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Abstract. In this paper we study the security of the RadioGatún family
of hash functions, and more precisely the collision resistance of this pro-
posal. We show that it is possible to find differential paths with accept-
able probability of success. Then, by using the freedom degrees available
from the incoming message words, we provide a significant improvement
over the best previously known cryptanalysis. As a proof of concept, we
provide a colliding pair of messages for RadioGatún with 2-bit words. We
finally argue that, under some light assumption, our technique is very
likely to provide the first collision attack on RadioGatún.
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1 Introduction

A cryptographic hash function is a very important tool in cryptography, used in
many applications such as digital signatures, authentication schemes or message
integrity. Informally, a cryptographic hash function H is a function from {0, 1}∗,
the set of all finite length bit strings, to {0, 1}n where n is the fixed size of the
hash value. Moreover, a cryptographic hash function must satisfy the properties
of preimage resistance, 2nd-preimage resistance and collision resistance [27]:

– collision resistance: finding a pair x 6= x′ ∈ {0, 1}∗ such that H(x) =
H(x′) should require 2n/2 hash computations.

– 2nd preimage resistance: for a given x ∈ {0, 1}∗, finding a x′ 6= x such
that H(x) = H(x′) should require 2n hash computations.

– preimage resistance: for a given y ∈ {0, 1}n, finding a x ∈ {0, 1}∗ such
that H(x) = y should require 2n hash computations.

Generally, hash functions are built upon a compression function and a do-
main extension algorithm. A compression function h, usually built from scratch,
should have the same security requirements as a hash function but takes fixed
length inputs instead. Wang et al. [32, 34, 35, 33] recently showed that most stan-
dardized compression functions (e.g. MD5 or SHA-1) are not collision resistant.
Then, a domain extension method allows the hash function to handle arbitrary
length inputs by defining an (often iterative) algorithm using the compression



function as a black box. The pioneering work of Merkle and Damg̊ard [15, 28]
provided to designers an easy way in order to turn collision resistant compression
functions onto collision resistant hash functions. Even if preserving collision re-
sistance, it has been recently shown that this iterative process presents flaws [16,
19, 21, 20] and new algorithms [25, 7, 2, 1, 26] with better security properties have
been proposed.

Most hash functions instantiating the Merkle-Damg̊ard construction use a
block-cipher based compression function. Some more recent hash proposals are
based on construction principles which are closely related to stream ciphers.
For example we can cite Grindahl [24] or RadioGatún [4]. The underlying idea
of stream-oriented functions is to first absorb m-bit message blocks into a big
internal state of size c + m using a simple round function, and then squeeze
the hash output words out. As the internal state is larger than the output of
the hash function, the cryptanalytic techniques against the iterative construc-
tions can not be transposed to the case of stream-oriented functions. In 2007,
Bertoni et al. published a new hash construction mode, namely the sponge func-
tions [6]. At Eurocrypt 2008, the same authors [5] published a proof of security
for their construction : when assuming that the internal function F is a ran-
dom permutation or a random transformation, then the sponge construction is
indifferentiable from a random oracle up to 2c/2 operations.

However, even though the same authors designed RadioGatún and defined
the sponge construction, RadioGatún does not completely fulfill the sponge defi-
nition. For evident performance reasons, the internal function F of RadioGatún is
not a very strong permutation and this might lead to correlations between some
input and output words. This threat is avoided by applying blank rounds (rounds
without message incorporation) just after adding the last padded message word.
More recently, some NIST SHA-3 candidates are using permutation-based modes
as well, for example SHABAL [10], or sponge functions, for example Keccak [3].

Regarding the Grindahl family of hash functions, apart from potential slide
attacks [18], it has been shown [29, 23] that it can not be considered as colli-
sion resistant. However, RadioGatún remains yet unharmed by the preliminary
cryptanalysis [22]. The designers of RadioGatún claimed that for an instance
manipulating w-bit words, one can output as much as 19 × w bits and get a
collision resistant hash function. That is, no collision attack should exist which
requires less than 29,5×w hash computations. The designers also stated [4] that
the best collision attack they could find (apart from generic birthday paradox
ones) requires 246×w hash computations. A first cryptanalysis result by Bouil-
laguet and Fouque [8] using algebraic technique showed that one can find colli-
sions for RadioGatún with 224,5×w hash computations. Finally, Khovratovich [22]
described an attack using 218×w hash computations and memory, that can find
collisions with the restriction that the IV must chosen by the attacker (semi-
free-start collisions).

Our contributions. In this paper, we provide an improved cryptanalysis of
RadioGatún regarding collision search. Namely, using an improved computer-
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aided backtracking search and symmetric differences, we provide a technique
that can find a collision with 211×w hash computations and negligible memory.
As a proof of concept, we also present a colliding pair of messages for the case
w = 2. Finally, we argue that this technique has a good chance to lead to
the first collision attack on RadioGatún (the computation cost for setting up a
complete collision attack is below the ideal bound claimed by the designers, but
still unreachable for nowadays computers).

Outline. The paper is organized as follows. First, in Section 2, we describe
the hash function proposal RadioGatún. Then, in Section 3, we introduce the
concepts of symmetric differences and control words, that will be our two mains
tools in order to cryptanalyze the scheme. In Section 4, we explain our differential
path generation phase and in Section 5 we present our overall collision attack.
Finally, we draw the conclusion in last section.

2 Description of RadioGatún

RadioGatún is a hash function using the design approach and correcting the
problems of Panama [14], StepRightUp [13] or Subterranean [11, 13].

RadioGatún maintains an internal state of 58 words of w bits each, divided in
two parts and simply initialized by imposing the zero value to all the words. The
first part of the state, the mill, is composed of 19 words and the second part,
the belt, can be represented by a matrix of 3 rows and 13 columns of words.
We denote by Mk

i the i-th word of the mill state before application of the k-th
iteration (with 0 ≤ i ≤ 18) and Bk

i,j represents the word located at column i
and row j of the belt state before application of iteration k (with 0 ≤ i ≤ 12
and 0 ≤ j ≤ 2).

The message to hash is first padded and then divided into blocks of 3 words
of w bits each that will update the internal state iteratively. We denote by mk

i

the i-th word of the message block mk (with 0 ≤ i ≤ 2). Namely, for iteration
k, the message block mk is firstly incorporated into the internal state and then
a permutation P is applied on it. The incorporation process at iteration k is
defined by :

Bk
0,0 = Bk

0,0 ⊕mk
0 Bk

0,1 = Bk
0,1 ⊕mk

1 Bk
0,2 = Bk

0,2 ⊕mk
2

Mk
16 = Mk

16 ⊕mk
0 Mk

17 = Mk
17 ⊕mk

1 Mk
18 = Mk

18 ⊕mk
2

where ⊕ denotes the bitwise exclusive or operation.
After having processed all the message blocks, the internal state is finally

updated with Nbr blank rounds (simply the application of the permutation P ,
without incorporating any message block). Eventually, the hash output value is
generated by successively applying P and then outputting Mk

1 and Mk
2 as many

time as required by the hash output size.

The permutation P can be divided into four parts. First, the Belt function
is applied, then the MillToBelt function, the Mill function and eventually the
BeltToMill function. This is depicted in Figures 1 and 2.
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Fig. 1. The permutation P in RadioGatún.

Fig. 2. The permutation P in RadioGatún.

The Belt function simply consists of a row-wise rotation of the belt part of
the state. That is, for 0 ≤ i ≤ 12 and 0 ≤ j ≤ 2 :

B′i,j = Bi+1 mod 13,j .
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The MillToBelt function allows the mill part of the state to influence the belt
one. For 0 ≤ i ≤ 11, we have :

B′i+1,i mod 3 = Bi+1,i mod 3 ⊕Mi+1.

The Mill function is the most complex phase of the permutation P and it
updates the mill part of the state (see Figure 3). In the following, all indexes
should be taken modulo 19. First, a nonlinear transformation is applied on all
the words. For 0 ≤ i ≤ 18 :

M ′i = Mi ⊕Mi+1 ∧Mi+2

where X denotes the bitwise negation of X and ∧ represents the bitwise and
operation. Then, a diffusion phase inside the words is used. For 0 ≤ i ≤ 18 :

M ′i = M7×i ≫ (i× (i + 1)/2)

where X ≫ (y) denotes the rotation of X on the right over y positions. Then,
a diffusion phase among all the words is applied. For 0 ≤ i ≤ 18 :

M ′i = Mi ⊕Mi+1 ⊕Mi+4.

Finally, an asymmetry is created by simply setting M0 = M0 ⊕ 1.
The BeltToMill function allows the belt part of the state to influence the

mill one. For 0 ≤ i ≤ 2, we have :

M ′i+13 = Mi+13 ⊕B12,i.

Fig. 3. The Mill function in RadioGatún.

5



The RadioGatún security claims. Although RadioGatún has some common
features with the sponge functions, the security proof of the sponge construction
does not apply for this proposal. In their original paper [4], the authors claim
that RadioGatún can output as much as 19 words and remain a secure hash
function. Thus, it should not be possible for an attacker to find a collision attack
running in less than 29,5×w hash computations.

3 Symmetric differences and control words

3.1 Symmetric differences

The first cryptanalysis tool we will use are symmetric differences. This tech-
nique has first been described in [30]. It was mentioned as a potential threat for
RadioGatún in [4]. More precisely, a symmetric difference is an intra-word exclu-
sive or difference that is part of a stable subspace of all the possible differences
on a w-bit word. For example, in the following we will use the two difference
values 0w and 1w (where the exponentiation by x denotes the concatenation of x
identical strings), namely either a zero difference or either a difference on every
bit of the word.

Considering those symmetric differences will allow us to simplify the overall
scheme. Regarding the intra-word rotations during the Mill function, a 0w or
a 1w difference will obviously remain unmodified. Moreover, the result of an
exclusive or operation between two symmetric differences will naturally be a
symmetric difference itself :

0w ⊕ 0w = 0w 0w ⊕ 1w = 1w 1w ⊕ 0w = 1w 1w ⊕ 1w = 0w

The nonlinear part of the Mill function is more tricky. We can write :

a ∧ b = a ∨ b.

The output of this transformation will remain a symmetric difference with a
certain probability of success, given in Table 1.

Due to the use of symmetric differences, the scheme to analyze can now be
simplified : we can concentrate our efforts on a w = 1 version of RadioGatún,
for which the intra-word rotations can be discarded. However, when building a
differential path, for each differential transition during the nonlinear part of the
Mill function, we will have to take the corresponding probability from Table 1
in account3. Note that this probability will be the only source of uncertainty in
the differential paths we will consider (all the differential transitions through ex-
clusive or operation always happen with probability equal to 1) and the product
of all probabilities will be the core of the final complexity of the attack.

Also, one can check that the conditions on the Mill function input words
are not necessarily independent. One may have to control differential transitions
3 In a dual view, all the conditions derived from Table 1 must be fulfilled.
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∆a ∆b ∆a∨b Probability Condition

0w 0w 0w 1

0w 1w 0w 2−w a = 1w

0w 1w 1w 2−w a = 0w

1w 0w 0w 2−w b = 0w

1w 0w 1w 2−w b = 1w

1w 1w 0w 2−w a = b

1w 1w 1w 2−w a 6= b

Table 1. Differential transitions for symmetric differences during the nonlinear part of
the Mill function of RadioGatún. ∆a and ∆b denote the difference applied on a and b
respectively, and ∆a∨b the difference expected on the output of a∨ b. The last column
gives the corresponding conditions on the values of a and b in order to validate the
differential transition. By a = b (respectively a 6= b) we mean that all the bits of a and
b are equal (respectively different), i.e. a⊕ b = 0w (respectively a⊕ b = 1w).

for nonlinear subfonctions located on adjacent positions (for example the first
subfunction, involving M0 and M1, and the second, involving M1 and M2). This
has two effects : potential incompatibility or condition compression (concerning
M1 in our example). In the first case, two conditions are located on the same
input word and are contradicting (for example, one would have both M1 = 0w

and M1 = 1w). Thus, the differential path would be impossible to verify and,
obviously, one has to avoid this scenario. For the second case, two conditions
apply on the same input word but are not contradicting. Here, there is a chance
that those conditions are redundant and we only have to account one time for a
probability 2−w. Finally, note that all those aspects have to be handled during
the differential path establishment and not during the search for a valid pair of
messages.

3.2 Control words

When trying to find a collision attack for a hash function, two major tools are
used : the differential path and the freedom degrees. In the next section, we
will describe how to find good differential paths using symmetric differences. If a
given path has probability of success equal to P , the complexity of a naive attack
would be 1/P operations : if one chooses randomly and non-adaptively 1/P
random message input pairs that are coherent with the differential constraints,
there is a rather good chance that a one of them will follow the differential path
entirely. However, for the same differential path, the complexity of the attack
can be significantly decreased if the attacker chooses its inputs in a clever and
adaptive manner.

In the case of RadioGatún, 3 w-bit message words are incorporated into the
internal state at each round. Those words will naturally diffuse into the whole
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internal state, but not immediately. Thus, it is interesting to study how this dif-
fusion behaves. Since the events we want to control through the differential path
are the transitions of the nonlinear part of the Mill function (which depend on
the input words of the Mill function), we will only study the diffusion regarding
the input words of the Mill function.

Table 2 gives the dependencies between the message words incorporated at an
iteration k, and the 19 input words of the Mill function at iteration k, k + 1 and
k +2. One can argue that a modification of a message block does not necessarily
impacts the input word marked by a tick in Table 2 because the nonlinear
function can sometimes “absorb” the diffusion of the modification. However, we
emphasize that even if we depict here a behavior on average for the sake of
clarity, all those details are taken in account thanks to our computer-aided use
of the control words.

iteration M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18

k X

k+1 X X X X X X X X

k+2 X X X X X X X X X X X X X X X X X X X

iteration M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18

k X

k+1 X X X X X X X X

k+2 X X X X X X X X X X X X X X X X X X X

iteration M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18

k X

k+1 X X X X X X X X

k+2 X X X X X X X X X X X X X X X X X X X

Table 2. Dependencies between the message words incorporated at an iteration k, and
the 19 input words of the Mill function of RadioGatún at iteration k, k + 1 and k + 2.
The first table (respectively second and third) gives the dependencies regarding the
message block mk

0 (respectively mk
1 and mk

2). The columns represent the input words
of the Mill function considered and a tick denotes that a dependency exists between
the corresponding input word and message block.

4 An improved backtracking search

Our aim is to find internal collisions, i.e. collisions on the whole internal state
before application of the blank rounds.

In order to build a good differential path using symmetric differences, we
will use a computer-aided meet-in-the-middle approach, similar to the technique
in [29]. More precisely, we will build our differential path DP by connecting
together separate paths DPf and DPb. We emphasize that, in this section, we
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only want to build the differential path and not to look for a colliding pair of
messages. DPf will be built in the forward direction starting from an internal
state containing no difference (modeling the fact that we have no difference after
the initialization of the hash function), while DPb will be built in the backward
direction of the hash computation starting from an internal state containing no
difference (modeling the fact that we want a collision at the end of the path).

Starting from an internal state with no difference, for each round the algo-
rithm will go through all the possible difference incorporations of the message
input (remember that we always use symmetric differences, thus we only have
23 = 8 different cases to study) and all the possible symmetric differences tran-
sitions during the Mill function according to Table 1 (the differential transitions
through exclusive or operations are fully deterministic). The algorithm can be
compared to a search tree in which the depth represents the number of rounds of
RadioGatún considered and each node is a reachable differential internal state.

4.1 Entropy

An exhaustive search in this tree would obviously imply making useless compu-
tations (some parts of the tree provide too costly differential paths anyway). To
avoid this, we always compute an estimation of the cost of finding a message
pair fulfilling the differential paths during the building phase of the tree, from
an initial state to the current leaf in the forward direction, and from the current
leaf to colliding states in the backward direction.

A first idea would be to compute the current cost of DPf and DPb during
the meet-in-the-middle phase. But, as mentioned in Section 3, some words of the
mill only depend on the inserted message block after 1 or 2 rounds. Therefore,
some conditions on the mill value have to be checked 2 rounds earlier, and some
degrees of freedom may have to be used to fulfill conditions two rounds later.
As DPf and DPb are computed round per round, it is difficult to compute
their complexity during the search phase, while having an efficient early-abort
algorithm.

Therefore, we use an ad hoc parameter, denoted Hk and defined as follows.
If ck is the total number of conditions on the mill input words at round k (from
Table 1), we have for a path of length n :

{
Hk = max(Hk+1 + ck − 3, 0), ∀k < n

Hn = 0

The idea is to evaluate the number of message pairs required at step k in
order to get 2w×Hk+1

message pairs at step k + 1 of the exhaustive search phase.
To achieve this, one needs to fulfill ck×w bit conditions on the mill input values,
with 3×w degrees of freedom. Therefore, the values of Hk can be viewed as the
relative entropies on the successive values of the internal state during the hash
computation.
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The final collision search complexity would be 2w×Hmax , where Hmax is the
maximum value of Hi along the path, if the adversary could choose 3 words of
his choice at each step, and if each output word of the Mill function depended
on all the input words. In the case of RadioGatún, the computation cost is more
complex to evaluate, and this is described in Section 5. The maximum entropy
can be linked to the backtracking cost Cb, as defined in [4]. One has the relation
Cb = Hmax+3. The difference between these two notions is that the backtracking
cost takes in account the randomization of the input message pairs, which has a
cost 23w.

4.2 Differential path search algorithm

The path search algorithm works as follows. Keep in mind that the values of
the entropy along the path are relative values - any constant value can therefore
be added or subtracted to all the Hi. A zero entropy at step i means that one
expects 20 = 1 message pair to follow the path until step i. To evaluate a path,
we then set the minimal value of the entropy along the path to zero, the cost
being the maximal value of the entropy. Therefore we first compute candidates
for DPf with a modified breadth-first search algorithm, eliminating those for
which the maximum entropy exceeds the minimum entropy by more than 8×w
(because we want to remain much lower than the 9, 5×w bound from the birthday
paradox). The algorithm differs from a traditional breadth-first search as we do
not store all the nodes, but only those with an acceptable entropy :
to increase the probability of linking it to DPb, one only stores the nodes whose
entropy is at least (Hmax− 4)×w. We also store the state value of the previous
node with entropy at least (Hmax − 4) × w, to enable an efficient backtracking
process once the path is found.

We then compute DPb, using a depth-first search among the backwards tran-
sitions of the Mill function, starting from colliding states. We set the initial en-
tropy to Hn = 0, and we do not search the states for which H > 8 (same reason
as for DPf : we want to remain much lower than the bound from the birthday
paradox). For each node having an entropy at most 4, we try to link it with a
candidate for DPf .

4.3 Complexity of the path search phase

The total amount of possible values for a symmetric differential on the whole
state is 213×3+19 = 258. We use the fact that for RadioGatún, the insertion of
M ⊕M ′ can be seen as the successive insertions of M and M ′ without applying
the round function. Therefore, we can consider setting the words 16, 17, 18 of the
stored mill to 0 by a message insertion before storing it in the forward phase, and
doing the same in the backward phase before comparing it to forward values.
Therefore, the space on which the meet-in-the-middle algorithm has to find a
collision has approximately 255 elements. We chose to store 227 values of DPf ,
and thus we have to compare approximately 228 values for DPb.
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5 The collision attack

In this section, we depict the final collision attack, and compute its complexity.
Once a differential path is settled, the derived collision attack is classic : we will
use the control words to increase as much as possible the probability of success
of the differential path.

5.1 Description

The input for this attack is a differential path, with a set of sufficient conditions
on the values of the mill to ensure that a pair of messages follow the path. The
adversary searches the colliding pairs in a tree, in which the nodes are messages
following a prefix of the differential path. The leaves are messages following
the whole differential path. Thanks to an early-abort approach, the adversary
eliminates candidates as soon as they differ from the differential path. Nodes are
associated with message pairs, or equivalently by the first message of a message
pair – the second message is specified by the differential trail. Therefore, they
will be denoted by the message they stand for. The sons of node M are then
messages M ||b, where b is a given message block, and the hash computation of
M ||b fulfills all the conditions.

The adversary then uses a depth-first approach to find at least one node at
depth n, where n is the length of the differential path. It is based on the trail
backtracking technique, described in [4, 29]. To decrease the complexity of the
algorithm, we check the conditions on the words of the mill as soon as they
cannot be modified anymore by a message word inserted later.

From Table 2, we know that the k-th included message block impacts some
words of the mill before the k-th iteration of the Mill function, some other words
before the k + 1-th iteration, and the rest of the mill words before the k + 2-th
iteration. We recall that mk is the k-th inserted block, and we now set that
Mk

j is the value of the j-th mill word after the k-th message insertion. Let also
M̂k

j be the value of the j-th word of the mill after the k-th nonlinear function
computation.

After inserting mk, one can then compute Mk
16, M

k
17, M

k
18, but also Mk+1

j for
j = {1, 2, 4, 5, 7, 8, 9, 12, 13, 15}, and Mk+2

j for j = {0, 3, 6, 10, 11, 14}.
Some other conditions imply differences or non-differences between state

words, Mk
j ⊕Mk

j+1. When writing these variables as functions of the input mes-
sage words at step k and k−1, and of the state variables before message insertion
k − 1, one can notice the following : before the k-th message insertion, one can
compute Mk

j ⊕Mk
j+1, for j = {15, 16, 17, 18}, Mk+2

j ⊕Mk+2
j+1 for j = {7, 10}, and

Mk+1
j ⊕Mk+1

j+1 for all other possible values of j. Therefore, the adversary has
to check conditions on three consecutive values of the mill on message insertion
number k.

The most naive way to do it would consist in choosing mk at random and
hoping the conditions are verified, but one can use the following facts to decrease
the number of messages to check :
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– The conditions on words Mk
16, Mk

17 and Mk
18 as well as these on the values

Mk
15⊕Mk

16, Mk
16⊕Mk

17, Mk
17⊕Mk

18 and Mk
18⊕Mk

0 at step k can be fulfilled
by xor-ing the adequate message values at message insertion k.

– Using the linearity of all operations except the first one, the adversary can
rewrite the values Mk+1

j as a linear combination of variables M̂k
j , with j =

{0, . . . , 18}. Words M̂k
0 to M̂k

13 do not depend on the last inserted message
value, therefore can be computed before the message insertion.

– A system of equations in variables M̂k
14, . . . , M̂

k
18 remains. These equations

are derived from conditions on round k + 1, by reversing the linear part of
the Mill function. More precisely, these equations define the possible values
of these variables, or of the xor of two of these variables, one of them being
rotated.

The computation of the sons of a node at depth k work as follows :

1. The adversary checks the consistency of the equations on M̂k
14, . . . , M̂

k
18. If

these equations are not consistent, the adversary does not search the node.
The probability that this system is consistent depends on dimension of the
Kernel of the system and can be computed a priori.

2. The adversary exhausts the possible joint values of M̂k
14, . . . , M̂

k
18, Mk

16, Mk
17

and Mk
18, considering all the conditions on these variables, which can be

expressed bitwise (as the nonlinear part of the Mill function also works
bitwise). The cost of this phase is then linear in w. The mean number of
sons depends on the number of conditions.

3. For each remaining message block, the adversary checks all the other linear
conditions on M̂k

14, . . . , M̂
k
18 and the conditions on the mill values 2 rounds

later.

5.2 Computation of the cost

We will now explain how to compute the complexity of the collision search
algorithm. The most expensive operation is the search of the sons of nodes. The
total complexity of a given depth level k is the product of the number of nodes
that have to be explored at depth k by the average cost of the search of these
nodes. These parameters are exponential in w, therefore the total cost of the
search can be approximated by the search of the most expensive nodes.

To compute the search cost, we assume that for all considered messages, the
words of the resulting states for which no condition is imposed are indepen-
dent and identically distributed. This is true at depth 0, provided the attacker
initializes the search phase with a long random message prefix. The identical
distribution of the variables can be checked recursively, their independence is an
hypothesis for the attack to work. This assumption is well-known in the field of
hash function cryptanalysis for computing the cost associated to a differential
path (see e.g. [29]).

Let Ak be the number of nodes that have to be reached at depth k, and Ck

the average cost of searching one of these nodes. Let P k be the probability that
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a random son of a node at depth k follows the differential path, and Qk the
probability that a given node at depth k has at least one valid son. At depth
k, the average number of explored nodes is related to the average number of
explored nodes at depth k + 1. When only a few nodes are needed, the average
case is not sufficient, and one has to evaluate the cost of finding at least one
valid node of depth k + 1.

One has the following relations, for k ∈ {0, . . . , n− 1}:

 Ak = max(
Ak+1

23wP k
,

1
Qk

)

An = 1

Let Kk be the dimension of the Kernel of the linear system that has to be
solved at depth k, and P̂ k the probability that the bitwise system of equations
on the values of the mill before and after the nonlinear function has solutions.
P̂ k can be computed exhaustively a priori for each value of k. A random node
at depth k has at least one valid son if the two following conditions happen :

– The bitwise conditions at depth k and k + 1 can be fulfilled,
– The remaining freedom degrees can be used to fulfill all the remaining con-

ditions.

The first item takes in account the fact that some conditions might not depend
on all the freedom degrees. Therefore, we have :

Qk = min(2−Kk

P̂ k, 23w−Nk
COND ),

where Nk
COND is the total number of conditions that has to be checked on the

k-th message insertion. We also have P k = 2−Nk
COND , because each condition is

supposed to be fulfilled with probability half in the average case, which is true
provided the free words - i.e. without conditions fixing their values, or linking it
to another word - are i.i.d. .

Searching a node works as follows : one solves the bitwise system of equations
on the values of M16, M17, M18, M̂14, . . . , M̂18. The set of message blocks that
fulfill this equations system then has to be searched exhaustively to fulfill the
other conditions, and to generate nodes at depth k + 1. Ck is then the cost of
this exhaustive search, and can be computed as the average number of message
blocks that fulfill the system of equations. Therefore, we have Ck = 23wP̂ k.

For each node at depth k, the attacker can first check the consistency of the
conditions on the mill words at steps k and k+1, which allows him not to search
inconsistent nodes. Therefore, we have the following overall complexity :

T = O(max
k

(
CkAk

2Kk ))

The best path we found has complexity about 211×w, which is above the
security claimed by the designers of RadioGatún[4], it is given in Appendix. As
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a proof of concept, we also provide in Appendix an example of a colliding pair
of messages following our differential path for RadioGatún with w = 2. One can
check that the observed complexity confirms the estimated one.

5.3 Breaking the birthday bound

Finding a final collision attack for RadioGatún with a computation complexity
of 211w required us to own a computer with a big amount of RAM for a few
hours of computation. Yet, the memory and computation cost of the differen-
tial path search phase is determined by the Hmax chosen by the attacker. We
conducted tests that tend to show that the search tree is big enough in order
to find a collision attack with an overall complexity lower than the birthday
bound claimed by the designers4. The problem here is that the memory
and computation cost of the differential path search will be too big for
nowadays computers, but much lower than the birthday bound. This
explains why we are now incapable of providing a fully described collision at-
tack for RadioGatún. However, we conjecture that applying our techniques with
more memory and computation resources naturally leads to a collision attack
for RadioGatún, breaking the ideal birthday bound.

Conclusion

In this paper, we presented an improved cryptanalysis of RadioGatún regarding
collision search. Our attack can find collisions with a computation cost of about
211w and negligible memory, which is by far the best known attack on this
proposal.

We also gave arguments that shows that RadioGatún might not be a collision
resistant hash function. We conjecture that applying our differential path search
technique with more constraints will lead to collision attacks on RadioGatún.
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Appendix A: collision for RadioGatún[2]

To generate a collision for RadioGatún[2], we use a 143-block differential path
of cost 211w.

We give here a collision for the 2-bit version of RadioGatún. One can easily
check that it follows the differential path given above. We write the message
words using values between 0 and 3, which stand for the possible values of 2-bit
words. The differential path, and some statistics about the collision search, can
be found in the longer version of this paper [17].

To ensure that one has enough starting points, we used a 5-block common
prefix.
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The two colliding messages are :

M0 = 330 000 000 000 000 113 311 012 012 112 300 202

020 302 233 030 030 000 223 222 220 111 000 010

031 001 033 020 000 000 222 103 110 312 231 321

102 012 322 023 323 232 001 023 032 220 130 103

203 003 200 232 023 011 222 222 133 110 211 031

232 122 033 122 021 202 302 003 120 003 300 203

133 021 302 311 101 031 200 003 013 231 032 312

002 202 131 331 122 201 333 301 032 230 031 220

012 130 312 100 020 322 222 220 201 012 000 201

200 010 230 130 310 330 201 103 130 210 102 001

200 321 112 110 232 223 010 301 213 000 133 123

323 222 331 132 103 021 012 330 201 100 203 321

013 332 020 000

M1 = 330 000 000 000 000 113 311 312 022 122 030 202

020 332 103 303 303 003 113 222 120 121 030 020

031 001 303 313 000 330 222 103 110 312 202 321

201 011 022 010 313 202 031 023 032 120 130 103

200 303 233 232 013 321 111 211 203 123 121 031

132 112 300 122 011 202 032 003 210 300 300 100

203 311 302 012 101 002 100 303 013 231 302 322

032 131 102 001 211 232 300 301 302 230 301 120

011 103 022 200 013 022 212 113 131 311 003 131

200 010 230 200 020 000 231 103 100 113 132 031

233 321 112 220 232 220 010 332 223 300 100 123

013 122 302 131 200 311 012 300 202 230 133 321

013 331 023 003
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The common value of the internal state is then :

belt[0] = (0, 0, 2, 1, 2, 0, 3, 0, 2, 1, 1, 1, 3),
belt[1] = (3, 1, 0, 2, 3, 2, 2, 3, 1, 2, 3, 0, 2),
belt[2] = (2, 3, 3, 2, 2, 2, 1, 1, 1, 3, 2, 0, 3),

mill = (2, 0, 2, 2, 1, 0, 1, 0, 3, 1, 3, 3, 2, 2, 3, 3, 0, 3, 3)
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