the other two (AESIMC and AESKEY-
GENASSIST) support the AES key expansion. Together, these instruc-
tions provide full hardware support for AES, offering high performance,
enhanced security, and a great deal of software usage flexibility, and are
therefore useful for a wide range of cryptographic applications. The AES
instructions can support AES encryption and decryption with each one
of the standard key lengths (128, 192, and 256 bits), using the stan-
dard block size of 128 bits. They can also be used for all other block
sizes of the general RIJNDAEL cipher. The instructions are well suited
to all common uses of AES, including bulk encryption/decryption using
cipher modes such as ECB, CBC and CTR, data authentication using
CBC-MACs (e.g., CMAC), random number generation using algorithms
such as CTR-DRBG, and authenticated encryption using modes such as
GCM. Beyond improving performance, the AES instructions provide im-
portant security benefits. Since the instructions run in data independent
time and do not use table lookups, they help eliminating the major tim-
ing and cache-based attacks that threaten table-lookup based software
implementations of AES. In addition, these instructions make AES sim-
ple to implement, with reduced code size. This helps reducing the risk
of inadvertent introduction of security flaws, such as difficult-to-detect
side channel leaks. This paper provides an overview of the new AES in-
structions and how they can be used for achieving high performance and
secure AES processing. Some special usage models of this architecture
are also described.
Keywords: Advanced Encryption Standard, computer architecture, new
instructions set.

2 Shay Gueron

1 Introduction

The Advanced Encryption Standard (AES), defined in 2001 by NIST [11]
(FIPS197 hereafter), is considered the state of the art in symmetric encryption,
and a crucial ingredient for security and privacy applications. Rising require-
ments for high encryption/decryption bandwidths that have minimal impact
on the user experience, increase the value of a high throughput AES solution
for commodity processors. One example is disk encryption applications, such as
Microsoft’s Vista BitLocker [10], where due to increased volume size and disks
speed, software encryption overhead may become a bottleneck for both the client
and the server platforms.

The security of AES execution is an additional consideration added to the PC
environment due to increased awareness to recent side channel attacks on AES
software that uses lookup tables (e.g., [13]). Mitigation techniques significantly
degrade the resulting performance, therefore making a hardware based AES
solution even more advantageous.

Intel offers a comprehensive hardware solution for AES, introducing six new
instructions to its processors, starting from the processor called “Westmere”.

This paper describes the instructions, how they can be used efficiently and
flexibly, and explains some of the benefits of this particular AES architecture.

2 Intel’s AES architecture

2.1 Preliminaries and notations

Hereafter, we use the terminology of FIPS197, which details of all transforma-
tions, flows for encryption/decryption and key expansion that define AES.

We point out some subtlety related to the notation conventions. FIPS197
defines AES in terms of bytes. However, the algorithm is described using a text
convention where hexadecimal strings are written with the low-memory byte on
the left, and the high-memory byte on the right (this convention is analogous to
writing integers in a “Big Endian” convention). This text convention determines
the way in which the test vectors are written, and the description of some of
the transformations. On the other hand, Intel’s Architecture convention is the
opposite: hexadecimal strings are written with the low-memory byte on the right
and the high-memory byte on the left (analogous to writing integers in a “Little
Endian” convention). Of course, store/load processor operations are consistent
with the way that the AES instructions operate (i.e., using these instructions
does not require any byte reversal). For reference, we provide here an example for
all of the eight AES transformations, expressed in the “Little Endian” convention
which is used on Intel’s processors.

2.2 The six AES instructions

Intel’s architecture offers six instructions to support AES (see Fig. 2). AESENC,
AESENCLAST, support encryption. AESDEC and AESDECLAST are building

Intel’s New AES Instructions 3

SubBytes(73744765635354655d5b56727b746f5d) =
8f92a04dfbed204d4c39b1402192a84c

MixColumns(627a6f6644b109c82b18330a81c3b3e5) =
7b5b54657374566563746f725d53475d

ShiftRows(7b5b54657374566563746f725d53475d) =
73744765635354655d5b56727b746f5d

InvMixColumns(8dcab9dc035006bc8f57161e00cafd8d) =
5be3eb11928b5eaeeec9cc3bc55f5777

InvShiftRows(7b5b54657374566563746f725d53475d) =
5d7456657b536f65735b47726374545d

InvSubBytes(5d7456657b536f65735b47726374545d) =
8dcab9dc035006bc8f57161e00cafd8d

RotWord(3c4fcf09) = 093c4fcf SubWord(73744765) = 8f92a04d

Fig. 1. The AES transformations expressed in “Little Endian” notation, as used in
Intel’s architecture.

blocks suitable for decryption using the Equivalent Inverse Cipher (see FIPS197
for definition). Each instruction has a register-memory and a register-register
variant. AESIMC and AESKEYGENASSIST support the Key Expansion. AES-
IMC facilitates the conversion of the encryption round keys to a form suitable for
the Equivalent Inverse Cipher. AESKEYGENASSIST uses an immediate byte
as part of the input (used as RCON).

3 Basic usage of the AES instructions

This section illustrates the basic usage of the AES instructions, using AES-128
(ECB mode) as an example. The general paradigm is that for AESENC, AESEN-
CLAST, AESDEC, AESDECLAST, the inputs xmm1 and xmm2 are interpreted
as xmm1 = State and xmm2 = Round Key. For AESIMC, the input xmm2 is in-
terpreted as xmm2 = Round Key. Fig. 3 illustrates encryption/decryption flows.
For AESKEYGENASSIST, the input should be interpreted as an intermediate
step in the Key Expansion procedure, where the immediate byte is the value of
RCON. An example for AES-128 Key Expansion is illustrated in Fig. 4 (Key
Expansion for AES-192 and AES-256 is provided in the Appendix).

4 Some design considerations that led to the selection of
the AES architecture

Introducing a new instruction to Intel’s processors implies long-term legacy com-
mitment. Additionally, silicon area is a precious “real-estate”. This mandates a
great deal of care in the definitions and cost-performance-flexibility tradeoffs.
Obviously, the AES architecture must offer an adequate solution for the short
term requirements, but as importantly, it should have the ability to accommo-
date long range requirements that may emerge in the future. Therefore, the
AES architecture needs to address the following considerations: a) Flexibility,
b) Performance, c) Performance scalability, d) Security. We explain how these
properties are achieved by the AES architecture.

4 Shay Gueron

AESENC xmm1, xmm2/m128 AESENCLAST xmm1, xmm2/m128
Tmp := xmm1 Tmp := xmm1
RoundKey :=xmm2/m128 RoundKey := xmm2/m128
Tmp := ShiftRows (Tmp) Tmp := ShiftRows (Tmp)
Tmp := SubBytes (Tmp) Tmp := SubBytes (Tmp)
Tmp := MixColumns (Tmp)
xmm1:= Tmp xor RoundKey xmm1:= Tmp xor RoundKey
AESDEC xmm1, xmm2/m128 AESDECLAST xmm1, xmm2/m128
Tmp:=xmm1 Tmp:= xmm1
RoundKey := xmm2/m128 RoundKey := xmm2/m128
Tmp := InvShiftRows (Tmp) Tmp := InvShiftRows (Tmp)
Tmp := InvSubBytes (Tmp) Tmp := InvSubBytes (Tmp)
Tmp := InvMixColumns (Tmp)
xmm1:= Tmp xor RoundKey xmm1:= Tmp xor RoundKey
AESKEYGENASSIST xmm1, xmm2/m128, imm8
Tmp := xmm2/m128
RCON[31–8] := 0; RCON[7–0] := imm8;
X3[31–0] := Tmp[127–96]; X2[31–0] := Tmp[95–64];
X1[31–0] := Tmp[63–32]; X0[31–0] := Tmp[31–0];
xmm1 := [RotWord (SubWord (X3)) XOR RCON, SubWord (X3),

Rotword (SubWord (X1)) XOR RCON, SubWord (X1)]
AESIMC xmm1, xmm2/m128
RoundKey := xmm2/m128;
xmm1 := InvMixColumns (RoundKey)
Examples:
xmm1 = 7b5b54657374566563746f725d53475d
xmm2 = 48692853686179295b477565726f6e5d
AESENC result: a8311c2f9fdba3c58b104b58ded7e595
AESENCLAST result: c7fb881e938c5964177ec42553fdc611
AESDEC result: 138ac342faea2787b58eb95eb730392a
AESDECLAST result: c5a391ef6b317f95d410637b72a593d0

xmm2 = 7b5b54657374566563746f725d53475d
AESIMC result: 627a6f6644b109c82b18330a81c3b3e5

xmm2 = 3c4fcf098815f7aba6d2ae2816157e2b; imm8 = 1
AESKEYGENASSIST result: 01eb848beb848a013424b5e524b5e434

Fig. 2. Functional descriptions (architectural behavior) and examples of the AES in-
structions (note that ShiftRows and SubBytes, InvShiftRows and InvSubBytes com-
mute).

4.1 Design for software flexibility

Software flexibility implies that the architecture should be able to support all of
the current usage models for AES. Indeed, it is easy to realize that this the case
with the new AES instructions: They are the building blocks that can support
all the AES variants defined by FIPS197, uses of AES in cipher modes such as
CBC or CTR, data authentication using CBC-MACs such as CMAC, random
number generation using algorithms such as CTR-DRBG, and authenticated
encryption using modes such as GCM. As an example, Fig. 5 shows encryption
in CBC mode.

Software has the flexibility to pre-expand the keys and re-use them (which
is the typical usage model in bulk encryption) or to expand them on-the-fly. In
addition, when compared with existing software implementations, one can realize
that the AES instructions can help reduce the associated code size. We also point
out here that the AES round instructions remain as useful as they are now, even
if future analysis would change the standard to perform more rounds during

Intel’s New AES Instructions 5

AES-128 encryption Decryption Round Keys AES-128 decryption
pxor xmm1, xmm2 pxor xmm1, xmm12;
AESENC xmm1, xmm3 AESIMC xmm3, xmm3 AESDEC xmm1, xmm11
AESENC xmm1, xmm4 AESIMC xmm4, xmm4 AESDEC xmm1, xmm10
AESENC xmm1, xmm5 AESIMC xmm5, xmm5 AESDEC xmm1, xmm9
AESENC xmm1, xmm6 AESIMC xmm6, xmm6 AESDEC xmm1, xmm8
AESENC xmm1, xmm7 AESIMC xmm7, xmm7 AESDEC xmm1, xmm7
AESENC xmm1, xmm8 AESIMC xmm8, xmm8 AESDEC xmm1, xmm6
AESENC xmm1, xmm9 AESIMC xmm9, xmm9 AESDEC xmm1, xmm5
AESENC xmm1, xmm10 AESIMC xmm10, xmm10 AESDEC xmm1, xmm4
AESENC xmm1, xmm11 AESIMC xmm11, xmm11 AESDEC xmm1, xmm3

AESENCLAST xmm1, xmm12 AESDECLAST xmm1, xmm2

Fig. 3. Left panel: AES-128 encryption. Register xmm1 holds the data to encrypt,
xmm2 is the whitening key, and xmm3–xmm12 hold Round Keys 1–10. The AES flow
starts with a whitening step (XOR with xmm2). Rounds 1–9 are implemented using
AESENC, and round 10 is implemented using AESENCLAST. Middle panel: AESIMC
is used for transforming the round keys for decryption using the Equivalent Inverse
Cipher. Right panel: AES-128 decryption. Register xmm1 holds the data to decrypt.
Registers xmm12-xmm2 hold the decryption round keys and the whitening key.

encryption/decryption. Furthermore, as long as the Key Expansion procedure is
not fundamentally changed, AESKEYGENASSIST (taking any Round Constant
as an input byte) could be used for generating additional round keys.

4.2 Design for performance

Performance is a main motivation for introducing the AES instructions. To this
end, the architecture takes advantage of the 128-bit data-path available in the
Intel’s modern processors (compare with the 32-bit instructions proposed in [14],
in a different setup, that does not have such a wide data-path).

The AES architecture is optimized for the common usage model for the
PC platform where the round keys are generated once, stored in registers or
in the cache memory, and then used for multiple data blocks. To this end, the
hardware support for the key expansion is decoupled from the more performance-
critical encryption/decryption acceleration. The four AES rounds instructions
encapsulate the maximal sequence of transformations which is possible without
having micro-architectural branches. To illustrate, consider a possible alternative
instruction such as AESROUND xmm1, xmm2, imm8, where the immediate
byte is a control that selects encryption/decryption and round/last round. Such
architecture would require the implementation to have micro-branching which
could incur some performance loss. To avoid this, four separate instructions are
dedicated to each of the four “flavors” of the AES rounds.

4.3 Design for performance scalability

Performance scalability is also achieved by encapsulating the “maximal” pos-
sible flow in the performance-critical instructions, thus leaving room for micro

6 Shay Gueron

movdqu xmm1, XMMWORD PTR Key
movdqu XMMWORD PTR Key Sched, xmm1 key expansion 128:
mov rcx, OFFSET Key Schedule+16

pshufd xmm2, xmm2, 0xff
AESKEYGENASSIST xmm2, xmm1, 0x1 vpslldq xmm3, xmm1, 0x4
call key expansion 128 pxor xmm1, xmm3
AESKEYGENASSIST xmm2, xmm1, 0x2 vpslldq xmm3, xmm1, 0x4
call key expansion 128 pxor xmm1, xmm3
AESKEYGENASSIST xmm2, xmm1, 0x4 vpslldq xmm3, xmm1, 0x4
call key expansion 128 pxor xmm1, xmm3
AESKEYGENASSIST xmm2, xmm1, 0x8 pxor xmm1, xmm2
call key expansion 128 movdqu XMMWORD PTR [rcx], xmm1
AESKEYGENASSIST xmm2, xmm1, 0x10 add rcx, 0x10
call key expansion 128 ret
AESKEYGENASSIST xmm2, xmm1, 0x20
call key expansion 128
AESKEYGENASSIST xmm2, xmm1, 0x40
call key expansion 128
AESKEYGENASSIST xmm2, xmm1, 0x80
call key expansion 128
AESKEYGENASSIST xmm2, xmm1, 0x1b
call key expansion 128
AESKEYGENASSIST xmm2, xmm1, 0x36
call key expansion 128

Fig. 4. AES-128 Key Expansion example (the cipher key is stored in the array “Key”
and the generated key expansion is stored in the array “Key Sched”. (see comments in
the Appendix)

void AES 128 CBC Encrypt (...) {
int i, j, k;

m128i tmp, feedback;
m128i RKEY [11];

for (k=0; k<11; k++) {
RKEY [k] = mm load si128 ((m128i*)&Key Schedule [4*k]);

}
feedback = mm load si128 ((m128i*)&IV [0]);
for(i=0; i < NBLOCKS; i++) {

tmp = mm load si128 ((m128i*)&PLAINTEXT[i*4]);
tmp = mm xor si128 (tmp,feedback);
tmp = mm xor si128(tmp, RKEY[0]);
for(j=1; j < 10; j++) {

tmp = mm aesenc si128 (tmp, RKEY [j]);
}
tmp = mm aesenclast si128 (tmp, RKEY [10]);
feedback = tmp;
mm store si128 ((m128i*)&CIPHERTEXT[4*i], tmp);

}
}

Fig. 5. Encryption in CBC mode. A C code snippet, using compiler intrinsics, illus-
trates a function that encrypts NBLOCKS data blocks.

architectural cost-performance tradeoffs. To illustrate this flexibility, consider the
AESENC instruction that performs tha sequence of transformation: ShiftRows;
SubBytes; MixColumns; AddRoundKey (=XOR). These could be implemented
by one piece of dedicated hardware, or by means of hardware elements that pro-

Intel’s New AES Instructions 7

cess the data in small granularity combined with some micro-instruction flows.
Thus, it is possible to choose the cost-performance balance across processors and
processors generations, according the performance requirements.

To show the benefit of bundling the maximal flow in one instruction, consider
the following alternative of having two separate instructions, SUBBYTES xmm1,
xmm2, and MIXCOL xmm1, xmm2. With these, the AES encryption round
could be performed by the sequence PSHUFB (for ShiftRows), SUBBYTES,
MIXCOL, PXOR. However, such an architectural approach limits the highest
possible performance of the instruction.

4.4 Design for security

We briefly explain here how side channel attacks can compromise the security
of AES software implementations, and how the new architecture mitigates this
problem.

Processor cache is a special type of memory that allows faster access com-
pared to accessing main memory. The processor stores recently read memory
areas in cache, with the speculative anticipation that these areas would be re-
accessed “soon”. In each memory access, the processor first checks if the data
is in the cache (enjoying fast access) and if not, it reads from main memory (or
lower level caches), and stores it in the cache for future usage. To place new data
in the cache, the processor needs to evict less recent data.

Currently, many common efficient software implementations of AES use lookup
tables (e.g., Gladman’s code [4], OpenSSL [12], and Lipmaa [6, 7]). The entries
in the table(s), which are read during encryption, depend implicitly on the secret
round key and on the processed data. A “spy process”, which runs at the same
privilege level, can exploit this fact: it runs in parallel to some AES code, fills the
cache lines with its own data, and reads them again after the table was accessed
by the AES code. Depending on the reading latency that the spy experiences
(for its own data, as measured by using the RDTSC instruction), it can discover
if the corresponding cache line was evicted or not, and therefore deduce which
part of the table was accessed by the AES code. Repeatedly collected, and com-
bined with the appropriate analysis, this information could eventually leak out
the secret key (see e.g., [13, 3]).

These side channel threat can be avoided by writing the AES software in a
way that the memory access patterns hide the key dependence (e.g., [13, 3]). How-
ever, these mitigation techniques may involve a significant performance penalty.
There are also software implementations of AES that do not use table lookup at
all (e.g., Matsui [8, 9], Bernstein and Schwabe [2]).

The AES instructions are designed to mitigate all of the known timing and
cache side channel leakage of sensitive data. Their latency is data-independent,
and since all the computations are performed internally by the hardware, no
lookup tables are required. Therefore, if the AES instructions are used properly,
the AES encryption/decryption, as well as the key expansion, would have data-
independent timing and would involve only data-independent memory access.
Consequently, the AES instructions allow for easily writing high performance

8 Shay Gueron

AES software which is, at the same time, protected against the currently known
side channel threats.

5 Performance optimizations for parallel modes of
operation

Significant performance optimization for encryption/decryption using the AES
instructions can be achieved by re-ordering the code. This helps taking better
advantage of parallelism in parallel modes of operation such as ECB, CTR, and
CBC-Decrypt (with the CBC-Encrypt serial mode being the exception). This
section explains how it can be done.

The hardware that supports the four AES round instructions is pipelined.
This allows independent AES instructions to be dispatched theoretically every
1–2 CPU clock cycle, if data can be provided sufficiently fast. As a result, the
AES throughput can be significantly enhanced for parallel modes of operation,
if the “order of the loop” is reversed: instead of completing the encryption of
one data block and then continuing to the subsequent block, it is preferable to
write software sequences that compute one AES round on multiple blocks, using
one round key, and only then continue to computing the subsequent round on
for multiple blocks (using another round key). For such optimization, one needs
to choose the number of blocks that will be processed in parallel. The optimal
parallelization parameter value depends on the scenario, for example on how
many registers are available, and how many data blocks are to be (typically)
processed. In general, it is useful to process 4–8 blocks in parallel, in order
to achieve high throughput. We provide here two examples: Figure 6 outlines
assembler code for encrypting 8 blocks in parallel, in ECB mode, and Figure 7
gives a C code snippet for decrypting 4 blocks in parallel in CBC mode.

5.1 Parallelizing CBC encryption for performance

CBC encryption is a serial mode of operation, because encrypting a block re-
quires the encryption result of the previous block. Therefore, CBC encryption
does not allow for hiding the latency of the AES instructions by operating on
independent blocks as shown above. However, in some cases it is possible to
parallelize CBC encryption if the application needs to operate on multiple inde-
pendent data streams. One possible example can be disk encryption applications
where disk sectors are encrypted independently (not necessarily with the same
key). If the software can encrypt multiple sectors in parallel, the application
can enjoy the speedup of a parallel mode. Figure 8 gives a C code snippet for
encrypting 4 blocks in parallel, in CBC mode (in this example, using the same
key and different IV’s).

Intel’s New AES Instructions 9

; load Round key
mov rdx, OFFSET keyex addr add rdx, 0x10
movdqu xmm0, XMMWORD PTR [rdx] movdqu xmm0, XMMWORD PTR [rdx]

pxor xmm1, xmm0 aesenclast xmm1, xmm0
pxor xmm2, xmm0 aesenclast xmm2, xmm0
pxor xmm3, xmm0 aesenclast xmm3, xmm0
pxor xmm4, xmm0 aesenclast xmm4, xmm0
pxor xmm5, xmm0
pxor xmm6, xmm0 aesenclast xmm5, xmm0
pxor xmm7, xmm0 aesenclast xmm6, xmm0
pxor xmm8, xmm0 aesenclast xmm7, xmm0

aesenclast xmm8, xmm0
mov ecx, 9

main loop: ; storing the encrypted blocks
; load Round key
add rdx, 0x10 movdqu XMMWORD PTR [dest], xmm1
movdqu xmm1, XMMWORD PTR [rdx] movdqu XMMWORD PTR [dest+0x10], xmm2

movdqu XMMWORD PTR [dest+0x20], xmm3
aesenc xmm1, xmm0 movdqu XMMWORD PTR [dest+0x30], xmm4
aesenc xmm2, xmm0 movdqu XMMWORD PTR [dest+0x40], xmm5
aesenc xmm3, xmm0 movdqu XMMWORD PTR [dest+0x50], xmm6
aesenc xmm4, xmm0 movdqu XMMWORD PTR [dest+0x60], xmm7
aesenc xmm5, xmm0 movdqu XMMWORD PTR [dest+0x70], xmm8
aesenc xmm6, xmm0
aesenc xmm7, xmm0
aesenc xmm8, xmm0

loop main loop

Fig. 6. Encrypting multiple data blocks in parallel (ECB mode).

6 More on software flexibility and surprising usage
models

6.1 Supporting RIJNDAEL with block size larger than 128 bits

Although the main usage model for the AES instructions is AES, which operates
on 128-bit blocks, they can also be used for processing the general RIJNDAEL
cipher that supports any block size which is a multiple of 32 bits, from 128 to 256
bits. Figure 9 gives an example for computing a RIJNDAEL-256 round, using
the new AES instructions.

6.2 Isolating the AES transformations

Cipher designers may wish to build new cryptographic algorithms using com-
ponents of AES. Such algorithms could benefit from the performance and side
channel protection of the AES instructions if they are designed to use the AES
transformations. In particular, the AES transformations can be a useful building
block for hash functions. For example, the MixColumns transformation provides
rapid diffusion and the AES S-box is a good nonlinear mixer. Manipulations on
large block sizes could be useful for constructing hash functions, with a long

10 Shay Gueron

void AES 128 CBC Decrypt C 4 blocks (...) {
m128i RKEY DECRYPT [11];
m128i tmp1, tmp2, tmp3, tmp4, feedback;
m128i z1, z2, z3, z4;

int j, k;
for (k=0; k<11; k++) {

RKEY DECRYPT [10-k] =
mm load si128 ((m128i*)&Key Schedule Decrypt [4*k]);

}
feedback = mm load si128 ((m128i*)&IV [0]);

z1 = mm load si128 ((m128i*)&CIPHERTEXT[0]);
z2 = mm load si128 ((m128i*)&CIPHERTEXT[4]);
z3 = mm load si128 ((m128i*)&CIPHERTEXT[8]);
z4 = mm load si128 ((m128i*)&CIPHERTEXT[12]);

tmp1 = mm xor si128(z1,RKEY DECRYPT[0]);
tmp2 = mm xor si128(z2,RKEY DECRYPT[0]);
tmp3 = mm xor si128(z3,RKEY DECRYPT[0]);
tmp4 = mm xor si128(z4,RKEY DECRYPT[0]);

for(j=1; j <10; j++) {
tmp1 = mm aesdec si128 (tmp1, RKEY DECRYPT [j]);
tmp2 = mm aesdec si128 (tmp2, RKEY DECRYPT [j]);
tmp3 = mm aesdec si128 (tmp3, RKEY DECRYPT [j]);
tmp4 = mm aesdec si128 (tmp4, RKEY DECRYPT [j]);

}
tmp1 = mm aesdeclast si128 (tmp1, RKEY DECRYPT [10]);
tmp2 = mm aesdeclast si128 (tmp2, RKEY DECRYPT [10]);
tmp3 = mm aesdeclast si128 (tmp3, RKEY DECRYPT [10]);
tmp4 = mm aesdeclast si128 (tmp4, RKEY DECRYPT [10]);

tmp4 = mm xor si128(tmp4,z3);
tmp3 = mm xor si128(tmp3,z2);
tmp2 = mm xor si128(tmp2,z1);
tmp1 = mm xor si128(tmp1,feedback);

mm store si128 ((m128i*)&DECRYPTED TEXT[0], tmp1);
mm store si128 ((m128i*)&DECRYPTED TEXT[4], tmp2);
mm store si128 ((m128i*)&DECRYPTED TEXT[8], tmp3);
mm store si128 ((m128i*)&DECRYPTED TEXT[12], tmp4);

}

Fig. 7. Decrypting 4 blocks in parallel, in CBC mode (C code using compiler intrinsics)

digest size. This concept is already being used in quite a few of the new Secure
Hash Function algorithms that have been recently submitted to the NIST cryp-
tographic hash Algorithm Competition (some of the examples from the First
Round Candidates list include LANE, SHAMATA, SHAvite-3, ECHO, GrØstl,
Lesamnta (512-bit), and Vortex). Some algorithms use the whole AES round as
a building block, some only one AES transformations, and some use variants of
these transformations

Therefore, it is important to note that although the AES instructions perform
bundled sequences of AES transformations, each one of these transformations
can be isolated by a proper combination of these instructions, and the use of the
byte shuffling (PSHUFB instruction). This is shown in Figure 10.

Intel’s New AES Instructions 11

void AES 128 CBC Encrypt Parallel 4 Blocks (...) {

int i, j, k;
m128i tmp, feedback, feedback1, feedback2, feedback3, feedback4;
m128i tmp1, tmp2, tmp3, tmp4;
m128i RKEY [11];

for (k=0; k<11; k++) {
RKEY [k] = mm load si128 ((m128i*)&Key Schedule [4*k]);

}

feedback1 = mm load si128 ((m128i*)&IV1 [0]);
feedback2 = mm load si128 ((m128i*)&IV2 [0]);
feedback3 = mm load si128 ((m128i*)&IV3 [0]);
feedback4 = mm load si128 ((m128i*)&IV4 [0]);

for(i=0; i < NBLOCKS; i++) {
tmp1 = mm load si128 ((m128i*)&PLAINTEXT1[i*4]);
tmp2 = mm load si128 ((m128i*)&PLAINTEXT2[i*4]);
tmp3 = mm load si128 ((m128i*)&PLAINTEXT3[i*4]);
tmp4 = mm load si128 ((m128i*)&PLAINTEXT4[i*4]);

tmp1 = mm xor si128 (tmp1, feedback1);
tmp2 = mm xor si128 (tmp2, feedback2);
tmp3 = mm xor si128 (tmp3, feedback3);
tmp4 = mm xor si128 (tmp4, feedback4);

tmp1 = mm xor si128(tmp1,RKEY[0]);
tmp2 = mm xor si128(tmp2,RKEY[0]);
tmp3 = mm xor si128(tmp3,RKEY[0]);
tmp4 = mm xor si128(tmp4,RKEY[0]);

for(j=1; j <10; j++) {
tmp1 = mm aesenc si128 (tmp1, RKEY [j]);
tmp2 = mm aesenc si128 (tmp2, RKEY [j]);
tmp3 = mm aesenc si128 (tmp3, RKEY [j]);
tmp4 = mm aesenc si128 (tmp4, RKEY [j]);

}
tmp1 = mm aesenclast si128 (tmp1, RKEY [10]);
tmp2 = mm aesenclast si128 (tmp2, RKEY [10]);
tmp3 = mm aesenclast si128 (tmp3, RKEY [10]);
tmp4 = mm aesenclast si128 (tmp4, RKEY [10]);

feedback1 = tmp1;
feedback2 = tmp2;
feedback3 = tmp3;
feedback4 = tmp4;

mm store si128 ((m128i*)&CIPHERTEXT1[4*i], tmp1);
mm store si128 ((m128i*)&CIPHERTEXT2[4*i], tmp2);
mm store si128 ((m128i*)&CIPHERTEXT3[4*i], tmp3);
mm store si128 ((m128i*)&CIPHERTEXT4[4*i], tmp4);

}
}

Fig. 8. CBC encryption for 4 blocks in parallel (C code using compiler intrinsics).

12 Shay Gueron

VPBLENDVB xmm3, xmm2, xmm1, xmm5
VPBLENDVB xmm4, xmm1, xmm2, xmm5
PSHUFB xmm3, xmm8
PSHUFB xmm4, xmm8
AESENC xmm1, xmm6
AESENC xmm2, xmm7

Fig. 9. Using the AES instructions for computing a RIJNDAEL round with a 256-bits
block size. Register xmm1 holds the “left” half of RIJNDAEL input state (columns
0–3), xmm2 hold the right half of state (columns 4–7), xmm6 and xmm7 hold the left
half and right half of RIJNDAEL round key, respectively. The output state is written
into registers xmm1 (left half) and xmm2 (right half). Register xmm8 holds a mask
(0x03020d0c0f0e0908b0a050407060100) used for the shuffling step which is necessary
to account for the difference in ShiftRows offsets between the 256 (1,3,4) and 128-
bit (1,2,3) versions of RIJNDAEL. Register xmm5 holds a mask for VPBLENDVB,
selecting bytes 1–3, 6–7, 10–11, and 15 of the RIJNDAEL state from the first source
operand, and all other bytes from the second source operand.

Isolating ShiftRows
PSHUFB xmm0, 0x0b06010c07020d08030e09040f0a0500

Isolating InvShiftRows
PSHUFB xmm0, 0x0306090c0f0205080b0e0104070a0d00

Isolating MixColumns
AESDECLAST xmm0, 0x00000000000000000000000000000000
AESENC xmm0, 0x00000000000000000000000000000000

Isolating InvMixColumns
AESENCLAST xmm0, 0x00000000000000000000000000000000
AESDEC xmm0, 0x00000000000000000000000000000000

Isolating SubBytes
PSHUFB xmm0, 0x0306090c0f0205080b0e0104070a0d00
AESENCLAST xmm0, 0x00000000000000000000000000000000

Isolating InvSubBytes
PSHUFB xmm0, 0x0b06010c07020d08030e09040f0a0500
AESDECLAST xmm0, 0x00000000000000000000000000000000

Fig. 10. Isolating the AES transformations using combinations of AES instructions.

6.3 Using the AES instructions for RAID-6

We show here a surprising usage for the AES instructions for a non cryptographic
application.

A Redundant Array of Independent Disks (RAID) combines a multiple physi-
cal hard disk drives into a logical drive for purposes of reliability, capacity, or per-
formance. A level 6 RAID (RAID-6) system provides a high level of redundancy
allowing recovery from two disk failures. Two syndromes (P and Q) are generated
for the data and stored on hard disk drives in the RAID system. The P syndrome
is generated by computing parity information for the data in a strip. The gener-
ation of the Q syndrome requires Finite Field multiplications in GF (28) defined
by the reduction polynomial x8 +x4 +x3 +x+1 (same as the one used for AES).
Recovering data and/or P and/or Q syndromes requires both GF (28) multipli-
cations and inversions. In a RAID array with n data disks D0, D1, D2, . . . , Dn−1

(for n ≤ 255) P and Q are defined by: P = D0 + D1 + D2 + . . . + Dn−1, and

Intel’s New AES Instructions 13

Q = g0 ·D0 + g1 ·D1 + g2 ·D2 + . . . + gn−1 ·Dn−1, where g = {02} is a generator
of GF (28), and + and · denote the operations in this field. The computational
bottleneck associated with the RAID-6 system is the cost of computing Q. The
performance of the generation of the Q syndrome may be improved by express-
ing Q in its Horner representation Q = ((. . . Dn−1 . . .) · g +D2) · g +D1) · g +D0.
The difficulty in the related software implementation stems from the fact that
traditional processors have poor performance with Finite Fields computations.
See [1] for a detailed overview.

We now note that the MixColumns transformation is a matrix multiplication
in GF (28), therefore useful for computing the Q syndrome. In order to use
the AES instructions, the MixColumns transformation needs to be isolated, as
explained above. This transformation operates separately on the 4 columns of the
state. If a column (32 bits) is denoted by the four bytes [d, c, b, a], then the output
[d′, c′, b′, a′] of MixColumns is a′ = ({02}·a)+({03}·b)+c+d; b′ = a+({02}·b)+
({03}·c)+d; c′ = a+b+({02}·c)+({03}·d); d′ = ({03}·a)+b+c+({02}·d) denoted
in shorthand by [3a+b+c+2d, a+b+2c+3d, a+2b+3c+d, 2a+3b+c+d]. If the
bytes b, d (odd positions) are set to 0, then the result of MixColumns becomes
[3a + c, a + 2c, a + 3c, 2a + c], and with the PSHUFB instruction odd position
bytes can be zeroed to yield [0, a + 2c, 0, 2a + c]. If this result is XOR-ed with
[0, a, 0, c] (a shuffled version of the input), the final result is [0, 2c, 0, 2a], that is,
two of the 4 bytes of the column were multiplied by {02}. Similar operations
can be applied to the even-positioned bytes of the state. Figure 11 shows a code
snippet that uses the AES instructions for RAID-6 (here, for clarity and brevity
the code operates on a single block at a time. Operating on multiple blocks in
parallel, improves the performance as explained above).

7 Conclusion

This paper provided some details and insights on Intel’s new AES instructions
which are expected to be widely used for security and privacy, by a wide range
of applications and operating systems.

The AES instructions provide a substantial performance speedup to bulk
data encryption and decryption. Exact performance measurements will be made
available as soon as processors with these instructions are released. However, we
can indicate that when using parallelizable modes of operation (e.g., CBC de-
cryption, CTR, and CTR-derived modes GCM, XTS), the performance speedup
could exceed an order of magnitude over the current performance of software-
only AES implementations. In scenarios where pipelined operation is impossible,
for example in CBC encryption, operating on a single buffer, the performance
speedup would still be significant, around 2–3 times over software implementa-
tion. Note that AES implementations using the new instructions are inherently
protected against the software side channel attacks associated with AES imple-
mentations based on table-lookup.

The paper showed some of the advantages of the AES instructions and how
they can be used flexibly and efficiently.

14 Shay Gueron

declspec (align(16)) unsigned int zero [4] =
{0x0, 0x0, 0x0, 0x0};

declspec (align(16)) unsigned int mask1 [4] =
{0xff02ff00,0xff06ff04,0xff0aff08, 0xff0eff0c};

declspec (align(16)) unsigned int mask2 [4] =
{0x03ff01ff,0x07ff05ff,0x0bff09ff, 0x0fff0dff};

declspec (align(16)) unsigned int mask3 [4] =
{0x01000302,0x05040706,0x09080b0a, 0x0d0c0f0e};

void RAID6 1 block in parallel (...) {
int ind1;

m128i MASK1, MASK2, MASK3, ZERO;
m128i XMM0, XMM1, XMM2;

MASK3 = mm load si128 ((m128i*)&mask3[0]);
MASK2 = mm load si128 ((m128i*)&mask2[0]);
MASK1 = mm load si128 ((m128i*)&mask1[0]);
ZERO = mm load si128 ((m128i*)&zero [0]);

for (ind1=0; ind1 < NBLOCKS; ind1++) {
XMM0 = mm load si128 ((m128i*)&DATA[4*ind1]);
XMM1 = mm shuffle epi8(XMM0, MASK1);
XMM1 = mm aesdeclast si128 (XMM1, ZERO);
XMM2 = mm shuffle epi8(XMM0, MASK2);
XMM0 = mm shuffle epi8(XMM0, MASK3);
XMM1 = mm aesenc si128(XMM1, ZERO);
XMM2 = mm aesdeclast si128 (XMM2, ZERO);
XMM1 = mm shuffle epi8(XMM1, MASK1);
XMM2 = mm aesenc si128(XMM2, ZERO);
XMM2 = mm shuffle epi8(XMM2, MASK2);
XMM2 = mm xor si128(XMM2, XMM1);
XMM0 = mm xor si128(XMM0, XMM2);

mm store si128 ((m128i*)&RES[4*ind1], XMM0);
}

}

Fig. 11. Using the AES instructions for RAID-6: multiplying 16 bytes by {02}.

An important observation that we pointed out was that due to the out-of-
order execution capabilities of modern processors, hardware pipelining, and soft-
ware techniques, parallel modes of operation can achieve a much higher through-
put than serial modes. This is one point to consider when selecting modes of
operation in future cryptosystems. For example, AES-GCM may become a fa-
vorable mode for achieving secrecy and authentication. In this context, we also
mention that, together with the AES instructions, another instruction for com-
puting carry-less (polynomial) multiplications (called PCLMULDQ) is released.
This could give further speedup to AES-GCM (see [5]).

Acknowledgements Many people contributed to the concepts, the studies, the
definition of the architecture, and to the micro-architectural implementation.
The list of contributors includes: Roee Bar, Frank Berry, Mayank Bomb, Brent
Boswell, Ernie Brickell, Yuval Bustan, Mark Buxton, Srinivas Chennupaty, Tiran
Cohen, Martin Dixon, Jack Doweck, Vivek Echambadi, Wajdi Feghali, Shay Fux,
Vinodh Gopal, Eugene Gorkov, Amit Gradstein, Mostafa Hagog, Israel Hayun,
Michael Kounavis, Ram Krishnamurthy, Sanu Mathew, Henry Ou, Efi Rosenfeld,
Zeev Sperber, Kirk Yap.

Intel’s New AES Instructions 15

References

1. H. P. Anvin. The mathematics of RAID-6. Available online at
http://www.kernel.org/pub/linux/kernel/people/hpa/raid6.pdf.

2. D. J. Bernstein, P. Schwabe, New AES Software Speed Records, Proceedings
of INDOCRYPT 2008, Lecture Notes in Computer Science 5365, pp. 322–336,
Springer-Verlag, 2008.

3. E. Brickell, G. Graunke, M. Neve, J. P. Seifert, Software mitigations to hedge
AES against cache based software side channel vulnerabilties, IACR ePrint report
2006/052, 2006. Available online at http://eprint.iacr.org/2006/052.pdf.

4. B. Gladman, Implementations of AES (Rijndael) in C/C++ and assembler. Avail-
able online at http://www.gladman.me.uk/cryptography technology/rijndael.

5. S. Gueron and M. E. Kounavis, Carry-Less Multiplication and
Its Usage for Computing the GCM Mode. Available online at
http://softwarecommunity.intel.com/isn/downloads/intelavx/Carry-Less-
Multiplication-and-The-1.GCM-Mode WP%20.pdf

6. H. Lipmaa, Fast Software Implementations of SC2000, Proceedings of ISC 2002,
Lecture Notes in Computer Science 2433, pp. 63–74, Springer-Verlag, 2002.

7. H. Lipmaa: AES / Rijndael: speed, Available online at
http://research.cyber.ee/∼lipmaa/research/aes/rijndael.html

8. M. Matsui. How far can we go on the x64 processors?, Proceedings of FSE 2006,
Lecture Notes in Computer Science 4047, pp. 341–358, Springer-Verlag, 2006.

9. M. Matsui and S. Fukuda, How to Maximize Software Performance of Symmetric
Primitives on Pentium III and 4 Processors, Proceedings of FSE 2005, Lecture
Notes in Computer Science 3557, pp. 398–412, Springer-Verlag, 2005.

10. Microsoft, BitLocker, Available online at http://www.bitlocker.com
11. National Institute of Standards and Technology (NIST), FIPS-197:

Advanced Encryption Standard, November 2001. Available online at
http://www.itl.nist.gov/fipspubs/.

12. OpenSSL: the open-source toolkit for SSL/TLS. Available online at
http://www.openssl.org.

13. D. A. Osvik, A. Shamir, and E. Tromer, Cache Attacks and Countermeasures:
The Case of AES, Proceedings of CT-RSA 2006, Lecture Notes in Computer Sci-
ence 3860, pp. 1–20, Springer-Verlag, 2006.

14. S. Tillich and J. Großschädl, Instruction Set Extensions for Efficient AES Im-
plementation on 32-bit Processors, Proceedings of CHES 2006, Lecture Notes in
Computer Science 4249, pp. 270–284, Springer-Verlag, 2006.

A Code sequences for AES-192 and AES-256 Key
Expansion

16 Shay Gueron

movdqu xmm1, XMMWORD PTR Key key expansion 192:
movq xmm3, QWORD PTR Key pshufd xmm2, xmm2, 0x55
movdqu XMMWORD PTR Key Sched, xmm1 vpslldq xmm4, xmm1, 0x4
movq QWORD PTR[Key Sched+0x10], xmm3 pxor xmm1, xmm4
mov ecx, OFFSET Key Sched+24 pslldq xmm4, 0x4

AESKEYGENASSIST xmm2, xmm3, 0x1 pxor xmm1, xmm4
call key expansion 192 pslldq xmm4, 0x4
AESKEYGENASSIST xmm2, xmm3, 0x2
call key expansion 192 pxor xmm1, xmm4
AESKEYGENASSIST xmm2, xmm3, 0x4 pxor xmm1, xmm2
call key expansion 192 pshufd xmm2, xmm1, 0xff
AESKEYGENASSIST xmm2, xmm3, 0x8 vpslldq xmm4, xmm3, 0x4
call key expansion 192
AESKEYGENASSIST xmm2, xmm3, 0x10 pxor xmm3, xmm4
call key expansion 192 pxor xmm3, xmm2
AESKEYGENASSIST xmm2, xmm3, 0x20 movdqu XMMWORD PTR [rcx], xmm1
call key expansion 192 add rcx, 0x10
AESKEYGENASSIST xmm2, xmm3, 0x40 movdqu XMMWORD PTR [rcx], xmm3
call key expansion 192 add rcx, 0x8
AESKEYGENASSIST xmm2, xmm3, 0x80 ret
call key expansion 192
jmp END; END:

movdqu xmm1, XMMWORD PTR Key key expansion 256:
movdqu xmm3, XMMWORD PTR Key pshufd xmm2, xmm2, 0xff
movdqu XMMWORD PTR Key Sched, xmm1 vpslldq xmm4, xmm1, 0x4
movdqu XMMWORD PTR[Key Sched+0x10], xmm3 pxor xmm1, xmm4
mov rcx, OFFSET Key Sched+0x20 pslldq xmm4, 0x4

pxor xmm1, xmm4
AESKEYGENASSIST xmm2, xmm3, 0x1 pslldq xmm4, 0x4
call key expansion 256 pxor xmm1, xmm4
AESKEYGENASSIST xmm2, xmm3, 0x2 pxor xmm1, xmm2
call key expansion 256 movdqu XMMWORD PTR [rcx], xmm1
AESKEYGENASSIST xmm2, xmm3, 0x4 add rcx, 0x10
call key expansion 256 cmp rcx,OFFSET Key Schedule+0xf0
AESKEYGENASSIST xmm2, xmm3, 0x8 jz ReachedLastKey
call key expansion 256 AESKEYGENASSIST xmm4, xmm1, 0
AESKEYGENASSIST xmm2, xmm3, 0x10 pshufd xmm2, xmm4, 0xaa
call key expansion 256 vpslldq xmm4, xmm3, 0x4
AESKEYGENASSIST xmm2, xmm3, 0x20 pxor xmm3, xmm4
call key expansion 256 pslldq xmm4, 0x4
AESKEYGENASSIST xmm2, xmm3, 0x40 pxor xmm3, xmm4
call key expansion 256 pslldq xmm4, 0x4
jmp END; pxor xmm3, xmm4

pxor xmm3, xmm2
movdqu XMMWORD PTR [rcx], xmm3
add rcx, 0x10
ReachedLastKey:
ret
END:

Fig. 12. AES-192 and AES-256 key expansion.

Remark: There are several ways for expanding the key, using AESKEY-
GENASSIST. These given examples use new Intel AVX instructions
(http://software.intel.com/sites/avx/) with a nondestructive source. For exam-
ple, instead of (A) movdqu xmm3, xmm1; pslldq xmm3, 0x4 we use (B)vpslldq xmm3,
xmm1, 0x4. AVX extensions will be introduced only in the 2010 processors, and
therefore option (B) would not be valid in the 2009 processors that require the form
(A). The changes from form (B) to form (A) are straightforward.

