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Abstract. This paper presents a new distinguisher which can be ap-
plied to secret-prefix MACs with the message length prepended to the
message before hashing. The new distinguisher makes use of a special
truncated differential path with high probability to distinguish an inner
near-collision in the first round. Once the inner near-collision is detected,
we can recognize an instantiated MAC from a MAC with a random func-
tion. The complexity for distinguishing the MAC with 43-step reduced
SHA-1 is 2124.5 queries. For the MAC with 61-step SHA-1, the complex-
ity is 2154.5 queries. The success probability is 0.70 for both.
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1 Introduction

Message Authentication Code (MAC) algorithms play an important role in in-
ternet security protocols (SSL/TLS, SSH, IPsec) and the financial sector for
debit and credit transaction. A MAC algorithm is a hash function with a secret
key K as the secondary input, which guarantees data integrity and authentic-
ity. The secret prefix method is a MAC construction which prepends a secret K
to the message before the hashing operation, which is the basic design unit for
HMAC/NMAC [1]. One suggestion to guarantee a secure secret prefix MAC is
to prepend the message length to the message before hashing [13]. Recent work
[2,3,15,16,17,19] discovered devastating collision attacks on hash functions from
the MDx family. Such attacks have undermined the confidence in the most pop-
ular hash functions such as MD5 and SHA-1, and promoted the reevaluation of
the actual security of the MAC algorithms based on them [4,6,8,11,12,14,18].

There are two kinds of distinguishing attacks on MACs, and they are respec-
tively called distinguishing-R and distinguishing-H attacks [8]. Distinguishing-R
attack means distinguishing a MAC from a random function, and distinguishing-
H attack detects an instantiated MAC (by an underlying hash function or block
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cipher) from a MAC with a random function. Preneel and van Oorschot [10]
introduced a general distinguishing-R attack on all iterated MACs using the
birthday paradox, which requires about 2n/2 messages and works with a success
rate 0.63, where n is the length of the hash output. Their attack can immediately
be converted into a general forgery attack. For the distinguishing-H attack, its
ideal complexity should be exhaustive search cost.

This paper focuses on the distinguishing-H attack that checks which crypto-
graphic hash function is embedded in a MAC. For simplicity, we call it distin-
guishing attack.

Kim et al. [8] described two kinds of distinguishers for the HMAC structure,
which are differential and rectangle distinguishers. For the differential distin-
guisher, it needs a collision differential path with probability higher than 2−n,
and the rectangle distinguisher needs a near-collision differential with probabil-
ity higher than 2−n/2. For MD4, because it is easy to find a differential path
with high probability [15,20], there are some successful cryptanalytic results on
MACs based on MD4 [4,6,14]. For HMAC/NMAC-MD5, there is only one avail-
able differential path that is called dBB pseudo-collision path [5]. Because the
dBB pseudo-collision consists of two different IVs and the same message, so all
the attacks [4,6,11,14] are in the related-key setting. For HMAC/NMAC-SHA-
0, there exists a partial key-recovery attack [4]. For HMAC-SHA-1, Kim et al.

proposed a distinguishing attack on 43-step HMAC-SHA-1 with data complexity
2154.9, which was improved by Rechberger and Rijmen [12]. The improved attack
detected 50-step HMAC-SHA-1 with data complexity 2153.5. The paper [12] also
proposed a related-key distinguishing attack on 62-step (17-78) HMAC-SHA-
1 and a full key-recovery attack on 34-step NMAC-SHA-1 in the related-key
setting.

All the above attacks make use of collision or near-collision differential paths
for the underlying compression function with probability higher than 2−n. For
MD5 and SHA-1, there are too many sufficient conditions in the collision or
near-collision differential paths, which imply a complexity more than 2n. Because
most conditions focus on the first round, it is hard to analyze the MACs with
MD5/SHA-1 for more steps without related keys. In this paper, we only consider
the MACs with reduced SHA-1 starting from the first step.

One recent work [18] presented a new distinguishing attack on HMAC/NMAC-
MD5 and MD5-MAC without related keys. Their distinguisher detects an inner
near-collision in the first iteration. This motivates us to explore a similar attack
on MACs based on SHA-1. For the MAC with SHA-1, the situation is more
complex, because SHA-1 dose not have a differential path with high probability.
If we do not consider the first round, the probability of the existing differential
paths for the last three rounds is high. How to avoid the differential path in the
first round, and completely explore the probability advantage in the last three
rounds? We neglect the exact path in the first round, replace it with an inner
near-collision, and explore the new techniques to detect the inner near-collision
by a birthday attack. Our new distinguishing attack is applicable to secret-prefix
MACs with the length prepended before hashing, which is denoted as LPMAC.
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For LPMAC based on 43-step SHA-1, the complexity is 2124.5 queries, and for
LPMAC with 61-step SHA-1, the complexity is 2154.5.

This paper is organized as follows: Section 2 gives brief descriptions of LP-
MAC and SHA-1. In Section 3, we present the new distinguisher which is avail-
able to LPMAC structure, and describe the details of the distinguishing attack
on LPMAC with 61-step SHA-1 in Section 4. Finally, we conclude the paper in
Section 5.

2 Backgrounds and Definitions

In this section, we define the notations used in this paper, and give brief descrip-
tions of the LPMAC and SHA-1.

2.1 Notations

H : a hash function
H : a hash function without padding and length appending
n : the length of the hash output
b : the length of one message block

IV : the initial chaining value
x‖y : the concatenation of the two bitstrings x and y
xi,j : the j-th bit of xi, where xi is a 32-bit word, j = 1, . . . , 32, and

32 is the most significant bit
+,− : addition and subtration modular 232

∆−x : modular difference x − x′, where x and x′ are two 32-bit words
∧,¬,∨,⊕ : bitwise AND, NOT, OR and exclusive OR

≪ s : left-rotation operation by s-bit

2.2 MAC using Secret Prefix Method

The secret prefix method is to append a message M to a secret key K before the
hashing operation:

Secret-Prefix-MACK(M) = H(K‖M),

where H is an unkeyed hash function. This method was proposed in the 1980s,
and suggested for MD4 independently in [7,13]. The original secret prefix MAC
is insecure: given a message and its MAC, an attacker can easily append another
message to the message and update the MAC accordingly, as the given MAC
value can be taken as the initial chaining value for the appended message [10].

Prefixing the message length to the message before hashing is one suggestion
to avoid the above attack [13]. However, our new distinguisher specifically works
for this kind of MAC, which we call LPMAC. We provide that K‖#length‖pad
is a full block, and this kind of MAC corresponds to a hash function H with a
secret IV (K ′), which is denoted as:

LPMACK(M) = H(K‖#length‖pad‖M) = HK′(M).

In the rest of this paper, LPMAC refers to a MAC with the new form HK′(M).
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2.3 Brief Description of SHA-1

The hash function SHA-1 was issued by NIST in 1995 as a Federal Informa-
tion Processing Standard [9]. It follows the Merkle-Damg̊ard iterative construc-
tion, takes a message M with the bit-length less than 264, and produces a
160-bit digest. The compression function takes a 160-bit chaining value hi =
(a0, b0, c0, d0, e0) and a 512-bit message block M i as inputs, and produces an-
other 160-bit chaining value hi+1, where h0 is the initial value IV , and M =
M0‖ · · · ‖M t−1. By iterating all the message blocks M i, we obtain the final 160-
bit value ht which is the hash value.

Each 512-bit block M i is divided into sixteen 32-bit words, which is denoted
as (m0, m1, . . . , m15). The message words are expanded to eighty 32-bit words
w0, . . . , w79:

wj =

{

mj , if j = 0, . . . , 15,
(wj−3 ⊕ wj−8 ⊕ wj−14 ⊕ wj−16) ≪ 1, if j = 16, . . . , 79.

The compression function consists of 4 rounds, and each round includes 20
steps. The details for the compression function are the following:

– Input: w0, . . . , w79 and hi = (a0, b0, c0, d0, e0), where hi is a 160-bit chaining
value .

– Step update: For j = 1, . . . , 80,

aj = (aj−1 ≪ 5) + fj(bj−1, cj−1, dj−1) + ej−1 + wj−1 + kj ,

bj = aj−1, cj = bj−1 ≪ 30, dj = cj−1, ej = dj−1,

where the Boolean function fj and constant kj are described in Table 1.

– Output: hi+1 = (a0 + a80, b0 + b80, c0 + c80, d0 + d80, e0 + e80).

Table 1. Boolean Functions and Constants Involved in SHA-1

round steps fj kj

1 1-20 IF : (x ∧ y) ∨ (¬x ∧ z) 0x5a827999
2 21-40 XOR : x ⊕ y ⊕ z 0x6ed6eba1
3 41-60 MAJ : (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) 0x8fabbcdc
4 61-80 XOR : x ⊕ y ⊕ z 0xca62c1d6

3 New Distinguisher on LPMAC Structure

This section introduces a new distinguisher of the LPMAC structure. It is based
on a near-collision differential path with two message blocks.



New Distinguishing Attack on MAC using Secret-Prefix Method 5

3.1 Recent Attack on HMAC/NMAC-MD5 and MD5-MAC [18]

We first recall the distinguishing attack on HMAC/NMAC-MD5 and MD5-MAC
presented in [18]. This distinguisher utilizes the dBB pseudo-collision path of
MD5 [5], where the hash values collide with probability 2−46 when the IV dif-
ference satisfies the dBB-condition, i.e.,

IV ⊕ IV ′ = (0x80000000, 0x80000000, 0x80000000, 0x80000000),

MSB(B0) = MSB(C0) = MSB(D0),

where (A0, B0, C0, D0) = IV , and MSB means the most significant bit. To dis-
card the related-key setting, and give a real distinguishing attack, the adver-
sary firstly collects many one-block messages to guarantee enough pairs which
produce a difference with the dBB-condition. Then append a fixed one-block
message to the collected messages, query their MACs, and try to find out a
dBB-collision. The main idea of the distinguishing attack is summarized as fol-
lows:

To maintain the appearance of a dBB-collision under the dBB-condition,
i. e., the dBB pseudo-collision happens in the second iteration, the adversary
selects a structure S composed of 289 one-block messages P . Then a fixed 447-
bit message M is appended to each P ∈ S. Query the MACs with all P‖M ,
and find all collision pairs (P‖M, P ′‖M) by birthday attack. A dBB -collision is
detected as follows.

– If (P‖M, P ′‖M) collides, append another M ′ to (P, P ′), and query two
MACs for the new pair (P‖M ′, P ′‖M ′). If two MACs are the same, we
conclude that (P, P ′) is an internal collision.

– If (P, P ′) dos not collide, append 247 different M ′ to (P, P ′), query their
MACs, and search whether there is a collision. If a collision is found, (H(P ), H(P ′))
must satisfy the dBB-condition, and (P‖M, P ′‖M) is a dBB-collision.

– Otherwise, (H(P ), H(P ′)) are random values.

Once a dBB-collision is detected, it is concluded that the MAC is a MAC
based on MD5, otherwise, based on a random function.

3.2 Description of the New Distinguisher

Our attack is motivated by the above idea, which is to distinguish an instantiated
LPMAC from a random function by detecting the target inner near-collision.
However, our distinguisher is a totally different one. All the previous attacks
detect the collision (or near-collision) generated by a full iteration of the hash
function [4,6,8,11,12,14,18], but our attack is trying to distinguish an inner near-
collision occurring in the first round, and there is no published techniques to
detect such a near-collision till now.

For SHA-1 reduced to 61 steps, we consider a differential path with two
message blocks, and assume that P‖M0‖M1 and P ′‖M ′

0||M
′

1 are a message pair,
which produces a target differential path. Here, P and P ′ are one-block messages,
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M0 and M ′

0 are 448-bit (14 words) truncated messages of the second block, and
M1 and M ′

1 are the corresponding 64-bit messages left. Denote the output of
the first iteration HK(P ) as hP , HK(P ′) as h′

P , and suppose the intermediate
chaining variables (ai, · · · , ei) of the second block as chi, and (a′

i, · · · , e′i) as ch′

i.
It is clear that hP + ch61 and h′

P + ch′

61 are hash values of the message pair.
We select a target differential path, such that the first iteration can be any

differential path, and the second includes a near-collision differential path. To
make the truncated differential path of the last 47 steps with high probability,
we choose the same disturbance vector as [16], which produces the near-collision
differential path for the second iteration (See Table 2). We divide the second
differential path into two parts, the first part consists of the previous 14 steps
which involves most conditions, and the second part is the last 47 steps with
only 34 conditions. We neglect the special differential path in previous 14 steps,
and only consider its output difference, which can be regarded as an inner near-
collision. We select the specific difference △ch14 = ch14 ⊕ ch′

14 as

(0x00000000, 0x00000000, 0x80000000, 0x20000002, 0x00000040).

The choice of △ch14 is to cancel the message word differences △w14 and △w15.
The sufficient conditions for the cancelation are as follows:

a10,9 = w14,7 + 1,
a11,4 = w15,2 + 1, a11,32 = w14,30,
a13,2 = 1, a13,30 = 0, a13,32 = 1, a13,4 = w14,2 + w16,2 + 1,
a14,4 = w14,2 + w16,2, a14,32 = 0.

The core of our attack is to explore some mathematical properties that can
be used to distinguish the inner near-collision in the 14th step. For the LPMAC,
there are two obstacles to do this:

1. In the first iteration, the output difference ∆−HP = HP − H ′

P is unknown,
which conceals the difference of the near-collision ∆−HP + ∆−ch61. Hence,
the birthday attack can not be applied directly to the second iteration like
the distinguishing attacks on MACs based on MD5.

2. How to choose messages, and fulfill the birthday attack to detect the inner
near-collision?

We explore the following mathematical properties of the differential path to
surpass the above two obstacles:

– If the inner near-collision occurs, replace (M1, M
′

1) with another (M1, M ′

1),
then (P‖M0‖M1, P ′‖M ′

0‖M
′

1) follows the differential path with probability
2−34.

– If two pairs (P‖M0‖M1, P
′‖M ′

0‖M
′

1) and (P‖M0‖N1, P
′‖M ′

0‖N
′

1) result in
the near-collision differential path, i. e.,

HK(P‖M0‖M1) − HK(P ′‖M ′

0‖M
′

1) = HK(P‖M0‖N1) − HK(P ′‖M ′

0‖N
′

1)

= ∆−HP + ∆−ch61 = δ, (1)
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Table 2. A Differential Path for Steps 1∼61 on SHA-1

step disturb. XOR difference of the input to step i

i vector ∆wi−1 ∆ai ∆bi ∆ci ∆di ∆ei
conditions

1 80000001 2, 7, 31, 32 - - - - - -

2 2 5, 6 - - - - - -

3 3 2, 7, 30, 31, 32 - - - - - -

4 2 6, 7, 30 - - - - - -

5 80000002 1, 7, 30, 31, 32 - - - - - -

6 2 5, 7, 30 - - - - - -

7 80000003 1, 7, 31, 32 - - - - - -

8 0 2, 5, 6, 7, 30, 31, 32 - - - - - -

9 80000000 1, 2, 30, 32 - - - - - -

10 2 2, 5, 31, 32 9 - - - - -

11 80000001 1, 7, 30, 31 4, 32 9 - - - -

12 0 2, 5, 6, 31, 32 2 4,32 7 - - -

13 0 1, 30 2 2, 30 7 - -

14 2 2, 31, 32 32 2, 30 7 a13,2 = 1, a13,30 = 0, a13,32 = 1

a11,4 = w15,2 + 1, a11,32 = w14,30, a10,9 = w14,7 + 1

15 2 2, 7, 30, 31, 32 2 32 2,30 a15,2 = w14,2, a14,32 = 1

16 0 2, 7, 30, 31 2 32 a14,4 = w14,2 + w16,2, a13,4 = w14,2 + w16,2 + 1

17 0 2, 32 32 a16,32 = 0

18 0 32 a17,32 = 1

19 0 32

20 0 32

21 2 2 2 a21,2 = w20,2

22 0 7 2 a20,4 = a19,4 + w20,2 + w23,7 + 1

23 2 2 32 a23,2 = w23,7 + 1

24 0 7,32 2 32 a22,4 = a21,4 + w23,7 + w25,7

25 2 32 2 32 32 a25,2 = w25,7 + 1

26 0 7 2 32 a24,4 = a23,4 + w25,7 + w26,1

27 3 1, 32 1 32 32 a27,1 = w26,1 + 1

28 0 6, 7 1 32 a26,3 = a25,3 + w26,1 + w28,1 + 1

29 0 1, 2, 32 31 32 a28,31 = a26,1 + w26,1 + w29,31

30 2 2,31 2 31 a30,2 = w29,2, a29,31 = a28,1 + w26,1 + w30,31 + 1

31 0 7,31, 32 2 31 a29,4 = a28,4 + w29,2 + w31,2 + 1

32 0 2, 31, 32 32

33 0 32 32

34 0 32 32

35 2 2,32 2 a35,2 = w34,2

36 0 7 2 a34,4 = a33,4 + w34,2 + w36,2 + 1

37 0 2 32

38 0 32 32

39 0 32 32

40 0 32

41 2 2 2 a41,2 = w40,2

42 0 7 2 a40,4 = a39,4 + 1

43 2 2 32 a43,2 = w41,2, a42,32 = a40,2 + 1

44 0 7, 32 2 32 a42,4 = a41,4 + 1, a43,32 = a42,2 + 1

45 0 2,32 32 32 a44,32 = a42,2 + 1

46 0 32 a45,32 = a44,2 + 1

47 0 32 32

48 0 32

· · · 0

54 0

55 4 3 3 a55,3 = w54,3

56 0 8 3 a54,5 = a53,5 + 1

57 0 3 1 a56,1 = a54,3 + 1

58 8 1, 4 4 1 a57,1 = a56,3 + 1, a58,4 = w57,4

59 4 1, 3, 9 3 4 1 a57,6 = a56,6 + 1, a59,3 = w58,3

60 0 1, 4, 8 3 2 a59,2 = a57,4 + w57,4 + w60,2 + 1,

a58,5 = a57,5 + w58,3 + w60,3 + 1

61 10 2, 3, 5 5 1 2
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then we have (See Fig. 1.)

Hk(P‖M0‖M1)−HK(P‖M0‖N1) = HK(P ′‖M ′

0‖M
′

1)−HK(P ′‖M ′

0‖N
′

1) = δ′.
(2)

We utilize the equation (2) to construct a distinguisher for LPMAC with
61-step SHA-1.
• Firstly, collect enough messages P‖M0‖M1, P‖M0‖N1, P ′‖M ′

0 ‖M ′

1,
P ′‖M ′

0 ‖N ′

1 and their MACs. Compute two structures, one structure
is

S1 = {(HK(P‖M0‖M1) − HK(P‖M0‖N1)},

and the other is

S2 = {HK(P ′‖M ′

0‖M
′

1) − HK(P ′‖M ′

0‖N
′

1)}.

• Secondly, apply the birthday attack to the structures S1 and S2, and
search all the collisions such that

HK(P‖M0‖M1)−HK(P‖M0‖N1) = HK(P ′‖M ′

0‖M
′

1)−HK(P ′‖M ′

0‖N
′

1).

• Finally, for each collision, detect whether the corresponding pair (P‖M0‖
M1, P ′‖M ′

0‖M
′

1) satisfies the differential path in Table 2.
More details about the distinguisher are described in the following section.
It is noted that, it is hard to fulfill the birthday attack directly to search
the solution to equation (1), but easy to get the solution to equation (2) by
birthday attack.

K

P ′

M0 M0

P

M ′

0M ′

0

M ′

1M1

N1 N ′

1

δ′
δ′

δ

δ

Fig. 1. The Distinguishing Attack on LPMAC

The distinguisher is applicable to LPMACs with other hash functions, such
as LPMAC with reduced SHA-2.
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4 New Distinguishing Attack on LPMAC Based on

61-step SHA-1

In this section, we describe the new distinguishing attack in detail. We assume
that the LPMAC algorithm is either LPMAC with 61-step SHA-1 or LPMAC
with a random function.

Before we introduce the new attack, we need to make clear that how many
chosen messages are needed to guarantee an inner near-collision. The total suffi-
cient conditions for the near-collision is 169, where 160 conditions are from the
difference △ch14, and 9 conditions (See Subsection 3.2) are deduced from the
cancelation of △w14 and △w15. So, we need 2169/2 = 284.5 messages to guarantee
such an inner near-collision happen.

Select four messages M0‖M1, M0‖N1, M
′

0‖M
′

1 and M ′

0‖N
′

1 such that ∆(M0‖M1)
= (M0‖M1) ⊕ (M ′

0‖M
′

1) and ∆(M0‖N1) = (M0‖N1) ⊕ (M ′

0‖N
′

1) are consistent
with the target message difference in Table 2, and M0‖M1, M0‖N1 satisfy the
sufficient conditions in Table 3.

The distinguishing attack implements the following four steps:

Table 3. Conditions on Messages

w14,31 = w14,30 + 1, w15,7 = w14,2 + 1, w15,30 = w14,30, w15,31 = w15,30 + 1,

w21,7 = w20,2 + 1, w27,6 = w26,1 + 1, w27,7 = w26,1, w28,2 = w28,1 + 1,

w30,7 = w29,2 + 1, w31,31 = w26,1 + 1, w35,7 = w34,2 + 1, w41,7 = w40,2 + 1,

w43,7 = w40,2 + 1, w44,2 = w40,2 + 1, w55,8 = w54,3 + 1, w56,3 = w54,3 + 1,

w57,1 = w54,3 + 1, w58,1 = w54,3 + 1, w58,9 = w57,4 + 1, w59,1 = w54,3 + 1,

w59,4 = w57,4 + 1, w59,8 = w58,3 + 1

1. Randomly choose a structure S, which consists of 284.5 different one-block
messages.

2. For all P ∈ S, query the MACs with P‖M0‖M1, P‖M ′

0‖M
′

1, P‖M0‖N1

and P‖M ′

0‖N
′

1, respectively, and compute the following two structures of
differences

S1 = {LPMAC(P‖M0‖M1) − LPMAC(P‖M0‖N1) | P ∈ S},

S2 = {LPMAC(P‖M ′

0‖M
′

1) − LPMAC(P‖M ′

0‖N
′

1) | P ∈ S}.

Search all the collisions between two structures by a birthday attack.
3. For each collision, compute LPMAC(P‖M0‖M1)−LPMAC(P ′‖M ′

0 ‖M ′

1),
and denote it as δ. Then for the message pair (P‖M0, P ′‖M ′

0), we choose
234 different message pairs (M1, M ′

1) such that M0‖M1 satisfies the message
sufficient conditions for the near-collision path in Table 3. Query the MACs
for (P‖M0‖M1, P ′‖M ′

0‖M
′

1). Check whether the difference LPMAC(P‖M0

‖M1) − LPMAC (P ′‖M ′

0‖M
′

1) is equivalent to δ.

– If a pair (P‖M0 ‖M1, P
′‖M ′

0‖M
′

1) that matches the difference δ is searched,
we conclude that the LPMAC is based on 61-step SHA-1, and stop the
algorithm.
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– Else, go to step 4.

4. Repeat steps 1-3. If the number of structures exceeds 268, we conclude that
the LPMAC is constructed from a random function.

Complexity:
Summing up the above attack, we choose 4·268·(284.5+234) ≈ 2154.5 messages

in total. Since we can use the birthday attack to search collisions in step 2, a
table with size of 284.5 needs to be built. We need about 268 · 284.5 = 2152.5 table
lookups and 2154.5 queries.

Success rate:
From the above process, the success rate of our attack can be divided into

two parts :

– If the LPMAC is constructed from 61-step SHA-1, once a second collision
in step 3 is detected, the attack succeeds. The probability is computed as
follows:

• There are 169 conditions to guarantee the inner near-collision in the step
14, and 34 conditions to follow the differential path in the last steps 15-
61. According to the birthday paradox and Taylor series expansion, for
268 · 2169 = 2237 pairs among the structures S1 and S2, there exists an
inner near-collision with probability

1 − (1 −
1

2237
)2

237

≈ 1 − e−1 ≈ 0.63.

• If the first collision is captured in step 2, the second collision in step 3
is searched with probability

1 − (1 −
1

234
)2

34

≈ 1 − e−1 ≈ 0.63.

Hence, when the LPMAC is based on 61-step SHA-1, the distinguishing
attack successes with probability

0.63 · 0.63 ≈ 0.40

.
– If the LPMAC is from a random function, the attack succeeds when the

second collision doesn’t exist. For the 268 structures, there are 2237/2160 =
277 expected collisions in total, so the success probability is about:

((1 −
1

2160
)2

34

)2
77

≈ 1.

Therefore, the success rate of the whole attack is about

1

2
× 0.40 +

1

2
× 1 = 0.70.
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Note that the success probability can be increased by repeating this attack sev-
eral times, doubling the size of the structure S or the number of different pairs
(M1, M ′

1).
Table 4 illustrates the comparison of our distinguishing attacks on LPMAC-

SHA-1 with other attacks on HMAC-SHA-1.

Table 4. Comparison Between the Distinguishing Attacks on MACs with SHA-1

MAC steps data

Kim et al. [8] HMAC 43 2154.9

Rechberger et al. [12] HMAC 50 2153.5

43 2124.5

This paper LPMAC 50 2136.5

61 2154.5

5 Conclusions

A new distinguisher is introduced to recognize the secret-prefix MAC which
prepends the message length before hashing. The new distinguisher utilizes a
near-collision differential path instead of a collision path, and detects an inner
near-collision in the first round. The core of the attack is to capture the math-
ematical characters of a near-collision differential path which can be utilized to
fulfill a birthday attack. Our attack is applicable to some other LPMACs such
as LPMAC with reduced SHA-2.

Acknowledgements. We would like to thank Christian Rechberger and three
reviewers for their very helpful comments on the paper.
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