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Abstract. MULTI2 is the block cipher used in the ISDB standard for
scrambling digital multimedia content. MULTI2 is used in Japan to se-
cure multimedia broadcasting, including recent applications like HDTV
and mobile TV. It is the only cipher specified in the 2007 Japanese ARIB
standard for conditional access systems. This paper presents a theoretical
break of MULTI2 (not relevant in practice), with shortcut key recovery
attacks for any number of rounds. We also describe equivalent keys and
linear attacks on reduced versions with up 20 rounds (out of 32), improv-
ing on the previous 12-round attack by Matsui and Yamagishi. Practical
attacks are presented on up to 16 rounds.
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1 Introduction

MULTI2 is a block cipher developed by Hitachi in 1988 for general-purpose
applications, but which has mainly been used for securing multimedia content.
It was registered in ISO/IEC 99793 [8] in 1994, and is patented in the U.S. [13,
14] and in Japan [7]. MULTI2 is the only cipher specified in the 2007 Japanese
standard ARIB for conditional access systems [2]. ARIB is the basic standard of
the recent ISDB (for Integrated Services Digital Broadcasting), Japan’s standard
for digital television and digital radio (see http://www.dibeg.org/)

Since 1995, MULTI2 is the cipher used by satellite and terrestrial broadcast-
ers in Japan [16, 18] for protecting audio and video streams, including HDTV,
mobile and interactive TV. In 2006, Brazil adopted ISDB as a standard for
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digital-TV, and several other countries are progressively switching to ISDB
(Chile, Ecuador, Peru, Philippines and Venezuela). But for the moment only
Japan uses the conditional access features of ISDB, thus MULTI2 is only used
in Japan.

MULTI2 has a Feistel structure and encrypts 64-bit blocks using a 256-
bit “system key” and a 64-bit “data key”. The ISO register recommends at
least 32 rounds. A previous work by Matsui and Yamagishi [11] reports attacks
on a reduced version of MULTI2 with 12 rounds. Another work by Aoki and
Kurokawa [1] reports an analysis of the round mappings of MULTI2, with re-
sults independently rediscovered in the present work.

Contribution. This paper presents new cryptanalytic results on MULTI2, in-
cluding the description of large sets of equivalent keys, a guess-and-determine
attack for any number of rounds, a linear attack on 20 rounds, and a related-
key slide attack (see Table 1 for complexities). Despite no practical threat to
conditional access systems, our results raise concerns on the intrinsic security of
MULTI2.

Table 1. Summary of our attacks on MULTI2 (Data is given in known plaintexts).

#Rounds Time Data Memory Attack

4 216.4 216.4 — linear distinguisher⋆

8 227.8 227.8 — linear distinguisher⋆

12 239.2 239.2 — linear distinguisher⋆

16 250.6 250.6 — linear distinguisher⋆

20 293.4 239.2 239.2 linear key-recovery
r 2185.4 3 231 guess-and-determine key-recovery
r ≡ 0 mod 8 2128/r 233 233 related-key slide key-recovery

⋆: time complexity is # of parity computations instead of # of encryptions.

2 Description of MULTI2

MULTI2 (Multi-Media Encryption Algorithm 2) is a Feistel block cipher that
operates on 64-bit blocks, parametrized by a 64-bit data key and a 256-bit system
key. Encryption depends only on a 256-bit key derived from the data and system
keys. This encryption key is divided into eight subkeys. MULTI2 uses four key-
dependent round functions π1, π2, π3, and π4, repeated in this order. The ISO
register entry recommends at least 32 rounds, which is the number of rounds
used in the ISDB standard. We denote MULTI2’s keys as follows, parsing them
into 32-bit words (see Fig. 1):

• d = (d1, d2) is the 64-bit data key



• s = (s1, s2, s3, s4, s5, s6, s7, s8) is the 256-bit system key

• k = (k1, k2, k3, k4, k5, k6, k7, k8) is the 256-bit encryption key

MULTI2 uses no S-boxes, but only a combination of XOR (⊕), modulo 232

addition (+) and subtraction (−), left rotation (≪) and logical OR (∨). Below
we denote L (resp. R) the left (resp. right) half of the encrypted data, and ki a
32-bit encryption subkey:

• π1 is the identity mapping: π1(L) = L. It is the only surjective and key
independent round transformation.

• π2 maps 64 bits to 32 bits, and returns

π2(R, ki) = (x ≪ 4)⊕ x (1)

where x = ((R + ki) ≪ 1) + R + ki − 1. From the definition (1) it follows
that π2(R, ki) = π2(ki, R), for any ki, R ∈ {0, 1}32. Moreover, π2 can be
expressed as a function of a single value, R + ki. Due to the feed forward in
(1), π2 can not be surjective. The range of π2 contains exactly 265 016 655 ≈
228 elements (only 6.2% of {0, 1}32, against 63% expected for a random
function [12, §2.1.6]). Moreover, the set of 32 bit values output by π2 is
always the same. This follows from the observation that for fixed R if 0 ≤
ki ≤ 232− 1, then 0 ≤ R+ki ≤ 232− 1 and the same holds if ki is fixed and
0 ≤ R ≤ 232 − 1.

• π3 maps 96 bits to 32 bits, and returns

π3(L, ki, kj) = (x ≪ 16)⊕ (x ∨ L) (2)

where

x =
((

(y ≪ 8)⊕ y + kj

)

≪ 1
)

−
(

(y ≪ 8)⊕ y + kj

)

where y = ((L+ki) ≪ 2)+L+ki +1. The range of π3 spans approximately
230.8 values, that is, 43% of {0, 1}32, for a fixed encryption key. The fraction
of the range covered by π3 is not the same for every ki, kj ∈ {0, 1}32, because
π3(L, ki, kj) 6= π3(L, kj , ki).

• π4 maps 64 bits to 32 bits, and returns

π4(R, ki) =
(

(R + ki) ≪ 2
)

+ R + ki + 1. (3)

From the definition of 3, it follows that π4(R, ki) = π4(ki, R) for any ki, R ∈
{0, 1}32. The range of π4 contains exactly 1 717 986 919 ≈ 230.7 elements
(i.e., 40.6% of {0, 1}32). The reasoning is the same as for π2.

An additional property is the fact that these πj functions do not commute, that
is, πi ◦ πj 6= πj ◦ πi, for i 6= j, where ◦ is functional composition. Thus, the πj

mapping cannot be purposefully clustered or permuted in the cipher framework
to ease cryptanalysis.
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Fig. 1. Key schedule (left) and encryption (right) in MULTI2: the encryption key k is
derived from the system key s and the data key d. Only k is used during the encryption.



Encryption. Given subkeys k1, . . . , k8 and a plaintext (L0, R0), MULTI2 com-
putes the first eight rounds as follows (see Fig. 1):

1. R1 ← R0 ⊕ π1(L0)
2. L1 ← L0; L2 ← L1 ⊕ π2(R1, k1)
3. R2 ← R1; R3 ← R2 ⊕ π3(L2, k2, k3)
4. L3 ← L2; L4 ← L3 ⊕ π4(R3, k4)
5. R4 ← R3; R5 ← R4 ⊕ π1(L4)
6. L5 ← L4; L6 ← L5 ⊕ π2(R5, k5)
7. R6 ← R5; R7 ← R6 ⊕ π3(L6, k6, k7)
8. L7 ← L6; L8 ← L7 ⊕ π4(R7, k8)
9. R8 ← R7

This sequence is repeated (with suitably incremented subscripts) until the de-
sired number of rounds r, and the ciphertext (Lr, Rr) is returned. The subkeys
k1, . . . , k8 are reused for each sequence π1, . . . , π4, π1, . . . , π4.

Key Schedule. The key schedule of MULTI2 “encrypts” a data key (d1, d2)
(as plaintext) through nine rounds, using the system key s1, . . . , s8. The round
subkeys k1, . . . , k8 are extracted as follows (see Fig. 1):

• k1 ← d1 ⊕ π2(d1 ⊕ d2, s1)
• k2 ← d1 ⊕ d2 ⊕ π3(k1, s2, s3)
• k3 ← k1 ⊕ π4(k2, s4)
• k4 ← k2 ⊕ k3

• k5 ← k3 ⊕ π2(k4, s5)
• k6 ← k4 ⊕ π3(k5, s6, s7)
• k7 ← k5 ⊕ π4(k6, s8)
• k8 ← k6 ⊕ k7

MULTI2 in ISDB. In ISDB, MULTI2 is mainly used via the B-CAS card [6] for
copy control to ensure that only valid subscribers are using the service. MULTI2
encrypts transport stream packets in CBC or OFB mode. The same system key
is used for all conditional-access applications, and another system key is used
for other applications (DTV, satellite, etc.). The 64-bit data key is refreshed
every second, sent by the broadcaster and encrypted with another block cipher.
Therefore only the data key is really secret, since the system key can be obtained
from the receivers. Details can be found in the ARIB B25 standard [2].

3 Equivalent Keys

The key schedule of MULTI2 maps a (256 + 64)-bit data-and-system key to a
256-bit encryption key (see Fig. 1). This means 64 bits of redundancy (leading to
264 collisions). Further, the 256-bit encryption key k = (k1, . . . , k8) has entropy
at most 192 bits, because the key schedule sets k4 = k3 ⊕ k2 and k8 = k7 ⊕ k6.
Hence, the knowledge of two subkeys in (k2, k3, k4) is sufficient to compute the



third. The key schedule thus induces a loss of at least 128 bits of entropy, from
the 320-bit (s, d) key. Therefore, the average size of equivalence key classes is
2128.

Large sets of colliding pairs (s, d) can be found as follows: given (s, d), one
just has to find s′1 such that π2(d1⊕ d2, s

′

1) = π2(d1⊕ d2, s1); or s′2, s′3 such that
π3(k1, s2, s3) = π3(k1, s

′

2, s
′

3); or s′4 such that π4(k2, s
′

4) = π4(k2, s4); or s′5 such
that π2(k4, s5) = π2(k4, s

′

5); or s′6, s′7 such that π3(k5, s6, s7) = π3(k5, s
′

6, s
′

7); or
s′8 such that π4(k6, s8) = π4(k6, s

′

8). Each of these conditions are independent.
The result is a (series of) equivalent keys (s′, d) that lead to the same encryption
key as the pair (s, d).

However, there exist no equivalent keys with the same system key and distinct
data keys. This is because the key schedule uses the data key as plaintext, hence
the encryption key is trivially invertible (see Fig. 1).

Note that [8] suggests to use MULTI2 as building block for constructing hash
functions. If the construction is not carefully chosen, however, equivalent keys
in MULTI2 could lead to simple collisions. For example, in Davies-Meyer mode
the compression function would return Em(h)⊕ h, with h a chaining value and
m a message block; since equivalent keys are easy to find, it is easy as well to
find two (or more) distinct message block that produce the same encryption key,
and thus that give multicollisions.

4 Guess-and-Determine Attack

We describe a known-plaintext attack that recovers the 256-bit encryption key in
about 2185.4 r-round encryptions. The attack works for any number r of rounds,
and uses only three known plaintexts/ciphertext pairs.

We recall the loss of key entropy due to redundancy in the key schedule of
MULTI2 described in Sect. 3.

One recovers k1, . . . , k8 using a guess-and-determine strategy, exploiting the
non-surjectivity of the round functions π2 and π4 (see key schedule in Fig. 1):

1. guess k1 and k2 (264 choices)
2. guess π4(k2, s4) (230.7 choices), and deduce k3 = k1 ⊕ π4(k2, s4)
3. set k4 = k2 ⊕ k3

4. guess π2(k4, s5) (228 choices), and deduce k5 = k3 ⊕ π2(k4, s5)
5. guess π3(k5, s6, s7) (232 choices), and deduce k6 = k4 ⊕ π3(k5, s6, s7)
6. guess π4(k6, s8) (230.7 choices), and deduce k7 = k5 ⊕ π4(k6, s8)
7. set k8 = k6 ⊕ k7

A guess of k1, . . . , k8 is verified using three known-plaintext/ciphertext pairs
(each pair gives a 64-bit condition). The total cost is about 2185.4 r-round en-
cryptions and 231 32-bit words of memory. Note that the non-surjectivity of
π3(k5, s6, s7) cannot be exploited here, because the range depends on the system
subkeys, which are unknown.

Once the encryption key k is found, one can recover all equivalent 256-bit
system keys s and 64-bit data keys d as follows: starting from the end of the key



schedule (Fig. 1), one iteratively searches for a valid s8 (232 π4-computations),
then a valid pair (s6, s7) (264 π3-computations), and so on (the complexities add
up) until recovering s4. For computing (s2, s3) we need the value of d1 ⊕ d2.
The cost for this case is 232+32+32 = 296 π3-computations. For s1 we need the
separate values of d1 and d2. Since we already computed d1 ⊕ d2, the cost is
232+32 = 264 π2-computations. The final complexity is dominated by 296 π3-
computations to recover all candidates pairs (s, d). The cost of computing one
of the pairs (s, d) is dominated by 233 π3-computations.

5 Linear Attacks

The non-surjectivity of the round functions π2, π3, π4 motivates the study of
linear relations [10] for particular bitmasks. Usually, one looks for nonzero input
and output bitmasks for individual cipher components, with high bias. But for
MULTI2, we look for linear relations of the form 0

πi→ Γ , 2 ≤ i ≤ 4, Γ 6= 0.
Because of 4-round repetition of πi mappings in MULTI2, and to optimize the
search, we looked only for iterative linear relations that cover all four consecutive
πi round mappings.
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Fig. 2. Four-round iterative linear trails.

In Fig. 2(a), only π2 and π4 are active, that is, effectively participate in the
linear relation (linear trails are depicted by thick lines). In Fig. 2(b), π2 and

π3 are active, but for π3 the linear approximation has the form Γ
π3→ Γ , where

Γ 6= 0. Alternative iterative linear relations are depicted in Fig. 3. In Fig. 3(a),
there is one instance of π2 and π4, and two instances of π3 active along the linear
relation. Fig. 3(b) is just Fig. 3(a) slided by four rounds.
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We consider each round function as operating over 32-bit data (for a fixed,
unknown key). Instead of deriving the bias for a given output bitmask, we have
searched for promising bitmasks (with high bias), by exhaustive search over the
inputs for each round function. From the linear relations listed above, the one in
Fig. 2(a) is the most promising, since it involves only two active round functions
for every four rounds: π2 and π4. This is an indication that the left half of the
MULTI2 encryption/decryption framework is weaker than the right half.

Our search (over random keys) started with masks of low Hamming weight.
The use of rotation suggests that masks with short repeating patterns tend to
show higher biases, which our experiments confirmed: the 32-bit mask

Γ = AAAAAAAAx

presented the highest bias: 2−1 for π2, and 2−6.7 for π4 (Fig. 2(a)). The overall
bias is p′ = 2−6.7, using the piling-up lemma [10]. This bitmask was indepen-
dently discovered by Aoki and Kurokawa in [1].

Comparatively, for Fig. 2(b), the best mask we have found is Γ = 88888888x,
with bias 2−1 for π2, and 2−8.6 for π3. The overall bias for four rounds is 2−8.6.

Using Fig. 2(a), one can distinguish 4-round MULTI2 from a random per-
mutation using 8 × (p′)−2 = 216.4 known plaintexts (KP), for a high success
rate attack; the memory complexity is negligible and the attack effort is es-
sentially 216.4 parity computations. For eight rounds, the attack complexity is
8 × (2 × (p′)2)−2 = 8 × (2−12.4)−2 = 227.8 KP and equivalent parity compu-
tations; for twelve rounds, the data complexity becomes 8 × (22 × (p′)3)−2 =
8 × (2−18.1)−2 = 239.2 KP; for sixteen rounds, 8 × (2−23.8)−2 = 250.6 KP. For
further rounds, more plaintexts than the codebook are required.

For key-recovery attacks on twenty rounds, we use the 12-round linear rela-
tion described in the previous paragraph. Notice that across 20-round MULTI2,
the same sequence of four subkeys, k1, . . . , k4 repeats at the first and at the
last four rounds. Thus, we place the 12-round relation in the middle of 20-round
MULTI2 and guess consecutively k1, k2 (cost 232 for each of them), then k3 (cost
230.7), and finally k4 (free). Time complexity is thus about 294.7 + 294.7 = 295.7

4-round decryptions, that is, 1/5 · 295.7 ≈ 293.4 20-round encryptions. Storage of
239.2 ciphertexts is necessary.

6 Related-Key Slide Attack

We present key-recovery known-plaintext related-key slide attacks [3–5]. These
attacks exploit the partial similarity of 4-round sequences, and works for any
version of MULTI2 whose number of rounds is a multiple of eight.

Let F1...4 stand for 4-round encryption involving π1, . . . , π4 with subkeys
k1, . . . , k4. Similarly, let F5...8 stand for 4-round encryption involving π1, . . . , π4

with subkeys k5, . . . , k8; F ′

1...4 stand for π1, . . . , π4 with subkeys k′

1, . . . , k
′

4, and
F ′

5...8 stand for π1, . . . , π4 with subkeys k′

5, . . . , k
′

8.



Given an unknown key pair (s, d), we consider a related-key pair (s′, d′) that
gives k′ such that

k′

1 = k5 k′

2 = k6 k′

3 = k7 k′

4 = k8

k′

5 = k1 k′

6 = k2 k′

7 = k3 k′

8 = k4 (4)

Thus, F ′

1...4 ≡ F5...8 and F ′

5...8 ≡ F1...4.
For Eq. (4) to hold, it is necessary that the related key (s′, d′) satisfies

d′1 = k3 d′1 ⊕ d′2 = k4

s′1 = s5 s′2 = s6 s′3 = s7 s′4 = s8

s′5 = s1 s′6 = s2 s′7 = s3 s′8 = s4.

The conditions k′

1 = k5 and k′

2 = k6 require

k3 ⊕ π2(k4, s5) = d′1 ⊕ π2(d
′

1 ⊕ d′2, s
′

1)

k4 ⊕ π3(k5, s6, s7) = d′1 ⊕ d′2 ⊕ π3(k
′

1, s
′

2, s
′

3).

A slid pair gives P ′ = F1···4(P ), which implies C ′ = F ′

5···8(C) = F1···4(C), as
shown below.

P
F1···4→ X

F5...8→ . . .
F5···8→ C

P ′
F ′

1...4→ . . .
F ′

1···4→ Y
F ′

5···8→ C ′

That is, one get two 64-bit conditions since both the plaintext and ciphertext slid
pairs are keyed by the same subkeys. Thus one slid pair is sufficient to identify
k1, . . . , k4. The attack goes as follows:

1. collect 232 distinct (Pi, Ci) pairs, i = 1, . . . , 232 encrypted with k
2. collect 232 distinct (P ′

i , C
′

i) pairs, i = 1, . . . , 232 encrypted with k′

3. for each (i, j) ∈ {1, . . . , 232}2

4. find the value of k1, . . . , k4 that satisfy P ′

j = F1···4(Pi) and C ′

j = F1···4(Ci)

5. search exhaustively k5, . . . , k8 (there are 296 choices, exploiting the non-
surjectivity of π2 and π4)

We cannot filter the wrong slid pairs, so we try all possible 264 pairs (Pi, Pj). But
each potential slid pairs provides 128-bit condition, because both the plaintext
and ciphertext pairs are keyed by the same unknown subkeys. Thus, we can filter
the wrong subkeys at once.

To recover k1, . . . , k4 we use the potential slid pair (P ′

j , Pi). Guess k1 (232

choices). Then, guess k2 (232 choices), and find the k3 that yields the (known)
output of π3. Deduce k4, as k2 ⊕ k3 and finally, test whether the current choice
of k1, . . . , k4 is consistent with the second potential slid pair (C ′

j , Ci).
Finding k3 from k2, the input of π3, and its output one has to solve an

equation of the form (x ≪ 16)⊕ (x∨L) = b, then an equation (t ≪ 1)− t = x,
where x and t are the unknowns. The first can be solved bit per bit, by iteratively
storing the solutions for each pair (xi, xi+16). There are 16 such pairs, and for



each pair there are at most two solutions. Hence in the worst case there will
be 216 solutions. The effort up to this point is roughly 232+32 = 264 π2 and
π3-computations.

In total, up to this point, there are 232+32+16 = 280 possible values for
(k1, k2, k3, k4). The value of k4 = k2⊕k3 can be further checked using the (Pi, P

′

j)
pair. Let Pi = (PL, PR) and P ′

j = (P ′

L, P ′

R). Then, P ′

L⊕PL⊕ π2(PR ⊕PL, k1) =
π4(P

′

R, k4), which is a condition on 26.7 bits, since the output of π2 and π4

intersect in 226.7 distinct values. Thus, we expect only 280/226.7 = 253.3 tuples
(k1, k2, k3, k4) to survive. Using (Ci, C

′

j), a 64-bit condition, reduces the number

of wrong key candidates to 253.3/264 < 1.
The final attack complexity is thus about 264 × 264 1-round computations,

or
(

2128/r
)

r-round computations to recover k1, . . . , k4. Further, to recover k5,
. . ., k8, we run a similar procedure, but over r − 8 rounds (after decrypting
the top and bottom four rounds). The complexity is 296 (r − 8)-round com-
putations. Normalizing the complexity figures, the overall attack complexity is
dominated by

(

2128/r
)

r-round computations. The memory complexity is 233

plaintext/ciphertext pairs.

7 Conclusions

We showed that the 320-bit key of MULTI2 can be recovered in about 2185

trials instead of 2320 ideally, for any number of rounds, and using only three
plaintext/ciphertext pairs. This weakness is due to the loss of entropy induced
by the key schedule and the non-surjective round functions. We also described
a linear (key-recovery) attack on up to 20 rounds, and a related-key slide attack
in

(

2128/r
)

r-round computations for any number r of rounds that is a multiple
of eight (thus including the recommended 32 rounds).

Although our results do not represent any practical threat when the 32-round
recommendation is followed, they show that the security of MULTI2 is not as
high as expected, and raise concerns on its long-term reliability. A practical break
of MULTI2 would have dramatic consequences: millions of receivers would have
to be replaced, a new technology and new standards would have to be designed
and implemented.

Finally, note that the Common Scrambling Algorithm (CSA), used in Europe
through the digital-TV standard DVB4 also underwent some (non-practical)
attacks [15, 17]. For comparison, the American standard ATSC uses Triple-DES
in CBC mode5.

Acknowledgments

We wish to thank Kazumaro Aoki for communicating us a copy of his article,
and also Tim Sharpe (NTT communication) and Jack Laudo for their assistance.

4 See http://www.dvb.org/.
5 See http://www.atsc.org/standards/a 70a with amend 1.pdf.



We are also grateful to the reviewers of FSE 2009 for their valuable comments,
and for pointing out reference [9].

References

1. Kazumaro Aoki and Kazuhiro Kurokawa. A study on linear cryptanalysis of Multi2
(in Japanese). In The 1995 Symposium on Cryptography and Information Security,
SCIS95, 1995.

2. ARIB. STD B25 v. 5.0, 2007. http://www.arib.or.jp/.
3. Eli Biham. New types of cryptanalytic attacks using related keys. Journal of

Cryptology, 7(4):229–246, 1994.
4. Alex Biryukov and David Wagner. Slide attacks. In Lars R. Knudsen, editor, FSE,

volume 1636 of LNCS, pages 245–259. Springer, 1999.
5. Alex Biryukov and David Wagner. Advanced slide attacks. In Bart Preneel, editor,

EUROCRYPT, volume 1807 of LNCS, pages 589–606. Springer, 2000.
6. BS Conditional Access Systems Co., Ltd. http://www.b-cas.co.jp/.
7. Hitachi. Japanese laid-open patent application no. H1-276189, 1998.
8. ISO. Algorithm registry entry 9979/0009, 1994.
9. Tomoari Katagi, Takaya Inoue, Takeshi Shimoyama, and Shigeo Tsujii. A corre-

lation attack on block ciphers with arithmetic operations (in Japanese). In SCIS,
2003. reference no. SCIS2003 5D-2.

10. Mitsuru Matsui. Linear cryptoanalysis method for DES cipher. In Tor Helleseth,
editor, EUROCRYPT, volume 765 of LNCS, pages 386–397. Springer, 1993.

11. Mitsuru Matsui and Atsushiro Yamagishi. On a statistical attack of secret key
cryptosystems. Electronics and Communications in Japan, Part III: Fundamen-
tal Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi),
77(9):61–72, 1994.

12. Alfred J. Menezes, Paul C. van Oorschot, and Scot A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

13. Kazuo Takaragi, Fusao Nakagawa, and Ryoichi Sasaki. U.S. patent no. 4982429,
1989.

14. Kazuo Takaragi, Fusao Nakagawa, and Ryoichi Sasaki. U.S. patent no. 5103479,
1990.

15. Ralf-Phillip Weinmann and Kai Wirt. Analysis of the DVB common scrambling al-
gorithm. In 8th IFIP TC-6 TC-11 Conference on Communications and Multimedia
Security (CMS). Springer, 2004.

16. Wikipedia. Mobaho! Accessed 05-February-2009.
17. Kai Wirt. Fault attack on the DVB common scrambling algorithm. In Osvaldo Ger-

vasi et al., editor, ICCSA (2), volume 3481 of LNCS, pages 577–584. Springer, 2005.
18. Toshiro Yoshimura. Conditional access system for digital broadcasting in Japan.

Proceedings of the IEEE, 94(1):318–322, 2006.


