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Abstract. We provide the first proof of security for Tandem-DM, one of
the oldest and most well-known constructions for turning a block cipher
with n-bit block length and 2n-bit key length into a 2n-bit cryptographic
hash function. We prove, that when Tandem-DM is instantiated with
AES-256, block length 128 bits and key length 256 bits, any adversary
that asks less than 2120.4 queries cannot find a collision with success prob-
ability greater than 1/2. We also prove a bound for preimage resistance
of Tandem-DM.
Interestingly, as there is only one practical construction known turn-
ing such an (n, 2n) bit block cipher into a 2n-bit compression function
that has provably birthday-type collision resistance (FSE’06, Hirose),
Tandem-DM is one out of two constructions that has this desirable fea-
ture.
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1 Introduction

A cryptographic hash function is a function which maps an input of arbitrary
length to an output of fixed length. It should satisfy at least collision-, preimage-
and second-preimage resistance and is one of the most important primitives in
cryptography [23].

Block Cipher-Based Hash Functions. Since their initial design by Rivest, MD4-
family hash functions (e.g. MD4, MD5, RIPEMD, SHA-1, SHA2 [26, 27, 29, 30])
have dominated cryptographic practice. But in recent years, a sequence of attacks
on these type of functions [7, 10, 37, 38] has led to a generalized sense of concern
about the MD4-approach. The most natural place to look for an alternative is in
block cipher-based constructions, which in fact predate the MD4-approach [22].
Another reason for the resurgence of interest in block cipher-based hash functions
is due to the rise of size restricted devices such as RFID tags or smart cards: A
hardware designer has to implement only a block cipher in order to obtain an
encryption function as well as a hash function. But since the output length of
most practical encryption functions is far too short for a collision resistant hash
function, e.g. 128-bit for AES, one is mainly interested in sound design principles
for double block length (DBL) hash functions [2]. A DBL hash-function uses a
block cipher with n-bit output as the building block by which it maps possibly
long strings to 2n-bit ones.
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Our Contribution. Four ’classical’ DBL hash functions are known: MDC-2,
MDC-4, Abreast-DM and Tandem-DM [3, 4, 20]. At EUROCRYPT’07,
Steinberger [35] proved the first security bound for the hash function MDC-
2: assuming a hash output length of 256 bits, any adversary asking less than
274.9 queries cannot find a collision with probability greater than 1/2.

In this paper, we prove the first security bound for the compression function
Tandem-DM in terms of collision resistance and preimage resistance. We will
give an upper bound for success if an adversary is trying to find a collision. By
assuming a hash output length of 256 bits, any adversary asking less than 2120.4

queries cannot find a collision with probability greater than 1/2. We will also
prove an upper bound for success if an adversary is trying to find a preimage. This
bound is rather weak as it essentially only states, that the success probability of
an adversary asking strictly less than 2n queries is asymptotically negligible.

Beyond providing such a proof of security for Tandem-DM in the first place,
our result even delivers one of the most secure rate 1/2 DBL compression func-
tions known. The first practical DBL compression function with rate 1/2 (with-
out bit-fixing and other artificial procedures like employing two different block
ciphers) that has a birthday-type security guarantee was presented at FSE’06 by
Hirose [13]. He essentially states (see Appendix B for more details) that no ad-
versary asking less than 2124.55 queries, again for 2n = 256, can find a collision
with probability greater then 1/2. These two compression functions (Hirose’s
FSE ’06 proposal and Tandem-DM) are the only rate 1/2 practical compres-
sion functions that are known to have a birthday-type security guarantee.

Outline. The paper is organized as follows: Section 2 includes formal notations
and definitions as well as a review of related work. In Section 3 we proof that an
adversary asking less than 2120.4 oracle queries has negligible advantage in finding
a collision for the Tandem-DM compression function. A bound for preimage
resistance of Tandem-DM is given in Section 4. In Section 5 we discuss our
results and conclude the paper.

2 Preliminaries

2.1 Iterated DBL Hash Function Based on Block Ciphers

Ideal Cipher Model. An (n, k)-bit block cipher is a keyed family of permutations
consisting of two paired algorithms E : {0, 1}n × {0, 1}k → {0, 1}n and E−1 :
{0, 1}n×{0, 1}k → {0, 1}n both accepting a key of size k bits and an input block
of size n bits. For simplicity, we will call it an (n, k)-block cipher. Let BC(n, k)
be the set of all (n, k)-block ciphers. Now, for any one fixed key K ∈ {0, 1}k,
decryption E−1

K = E−1(·, K) is the inverse function of encryption EK = E(·, K),
so that E−1

K (EK(x)) = x holds for any input X ∈ {0, 1}n.
The security of block cipher based hash functions is usually analyzed in the

ideal cipher model [2, 9, 17]. In this model, the underlying primitive, the block
cipher E, is modeled as a family of random permutations {Ek} whereas the
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random permutations are chosen independently for each key K, i.e. formally E
is selected randomly from BC(n, k).

DBL Compression Functions. Iterated DBL hash functions with two block ci-
pher calls in their compression function are discussed in this article. A hash
function H : {0, 1}∗ → {0, 1}2n can be built by iterating a compression function
F : {0, 1}3n → {0, 1}2n as follows: Split the padded message M into n-bit blocks
M1, . . . , Ml, fix (G0, H0), apply (Gi, Hi) = F (Gi−1, Hi−1, Mi) for i = 1, . . . , l
and finally set H(M) := (Gl, Hl). Let the compression function F be such that

(Gi, Hi) = F (Gi−1, Hi−1, Mi),

where Gi−1, Hi−1, Gi, Hi, Mi ∈ {0, 1}n. We assume that the compression func-
tion F consists of FT , the top row, and FB , the bottom row. We explicitly allow
the results of FT to be fed into the calculation of FB. Each of the component
functions FB and FT performs exactly one call to the block cipher and can be
defined as follows:

Gi = FT (Gi−1, Hi−1, Mi) = E(XT , KT )⊕ ZT ,

Hi = FB(Gi, Gi−1, Hi−1, Mi) = E(XB, KB)⊕ ZB,

where XT , KT , ZT are uniquely determined by Gi−1, Hi−1, Mi and XB, KB, ZB

are uniquely determined by Gi, Gi−1, Hi−1, Mi.
We define the rate r of a block cipher based compression/hash function F by

r =
|Mi|

(number of block cipher calls in F)× n

It is a measure of efficiency for such block cipher based constructions.

2.2 The Tandem-DM Compression Function

The Tandem-DM compression function was proposed by Lai and Massey at
EUROCRYPT’92 [20]. It uses two cascaded Davies-Meyer [2] schemes. The com-
pression function is illustrated in Figure 1 and is formally given in Definition 1.
Definition 1. Let FTDM : {0, 1}2n×{0, 1}n→ {0, 1}2n be a compression func-
tion such that (Gi, Hi) = FTDM (Gi−1, Hi−1, Mi) where Gi, Hi, Mi ∈ {0, 1}n.
FTDM is built upon an (n, 2n) block cipher E as follows:

Wi = E(Gi−1, Hi−1|Mi)

Gi = FT (Gi−1, Hi−1, Mi) = Wi ⊕Gi−1

Hi = FB(Gi−1, Hi−1, Mi) = E(Hi−1, Mi|Wi)⊕Hi−1.

2.3 Related Work

Our work is largely motivated by Steinberger [35] in order to provide rigorous
proofs for well-known block cipher based hash functions. As is reviewed in the
following, there are many papers on hash functions composed of block ciphers.
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Figure 1. The compression function Tandem-DM F TDM where E is an (n, 2n) block
cipher, the small rectangle inside the cipher rectangle indicates which input is used as
key

Schemes with non-optimal or unknown collision resistance. The security of SBL
hash functions against several generic attacks is discussed by Preneel et al. in
[28]. They concluded that 12 out of 64 hash functions are secure against the
attacks. However, formal proofs were first given by Black et al. [2] about 10
years later. Their most important result is that 20 hash functions – includ-
ing the 12 mentioned above – are optimally collision resistant. Knudsen et al.
[18] discussed the insecurity of DBL hash functions with rate 1 composed of
(n, n)-block ciphers. Hohl et al. [14] analyzed the security of DBL compression
functions with rate 1 and 1/2. Satoh et al. [33] and Hattoris et al. [11] discussed
DBL hash functions with rate 1 composed of (n, 2n) block ciphers. MDC-2 and
MDC-4 [15, 1, 4] are (n, n)-block cipher based DBL hash functions with rates
1/2 and 1/4, respectively. Steinberger [35] proved that for MDC-2 instantiated
with, e.g., AES-128 no adversary asking less than 274.9 can find a collision with
probability greater than 1/2. Nandi et al. [25] proposed a construction with rate
2/3 but it is not optimally collision resistant. Furthermore, Knudsen and Muller
[19] presented some attacks against it. At EUROCRYPT’08 and CRYPTO’08,
Steinberger [31, 32] proved some security bounds for fixed-key (n, n)-block cipher
based hash functions, i.e. permutation based hash functions, that all have small
rates and low security guarantees. None of these schemes/techniques mentioned
so far are known to have birthday-type collision resistance.

Schemes with Birthday-Type Collision Resistance. Merkle [24] presented three
DBL hash functions composed of DES with rates of at most 0.276. They are op-
timally collision resistant in the ideal cipher model. Lucks [21] gave a rate 1 DBL
construction with birthday-type collision resistance using a (n, 2n) block cipher,
but it involves some multiplications over F128. Hirose [12] presented a class of
DBL hash functions with rate 1/2 which are composed of two different and in-
dependent (n, 2n) block ciphers that have birthday-type collision resistance. At
FSE’06, Hirose [13] presented a rate 1/2 and (n, 2n) block cipher based DBL
hash function that has birthday-type collision resistance. As he stated the proof
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only for the hash function, we have given the proof for his compression function
in Appendix B.

3 Collision Resistance

In this section we will discuss the collision resistance of the compression function
Tandem-DM.

3.1 Defining Security – Collision Resistance of a Compression
Function (Pseudo Collisions)

Insecurity is quantified by the success probability of an optimal resource-bounded
adversary. The resource is the number of backward and forward queries to an

ideal cipher oracle E. For a set S, let z
R← S represent random sampling from

S under the uniform distribution. For a probabilistic algorithmM, let z
R←M

mean that z is an output of M and its distribution is based on the random
choices ofM.

An adversary is a computationally unbounded but always-halting collision-
finding algorithm A with access to an oracle E ∈ BC(n, k). We can assume (by
standard arguments) that A is deterministic. The adversary may make a forward
query (K, X)fwd to discover the corresponding value Y = EK(X), or the adver-
sary may make a backward query (K, Y )bwd, so as to learn the corresponding
value X = E−1

K (Y ) for which EK(X) = Y . Either way the result of the query
is stored in a triple (Xi, Ki, Yi) and the query history, denoted Q, is the tuple
(Q1, . . . , Qq) where Qi = (Xi, Ki, Yi) is the result of the i-th query and q is
the total number of queries made by the adversary. The value Xi ⊕ Yi is called
’XOR’-output of the query. Without loss of generality, it is assumed that A asks
at most only once on a triplet of a key Ki, a plaintext Xi and a ciphertext Yi

obtained by a query and the corresponding reply.
The goal of the adversary is to output two different triplets, (G, H, M) and

(G′, H ′, M ′), such that F (G, H, M) = F (G′, H ′, M ′). We impose the reasonable
condition that the adversary must have made all queries necessary to compute
F (G, H, M) and F (G′, H ′, M ′). We will in fact dispense the adversary from
having to output these two triplets, and simply determine whether the adversary
has been successful or not by examining its query history Q. Formally, we say
that Coll(Q) holds if there is such a collision and Q contains all the queries
necessary to compute it.

Definition 2. (Collision resistance of a compression function) Let F
be a block cipher based compression function, F : {0, 1}3n → {0, 1}2n. Fix an
adversary A. Then the advantage of A in finding collisions in F is the real
number

AdvColl

F (A) = Pr[E
R← BC(n, k); ((G, H, M), (G′, H ′, M ′))

R← AE,E−1

:

((G, H, M) 6= (G′, H ′, M ′)) ∧ F (G, H, M) = F (G′, H ′, M ′)].
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For q ≥ 1 we write

AdvColl

F (q) = max
A
{AdvColl

F (A)},

where the maximum is taken over all adversaries that ask at most q oracle
queries, i.e. E and E−1 queries.

3.2 Security Results

Our discussion will result in a proof for the following upper bound:

Theorem 1. Let F := FTDM be as in Definition 1 and n, q be natural numbers
with q < 2n. Let N ′ = 2n − q and let α be any positive number with eq/N ′ ≤ α
and τ = αN ′/q (and ex being the exponential function). Then

AdvColl

F (q) ≤ q2neqτ(1−ln τ)/N ′

+ 4qα/N ′ + 6q/(N ′)2 + 2q/(N ′)3.

The proof is given on page 13 and is a simple corollary of the discussion and
lemmas below. As this theorem is rather incomprehensible, we will investigate
what this theorem means for AES-256. The bound obtained by this theorem
depends on a parameter α. We do not require any specific value α as any α
(meeting to the conditions mentioned in Theorem 1) leaves us with a correct
bound. For Theorem 1 to give a good bound one must choose a suitable value
for the parameter α. Choosing large values of α reduces the value of the first
term but increases the value of the second term. There seems to be no good
closed form for α as these will change with every q. The meaning of α will be
explained in the proof. We will optimize the parameter α numerically as given
in the following corollary.

Corollary 1. For the compression function Tandem-DM, instantiated e.g. with
AES-2561, any adversary asking less than 2120.4 (backward or forward) oracle
queries cannot find a collision with probability greater than 1/2. In this case,
α = 24.0.

3.3 Proof of Theorem 1

Analysis Overview. We will analyze if the queries made by the adversary
contain the means for constructing a collision of the compression function FTDM .
Effectively we look to see whether there exist four queries that form a collision
(see Figure 2).

To upper bound the probability of the adversary obtaining queries than can
be used to construct a collision, we upper bound the probability of the adversary
making a query that can be used as the final query to complete such a collision.
Namely for each i, 1 ≤ i ≤ q, we upper bound the probability that the answer
to the adversary’s i-th query (Ki, Xi)fwd or (Ki, Yi)bwd will allow the adversary

1 Formally, we model the AES-256 block cipher as an ideal block cipher.
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to use the i-th query to complete the collision. In the latter case, we say that
the i-th query is ’successful’ and we give the attack to the adversary.

As the probability depends naturally on the first i − 1 queries, we need to
make sure that the adversary hasn’t already been too lucky with these (or else
the probability of the i-th query being successful would be hard to upper bound).
Concretely, being lucky means, that there exists a large subset of the first i− 1
queries that all have the same XOR output (see below for a formal definition).
Our upper bound thus breaks down into two pieces: an upper bound for the
probability of the adversary getting lucky in one defined specific way and the
probability of the adversary ever making a successful i-th query, conditioned on
the fact that the adversary has not yet become lucky by its (i− 1)-th query.

Analysis Details. Fix numbers n, q and an adversary A asking q queries to
its oracle. We say Coll

TDM if the adversary wins. Note that winning does not
necessarily mean finding a collision as will be explained in the following. We
upper bound Pr[Coll

TDM (Q)] by exhibiting predicates Lucky(Q), Win1(Q),
Win2(Q) and Win3(Q) such that Coll

TDM (Q) ⇒ Lucky(Q) ∨Win1(Q) ∨
Win2(Q) ∨Win3(Q) and then by upper bounding separately the probabilities
Pr[Lucky(Q)], Pr[Win1(Q)], Pr[Win2(Q)] and Pr[Win3(Q)]. Then, obviously,
Pr[Coll(Q)] ≤ Pr[Lucky(Q)] + Pr[Win1(Q)] + Pr[Win2(Q)] + Pr[Win3(Q)].
The event Lucky(Q) happens if the adversary is lucky, whereas if the adversary
is not lucky but makes a successful i-th query then one of the other predicates
hold.

To state the predicates, we need one additional definition. Let a(Q) be a
function defined on query sequences of length q as follows:

a(Q) = max
Z∈{0,1}n

|{i : Xi ⊕ Yi = Z}|

is the maximum size of a set of queries in Q whose XOR outputs are all the
same. The event Lucky(Q) is now defined by

Lucky(Q) = a(Q) > α,

where α is the constant from Theorem 1 (it is chosen depending on n and q
by a numerical optimization process). Thus as α is chosen larger Pr[Lucky(Q)]
diminishes. The other events, Win1(Q), Win2(Q) and Win3(Q) are different in
nature from the event Lucky(Q). Simply put, they consider mutually exclusive
configurations on how to find a collision for Tandem-DM (see Figure 2 for an
overview).

Notation. As in Figure 2, the four queries that can be used to form a collision
will be labeled as TL for the query (Xi, Ki, Yi) that is used for the position
top left, BL for bottom left, TR for top right and BR for bottom right. Given
K ∈ {0, 1}n, we will denote the first a bits as K(0...a−1) ∈ {0, 1}a and the
leftover bits of K as K(a...n) ∈ {0, 1}n−a. Furthermore, we say that two queries,
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Figure 2. Generic configuration for a collision, i.e. V = V ′ and W = W ′, for the
Tandem-DM compression function.

e.g. BL and BR, are equal, i.e. BL=BR, if and only if there exists an i such that
BL = (Xi, Ki, Yi) ∈ Q and BR = (Xi, Ki, Yi).

We will call the configuration necessary for, e.g., predicate Win1a(Q) simply
1a. Now, take for example just this configuration of predicate Win1a(Q) (i.e.
all four queries are different and a collision is found; this case will be defined
formally in Definition 3). We say, that the four queries Qi, Qj , Qk, Ql ∈ Q fit
configuration 1a if and only if

(i 6= j) ∧ (i 6= k) ∧ (i 6= l) ∧ (j 6= k) ∧ (j 6= l) ∧ (k 6= l)∧
(Xi ⊕ Yi = Xk ⊕ Yk) ∧ (Xj ⊕ Yj = Xl ⊕ Yl)∧
(Ki = Xj |K(0...n/2−1)

j ) ∧ (Kj = K
(n/2...n−1)
i |Yi)∧

(Kk = Xl|K(0...n/2−1)
k ) ∧ (Kl = K

(n/2...n−1)
k |Yk).

We say, that Fit1a(Q) holds if there exist i, j, k, l ∈ {1, 2, . . . , q} such that
queries Qi, Qj, Qk, Ql fit configuration 1a. The other predicates, namely Fit1b(Q),
Fit1c(Q), Fit1d(Q), Fit2a(Q), . . . ,Fit2d(Q),Fit3a(Q), . . . ,Fit3d(Q), whose
configurations are given in Definition 3, are likewise defined. We also let

Fitj(Q) := Fitja(Q) ∨ . . . ∨ Fitjd(Q) for j = 1, 2, 3.

Definition 3. Fit1(Q): The last query is used only once in position TL. Note
that this is equal to the case where the last query is used only once in position
TR.

Fit1a(Q) all queries used in the collision are pairwise different,
Fit1b(Q) BL = TR and BR is different to TL, BL, TR,
Fit1c(Q) BL = BR and TR is different to TL, BL, BR,
Fit1d(Q) TR = BR and BL is different to TL, TR, BR.

Fit2(Q): The last query is used only once in position BL. Note that this is equal
to the case where the last query is used only once in position BR.

Fit2a(Q) all queries used in the collision are pairwise different,
Fit2b(Q) TL = TR and BR is different to TL, BL, TR,
Fit2c(Q) TL = BR and TR is different to TL, BL, BR,
Fit2d(Q) TR = BR and TL is different to BL, TR, BR.
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Fit3(Q): The last query is used twice in a collision.

Fit3a(Q) last query used in TL,BL (TL = BL) and TR 6= BR,
Fit3b(Q) last query used in TL,BL (TL = BL) and TR = BR,
Fit3c(Q) last query used in TL,BR (TL = BR) and BL 6= TR,
Fit3d(Q) last query used in TL,BR (TL = BR) and BL = TR.

In Lemma 1 we will show that these configurations cover all possible cases of a
collision. We now define the following predicates:

Win1(Q) = ¬Lucky(Q) ∧Fit1(Q),

Win2(Q) = ¬(Lucky(Q) ∨ Fit1(Q)) ∧ Fit2(Q),

Win3(Q) = ¬(Lucky(Q) ∨ Fit1(Q) ∨ Fit2(Q)) ∧ Fit3(Q).

Thus Win3(Q), for example, is the predicate which is true if and only if a(Q) ≤ α
(i.e. ¬Lucky(Q)) and Q contains queries that fit configurations 3a, 3b, 3c or 3d
but Q does not contain queries fitting configurations 1a, . . . , 1d, 2a, . . .2d. We
now show, that Coll

TDM (Q) =⇒ Lucky(Q)∨Win1(Q)∨Win2(Q)∨Win3(Q).

Lemma 1.

Coll
TDM (Q) =⇒ Lucky(Q) ∨Win1(Q) ∨Win2(Q) ∨Win3(Q).

Proof. If the adversary is not lucky, i.e. ¬Lucky(Q), then

Fit1a(Q) ∨ . . . ∨Fit3d(Q) =⇒Win1a(Q) ∨ . . .Win3d(Q)

holds. So it is sufficient to show that Coll
TDM (Q) =⇒ Fit1a(Q) ∨ . . . ∨

Fit3d(Q). Now, say Coll
TDM (Q) and ¬Lucky(Q). Then a collision can be

constructed from the queries Q. That is, our query history Q contains queries
Qi, Qj , Qk, Ql (see Figure 2) such that we have a collision, i.e. V = V ′ and
W = W ′ and TL 6= TR. Note that the last condition suffices to ensure a real
collision (a collision from two different inputs).

First assume that the last query is used once in the collision. If it is used
in position TL, then we have to consider the queries BL, TR and BR. If these
three queries are all different (and as the last query is only used once), then
Fit1a(Q). If BL = TR and BR is different, then Fit1b(Q). If BL = BR and
TR is different, then Fit1c(Q). If TR = BR and BL is different, then Fit1d(Q).
If BL = TR = BR, then we have BL = BR and TL = TR and this would not
result in a collision since the inputs to the two compression functions would be
the same. As no cases are left, we are done (for the case that the last query is
used only in position TL).

If the last query is used once in the collision and is used in position BL, then
we have to consider the queries TL, TR and BR. If these three queries are all
different (and as the last query is only used once), then Fit2a(Q). If TL = TR

and BR is different, then Fit2b(Q). If TL = BR and TR is different, then
Fit2c(Q). If TR = BR and TL is different, then Fit2d(Q). If TL = TR = BR,
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it follows TL = TR and BL = BR and this would not result in a collision since
the inputs to the two compression functions would be the same. As no cases are
left, we are done.

We now analyze the case when the last query is used twice in the collision.
First, assume that the query is used for the positions TL and BL (TL = BL).
If TR 6= BR, then Fit3a(Q), if TR = BR, then Fit3b(Q). Now assume that
the query is employed for the pair TL and BR (TL = BR). Note, that this case
is equal to the case where the query is employed for BL and TR. If BL 6= TR,
then Fit3c(Q), if BL = TR, then Fit3d(Q). The other cases, i.e. the last query
is employed either for TL = TR or BL = BR, do not lead to a real collision as
this would imply the same compression function input. As no cases are left, we
are done.

If the last query is used more than twice for the collision we do not get a real
collision as this case would imply either TL = TR or BL = BR and we have
the same input, again, for both compression functions. �

The next step is to upper bound the probability of the predicates Lucky(Q),
Win1(Q), Win2(Q) and Win3(Q).

Lemma 2. Let α be as in Theorem 1. If α > e and τ = N ′α/q, then

Pr[Lucky(Q)] ≤ q2neτν(1−ln τ).

The proof is quite technical and is given in Appendix A.

Lemma 3. Pr[Win1(Q)] ≤ qα/N ′ + 2q/(N ′)2 + q/(N ′)3.

Proof. As Win1(Q) = ¬Lucky(Q) ∧Fit1(Q), we will upper bound the proba-
bilities of Fit1a(Q), Fit1b(Q), Fit1c(Q) and Fit1d(Q) separately in order to
get an upper bound for Pr[Fit1(Q)] ≤ Fit1a(Q) + . . . + Fit1d(Q). We will use
the notations given in Figure 3.

[TL]

[BL]

Xi

Ki,1

V

W

Ki,2

Yi

S1

[TR]

[BR]

A2

B2

V ′

W ′

L2

R2

S2

Figure 3. Notations used for Win1(Q)

Let Qi denote the first i queries made by the adversary. The term ’last query’
means the latest query made by the adversary (we examine the adversary’s
queries (Ki, Xi)fwd or (Ki, Yi)bwd one at a time as they come in). The last query
is always given index i. We say the last query is successful if the output Xi or Yi

for the last query is such that a(Qi) < α and such that the adversary can use the
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query (Xi, Ki, Yi) to fit the configuration given in Figure 3 using only queries in
Qi (in particular, the last query must be used once in the fitting for that query
to count as successful). The goal is thus to upper bound the adversary’s chance
of ever making a successful last query. The basic setup for upper bounding the
probability of success in a given case is to upper bound the maximum number
of different outputs Yi or Xi (depending on whether the last query is a forward
or a backward query) that would allow the query (Xi, Ki, Yi) to be used to fit
the configuration, and then divide this number by N ′ = 2n − q (since either Yi

or Xi, depending, is chosen randomly among a set of at least 2n − q different
values). The ratio is then multiplied by q, since the adversary makes q queries
in all, each of which could become a successful last query.

(i) Fit1a(Q): The last query, wlog. (Xi, Ki,1|Ki,2, Yi), is used in position TL.
We do not care whether the last query was a forward or backward query
since the analysis below is the same. All queries are, as claimed, pairwise
different. We give the adversary for free the answer to the forward query
BL, (Ki,1, Ki,2|Yi, S1). Then we have V = Yi⊕Xi and W = S1⊕Ki,1. This
pair of queries is successful if the adversary’s query history Qi−1 contains a
pair (A2, B2|L2, R2), (B2, L2|R2, S2) such that V = Xi⊕Yi = R2⊕A2 = V ′

and W = S1 ⊕Ki,1 = S2 ⊕ B2 = W ′. There are at most α queries in Qi−1

that can possibly be used for query in TR that all lead to a collision in the
top row, i.e. V = V ′. Therefore we have at most α possibilities for the query
in BR since the query in TR uniquely determines the query BR. Thus, the
last query has a chance of ≤ α/N ′ of succeeding. So the total chance of
making a successful query of this type is ≤ qα/N ′.

(ii) Fit1b(Q): Again, the last query, wlog. (Xi, Ki,1|Ki,2, Yi), is used in position
TL. We give the adversary for free the answer to the forward query BL,
(Ki,1, Ki,2|Yi, S1). By our claim, as BL=TR, we have A2 = Ki,1, B2 =
Ki,2, L2 = Yi and R2 = S1. It follows that for any given query i for TL, we
have at most one query for TR to form a collision V = V ′ (as the query
TL uniquely determines the query BL and the queries BL and TR are
equal) and therefore have at most one query BR in our query history to
form a collision W = W ′. The last query has a chance of ≤ 1/(N ′ · N ′) of
succeeding and so the total chance of making a successful query in the attack
is ≤ q/(N ′)2.

(iii) Fit1c(Q): As this analysis is essentially the same as for Fit1b(Q) we con-
clude with a total chance of success for this type of query of ≤ q/(N ′)2.

(iv) Fit1d(Q): Again, the last query, wlog. (Xi, Ki,1|Ki,2, Yi), is used in position
TL. We give the adversary for free the answer to the forward query BL,
(Ki,1, Ki,2|Yi, S1). Note, that this query is trivially different from the query
in TL as we assume that the last query is only used once in this configuration
(the case in which the two queries, TL and BL, are equal is discussed in the
analysis of Win3(Q)). We have V = Yi ⊕Xi and W = S1 ⊕Ki,1. As by our
claim, we assume TR = BR. The pair of queries for TL and BL is successful
if the adversary’s query history Qi−1 contains a query (A2, B2|L2, R2) such
that V = R2 ⊕ A2 = V ′ and W = R2 ⊕ A2 = W ′, i.e. V = W = V ′ = W ′.

11



Moreover, it follows from B2 = R2 = L2 that V = W = V ′ = W ′ = 0. As
at least three of them are chosen randomly by the initial query input (wlog.
V, W, V ′), the query has a chance of success in the i-th query≤ 1/(N ′·N ′·N ′)
and therefore a total chance of success ≤ q/(N ′)3.

The claim follows by adding up the individual results.
�

Lemma 4. Pr[Win2(Q)] ≤ qα/N ′ + 2q/(N ′)2 + q/(N ′)3.

As the proof and the result is (in principle) identical to the proof of Pr[Win1(Q)]
we omitted the details of the proof.

Lemma 5. Pr[Win3(Q)] ≤ 2qα/N ′ + 2q/(N ′)2.

Proof. The same notations and preliminaries as in the proof of Lemma 3 are
used.

(i) Win3a(Q): The last query, wlog. (Xi, Ki,1|Ki,2, Yi) is used in positions TL

and BL. We do not care whether the last query is a forward or backward
query since the analysis is the same. It follows, that Xi = Ki,1 = Ki,2 = Yi

and therefore V = Xi ⊕ Yi = W = 0. We assume that the adversary is
successful concerning these restraints, i.e. has found a query TL that can also
be used for BL such as Xi = Yi = Ki,1 = Ki,2. (Note, that this condition is
quite hard.) We do have at most α queries in Qi−1 that can possibly be used
for a query in TR and that lead to a collision in the top row, i.e. 0 = V = V ′.
For every such query TR we have at most one corresponding query in Qi−1

that can be used in position BR. So the last query has a chance of ≤ α/N ′

of succeeding and so the total chance of making a successful query of this
type during the attack is ≤ qα/N ′.

(ii) Win3b(Q): The last query, wlog. (Xi, Ki,1|Ki,2, Yi) is used in positions TL

and BL. We do not care whether the last query is a forward or backward
query since the analysis is the same. It follows, that Xi = Ki,1 = Ki,2 = Yi

and therefore V = Xi ⊕ Yi = W = 0. We assume again that the adversary
is successful concerning these restraints, i.e. has found a query TL that can
also be used for BL. We do have at most α queries in Qi−1 that can possibly
be used for a query in TR and that lead to a collision in the top row, i.e.
0 = V = V ′. We assume that we can use any such query equally as the
corresponding query for BR. In reality, this gives the adversary with high
probability more power than he will have. Thus, the last query has a chance
of ≤ α/N ′ of succeeding and so the total chance of making a successful query
of this type during the attack is ≤ qα/N ′. As discussed above, this upper
bound is likely to be generous.

(iii) Win3c(Q): The last query, wlog. (Xi, Ki,1|Ki,2, Yi) is used in positions TL

and BR. Note, that this situation is equal to the last query being used in
position BL and TR. We do not care whether the last query is a forward or
backward query. We give the adversary for free the answer to the forward
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query BL, (Ki,1, Ki,2|Yi, S1). We also give the adversary for free the answer
to the backward query TR, (A2, Xi|Ki,1, Ki,2). The probability for the i-th
query to be successful is equal to Pr[V = V ′] · Pr[W = W ′], and as W and
V ′ are guaranteed to be chosen independently and randomly the chance of
success is ≤ 1/(N ′)2. The total chance of success is therefore ≤ q/(N ′)2.

(iv) Win3d(Q): The last query, wlog. (Xi, Ki,1|Ki,2, Yi) is used in positions TL

and BR. Note, that this situation is equal to the last query being used in
position BL and TR. We do not care whether the last query is a forward or
backward query. We give the adversary for free the answer to the forward
query BL, (Ki,1, Ki,2|Yi, S1). (This query is also used for position TR and
it follows (by comparing the input values of query BL that is used for TR

with them of BR) Ki,2|Yi = Xi|Ki,1 and S1 = Ki,2. Comparing the outputs
we get a collision in the top row of the compression functions Pr[V = V ′] =
Pr[EKi,1|Ki,2

(Xi)⊕Xi = EKi,2|Yi
(Ki,1)⊕Ki,1], where Yi = EKi,1|Ki,2

, with
probability ≤ 1/N ′. This is, because the input values Xi, Ki,1, Ki,2 have to
be in such a way that the two inputs to the E oracle are different (if they are
not, we would have no colliding inputs for the two compression functions).
For the bottom row of the compression function we get, similarly, a collision
with probability ≤ 1/N ′. So the total chance for succeeding is in this case
≤ q/(N ′)2 as we have again at most q queries by the adversary.

�

We now give the proof for Theorem 1.

Proof. (of Theorem 1)
The proof follows directly with Lemma 1, 2, 3, 4 and Lemma 5. �

4 Preimage Resistance

Although, the main focus is on collision resistance, we are also interested in
the difficulty of inverting the compression function of Tandem-DM. Generally
speaking, second-preimage resistance is a stronger security requirement than
preimage resistance. A preimage may have some information of another preim-
age which produces the same output. However, in the ideal cipher model, for the
compression function Tandem-DM, a second-preimage has no information use-
ful to find another preimage. Thus, only preimage resistance is analyzed. Note,
that there have be various results that discuss attacks on iterated hash func-
tions in terms of pre- and second-preimage, e.g. long-message second-preimage
attacks [6, 16], in such a way that the preimage-resistance level cannot easily be
transferred to an iterated hash function built on it.

The adversary’s goal is to output a preimage (G, H, M) for a given σ, where
σ is taken randomly from the output domain, such as F (G, H, M) = σ. As in the
proof of Theorem 1 we will again dispense the adversary from having to output
such a preimage. We will determine whether the adversary has been successful
or not by examining its query history Q. We say, that PreImg(Q) holds if there
is such a preimage and Q contains all the queries necessary to compute it.
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Definition 4. (Inverting random points) Let F be a block cipher based com-
pression function, F : {0, 1}3n → {0, 1}2n. Fix an adversary A that has access
to oracles E, E−1. Then the advantage of A of inverting F is the real number

AdvInv

F (A) = Pr[E
R← BC(n, k); σ

R← {0, 1}2n :

(G, H, M)
R← AE,E−1

(σ) : F (G, H, M) = σ].

Again, for q ≥ 1, we write

AdvInv

F (q) = max
A
{AdvInv

F (A)}

where the maximum is taken over all adversaries that ask at most q oracle
queries. Note that there has been a discussion on formalizations of preimage
resistance. For details we refer to [2, Section 2, Appendix B].

4.1 Preimage Security

The preimage resistance of the compression function Tandem-DM is given in
the following Theorem.

Theorem 2. Let F := FTDM be as in Definition 1. For every N ′ = 2n− q and
q > 1

AdvInv

F (q) ≤ 2q/(N ′)2.

Proof. Fix σ = (σ1, σ2) ∈ {0, 1}2n where σ1, σ2 ∈ {0, 1}n and an adversary A
asking q queries to its oracles. We upper bound the probability that A finds a
preimage for a given σ by examining the oracle queries as they come in and upper
bound the probability that the last query can be used to create a preimage, i.e.
we upper bound Pr[PreImg(Q)]. Let Qi denote the first i queries made by the
adversary. The term ’last query’ means the latest query made by the adversary
since we examine again the adversary’s queries (Ki, Xi)fwd or (Ki, Xi)bwd one
at a time as they come in. The last query is always given index i.

Case 1: The last query (Xi, Ki, Yi) is used in the top row. Either Xi or Yi was
randomly assigned by the oracle from a set of at least the size N ′. The query
is successful in the top row if Xi ⊕ Yi = σ1 and thus has a chance of success
of ≤ 1/N ′. In Qi there is at most one query Qj that matches for the bottom
row. If there is no such query in Qi we give this query Qj the adversary for
free. This ’bottom’ query is successful if Xj ⊕ Yj = σ2 and therefore has a
chance of success of ≤ 1/N ′. So the total chance of success after q queries is
≤ q/(N ′)2.

Case 2: The last query (Xi, Ki, Yi) is used in the bottom row. The analysis is
essentially the same as in Case 1. The total chance of success is ≤ q/(N ′)2,
too.

As any query can either be used in the top or in the bottom row, the claim
follows.
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5 Discussion and Conclusion

In this paper, we have investigated the security of Tandem-DM, a long out-
standing DBL compression function based on an (n, 2n) block cipher. In the
ideal cipher model, we showed that this construction has birthday-type colli-
sion resistance. As there are some generous margins in the proof it is likely, that
Tandem-DM is even more secure. Our bound for preimage resistance is far from
optimal, but we have not found an attack that would classify this bound as tight.

Somewhat surprisingly, there seems to be only one practical rate 1/2 DBL
compression function that also has a birthday-type security guarantee. It was
presented at FSE’06 by Hirose [13]. Taking into account that it was presented
about 15 years after Tandem-DM, it is clear that there needs still to be a lot
of research done in the field of block cipher based hash functions, e.g. there are
still security proofs missing for the aforementioned Abreast-DM and MDC-4
compression or hash functions.
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A Proof of Lemma 2

Note that this proof is essentially due to Steinberger [34]. We can rephrase the
problem of upper bounding Pr[Lucky(Q)] = Pr[a(Q) > α] as a balls-in-bins
question. Let N = 2n be the number of bins and q be the number of balls to be
thrown. The i-th ball falls into the j-th bin if the XOR output of the i-th query
is equal to the XOR output of the j-th query, i.e. Xi ⊕ Yi = Xj ⊕ Yj . In the
following we will upper bound the probability that some bin contains more than
α balls. As the balls are thrown independent of each other, the i-th ball always
has probability ≤ p = 1/(2n − q) of falling in the j-th bin. This is because the
XOR output of the i-th query is chosen uniformly at random from a set of size
at least 2n − q. If we let B(k) be the probability of having exactly k balls in a
particular bin, say bin 1, then

B(k) ≤ pk

(

q

k

)

.

Let ν = qp, where ν is an upper bound for the expected number of balls in any
bin. By Stirlings approximation [8] (and ex being the exponential function)

n! ≤
√

2πn ·
(n

e

)n

· e1/(12n)
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we can upper bound B(k) as follows:

B(k) ≤ pk q!

k!(q − k)!

≤ pk

√
2π

√

q

k(q − k)
· qq

kk(q − k)1−k
· e

k · eq−k

eq
· e 1

12
(q−k−(q−k))

≤ k−kνk

(

q

q − k

)

≤ νk · k−k · ek.

Since α = τν we get

B(α) ≤ ντνeτν

(τν)τν
=

eτν

ττν
= eτν(1−ln τ).

As B(α) is a decreasing function of α if (1− ln τ) < 0, it follows that B(α) is a
decreasing function if α > e. And so we have

Pr[a(Q) > α] ≤ 2n ·
q

∑

j=α

B(j)

≤ q2nB(α) ≤ q2neτν(1−ln τ).

This proves our claim. �

B Security of the FSE’06 Proposal by Hirose for a DBL

Compression Function

At FSE’06, Hirose [13] proposed a DBL compression function (Definition 5 and
Figure 4). He proved that when his compression function FHirose is employed
in an iterated hash function H , then no adversary asking less than 2125.7 queries
can have more than a chance of 0.5 in finding a collision for n = 128. As he
has not stated a security result for the compression function we do here for
comparison with Tandem-DM.

B.1 Compression Function

Definition 5. Let FHirose : {0, 1}2n×{0, 1}n → {0, 1}2n be a compression func-
tion such that (Gi, Hi) = FHirose(Gi−1, Hi−1, Mi) where Gi, Hi, Mi ∈ {0, 1}n.
FHirose is built upon a (n, 2n) block cipher E as follows:

Gi = FT (Gi−1, Hi−1, Mi) = E(Gi−1, Hi−1|Mi)⊕Gi−1

Hi = FB(Gi−1, Hi−1, Mi) = E(Gi−1 ⊕ C, Hi−1|Mi)⊕Gi−1 ⊕ C,

where ′|′ represents concatenation and c ∈ {0, 1}n − {0n} is a constant.

A visualization of this compression function is given in Figure 4.
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Figure 4. The compression function F Hirose, E is an (n, 2n) block cipher, the small
rectangle inside the cipher rectangle indicates the position of the key

B.2 Collision Resistance of the Compression Function

As the security proof of Hirose [13, Theorem 4] only states a collision resistance
bound for a hash function built using FHirose, we will give a bound for the
compression function itself. In particular, we will show:
Theorem 3. Let F := FHirose be a compression function as in Defintion 5.
Then,

AdvColl

F (q) ≤ 2q2

(2n − 2q)2
+

2q

2n − 2q
.

In numerical terms, it means that no adversary performing less than 2124.55

oracle calls can have more than an even chance, i.e. 0.5, in finding a collision.
Due to the special structure of the compression function, the following defi-

nition is useful for the proof.

Definition 6. A pair of distinct inputs (Gi−1, Hi−1, Mi), (G
′
i−1, H

′
i−1, M

′
i) to

FHirose is called a matching pair if (G′
i−1, H

′
i−1, M

′
i) = (Gi−1, Hi−1, Mi ⊕ C.

Otherwise they are called a non-matching pair.

Note, that the proof is essentially due to Hirose [13], but as he stated it only
for the hash function and not for the compression function itself. We will give a
proof here for the compression function.

Proof. Let A be an adversary that asks q queries to oracles E, E−1. Since

Gi = E(Gi−1, Hi−1|Mi)⊕Gi−1

depends both on the plaintext and the ciphertext of E and one of them is fixed
by a query and the other is determined by the answer, it follows that Gi is
determined randomly. We give the adversary for free the answer to the query
for Hi. Let (Xi, Ki,1|Ki,2, Yi) and (Xi ⊕ C, Ki,1|Ki,2, Zi) be the triplets of E
obtained by the i-th pair of queries and the corresponding answers.
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For any 2 ≤ i ≤ q, let Ci be the event that a colliding pair of non-matching
inputs is found for F with the i-th pair of queries. Namely, it is the event that,
for some i′ < i

F (Xi, K1,i, K2,i) = F (Xi′ , K1,i′ , K2,i′) or F (Xi′ ⊕ C, K1,i′ , K2,i′)

or

F (Xi ⊕ C, K1,i, K2,i) = F (Xi′ , K1,i′ , K2,i′) or F (Xi′ ⊕ C, K1,i′ , K2,i′)

which is equivalent to

(Yi ⊕Xi, Zi ⊕Xi ⊕ C) =(Yi′ ⊕Xi′ , Zi′ ⊕Xi′ ⊕ C)

or (Zi′ ⊕Xi′ ⊕ C, Yi′ ⊕Xi′).

It follows, that

Pr[Ci] ≤
2(i− 1)

(2n − (2i− 2))(2n − (2i− 1))
≤ 2q

(2n − 2q)2
.

Let C be the event that a colliding pair of non-matching inputs is found for
FHirose with q (pairs) of queries. Then,

Pr[C] ≤
q

∑

i=2

Pr[Ci] ≤
q

∑

i=2

2q

(2n − 2q)2
≤ 2q2

(2n − 2q)2
.

Now, let Ĉi be the event that a colliding pair of matching inputs is found for F .
It follows, that

Pr[Ĉi] ≤
2

(2n − 2q)
.

Let Ĉ be the event that a colliding pair of matching inputs is found for FHirose

with q (pairs) of queries. Then,

Pr[Ĉ] ≤
q

∑

i=2

Pr[Ĉi] ≤
2q

2n − 2q
.

Since AdvColl

F (q) = Pr[C ∨ Ĉ] ≤ Pr[C] + Pr[Ĉ], the claim follows.
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