
Fast and Secure CBC-Type MAC Algorithms

Mridul Nandi

National Institute of Standards and Technology
mridul.nandi@gmail.com

Abstract. The CBC-MAC or cipher block chaining message authentica-
tion code, is a well-known method to generate message authentication
codes. Unfortunately, it is not forgery-secure over an arbitrary domain.
There are several secure variants of CBC-MAC, among which OMAC is a
widely-used candidate. To authenticate an s-block message, OMAC costs
(s+1) block cipher encryptions (one of these is a zero block encryption),
and only one block cipher key is used. In this paper, we propose two
secure and efficient variants of CBC-MAC: namely, GCBC1 and GCBC2.
Our constructions cost only s block cipher encryptions to authenticate
an s-block message, for all s ≥ 2. Moreover, GCBC2 needs only one block
cipher encryption for almost all single block messages, and for all other
single block messages, it costs two block cipher encryptions. We have
also defined a class of generalized CBC-MAC constructions, and proved
a sufficient condition for prf-security. In particular, we have provided
an unified prf-security analysis of CBC-type constructions, e.g., XCBC,
TMAC and our proposals GCBC1 and GCBC2.

Keywords. CBC-MAC; OMAC; padding rule; prf-security

1 Introduction

In cryptography, a common trend is to design fast and secure algorithms. In this
paper, we propose two fast and secure block cipher-based message authentication
codes. A message authentication code, or MAC, is useful in those applications
where data integrity and authenticity are essential. In terms of security, we
want a MAC to be a pseudorandom function, or prf, which means that it is
computationally indistinguishable from an ideal random function. Prf-security
is a strong security notion, and it also guarantees that the MAC is unforgeable.
In this paper, we use the words “secure” and “prf-secure” synonymously. Several
secure and fast authentication algorithms are already known. We first broadly
classify them into three main categories, based on their underlying building
blocks.
Hash-Mac: These are based on hash functions. HMAC [1] is a widely used
candidate in this class that has been standardized by the National Institute of
Standards and Technology (NIST). The other efficient, popular candidates in-
clude the cascaded-PRF [2], sandwich-MAC [21], and KMDP [14].

Universal Hash based Mac: These MACs use universal hash functions
and small domain pseudorandom functions. In software, these are very fast for
long messages [11, 19]. These generally require field multiplications, key expan-
sions, and invocations of a smaller domain pseudorandom function which may
be overhead for short messages. Some popular examples of universal hash based
authentications are UMAC [8] and poly1305 MAC [7]. In [17], a 4-round version
of AES [12] is used to obtain a universal hash function that eventually produces
a very fast MAC computation for long messages (close to two times faster than
OMAC). But, this is also slower than OMAC, due to the overhead required for
processing short messages.

Block Cipher based Mac: In this paper, we study this category in more
detail. These MACs are usually based on several invocations of a block cipher,
either in a feedback mode (cipher block chaining or CBC-MAC) or in a par-
allel mode (e.g., PMAC [9] or XOR-MAC [3]). A block cipher is a permutation
eK : {0, 1}n → {0, 1}n, for each key K chosen from the key space {0, 1}k, where
n (the block size) and k (the key size) are positive integers. We fix these param-
eters throughout the paper. Intuitively, a block cipher is called pseudorandom
permutation or prp-secure if the keyed block cipher family is computationally
indistinguishable from an ideal random permutation. CBC-MAC (cipher block
chaining message authentication [4]) is the first construction in this category.
Given a message M = (m1‖ · · · ‖m`) ∈ ({0, 1}n)`, the CBC-MAC of the message
M based on eK is computed as follows:

CBC-MACK(M) = eK(eK(· · · eK(m1)⊕m2 · · ·)⊕m`).

However, CBC-MAC is not secure for variable length messages due to the length
extension attack. Many different modifications of it have been proposed so far,
among which OMAC [15] or one-key CBC-MAC1 is efficient (requires one extra
zero block encryption compared to CBC-MAC computation), as well as requiring
only one key. Another simple modification, called XCBC-MAC [10] or XCBC, is
faster in software, but it needs three keys, which may not be suitable in many
applications. These keys may be derived from one key at the cost of few block
cipher invocations, which causes slower performance for short messages. The
TMAC requires only two keys and it is as efficient as CBC-MAC. If the output
of zero block encryption of OMAC is stored as a key (to save one block cipher
encryption) then eventually, OMAC and TMAC look almost identical.

1.1 Our Proposals GCBC1 and GCBC2

Let M = (m1‖ · · · ‖m`) ∈ ({0, 1}n)` with ` ≥ 2. The GCBC1-MAC of the message
M based on eK is computed as follows:

GCBC1K(M) = eK
(
eK(· · · eK(eK(m1)⊕m2) · · ·

)�1 ⊕m`

)
.

1 it is also known as CMAC [13] as recommended by the NIST

For all other messages M , we pad 10d (for smallest choice of d) to make sure
that the message size is multiple of n and has at least two blocks. Let M ′ =
(m1‖ · · · ‖m`) ∈ ({0, 1}n)`, ` ≥ 2, be the padded message. In this case we com-
pute the tag as follows,

GCBC1K(M) = eK
(
eK(· · · eK(eK(m1)⊕m2) · · ·

)�2 ⊕m`

)
.

In other words, we apply one or two left shifts to the last intermediate chaining
value2 of CBC-MAC before xor-ing the last message block of the padded message.
This small tweak eventually helps to avoid length extension attack. Moreover we
prove that it is prf-secure (see Section 5). Handling the last intermediate input
in two different manners depending on the size of the last message block, is very
common in MACs and it is used, e.g., in XCBC, OMAC, TMAC, etc.

Fig. 1. GCBC1, Generalized CBC, which uses a left shift variation operation, an un-
derlying iterative function eK (block cipher) and a simple padding rule.

Theorem (Security Bound of GCBC1)

Advprf
GCBC1(q, σ) ≤ 5(σ + q)(σ + q − 1)

2n−4
+ Advprp

e (σ).

Our second construction, called GCBC2, authenticates almost all single block
messages by using one block cipher encryption. It considers several cases, de-
pending on the message size. For, x ∈ {0, 1}n, define x = x, and if |x| ≤ n − 1
then define x = x10n−1−|x|. We define δ = 2 if the message size is multiple of n
otherwise, we set δ = 1.

1. Let |M | ≤ n− 4, then GCBC2K(M) = eK(M).

2 Note that for a single block padded message, the last intermediate chaining value
is nothing but the message block and so, left shift operations on it is a predictable
operation. So we can not prevent length extension attack for a single block padded
message. Hence, we need to make sure that padded message has at least two blocks.

Fig. 2. GCBC2 for more than one message block. Let M = m1‖m2‖ · · · ‖ms, m1 =
m′1‖m′′1 , |m′′1 | = 3. We denote m∗1 = m1 if m′′1 = 000, o.w., m∗1 = m1. The nonnegative
integer r, 0 ≤ r ≤ 4, denotes the amounts of left shift applied to the output of the first
encryption (the value of r can be determined in the definition of GCBC2).

2. Let n− 3 ≤ |M | ≤ n, then write M = m1 := m′1m
′′
1 where |m′1| = n− 3 and

|m′′1 | ≤ 3. We define

GCBC2K(M) = eK(eK(m′1‖011)⊕m′′1).

3. Let M = m1‖m2, m1 = m′1m
′′
1 , |m′1| = n − 3, |m′′1 | = 3 and |m2| ≤ n. We

define

GCBC2K(M) =

{
eK(eK(m1)�δ+1 ⊕m2) if m′′1 6= 000
eK(eK(m′1‖100)�δ−1 ⊕m2) if m′′1 = 000

4. Let M = m′1m
′′
1‖m2‖m3‖ · · · ‖ms where |m′1| = n − 3, |m′′1 | = 3 and |m2| =

· · · = ms−1 = n, |ms| ≤ n. We define

GCBC2K(M) = eK
((
eK(· · · eK(eK(eK(m′1‖m′′1)�4 ⊕m2)⊕m3) · · ·)

)�δ ⊕ms) if m′′1 6= 000

= eK
((
eK(· · · eK(eK(eK(m′1‖100)�5 ⊕m2)⊕m3) · · ·)

)�δ ⊕ms) if m′′1 = 000

Theorem (Security Bound of GCBC2, see Section 5)

Advprf
GCBC2(q, σ) ≤ 33(σ + q)(σ + q − 1)

2n
+ Advprp

e (σ).

OMAC vs Our MACs: For all messages having block sizes at least two, both
GCBC1 and GCBC2 have similar performance to CBC-MAC, whereas OMAC costs
one extra zero block encryption. Zero block encryption can be computed off line,
in which case we have to store the output as a key and hence it has similar
performance to TMAC (which has two-key and similar to CBC performance). For
single block messages (of size less than or equal to n), both OMAC and GCBC1
need two block cipher encryptions (in case of OMAC, one of the encryption is
zero block encryption). The GCBC2 costs exactly one block cipher encryption
like CBC-MAC for almost all single block messages (except the messages of size in

between n− 3 and n, and in which case it costs two encryptions). Thus, GCBC2
is a good choice whenever the short messages are authenticated frequently. In
some applications, we might know before hand that message sizes are at least
(n + 1)-bits. In these applications, GCBC1 would be a good choice due to its
simplicity and performance (same as CBC-MAC, but secure for arbitrary length
messages). In table 1, a comparison of software performances are given.

Name of microsec microsec microsec # BC for Total
MAC (1-15 bytes) (16 bytes) (17 - 32 bytes) s-block Keysize

XCBC [10] 43.7 43.7 78.46 s k + 2n

TMAC [16] 43.98 44.05 78.80 s k + n

OMAC [15] 78.72 78.80 113.80 s+ 1 k

GCBC1 77.9 77.92 77.95 s k

GCBC2 43.58 78.26 78.37 s k
Table 1. It provides a performance comparison of known CBC-type MACs along with
our proposals. The software speed is computed (in the platform Intel(R) Pentium(R) 4
CPU 3.60 GHz, 1GB RAM) with AES-128 as the underlying block cipher. Here, # BC
denotes the number of invocations of the block cipher e : {0, 1}k × {0, 1}n → {0, 1}n
that is used to authenticate an s-block message. Time is computed by taking the
average over several executions.

A generalized CBC-MAC: In this paper, we have also provided a general
class of CBC-type constructions, called gcbc, which includes almost all popularly
known CBC-type constructions, e.g., XCBC, TMAC, OMAC, and our proposals.
We have also given a sufficient condition for prf-secure gcbc constructions and
we have shown that almost all known constructions such as XCBC, TMAC, and
our proposals satisfy the sufficient condition. So, we have provided that, how an
unified way of security analysis of CBC-type MACs can be provided.

Organization of the paper. We first provide basic definitions, and notations
in Section 2. In Section 3, we propose a generalized CBC-type message authenti-
cation algorithms and also show that most of the CBC-type constructions belong
to the class. The security analysis has been made by using decorrelation tech-
nique. The detailed security analysis of the generalized CBC-type constructions
is given in Section 4. Finally, in Section 5, we specify two fast and secure con-
structions, called GCBC1 and GCBC2, from the generalized class.

2 Preliminaries

2.1 Definitions and Notations

Given any set S, S+ = ∪∞i=1S
i, and S∗ = ∪∞i=0S

i = S+ ∪ {λ}, where λ is the
empty string. For example, {0, 1}+ is the set of all non-empty finite bit-sequences.

Let |x| = i for any x ∈ {0, 1}i. Any X ∈ S+ can be written as X = (x1, · · · , xi)
for some i ≥ 1 and x1, · · · , xi ∈ S. A tuple Y = (y1, · · · , yj) ∈ S∗ is a prefix
of X if j ≤ i and y1 = x1, · · · , yj = xj . Trivially, λ is a prefix of any X, and
is called a trivial prefix. Any other prefixes are called non-trivial prefixes. Let
x = x1x2 · · ·xn ∈ {0, 1}n, xi ∈ {0, 1}. Then for any two integers i ≤ j, the
set {i, i + 1, · · · , j} is denoted as [i..j], and xixi+1 · · ·xj is denoted as x[i..j]
whenever 1 ≤ i ≤ j ≤ n. If i > j, x[i..j] is nothing but λ. Let x[i] represent the
ith bit of x. The notation x�t (or x�t) is denoted for t-bit left shift (or right
shift, respectively) of an n-bit string x. The set {0, 1}n is sometimes identified
as GF(2n) by fixing a primitive polynomial zn+c1z

n−1 + · · ·+cn−1z+cn, where
ci ∈ {0, 1}. Let 0n = 0 (the additive identity), 0n−11 = 1 (the multiplicative
identity) and α = 0n−210 ∈ GF(2n) (known as a primitive element). For any
element x ∈ {0, 1}n, the field multiplication with α is denoted as α ·x, and it can
be computed as x�1 if x[1] = 0; otherwise, it is x�1 ⊕ c, where c = c1c2 · · · cn.
We use x ∗← S to mean that x is chosen uniformly from the set S, and it is
independently chosen from all other previously described distributions.

Definition 1. (ideal random function and ideal random permutation)
ρ is said to be an ideal random function from M to {0, 1}n if, for any distinct
m1, · · · ,mq ∈ M, (ρ(m1), · · · , ρ(mq)) is uniformly distributed over ({0, 1}n)q

for any q > 0. In other words, for any q elements y1, · · · , yq ∈ {0, 1}n,

Pr[ρ(m1) = y1, · · · , ρ(mq) = yq] =
1

2nq
.

Similarly, τ is said to be an ideal random permutation on {0, 1}n if, for any
distinct x1, · · · , xq ∈ {0, 1}n and distinct y1, · · · , yq ∈ {0, 1}n,

Pr[τ(m1) = y1, · · · , τ(mq) = yq] =
1

2n(2n − 1) · · · (2n − q + 1)
.

When M is a finite set, there is an alternative way to view an ideal random
function. Let Func(M, {0, 1}n) denote the set of all functions fromM to {0, 1}n.
The set of all functions from {0, 1}n to {0, 1}n is denoted as Func(n, n). An ideal
random function from M to {0, 1}n is defined as a function chosen at random
(uniformly) from Func(M, {0, 1}n) (this is not possible when M is an infinite
set). This definition is an equivalent to the previous definition, as one can show
that

Pr[ρ(m1) = y1, · · · , ρ(mq) = yq : ρ ∗← Func(M, {0, 1}n)] =
1

2nq

for any distinct m1, · · · ,mq ∈ M, and any y1, · · · , yq ∈ {0, 1}n. We some-
times write an ideal random function as a keyed function family randρ, where
randρ(x) = ρ(x) and ρ ∈ Func(M, {0, 1}n). A block cipher is a function e :
{0, 1}k × {0, 1}n → {0, 1}n, such that for any key K ∈ {0, 1}k, eK := e(K, ·) is
a permutation on {0, 1}n. In this paper, we fix n, and any element x ∈ {0, 1}i
is called a block if 1 ≤ i ≤ n. A block is called complete if i = n, otherwise,

it is called incomplete. For any x ∈ {0, 1}∗, we denote d |x|n e as ||x|| (called the
number of blocks of x). Let A be an oracle adversary. We say A is a q-adversary
if it makes at most q queries, and we say it is a (q, σ)-adversary if it makes at
most q queries, and the total number of blocks in all queries is at most σ. For
simplicity, we assume that a q-adversary makes exactly q queries, as there is no
loss when making some extra dummy queries. We say q is the number of input
queries, whereas σ as the number of block-queries.

Definition 2. (pseudorandom function) Let FK′ be a keyed function family,
where K ′ ∈ K′ and FK′ : M → {0, 1}n for a message space M. For any prob-
abilistic oracle adversary A, we define the prf-advantage of it over the function
family F as

Advprf
F (A) = |Pr[AFK′ = 1 : K ′ ∗← K′]− Pr[Aρ = 1]|,

where ρ is an ideal random function fromM to {0, 1}n, and the probabilities are
computed over the internal randomness of A, the uniform distribution of K ′ and
randomness of the output behavior of ρ. When M = {0, 1}n, we can equivalently
compute the prf-advantage as

Advprf
F (A) = |Pr[AFK′ = 1 : K ′ ∗← K]− Pr[Arandρ = 1 : ρ ∗← Func(n, n)]|.

The prf-advantage of F is defined as Advprf
F (q, σ) = maxA Advprf

F (A), where
the maximum is taken over all (q, σ)-adversaries A. WhenM = {0, 1}n, we have
σ = q and hence, we also write Advprf

F (σ). We say that a function family F is
a (q, σ, ε)-prf (or (σ, ε)-prf, for the case that M = {0, 1}n) if Advprf

F (q, σ) ≤ ε.

Definition 3. (pseudorandom permutation) The prp-advantage of an oracle ad-
versary A over a block cipher e : {0, 1}k × {0, 1}n → {0, 1}n is computed as

Advprp
e (A) = |Pr[Ae(K,·) = 1 : K ∗← {0, 1}k]− Pr[Aτ = 1]|,

where the probabilities are computed over internal randomness of A, uniform
distribution of K and randomness of the ideal random permutation τ on {0, 1}n.
The prp-advantage of the block cipher e is defined as Advprp

e (q) = maxA Advprp
e (A),

where the maximum is taken over all q-adversaries A.

Lemma 1. (switching lemma) For any function family F = (FK)K∈K, FK :
{0, 1}n → {0, 1}n, we have

Advprf
F (σ) ≤ Advprp

F (σ) +
σ(σ − 1)

2n+1
.

The proof of the switching lemma can be found in [6], for example.

3 Generalized CBC-MAC Class

3.1 Building blocks

Every MAC for a message space M has two main components, namely a ran-
domized key-generation algorithm and a tag-generation algorithm which may be

deterministic or probabilistic. The key-generation algorithm returns a key (K,L)
at random from it’s key space K × {0, 1}`. In this paper, we consider determin-
istic tag-generation algorithms which consist of three main building blocks as
described below.
Padding Rule. A padding rule pad : M→ ([0..t] × {0, 1}n)+ which ensures
that the padded message is in a desired form. The non-negative integer t is said to
be the variation number. Given a message m, the padded message pad(m) = X
will be written as ((δ1, x1), · · · , (δs, xs)) for some positive integer s, xi ∈ {0, 1}n
and δi ∈ [0..t], where 1 ≤ i ≤ s. We denote the set of all possible δ1 values as

∆pad = {δ1 : ∃m ∈M, pad(m) = ((δ1, x1), · · ·)}.

The role of the xi’s is similar to that of CBC message block, whereas
the δi values are used to tweak the intermediate outputs of the block
cipher by using a variation operation (for example, applying δi amounts of
left shift, etc.). A padding rule pad is said to be prefix-free if, for any m 6= m′,
pad(m) is not a prefix of pad(m′).
Iterative Function. An underlying iterative function f : {0, 1}n → {0, 1}n
which is determined via a key K ∈ K. A block cipher eK or an ideal random
function randρ for ρ ∗← Func(n, n) (note, randρ(x) = ρ(x)) are different examples
of iterative functions.
Variation Operation. A t-variate variation operation is a function h : [0..t]×
{0, 1}n → {0, 1}n, such that h(0, x) = x. These operations are defined to be
very efficient functions. The variation operation may use a key L (called the
auxiliary key) and the underlying iterative function f as a subroutine. Thus, the
variation operation may be determined by the key K of f . In this case, we say
the operation is a secret variation operation. If the operation does not use f and
any auxiliary key L, then h is a publicly computable function, and we say that it
is a public variation operation. A simple example of a t-variate public variation
operation is

h(i, x) = x�i for all 0 ≤ i ≤ t, x ∈ {0, 1}n.

It is called a type-I secret variation operation if it only depends on the auxiliary
key and not on the underlying iterative function f . All other secret variation
operations are called type-II. In this paper, we consider public or type-I secret
variation operations when we study the security analysis of the generalized CBC
constructions. But, we also see some secure constructions, such as OMAC or
CMAC, that use type-II secret variation operations.

3.2 Definition of a Generalized CBC-MAC

We define a class of generalized CBC message authentication algorithms (de-
noted as Cgcbc). Any authentication algorithm from this class for a message space
M has two main functionalities, namely a randomized key-generation algorithm
(or Key-Gen) with a key space K × {0, 1}` and a deterministic tag-generation

Fig. 3. Generalized CBC which uses variation operation h, an underlying iterative
function eK (block cipher) and a padding rule pad.

algorithm gcbcf,h,pad (defined below). Thus, we need to specify the key space
K×{0, 1}`, a message spaceM, the underlying iterative operation f , a t-variate
variation operation h and a padding rule with variation number t. The only
randomness of the generalized CBC comes from the key (K,L) ∈ K × {0, 1}`
and hence, we denote the authentication algorithm as gcbcK,L whenever all the
above are clear from the context.
1. Key-Gen : (K,L) ∗← K × {0, 1}`, where K × {0, 1}` is the key space. Key-

generation is parameterized by the key space only.

2. gcbcf,h,pad: The tag-generation algorithm for a message space M uses three
subroutines viz.,

– a padding rule pad : M → ([0..t] × {0, 1}n)+, with a variation number
t ≥ 0,

– a t-variate variation operation (public or secret) h : [0..t] × {0, 1}n →
{0, 1}n, and

– an underlying iterative function f : {0, 1}n → {0, 1}n.

These subroutines, except for the padding rule pad, are specified by the
key (K,L) (the output of Key-Gen), where K is the key for the underlying
iterative function f , and L is the auxiliary key that is used for the secret
variation operation h. For the public variation operation, ` = 0. For any
message m, we define gcbcf,h,pad(m) = vs, where vs is computed as follows
(also described in Algorithm 1 and illustrated in Figure 3):

v0 = 0n, ui = h(δi, vi−1)⊕ xi, vi = f(ui), 1 ≤ i ≤ s (1)

where pad(m) = ((δ1, x1), · · · , (δs, xs)), δi ∈ [0..t], xi ∈ {0, 1}n.

Remark 1. Usually, x1, · · · , xs in Algorithm 1 are all different message blocks
and δ1, · · · , δs correspond to tweaking of chaining values. If δi = 0 then there is
no change in the ith intermediate input (same as CBC chaining for intermediate

inputs). For non-zero values of δi, we might do left shift operations on intermedi-
ate chaining value before xor-ing with the message block. The variation function
h(δ, ·) corresponds to these tweaking operations.

Remark 2. An efficiency of the tag-generation algorithm gcbcf,h,pad depends on
the number of invocations of f , as the underlying iterative function is the most
costly operation (we also desire a strong security notion from it, such as it
being a pseudorandom function). Note that the number of invocations of f is
at least s, and it may be more if we use the type-II secret variation operation.
To keep it small, we should carefully design a padding rule so that the value of
s is as small as possible. The padding rule and the variation operations (except
the computation of f , which may be used in h) are usually very cheap and
hence, we mostly focus on the number of invocations of f when we compare the
performance of different constructions.

Algorithm 1 Generalized Cipher Block Chaining Message Authentication
Require:

key. K‖L ∈ K×{0, 1}`. \\ an output of the key generation algorithm Key-Gen,
\\ which is used in the functions f and h

function. f : {0, 1}n → {0, 1}n,
h : [0..t]× {0, 1}n → {0, 1}n,
pad :M→ ([0..t]× {0, 1}n)+ \\M = {0, 1}∗.

input. m ∈M.

1: X = pad(m)
2: divide X as ((δ1,m1) · · · (δs, xs)) where xi ∈ {0, 1}n, δi ∈ [0..t], 1 ≤ i ≤ s
3: v0 = 0n

4: for j = 1 to s do
5: uj = h(δj , vj−1)⊕ xj

6: vj = f(uj)
7: end for
8: return vs

3.3 Known CBC-type MACs are Generalized CBC-MAC

This class is indeed a generalized class, as it contains almost all CBC-type au-
thentication algorithms. We describe more precisely how XCBC, TMAC and
OMAC belong to the class. A common choice of the underlying iterative func-
tion is a block cipher eK , K ∈ K = {0, 1}k, and a common choice of padding
rule pad is described below. Given a message m = m1‖ · · · ‖ms−1‖ms with
m1, · · · ,ms−1 ∈ {0, 1}n, ms ∈ {0, 1}r, and 1 ≤ r ≤ n, the padding rule (with
variation number as two) is defined as

pad(m) = (0,m1), · · · , (0,ms−1), (δ,ms),

where δ = 1 if r < n; otherwise, we set δ = 2. Also,

ms =
{
ms‖10n−1−|x| if |ms| < n
ms if |ms| = n

The value of ` and the 2-variate variation operations h are described below
for each construction. Recall that the key generation algorithm returns a key
(K,L) ∗← {0, 1}k × {0, 1}`.

XCBC: Let ` = 2n, and write L = L1‖L2, where L1, L2 ∈ {0, 1}n. Define h(i, x) =
x⊕ Li ∀x ∈ {0, 1}n, i = 1, 2.

TMAC: Let ` = n, and define h(i, x) = x ⊕ (L · αi−1) ∀x ∈ {0, 1}n, for i = 1, 2,
where α is a primitive element and α0 = 1 (multiplicative identity).

OMAC: Let ` = 0, and define h(0, x) = x and h(i, x) = x ⊕ (eK(0) · αi) ∀x ∈
{0, 1}n, i = 1, 2.

Remark 3. OMAC is an example where the variation operation is a type-II se-
cret. In the case of the other two examples, the variation operations are type-I
secret variation operations. In the next section, we propose two different padding
rules and two public variation operations. The use of public variation operations
helps to keep the key size as low as possible. We also see that these public vari-
ation operations are efficiently computable. We should be careful in the security
analysis when we choose a public variation operation, since the security analysis
is not straightforward.

4 Security Analysis

4.1 Decorrelation Technique

Vaudeney’s Decorrelation Theorem (Lemma 22 of [20]3) is used in the security
analysis. Based on our notations, we state the following version of the Decorre-
lation Theorem.

Theorem 1. (Decorrelation Theorem)
Let q and σ be two fixed integers, and let FK′ : M → {0, 1}n be a family of
functions indexed by key K ′ that is chosen uniformly from the key space K′.
Suppose that the following holds for a positive real number ε;

Pr[FK′(x1) = y1, · · · , FK′(xq) = yq : K ∗← K] ≥ 2−nq(1 − ε) for any
(y1, · · · , yq) ∈ ({0, 1}n)q and distinct m1, · · · ,mq ∈M,

∑q
i=1 ‖mi‖ ≤ σ.

Then for any distinguisher A which asks q queries with σ blocks present in all
queries, Advprf

F (A) ≤ ε.

3 it was mentioned in [20] that the decorrelation theorem was freely adapted from
Patarin’s coefficient H-techniques [18]

What does the Decorrelation Theorem mean? The above condition means
that the output behavior of the function family is very close to that of an ideal
random function for any choices of distinct inputs (note, 2−nq = Pr[ρ(x1) =
y1, · · · , ρ(xq) = yq]). Thus, the prf-advantage of a (q, σ)-adversary should be
small, independent of how the adversary works. Note that the adversary (at
the end of the query-responses) has a set of inputs and outputs, and he has
to distinguish the function family from an ideal random function based on the
query-responses. However, the values of ε can depend on q and σ.

4.2 Security Analysis of Generalized CBC Algorithm

A variation operation can be public or secret. A variation operation is said to
be allowed if either it is public, or it is a type-I secret (which does not use the
underlying iterative as a subroutine and only uses an auxiliary key).

Definition 4. Let ∆ be a subset of [0..t] and ε be a nonnegative real number.
An allowed t-variate variation operation h : [0..t] × {0, 1}n → {0, 1}n is said to
be a (ε,∆)-xor weak universal operation if, for any 0 ≤ δ 6= δ′ ≤ t, c ∈ {0, 1}n,
and for all auxiliary key L0 ∈ {0, 1}`, the following conditions are satisfied.

W1: Pr[hL0(i, R) = c : R ∗← {0, 1}n] ≤ ε, for any 0 ≤ i ≤ t,
W2: Pr[hL(δ, 0n)⊕ hL(δ′, 0n) = c : L ∗← {0, 1}`] ≤ ε whenever δ, δ′ ∈ ∆
W3: Pr[hL(δ,R)⊕ hL(δ′, R) = c : (R,L) ∗← {0, 1}n × {0, 1}`] ≤ ε.

Note that when ∆ is a singleton set, then the condition W2 is vacuously true. We
provide a sufficient condition for prf-secure of generalized CBC constructions.

A sufficient condition for prf-secure gcbc

1. Let pad be a prefix-free padding rule with a variation number t ≥ 0, h be a
(ε,∆pad)-xor weak universal, allowed variation operation, and

2. the underlying iterative function family (fK)K∈K is (σ, µ)-prf.

The generalized CBC, based on the above such building blocks, is (q, σ, ε′)-prf,
where ε′ = σ′(σ′−1)ε+µ and where σ′ denotes the total number of blocks in all
queries after padding. (which have been queried by an adversary)4. As we are
going to apply decorrelation theorem, we want to show the following probability
for distinct m1, · · · ,mq ∈M and distinct y1, · · · , yq ∈ {0, 1}n,

p = Prρ,L[gcbcρ,L(m1) = y1, · · · , gcbcρ,L(mq) = yq] ≥
1− σ′(σ′−1)ε

2

2nq
(2)

where the probability is computed over (ρ, L) ∗← Func(n, n) × {0, 1}`. Then by
applying decorrelation theorem and switching lemma, we know that gcbcK,L

4 Later, we propose two padding rules where the number of block can only increase
by at most one for each message and hence, σ′ ≤ σ + q.

is (q, σ, ε′)-prf-secure. Now, it remains to show the above equation. We first
introduce some notations as given below.

Notations. Let pad(mi) = Xi = ((δi,1, xi,1) · · · , (δi,`i , xi,si)), where xi,1, · · · ,
xi,si ∈ {0, 1}n and δi,1, · · · , δi,si ∈ [0..t]. Let Xi,j = ((δi,1, xi,1) · · · , (δi,j , xi,j))
for 0 ≤ j ≤ si, where Xi,0 = λ for any i. For each 1 ≤ i ≤ q, we have the
following sequences of ui’s and vi’s values.

vi-sequence : 0n
(δi,1,xi,1)→ vi,1

(δi,2,xi,2)→ vi,2 · · ·
(δi,si ,xi,si)→ vi,si

ui-sequence : λ
(δi,1,xi,1)→ ui,1

(δi,2,xi,2)→ ui,2 · · ·
(δi,si ,xi,si)→ ui,si

Note that all these variables ui,j , vi,j are random variables, whereas δi,j , xi,j are
fixed constants. Moreover, ui,j = hL(δi,j , vi,j−1) ⊕ xi,j and randρ(ui,j) = vi,j .
Thus, ui,j corresponds to the ith input of randρ while computing gcbcρ,L(mi)
and vi,j is its corresponding output. The most common approach is to recognize
all trivial collisions of inputs (which are because of the fact that some parts of
two messages are identical). Then we try to prove that any other input collision
has low probability (in other we would provide an upper bound on all other
input collisions). Next, we would define admissible tuples which correspond to
all intermediate inputs and outputs which do not have any non-trivial collisions.

Lemma 2. If Xi,j = Xi′,j′ then ui,j = ui′,j′ and vi,j = vi′,j′ with probability 1.

Definition 5. Let L0 ∈ {0, 1}`, Vi,j ∈ {0, 1}n, 1 ≤ i ≤ q, 1 ≤ j ≤ si for some
fixed integers s1, · · · , sq and q. We say that a tuple (L0, Vi,j)i,j is admissible if

- Vi,j = Vi′,j′ whenever Xi,j = Xi′,j′ ,
- Vi,0 = 0n, Vi,si = yi for all 1 ≤ i ≤ q and
- hL0(δi,j , Vi,j−1)⊕xi,j 6= hL0(δi′,j′ , Vi′,j′−1)⊕xi′,j′ for all i, j, i′, j′ such that

Xi,j 6= Xi′,j′ .

Let σ1 be the maximum number of all pairs (i, j) with distinct Xi,j ’s. More
precisely, σ1 = |{X : X = Xi,j for some i, j}|. Clearly, σ1 ≤ σ′ =

∑q
i=1 ||Xi||.

Lemma 3. Given any admissible tuple (L0, Vi,j)i,j, Pr[L = L0, vi,j = Vi,j] =
1

2n(σ1+q) × 1
2`

.

Proof. Given any such admissible tuple, ui,j = ui′,j′ if and only if Xi,j = Xi′,j′

and all ui,j = Ui,j = hL0(δi,j , Vi,j−1)⊕ xi,j values are fixed. Thus,

Pr[L = L0, vi,j = Vi,j] = Pr[L = L0, ρ(Ui,j) = Vi,j for all i, j]
= Pr[ρ(Ui,j) = Vi,j for all i, j]× Pr[L = L0]

=
1

2n(σ1+q)
× 1

2`
.

Lemma 4. The number of admissible tuples is at least 2nσ1+`(1− εσ1(σ1−1)
2).

Proof. We have 2nσ1+` tuples (L0, (Vi,j)i,j) such that Vi,0 = 0n, Vi,si = yi for
all 1 ≤ i ≤ q and Vi,j = Vi′,j′ whenever Xi,j = Xi′,j′ . Now we need to find
an estimate of the number of tuples among these such that hL0(δi,j , Vi,j−1) ⊕
xi,j 6= hL0(δi′,j′ , Vi′,j′−1) ⊕ xi′,j′ for all i, j, i′, j′ such that Xi,j 6= Xi′,j′ . To
do so, we count the complement. Suppose that for some i, j, i′, j′ with Xi,j 6=
Xi′,j′ , hL0(δi,j , Vi,j−1) ⊕ xi,j = hL0(δi′,j′ , Vi′,j′−1) ⊕ xi′,j′ . The number of such
tuples is at most 2nσ1+`−1, since h is a weakly (ε,∆pad1

)-xor universal variation
operation. The total number of possible values of i, j, i′, j′ such that Xi,j 6= Xi′,j′

is
(
σ1
2

)
. Subtracting all such non-admissible tuples, we see that there are at least

2nσ1+`(1− εσ1(σ1−1)
2) admissible tuples.

Combining the above two lemmas, we can prove the following theorem.

Theorem 2. Let h be a weakly (ε,∆pad)-xor universal operation and pad be a
prefix-free padding rule. Suppose that the underlying iterative function is an ideal
random function (randρ)ρ∈Func(n,n), and we denote the corresponding generalized
CBC authentication algorithm as gcbcρ,L. Let σ′ be the largest number of blocks
after padding q messages having at most σ blocks in total. Then for any distinct
m1, · · · ,mq ∈M (message space), and any y1, · · · , yq ∈ {0, 1}n,

Prρ,L[gcbcρ,L(m1) = y1, · · · , gcbcρ,L(mq) = yq] ≥
1− σ′(σ′−1)ε

2

2nq
.

Theorem 3. Based on all notations defined so far, we have,

Advprf
gcbc(q, σ) ≤ σ′(σ′ − 1)ε

2
+ Advprf

f (σ′)

≤ σ′(σ′ − 1)
2

(ε+
1
2n

) + Advprp
f (σ′)

Theorem 4. The variation operations defined in XCBC and TMAC are weakly
(1
2n , ∆pad)-xor universal operations and σ′ = σ. So,

1. Advprf
XCBC(q, σ) ≤ σ(σ−1)

2n + Advprp
f (σ).

2. Advprf
TMAC(q, σ) ≤ σ(σ−1)

2n + Advprp
f (σ).

5 Two New Efficient Generalized CBC-MAC: GCBC1 and
GCBC2

In this section, we propose two secure, generalized CBC constructions, namely
GCBC1 and GCBC2 both have message space {0, 1}∗.

5.1 GCBC1

We first define a padding rule pad1 : {0, 1}>n → ([0..2]×{0, 1}n)+. For any m =
m1 · · ·ms−1ms ∈ {0, 1}>n, where m1, · · · ,ms−1 ∈ {0, 1}n and ms ∈ {0, 1}r,
1 ≤ r ≤ n, we define the padded message as

pad1(m) = ((0,m1), · · · , (0,ms−1), (δ,ms)),

Algorithm 2 GCBC1
Require:

key. K
∗← {0, 1}k. \\ block cipher key

function. eK : {0, 1}n → {0, 1}n. \\ block cipher
input. m ∈ {0, 1}∗.

1: divide m as (m1, · · · ,ms−1,ms)
where m1, · · · ,ms−1 ∈ {0, 1}n,ms ∈ {0, 1}r, 1 ≤ r ≤ n.

2: if s = 1 and r = n then
3: m2 = 10n−1, s = 2, r = n− 1.
4: else if s = 1 then
5: m1 = m1,m2 = 0, s = 2.
6: end if
7: v0 = 0
8: for j = 1 to s− 1 do
9: uj = vj−1 ⊕ xj

10: vj = eK(uj)
11: end for
12: if r < n then
13: us = v�1

s−1 ⊕ xs

14: else
15: us = v�2

s−1 ⊕ xs

16: end if
17: vs = eK(us)
18: return vs

where δ = 1 if r < n; otherwise, δ = 2. We extend the definition of the padding
rule to the message space {0, 1}∗ as follows. Let m1 ∈ {0, 1}r, define

pad1(m1) =

{
((0,m1), (1,0)) if r < n

((0,m1), (1, 10n−1)) if r = n.

Thus, s-block messages have s-block padded messages for all s ≥ 2, and one-
block messages have two-block padded messages. It is also easy to observe that
∆pad1

= {0}. Moreover, the padding rule is prefix-free.

Proposition 1. The padding rule pad1 over the message space {0, 1}∗ is a
prefix-free padding rule.

Proof. Suppose m = m1 · · ·ms−1ms and m′ = m′1 · · ·m′s′−1m
′
s′ where s ≤ s′,

pad1(m) is a prefix of pad1(m′) and m1,m
′
1, · · · ,ms−1,m

′
s′−1 ∈ {0, 1}n,ms ∈

{0, 1}r,m′s′ ∈ {0, 1}r
′
, 1 ≤ r, r′ ≤ n.

Case s ≥ 2: pad1(m) = ((0,m1), · · · , (0,ms−1), (δ,ms)) is a prefix of pad1(m′)
= ((0,m′1),· · · , (0,m′s′−1), (δ′,m′s′)). Since δ, δ′ 6= 0, s′ = s and δ = δ′. Moreover,
m′1 = m1, · · · ,ms−1 = m′s−1,ms = m′s. Now, ms = m′s and δ = δ′ implies that
ms = m′s. Thus m = m′.

Case s = 1, s′ ≥ 2: pad1(m) = ((0, x1), (1, x2)) where pad1(m′) = ((0,m′1),
· · · , (0,m′s′−1), (δ′,m′s′). By comparing δ values of the second pair, we can see

that s′ = 2, r′ < n and m′2 = x2. But x2 is either 0 or 10n−1 which can’t be
m′2 for any m′2 ∈ {0, 1}r

′
, 1 ≤ r′ < n. So this case does not arise.

Case s = 1, s′ = 1: Obviously, if pad1(m1) is a prefix of pad1(m′1), then they
should be equal. But, it is easy to see that they can be equal only when m1 = m′1
and hence, m = m′.

Now we define a simple public variation operation ls, which has two varia-
tions. For any x ∈ {0, 1}n and 0 ≤ δ ≤ 2, ls(δ, x) = x�δ.

Proposition 2. The operation ls with 2 variations is a public and weakly 1
2n−2 -

xor universal for ∆ = ∆pad1
= {0}. The same operation ls with 5 variations is a

public and weakly 1
2n−5 -xor universal for ∆ = ∆pad1

= {0}.

Proof. By definition, ls(0, x) = x. It is easy to see that x�i = c has at most
4 solutions of x for any i ≤ 2 and any constant c ∈ {0, 1}n. So, condition W1
holds. The condition W2 trivially holds, since ∆ = {0}. To see the condition
W3, we first prove that the number of solutions of x ⊕ x�1 = c is exactly one
for any constant c ∈ {0, 1}n. In fact, the solution is x[n] = c[n], x[n − 1] =
c[n − 1] ⊕ c[n − 1], · · · , x[1] = c[1] ⊕ · · · ⊕ c[n]. Similarly, one can see that the
number of solutions of x for the equation x ⊕ x�2 = c is exactly one. Now
we want to find the number of solutions of the equation x�1 ⊕ x�2 = c. Let
y = x�

1
. We have exactly one solution of y and hence, there are exactly two

solutions of x. Combining all these observations, we can see that condition W3 is
true. Thus, ls is a weakly 1

2n−2 -xor universal. The case for 5 variation operation
can be proved similarly.

We define the tag-generation algorithm of GCBC1 as the generalized CBC
algorithm (see Figure 1) gcbce,ls,pad1 with a message space of {0, 1}∗ and the
padding rule pad1 (see Algorithm 2).

Theorem 5. (Security Bound of GCBC1)

Advprf
GCBC1(q, σ) ≤ 5(σ+q)(σ+q−1)

2n + Advprp
e (σ + q)

Proof. We apply the result of the above two propositions to the generalized
CBC security bound (see Theorem 3 where sigma′ ≤ σ + q).

5.2 GCBC2

We first define a padding rule pad2 for the message space {0, 1}∗ with variation
number 5. Let m = m1 · · ·ms−1ms ∈ {0, 1}∗, where m1, · · · ,ms−1 ∈ {0, 1}n and
ms ∈ {0, 1}r, 0 ≤ r ≤ n (r = 0 only when we have an empty message m). Let us
denote δ = 1 if r < n; otherwise, δ = 2. If |m| ≥ n−3 then denote m1 = m′1‖m′′1 ,
where m′1 ∈ {0, 1}n−3 and m′′1 ∈ {0, 1}∗. Define pad2(m) to depend on s.

Case s = 1, pad2(m1) =

{
((0,m′1‖011), (0,m′′1)) if r ≥ n− 3
(0,m1) if r ≤ n− 4

Case s = 2, pad2(m1,m2) =

{
((0,m1), (δ + 1,m2)) if m′′1 6= 000
((0,m′1‖100), (δ − 1,m2)) if m′′1 = 000

For all other cases, i.e., s ≥ 3,

pad2(m) =

{
((0,m′1), (5,m2), (0,m3), · · · , (0,ms−1), (δ,ms)) if m′′1 = 000
((0,m1), (4,m2), (0,m3), · · · , (0,ms−1), (δ,ms)) if m′′1 6= 000

Note, ∆pad2
= {0} and it increases one block only when the message size is in

between n− 3 and n. All other messages and their padded messages have same
number of blocks. Now we prove that it is a prefix-free padding rule.

Proposition 3. pad2 is prefix-free padding rule over the message space {0, 1}∗.

Proof. Suppose that m = m1 · · ·ms−1ms and m′ = m′1 · · ·m′s′−1m
′
s′ where s ≤

s′, pad2(m) is a prefix of pad2(m′) and m1,m
′
1, · · · ,ms−1,m

′
s′−1 ∈ {0, 1}n,ms ∈

{0, 1}r,m′s′ ∈ {0, 1}r
′
, 1 ≤ r, r′ ≤ n. Let pad2(m) = ((0, x1), (δ, x2), · · ·) if s ≥ 2;

otherwise, pad2(m) = (0, x1). Similarly we denote pad2(m′) = ((0, x′1), (δ′, x′2), · · ·)
if s ≥ 2; otherwise, pad2(m′) = (0, x′1). When s = 1, s′ must be 1; otherwise,
for any s′ ≥ 2, we always have (x1, δ) 6= (x′1, δ

′). It is also easy to see that if
s = s′ = 1, then m = m′. Let s ≥ 2. By comparing the values of δ and δ′ we
must have s = s′ = 2 or s, s′ ≥ 3. From the definition of pad2, one can check
that m = m′.

We define the tag-generation algorithm of GCBC2 as the generalized CBC
algorithm (see Figure 2) gcbce,ls,pad2 with a message space of {0, 1}∗ and the
padding rule pad2 (see Algorithm 1 for generalized CBC tag generation algorithm
or see a complete description of GCBC in introduction). The proof of the following
theorem is immediate from Theorem 3 (sigma′ ≤ σ + q).

Theorem 6. (Security Bound of GCBC2)

Advprf
GCBC2(q, σ) ≤ 33(σ + q)(σ + q − 1)

2n
+ Advprp

e (σ + q).

Remark 4. Our bound is of the form σ2/2n, whereas in [5], it had been shown
that CBC-MAC is prf-secure for prefix-free messages with the security bound
of the form `q2/2n, where ` denotes the number of blocks of the longest query
among all q queries. Note that GCBC1 can be viewed as a CBC-MAC, where the
last message block is modified by the last intermediate chain value. Because of
this modification, it seems hard to obtain prefix queries. If it is so, then we can
apply the result from [5] to obtain a bound of the form `q2/2n for GCBC1. This
would be our future research work and we leave this as an open problem.

An Efficient Variation Operation. One can choose an efficient, different
public variation operation h = tr for a generalized CBC MAC algorithm, which
is defined as follows. Let n′ be a divisor of n and x = x1 · · ·xn′ , where xi ∈
{0, 1}w. The actual value of w can depend on the underlying block cipher and
when using AES, we choose w = 8. Define, tr(0, x1 · · ·xn′) = (x1, · · · , xn′),
tr(1, x1 · · ·xn′) = tr(x1 · · ·xn′) := x2 · · ·xn′x�1

1 and inductively define for i ≥ 2,

tr(i, x1 · · ·xn′) = tr(i− 1, tr(1, (x1 · · ·xn′)) = tr(i− 1, x2 · · ·xn′x�1
1).

In particular, we have tr(2, x1 · · ·xn′) := x3 · · ·xn′x�1
1 x�1

2 and tr(3, x1 · · ·xn′)
:= x4 · · ·xn′x�1

1 x�1
2 x�1

3 and so on. This would be very efficient in software
when we use a w-bit processor. In case of GCBC2 with the above defined vari-
ation operation, it needs at most three 8-bit shift operations. Note, an 8-bit
implementation of a single shift on 128 bits needs 16 shift operations. For exam-
ple, if we use AES, then a single shift on 128 bits (it is partitioned into 16 bytes)
requires 16 shift operations and several bitwise-and and bitwise-or operations.
The proof is very similar to that of proposition 2 and hence we omit it.

Proposition 4. The operation tr with 5 variations is a public and weakly 1
2n−5 -

xor universal for ∆ = ∆pad2
= {0}.

6 Conclusion

In this paper, many popular CBC-type message authentication algorithms are
viewed in a unified way. In particular, a wide class of authentication algorithms
called generalized CBC algorithms is introduced. This class contains almost all
known CBC-type secure authentication algorithms. Moreover, we have proposed
two secure constructions GCBC1 and GCBC2 from this class which are optimum
in key size and the number of block cipher invocations. These constructions may
have significant performance compared to OMAC for short messages. We also
characterize the prf-secure generalized CBC constructions. We hope the idea
of generalizing CBC constructions can also help us to generalize other similar
constructions for different security goals.

Acknowledgement. We would like to thank Elaine Barker, William Burr, Tetsu
Iwata and the anonymous referees of FSE-09 who have made several editorial
and technical comments. We would also like to thank Liting Zhang who found
a small error on the earlier version of GCBC2 and based on his comments we
have made a minor modification of GCBC2.

References

1. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for
Message Authentication. In Neal Koblitz, editor, CRYPTO, volume 1109 of Lecture
Notes in Computer Science, pages 1–15. Springer, 1996.

2. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom Functions Re-
visited: The Cascade Construction and Its Concrete Security. In FOCS, pages
514–523, 1996.

3. Mihir Bellare, Roch Guérin, and Phillip Rogaway. XOR MACs: New Methods for
Message Authentication Using Finite Pseudorandom Functions. In Don Copper-
smith, editor, CRYPTO, volume 963 of Lecture Notes in Computer Science, pages
15–28. Springer, 1995.

4. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of the Cipher Block
Chaining Message Authentication Code. J. Comput. Syst. Sci., 61(3):362–399,
2000.

5. Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved Security Anal-
yses for CBC MACs. In Victor Shoup, editor, CRYPTO, volume 3621 of Lecture
Notes in Computer Science, pages 527–545. Springer, 2005.

6. Mihir Bellare and Phillip Rogaway. The Security of Triple Encryption and a
Framework for Code-Based Game-Playing Proofs. In Serge Vaudenay, editor, EU-
ROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 409–426.
Springer, 2006.

7. Daniel J. Bernstein. The Poly1305-AES Message-Authentication Code. In Henri
Gilbert and Helena Handschuh, editors, FSE, volume 3557 of Lecture Notes in
Computer Science, pages 32–49. Springer, 2005.

8. John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway.
UMAC: Fast and Secure Message Authentication. In Michael J. Wiener, editor,
CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 216–233.
Springer, 1999.

9. John Black and Phillip Rogaway. A Block-Cipher Mode of Operation for Paralleliz-
able Message Authentication. In Lars R. Knudsen, editor, EUROCRYPT, volume
2332 of Lecture Notes in Computer Science, pages 384–397. Springer, 2002.

10. John Black and Phillip Rogaway. CBC MACs for Arbitrary-Length Messages: The
Three-Key Constructions. J. Cryptology, 18(2):111–131, 2005.

11. Larry Carter and Mark N. Wegman. Universal Classes of Hash Functions. J.
Comput. Syst. Sci., 18(2):143–154, 1979.

12. Joan Daemen and Vincent Rijmen. The Design of Ri-
jndael: AES - The Advanced Encryption Standard., 2002.
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-ammended.pdf.

13. Morris Dworkin. Recommendation for Block Cipher
Modes of Operation: The CMAC Mode for Authentication.
http://csrc.nist.gov/publications/nistpubs/index.html#sp800-38B.

14. Shoichi Hirose, Je Hong Park, and Aaram Yun. A Simple Variant of the Merkle-
Damg̊ard Scheme with a Permutation. In ASIACRYPT, pages 113–129, 2007.

15. Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC. In Thomas
Johansson, editor, FSE, volume 2887 of Lecture Notes in Computer Science, pages
129–153. Springer, 2003.

16. Kaoru Kurosawa and Tetsu Iwata. TMAC: Two-Key CBC MAC. In Marc Joye,
editor, CT-RSA, volume 2612 of Lecture Notes in Computer Science, pages 33–49.
Springer, 2003.

17. Kazuhiko Minematsu and Yukiyasu Tsunoo. Provably Secure MACs from
Differentially-Uniform Permutations and AES-Based Implementations. In
Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in Computer
Science, pages 226–241. Springer, 2006.

18. J. Patarin. Etude des Générateurs de Permutations Basés sur le Schéma du D.E.S.
Phd Thèsis de Doctorat de l’Université de Paris 6, 1991.

19. Phillip Rogaway. Bucket Hashing and Its Application to Fast Message Authenti-
cation. J. Cryptology, 12(2):91–115, 1999.

20. Serge Vaudenay. Decorrelation: A Theory for Block Cipher Security. volume 16,
pages 249–286, 2003.

21. Kan Yasuda. ”Sandwich” Is Indeed Secure: How to Authenticate a Message with
Just One Hashing. In Josef Pieprzyk, Hossein Ghodosi, and Ed Dawson, edi-
tors, ACISP, volume 4586 of Lecture Notes in Computer Science, pages 355–369.
Springer, 2007.

