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José Bacelar Almeida1,2, Manuel Barbosa1,3, Gilles Barthe4, and
François Dupressoir4

1 HASLab – INESC TEC
2 University of Minho

3 DCC-FC, University of Porto
4 IMDEA Software Institute

Abstract. We provide further evidence that implementing software countermea-
sures against timing attacks is a non-trivial task and requires domain-specific soft-
ware development processes: we report an implementation bug in the s2n library,
recently released by AWS Labs. This bug (now fixed) allowed bypassing the bal-
ancing countermeasures against timing attacks deployed in the implementation
of the MAC-then-Encode-then-CBC-Encrypt (MEE-CBC) component, creating
a timing side-channel similar to that exploited by Lucky 13.
Although such an attack could only be launched when the MEE-CBC compo-
nent is used in isolation – Albrecht and Paterson recently confirmed in indepen-
dent work that s2n’s second line of defence, once reinforced, provides adequate
mitigation against current adversary capabilities – its existence serves as further
evidence to the fact that conventional software validation processes are not effec-
tive in the study and validation of security properties. To solve this problem, we
define a methodology for proving security of implementations in the presence of
timing attackers: first, prove black-box security of an algorithmic description of
a cryptographic construction; then, establish functional correctness of an imple-
mentation with respect to the algorithmic description; and finally, prove that the
implementation is leakage secure.
We present a proof-of-concept application of our methodology to MEE-CBC,
bringing together three different formal verification tools to produce an assem-
bly implementation of this construction that is verifiably secure against adver-
saries with access to some timing leakage. Our methodology subsumes previous
work connecting provable security and side-channel analysis at the implemen-
tation level, and supports the verification of a much larger case study. Our case
study itself provides the first provable security validation of complex timing coun-
termeasures deployed, for example, in OpenSSL.

1 Introduction

There is an uncomfortable gap between provable security and practical implementa-
tions. Provable security gives strong guarantees that a cryptographic construction is
secure against efficient black-box adversaries. Yet, implementations of provably se-
cure constructions may be vulnerable to practical attacks, due to implementation er-
rors or side-channels. The tension between provable security and cryptographic engi-
neering is illustrated by examples such as the MAC-then-Encode-then-CBC-Encrypt



construction (MEE-CBC), which is well-understood from the perspective of provable
security [22,26], but whose implementation has been the source of several practical
attacks in SSL or TLS implementations. These security breaks are, in the case of MEE-
CBC, due to vulnerable implementations providing the adversary with padding oracles,
either through error messages [29], or through observable non-functional behaviours
such as execution time [16,2]. These examples illustrate two shortcomings of provable
security when it comes to dealing with implementations. First, the algorithmic descrip-
tions used in proofs elide many potentially critical details; these details must be filled
by implementors, who may not have the specialist knowledge required to make the right
decision. Second, attackers targeting real-world platforms may break a system by ex-
ploiting side-channel leakage, which is absent in the black-box abstractions in which
proofs are obtained.

These shortcomings are addressed independently by real-world cryptography and
secure coding methodologies, both of which have their own limitations. Real-world
cryptography [18] is a branch of provable security that incorporates lower-level system
features in security notions and proofs (for example, precise error messages or message
fragmentation). Real-world cryptography is a valuable tool for analyzing the security
of real-world protocols such as TLS or SSH, but is only now starting to address side-
channels [15,8] and, until now, has stayed short of considering actual implementations.
Secure coding methodologies effectively mitigate side-channel leakage; for instance,
the constant-time methodology [13,21] is consensual among practitioners as a means
to ensure a good level of protection against timing and cache-timing attacks. However,
a rigorous justification of such techniques and their application is lacking and they are
disconnected from provable security, leaving room for subtle undetected vulnerabilities
even in carefully tailored implementations.

In this paper we show how the real-world cryptography approach can be extended
– with computer-aided support – to formally capture the guarantees that implementors
empirically pursue using secure coding techniques.

1.1 Our Contributions

Recent high-visibility attacks such as Lucky 13 [2] have shown that timing leakage
can be exploited in practice to break the security of pervasively used protocols such as
TLS, and have led practitioners to pay renewed attention to software countermeasures
against timing attacks. Two prominent examples of this are the recent reimplementa-
tion of MEE-CBC decryption in OpenSSL [23], which enforces a constant-time coding
policy as mitigation for the Lucky 13 attack, and the defense in depth mitigation strat-
egy adopted by Amazon Web Services Labs (AWS Labs) in a new implementation of
TLS called s2n, where various fuzzing- and balancing-based timing countermeasures
are combined to reduce the amount of information leaked through timing. However, the
secure-coding efforts of cryptography practitioners are validated using standard soft-
ware engineering techniques such as testing and code reviews, which are not well-suited
to reasoning about non-functional behaviours or cryptography.

As a first contribution and motivation for our work, we provide new evidence of
this latent problem by recounting the story of Amazon’s recently released s2n library,
to which we add a new chapter.



NEW EVIDENCE IN S2N. In June 2015, AWS-Labs made public a new open-source
implementation of the TLS protocol, called s2n [28] and designed to be “small, fast,
with simplicity as a priority”. By excluding rarely used options and extensions, the
implementation can remain small, with only around 6K lines of code. Its authors also
report extensive validation, including three external security evaluations and penetration
tests. The library’s source code and documentation are publicly available.5

Recently, Albrecht and Paterson [1] presented a detailed analysis of the countermea-
sures against timing attacks in the original release of s2n, in light of the lessons learned
in the aftermath of Lucky 13 [2]. In their study, they found that the implementation of
the MEE-CBC component was not properly balanced, and exposed a timing attack vec-
tor that was exploitable using Lucky 13-like techniques. Furthermore, they found that
the second layer of countermeasures that randomizes error reporting delays was insuf-
ficient to remove the attack vector. Intuitively, the granularity of the randomized delays
was large enough in comparison to the data-dependent timing variations generated by
the MEE-CBC component that they could be ‘filtered out’ leaving an exploitable side-
channel. As a response to these findings, the s2n implementation was patched,6 and
both layers of countermeasures were improved to remove the attack vector.7

Unfortunately, this is not the end of the story. In this paper we report an implemen-
tation bug in this “fixed” version of the library, as well as a timing attack akin to Lucky
13 that bypasses once more the branch-balancing timing countermeasures deployed in
the s2n implementation of MEE-CBC. This implementation bug was subtly hidden in
the implementation of the timing countermeasures themselves, which were added as
mitigation for the attack reported by Albrecht and Paterson [1]. We show that the bug
rendered the countermeasure code in the MEE-CBC component totally ineffective by
presenting a timing attack that breaks the MEE-CBC implementation when no addi-
tional timing countermeasures were present. Due to space constraints, details of the
attack are given in the full version of the paper.8

Disclosure timeline and recommendations. The implementation bug and timing attack
were reported to AWS Labs on September 4, 2015. The problem was promptly acknowl-
edged and the current head revision of the official s2n repository no longer exhibits the
bug and potential attack vector from the MEE-CBC implementation. Subsequent dis-
cussions with Albrecht and Paterson and AWS Labs lead us to believe that s2n’s second
line of defence (the finer grained error reporting delay randomization mechanism val-
idated by Albrecht and Paterson [1]) is currently sufficient to thwart potential exploits
of the timing side-channel created by the bug. Therefore, systems relying on unpatched
but complete versions of the library are safe. On the other hand, any system relying

5 https://github.com/awslabs/s2n
6 See the details of the applied fixes in https://github.com/awslabs/s2n/commit/
4d3729.

7 We note that the delay randomization countermeasure was further improved since the at-
tacks we describe to sampling the delay between 10s and 30s (https://github.com/
awslabs/s2n/commit/731e7d). Further, measures were added to prevent careless or
rogue application code from forcing s2n to signal decryption failures to the adversary before
that delay had passed (https://github.com/awslabs/s2n/commit/f8a155).

8 https://eprint.iacr.org/2015/1241



directly on the unpatched MEE-CBC implementation, without the global randomized
delay layer, will be vulnerable and should upgrade to the latest version.

THE NEED FOR FORMAL VALIDATION. The sequence of events reported above9 shows
that timing countermeasures are extremely hard to get right and very hard to vali-
date. Our view is that implementors currently designing and deploying countermea-
sures against side-channel attacks face similar problems to those that were faced by the
designers of cryptographic primitives and protocols before the emergence of provable
security. On the one hand, we lack a methodology to rigorously characterize and prove
the soundness of existing designs such as the ones deployed, e.g., in OpenSSL; on the
other hand, we have no way of assessing the soundness of new designs, such as those
adopted in s2n, except via empirical validation and trial-and-error. This leads us to the
following question: can we bring the mathematical guarantees of provable security to
cryptographic implementations? We take two steps towards answering this question.

A CASE STUDY: CONSTANT-TIME MEE-CBC. Our second and main contribution is
the first formal and machine-checked proof of security for an x86 implementation of
MEE-CBC in an attack model that includes control-flow and cache-timing channels.
In particular, our case study validates the style of countermeasures against timing at-
tacks currently deployed in the OpenSSL implementation of MEE-CBC. We achieve
this result by combining three state-of-the-art formal verification tools: i. we rely on
EasyCrypt [7,6] to formalize a specification of MEE-CBC and some of the known
provable security results for this construction;10 ii. we use Frama-C to establish a func-
tional equivalence result between EasyCrypt specifications and C implementations;
and iii. we apply the CompCert certified compiler [24] and the certified information-
flow type-system from [4] to guarantee that the compiled implementation does not leak
secret information through the channels considered, and that the compiled x86 code is
correct with respect to the EasyCrypt specification proved secure initially.

A FRAMEWORK FOR IMPLEMENTATION SECURITY. To tie these verification results
together, we introduce — as our third contribution — a framework of definitions and
theorems that abstracts the details of the case study. This framework yields a general
methodology for proving security properties of low-level implementations in the pres-
ence of adversaries that may observe leakage. This methodology relies on separating
three different concerns: i. black-box specification security, which establishes the com-
putational security of a functional specification (here one can adopt the real-world cryp-
tography approach); ii. implementation correctness, which establishes that the consid-
ered implementation behaves, as a black-box, exactly like its functional specification;
and iii. leakage security, which establishes that the leakage due to the execution of the

9 The very interesting blog post in http://blogs.aws.amazon.com/security/
post/TxLZP6HNAYWBQ6/s2n-and-Lucky-13 analyses these events from the perspec-
tive of the AWS Labs development team.

10 Formalizing all known results for MEE-CBC would be beyond the scope of this paper, and we
assume that our EasyCrypt specification of the construction inherits all the security properties
that have been proved in the literature. In other words, in addition to the properties we formal-
ize, we assume that our MEE-CBC specification satisfies the standard notions of security for
authenticated encryption as proved, e.g., by Paterson, Ristenpart and Shrimpton [26]



implementation code in some given leakage model is independent from its secret in-
puts. Our main theorem, which is proven using the previous methodology, establishes
that our x86 implementation retains the black-box security properties of the MEE-CBC
specification, i.e., it is a secure authenticated encryption scheme, even in the presence of
a strong timing attacker, and based on standard black-box cryptographic assumptions.

We insist that we do not claim to formally or empirically justify the validity of
any particular leakage model: for this we rely on the wisdom of practitioners. What
we do provide is a means to take a well-accepted leakage model, and separately and
formally verify, through leakage security, that a concrete deployment of a particular
countermeasure in a given implementation does in fact guarantee the absence of any
leakage that would weaken a particular security property in the chosen leakage model.

Outline. In Section 2, we describe the MEE-CBC construction and informally discuss
its security at specification- and implementation-level. We then present the definitions
for implementation-level security notions and the statement of our main theorem (Sec-
tion 3). In Section 4, we introduce our methodology, before detailing its application
to MEE-CBC in Section 5. We then present and discuss some benchmarking results
in Section 6. Finally, we discuss potential extensions to our framework not illustrated
by our case study (Section 7). We conclude the paper and discuss directions for future
work in Section 8. A long version of this paper, with appendices including code snip-
pets, formal definitions of standard black-box specification-level security notions, and
a discussion of further related work appears on the IACR eprint server.11

2 Case study: MEE-CBC

MAC-then-Encode-then-CBC-Encrypt (MEE-CBC) is an instance of the MAC-then-
Encrypt generic construction that combines a block cipher used in CBC mode with
some padding and a MAC scheme in order to obtain an authenticated encryption scheme.
We consider the specific instantiation of the construction that is currently most widely
used within TLS: i. A MAC tag of length tlen is computed over the TLS record header
hdr, a sequence number seq and the payload pld. The length of the authenticated string
is therefore the length of the payload plus a small and fixed number of bytes. Several
MAC schemes can be used to authenticate this message, but we only consider HMAC-
SHA256. ii. The CBC-encrypted message m comprises the payload pld concatenated
with the MAC tag (the sequence number is not transmitted and the header is transmitted
in the clear). iii. The padding added to m comprises plen bytes of value plen− 1, where
plen may be any value in the range [1..256], such that plen + |m| is a multiple of the
cipher’s block size. iv. We use AES-128 as block cipher, which fixes a 16-byte block
size. At the high level, the HMAC construction computes

H((keyMAC ⊕ opad) ||H((keyMAC ⊕ ipad) || hdr || seq || pld)) .

We consider a hash function such as SHA-256, which follows the Merkle-Damgård
paradigm: a compression function is iterated to gradually combine the already com-
puted hash value with a new 64-byte message block (hash values are tlen bytes long).
11 https://eprint.iacr.org/2015/1241



INFORMAL SECURITY DISCUSSION. The theoretical security of MEE-CBC has re-
ceived a lot of attention in the past, due to its high-profile usage in the SSL/TLS proto-
col. Although it is well-known that the MAC-then-Encrypt construction does not gener-
ically yield a secure authenticated encryption scheme [9], the particular instantiation
used in TLS has been proven secure [22,25,26]. The most relevant result for this pa-
per is that by Paterson, Ristenpart and Shrimpton [26]. Crucially, their high-level proof
explicitly clarifies the need for the implementation to not reveal, in any way, which of
the padding or MAC check failed on decryption failures. This is exactly the kind of
padding oracles exploited in practical attacks against MEE-CBC such as Lucky 13 [2].

After the disclosure of the Lucky 13 attack [2], significant effort was invested into
identifying all potential sources of timing leakage in the MEE-CBC decryption al-
gorithm. The implementation subsequently incorporated into OpenSSL, for example,
deploys constant-time countermeasures that guarantee the following behaviours [23]:
i. removing the padding and checking its well-formedness occurs in constant-time;
ii. the MAC of the unpadded message is always computed, even for bad padding; iii. the
MAC computation involves the same number of calls to the underlying compression
function regardless of the number of hash input blocks in the decoded message, and
regardless of the length of the final hash block (which may cause an additional block to
be computed due to the internal Merkle-Damgård length padding); and iv. the transmit-
ted MAC is compared to the computed MAC in constant-time (the transmitted MAC’s
location in memory, which may be leaked through the timing of memory accesses, de-
pends on the plaintext length). Constant-time, here and in the rest of this paper, is used
to mean that the trace of program points and memory addresses accessed during the
execution is independent from the initial value of secret inputs. In particular, we note
that the OpenSSL MEE-CBC implementation is not constant time following this defi-
nition: the underlying AES implementation uses look-up table optimizations that make
secret-dependent data memory accesses and may open the way to cache-timing attacks.

OUR IMPLEMENTATION. The main result of this paper is a security theorem for an
x86 assembly implementation of MEE-CBC (MEE-CBCx86). The implementation is
compiled using CompCert from standard C code that replicates the countermeasures
against timing attacks currently implemented in the OpenSSL library [23]. We do not
use the OpenSSL code directly because the code style of the library (and in particu-
lar its lack of modularity) makes it a difficult target for verification. Furthermore, we
wish to fully prove constant-time security, which we have noted is not achieved by
OpenSSL. However, a large part of the code we verify is existing code, taken from the
NaCl library [14] without change (for AES, SHA256 and CBC mode), or modified to
include the necessary countermeasures (HMAC, padding and MEE composition). Our
C code is composed of the following modules, explicitly named for later reference:
i. AES128NaCl contains the NaCl implementation of AES128; ii. HMACSHA256NaCl

contains a version of the NaCl implementation of HMAC-SHA256 extended with tim-
ing countermeasures mimicking those described in [23]; and iii. MEE-CBCC contains
an implementation of MEE-CBC using AES128NaCl and HMACSHA256NaCl. We do
not include the code in the paper due to space constraints.

As we prove later in the paper, a strict adherence to the coding style adopted in
OpenSSL is indeed sufficient to guarantee security against attackers that, in addition



to input/output interaction with the MEE-CBC implementation, also obtain full traces
of program counter and memory accesses performed by the implementation. However,
not all TLS implementations have adopted a strict adherence to constant-time coding
policies in the aftermath of the Lucky 13 attack. We now briefly present the case of
Amazon’s s2n library, discussing their choice of countermeasures, and describing a bug
in their implementation that leads to an attack. A more detailed discussion can be found
in the long version of this paper.

BREAKING THE MEE-CBC IMPLEMENTATION IN S2N. Although parts of the s2n
code for MEE-CBC are written in the constant-time style, there are many (intentional)
deviations from a strict constant-time coding policy. For example, no attempt is made to
de-correlate memory accesses from the padding length value that is recovered from the
decrypted (but not yet validated) plaintext. As an alternative, the code includes coun-
termeasures that intend to balance the execution time of secret-dependent conditional
branches that might lead to significant variability in the execution time. Roughly, the
goal of these countermeasures is to ensure that the total number of calls to the hash
compression function is always the same, independently of the actual padding length or
validity.

The bug we found resides in a special routine that aims to guarantee that a dummy
compression function computation is performed whenever particular padding patterns
might lead to shorter execution times. An off-by-one error in the checking of a boundary
condition implied that the dummy compression function would be invoked unnecessar-
ily for some padding values (more precisely, there are exactly 4 such padding values,
which are easily deduced from the (public) length of the encrypted record).

The leakage the bug produces is similar in size to that exploited by AlFardan and
Paterson [2] to recover plaintexts. We have implemented a padding-oracle-style attack
on the MEE-CBC decryption routine to recover single plaintext bytes from a cipher-
text: one simply measures the decryption time to check if the recovered padding length
causes the bug to activate and proceeds by trial and error.12 The attack can be extended
to full plaintext recovery using the same techniques reported in [2].

We already discussed the real-world impact of our attack and our disclosure inter-
action with AWS Labs in the introduction of this paper. However, we insist that for
the purpose of this paper it is not the real-world impact of our attack that matters, but
the software bug that gave rise to it in the first place. Indeed the existence of such a
programming bug and the fact that it remained undetected through AWS Labs’ code
validation process (and in particular despite unit testing specifically designed to detect
timing side-channels) reveal that there is a need for a formal framework in which to
rigorously prove that an implementation is secure against timing attacks. This is what
we set out to do in the rest of the paper.

12 Plaintext recovery is easier than in Lucky 13, since leakage occurs whether or not the padding
string is correct.



3 Security definitions and main theorem

After a brief reminder of the syntax and security notions for secret key encryption rel-
evant to our case study, we introduce and discuss the corresponding implementation-
level security notions for the constant-time leakage model and state our main theo-
rem. Cryptographic implementations are often hardwired at a particular security level,
which means that asymptotic security notions are not adequate to capture the security
guarantees provided by software. We therefore omit the security parameter in all our
definitions. For simplicity we also keep the running time of algorithms implicit in our
notations, although we take care to account for it in our security proofs and to show that
there is no hidden slackness in our reductions.

3.1 Secret Key Encryption

We recall that a secret-key encryption scheme Π = (Gen,Enc,Dec) is specified as
three algorithms: i. a probabilistic key generation algorithm Gen(; r) that returns a
secret key SK on input some random coins r; ii. a probabilistic encryption algorithm
Enc(m,SK; r) that returns a ciphertext c on input a message m, the secret key SK,
and some random coins r; and iii. a deterministic decryption algorithm Dec(c,SK) that
returns either a message m or a failure symbol ⊥ on input a ciphertext c and secret
key SK. We denote the set of valid messages with MsgSp and adopt standard notions
of correctness, confidentiality (IND$-CPA) and integrity (INT-PTXT and INT-CTXT)
for authenticated symmetric encryption schemes.

Our goal in the rest of this section is to adapt these standard notions to formally
capture implementation-level security. In particular, we wish to give the adversary the
ability to observe the leakage produced by the computation of its oracle queries. We
first give generic definitions for some core concepts.

3.2 Implementation: languages, leakage and generation

For the sake of generality, our definitions abstract the concrete implementation lan-
guages and leakage models adopted in our case study. We later instantiate these def-
initions with a black-box security model for C implementations and a timing leakage
model for x86 assembly implementations.

LANGUAGE, LEAKAGE AND MACHINE. Given an implementation language L, we con-
sider a machine M that animates its semantics. Such a machine takes as input a program
P written in L, an input i for P , and some randomness r and outputs both the result o
of evaluating P with i and r, and the leakage ` produced by the evaluation. We use the
following notation for this operation o← M(P, i; r) ` . We make the assumption that
the machine is deterministic, so that all randomness required to execute programs is
given by the input r. However, our security experiments are probabilistic, and we write
o←$ M(P, i) ` to denote the probabilistic computation that first samples the random
coins r that must be passed as randomness input of P , and then runs M(P, i; r). This
approach agrees with the view that the problem of randomness generation is orthogonal
to the one of secure implementation [14]. We discuss this further in Section 7.



We note that the definition of M makes three implicit assumptions. First, the seman-
tics of a program must always be defined, since M always returns a result; termination
issues can be resolved easily by aborting computations after a fixed number of steps.
Second, our view of M does not allow an adversary to influence a program’s execution
other than through its queries. Finally, our model implies that the semantics of L can be
equipped with meaningful notions of leakage. In the context of our use case, we adopt
the common view of practical cryptography that timing leakage can be captured via the
code-memory and data-memory accesses performed while executing a program. These
can be sensibly formalized over assembly implementations, but not over higher-level
implementations (e.g., over C implementations), not least because there is no guarantee
that optimizing compilers do not introduce leakage. For this reason, in our case study,
we consider the following two implementation models:

– a C-level model using a machine M∅C (or simply MC) that animates the C language
semantics with no leakage;

– an assembly-level model using a machine MCT
x86 that animates (a subset of) the x86

assembly language, and produces leakage traces in the constant-time leakage model
as detailed below.

In both languages, we adopt the semantic definitions as formalized in the CompCert
certified compiler.

CONSTANT-TIME LEAKAGE TRACES. Formally, we capture the constant-time leakage
model by assuming that each semantic step extends the (initially empty) leakage trace
with a pair containing: i. the program point corresponding to the statement being ex-
ecuted; and ii. the (ordered) sequence of memory accesses performed during the exe-
cution step. We specify when this particular leakage model is used by annotating the
corresponding notion with the symbol CT.

3.3 Authenticated encryption in the implementation model

Given a language L and a (potentially leaking) machine M animating its semantics, we
now define M-correctness, M-IND$-CPA and M-INT-PTXT security for L-implemen-
tations of SKE schemes in the leakage model defined by M. In what follows, we let
Π∗ = (Gen∗,Enc∗,Dec∗) be an SKE implementation in language L.

SKE IMPLEMENTATION CORRECTNESS. We say that Π∗ is M-correct if, for all m ∈
MsgSp, random coins rgen, renc, and SK = M(Gen∗; rgen), we have that

M(Dec∗,M(Enc∗,m,SK; renc),SK) = m .

SKE IMPLEMENTATION SECURITY. The M-IND$-CPA advantage of an adversary A
against Π∗ and public length function φ is defined as the following (concrete) difference

AdvM-ind$-cpa
Π∗,φ,A :=

∣∣∣Pr [M-IND$-CPAAΠ∗,φ(Real)⇒ true
]

− Pr
[
M-IND$-CPAAΠ∗,φ(Ideal)⇒ true

]∣∣∣ ,
where implementation-level game M-IND$-CPA is shown in Figure 1. Here, public
length function φ is used to capture the fact that SKEs may partially hide the length



Game M-IND$-CPAAΠ∗,φ(b):

SK←$ M(Gen∗) `g
b′←$ ARoR,Dec(`g)
Return (b′ = b)

proc. RoR(m):
c←$ M(Enc∗,m, SK) `e
If (b = Ideal) Then c←$ {0, 1}φ(|m|)
Return (c, `e)

proc. Dec(c):
m← M(Dec∗, c, SK) `d
Return (⊥, `d)

Fig. 1. M-IND$-CPA experiment.

Game M-INT-PTXTAΠ∗ :
List← []; win← ⊥
SK←$ M(Gen∗) `g
AEnc,Ver(`g)
Return win

proc. Enc(m):
c←$ M(Enc∗,m, SK) `e
List← m : List
Return (c, `e)

proc. Ver(c):
m← M(Dec∗, c, SK) `d
win← win ∨ (m 6= ⊥ ∧ m /∈ List)
Return (m 6= ⊥, `d)

Fig. 2. M-INT-PTXT experiment.

of a message. If φ is the identity function or is efficiently invertible, then the message
length is trivially leaked by the ciphertext. In the case of our MEE-CBC specification,
for example, the message length is revealed only up to AES block alignment.

We observe that in this refinement of the IND$-CPA security notion for implemen-
tations, the adversary may learn information about the secrets via the leakage produced
by the decryption oracle Dec∗, even if its functional input-output behaviour reveals
nothing. In particular, in a black-box adversary model where leakage traces are always
empty, the Dec oracle can be perfectly implemented by the procedure that ignores its
argument and returns (⊥, ε), and the RoR oracle can be simulated without any depen-
dency on m in the Ideal world; this allows us to recover the standard computational
security experiment for IND$-CPA. On the other hand, in models where leakage traces
are not always empty, the adversary is given the ability to use the decryption oracle with
invalid ciphertexts and recover information through its leakage output.

We extend standard INT-PTXT security in a similar way and define the M-INT-PTXT
advantage of an adversary A against Π∗ as the following (concrete) probability:

AdvM-int-ptxt
Π∗,A := Pr

[
M-INT-PTXTAΠ∗()⇒ true

]
,

where implementation-level game M-INT-PTXT is shown in Figure 2.
We similarly “lift” INT-CTXT, PRP (pseudorandomness of a permutation) and

UF-CMA (existential MAC unforgeability) security experiments and advantages to im-
plementations. This allows us to state our main theorem.

3.4 Main Theorem

The proof of Theorem 1 is fully machine-checked. However, foregoing machine-checking
of the specification’s security theorems allows us to strengthen the results we obtain on
the final implementations. We discuss this further after we present our proof strategy.

Theorem 1 (CT security of MEE-CBCx86). MEE-CBCx86 is MCT
x86-correct and pro-

vides MCT
x86-IND$-CPA and MCT

x86-INT-PTXT security if the underlying components
AES128NaCl and HMACSHA256NaCl are black-box secure as a PRP and a MAC, re-
spectively. More precisely, let φ(i) = d(i+ 1)/16e+ 3, then



– For any MCT
x86-IND$-CPA adversary Acpa that makes at most q queries to its RoR

oracle, each of length at most n octets, there exists an (explicitly constructed)
M∅C-IND$-CPA adversary Bprp that makes at most q · d(n + 1)/16e + 2 queries
to its forward oracle and such that

Adv
MCT

x86-ind$-cpa
MEE-CBCx86,φ,Acpa ≤ Adv

M∅C-prp
AES128NaCl,Bprp + 2 ·

(q · (dn+1
16 e+ 2))2

2128
.

– For any MCT
x86-INT-PTXT adversaryAptxt that makes at most qE queries to its Enc

oracle and qV queries to its Ver oracle, there exists an (explicitly constructed)
M∅C-UF-CMA adversary Bcma that makes at most qE queries to its Tag oracle and
qV queries to its Ver oracle and such that

Adv
MCT

x86-int-ptxt
MEE-CBCx86,Aptxt ≤ Adv

M∅C-uf-cma
HMACSHA256NaCl,Bcma .

In addition, the running time of our constructed adversaries is essentially that of
running the original adversary plus the time it takes to emulate the leakage of the x86
implementations using dummy executions in machine Mx86. Under reasonable assump-
tions on the efficiency of Mx86, this will correspond to an overhead that is linear in
the combined inputs provided by an adversary to its oracles (the implementations are
proven to run in constant time under the semantics of L when these inputs are fixed).

Note that the security assumptions we make are on C implementations of AES
(AES128NaCl) and HMAC-SHA256 (HMACSHA256NaCl). More importantly, they are
made in a black-box model of security where the adversary gets empty leakage traces.

The proof of Theorem 1 is detailed in Section 5 and relies on the general framework
we now introduce. Rather than reasoning directly on the semantics of the executable x86
program (and placing our assumptions on objects that may not be amenable to inspec-
tion), we choose to prove complex security properties on a clear and simple functional
specification, and show that each of the refinement steps on the way to an x86 assembly
executable preserves this property, or even augments it in some way.

4 Formal framework and connection to PL techniques

Our formal proof of implementation security follows from a set of conditions on the
software development process. We therefore introduce the notion of an implementation
generation procedure.

IMPLEMENTATION GENERATION. An implementation generation procedure CL1→L2

is a mapping from specifications in language L1 to implementations in language L2.
For example, in our use case, the top-level specification language is the expression lan-
guage LEC of EasyCrypt (a polymorphic and higher-order λ-calculus) and the overall
implementation generation procedure CLEC→Lx86 is performed by a verified manual re-
finement of the specification into C followed by compilation to x86 assembly using
CompCert (here, Lx86 is the subset of x86 assembly supported by CompCert).

We now introduce two key notions for proving our main result: correct implementa-
tion generation and leakage security, which we relate to standard notions in the domain



Game CorrAM,Π,C():

bad← false
Π∗ ← C(Π)

AEval(Π∗)
Return ¬ bad

proc. Eval(k, i, r):
o← Π[k](i; r)
o′ ← M(Π∗[k], i; r) `

If o 6= o′ then bad = true

Fig. 3. Game defining correct implementation generation. For compactness, we use notation Π[k]
(resp. Π∗[k]) for k ∈ {1, 2, 3} to denote the k-th algorithm in scheme Π (resp. implementation
Π∗), corresponding to key generation (1), encryption (2) and decryption (3).

of programming language theory. This enables us to rely on existing formal verification
methods and tools to derive intermediate results that are sufficient to prove our main
theorem. In our definitions we consider two arbitrary languages L1 and L2, a (poten-
tially leaking) machine M animating the semantics of the latter, and an implementation
generation procedure CL1→L2 . In this section, L1 and L2 are omitted when denoting
the implementation generation procedure (simply writing C instead). In the rest of the
paper, we also omit them when clear from context.

CORRECT IMPLEMENTATION GENERATION. Intuitively, the minimum requirement for
an implementation generation procedure is that it preserves the input-output function-
ality of the specification. We capture this in the following definition.

Definition 1 (Correct implementation generation). The implementation generation
procedure C is correct if, for every adversaryA and primitive specification Π, the game
in Figure 3 always returns true.

For the programming languages we are considering (deterministic, I/O-free lan-
guages) this notion of implementation generation correctness is equivalent to the stan-
dard language-based notion of simulation, and its specialization as semantic preserva-
tion when associated with general-purpose compilers. A notable case of this is Com-
pCert [24] for which this property is formally proven in Coq. Similarly, as we discuss
in Section 5, a manual refinement process can be turned into a correct implementation
generation procedure by requiring a total functional correctness proof. This is sufficient
to guarantee black-box implementation security. However, it is not sufficient in general
to guarantee implementation security in the presence of leakage.

LEAKAGE SECURITY. In order to relate the security of implementations to that of black-
box specifications, we establish that leakage does not depend on secret inputs. We cap-
ture this intuition via the notion of leakage security, which imposes that all the leakage
produced by the machine M for an implementation is benign. Interestingly from the
point of view of formal verification, leakage security is naturally related to the standard
notion of non-interference [19]. In its simplest form, non-interference is formulated by
partitioning the memory of a program into high-security (or secret) and low-security
(or public) parts and stating that two executions that start in states that agree on their
low-security partitions end in states that agree on their low-security partitions.

We define what the public part of the input means by specifying a function τ that
parametrizes our definition of leakage security. For the case of symmetric encryption,
for example, τ is defined to tag as public the inputs to the algorithms an attacker



has control over through its various oracle interfaces (in IND$-CPA, INT-PTXT and
INT-CTXT). More precisely, we define a specific projection function τSKE as follows:

τSKE(Gen) = ε τSKE(Enc, key,m) = (|key|, |m|) τSKE(Dec, key, c) = (|key|, c)

Our definition of leakage security then consists in constraining the information-flow
into the leakage due to each algorithm, via the following non-interference notion.13

Definition 2 ((M, τ)-non-interference). Let P be a program in L2 and τ be a projec-
tion function on P ’s inputs. Then, P is (M, τ)-non-interferent if, for any two executions
o←M(P, i; r) ` and o′ ←M(P, i′; r′) `′ , we have τ(P, i) = τ(P, i′) ⇒ ` = `′ .

Intuitively, (M, τ)-non-interference labels the leakage ` as a public output (which must
be proved independent of secret information), whereas τ is used to specify which inputs
of P are considered public. By extension, those inputs that are not revealed by τ are
considered secret, and are not constrained in any way during either executions. Note
that the leakage produced by a (M, τ)-non-interferent program for some input i can
be predicted given only the public information revealed by τ(P, i): one can simply
choose the remaining part of the input arbitrarily, constructing some input i′ such that
τ(P, i) = τ(P, i′). In this case, (M, τ)-non-interference guarantees that the leakage
traces produced by M when executing P on i and i′ are equal.

We can now specialize this notion of leakage security to symmetric encryption.

Definition 3 (Leakage-secure implementation generation for SKE). An implemen-
tation generation procedure C produces M-leakage-secure implementations for SKE if,
for all SKE specifications Π written in L1, we have that the generated L2 implementa-
tion (Gen∗,Enc∗,Dec∗) = C(Π) is (M, τSKE)-non-interferent.

PUTTING THE PIECES TOGETHER. The following lemma, shows that applying a correct
and leakage secure implementation generation procedure to a black-box secure SKE
specification is sufficient to guarantee implementation security.

Theorem 2. Let C be correct and produce M-leakage-secure implementations. Then,
for all SKE scheme Π that is correct, IND$-CPA-, INT-PTXT- and INT-CTXT-secure,
the implementation Π∗ = C(Π) is M-correct, M-IND$-CPA-, M-INT-PTXT- and
M-INT-CTXT-secure with the same advantages.

Proof. Correctness of Π∗ follows directly from that of C and Π. The security proofs
are direct reductions. We only detail the proof of M-IND$-CPA, but note that a similar
proof can be constructed for M-INT-PTXT and M-INT-CTXT. Given an implementa-
tion adversary A, we construct an adversary B against Π as follows. Adversary B runs
Gen∗ on an arbitrary randomness of appropriate size to obtain the leakage `Gen asso-
ciated with key generation and runs adversary A on `Gen. Oracle queries made by A
are simulated by using B’s specification oracles to obtain outputs, and the same leakage
simulation strategy to present a perfect view of the implementation leakage toA. When
A outputs its guess, B forwards it as its own guess. We now argue that B’s simulation

13 For simplicity, the length of random inputs is assumed to be fixed by the algorithm itself.



is perfect. The first part of the argument relies on the correctness of the implemen-
tation generation procedure, which guarantees that the values obtained by B from its
oracles in the CPA-game are identically distributed to those thatA would have received
in the implementation game. The second part of the argument relies on the fact that
leakage-secure implementation generation guarantees that B knows enough about the
(unknown) inputs to the black-box algorithms (the information specified by τSKE) to
predict the exact leakage that such inputs would produce in the implementation model.
Observe for example that, in the case of decryption leakage, the adversary B only needs
the input ciphertext c to be able to exactly reproduce the leakage `Dec. Finally, note that
the running time of the constructed adversary B is that of adversary A where each ora-
cle queryA introduces an overhead of one execution of the implementation in machine
M (which can reasonably be assumed to be close to that of the specification). ut

5 Implementation security of MEE-CBC

We now return to our case study, and explain how to use the methodology from Sec-
tion 4, instantiated with existing verification and compilation tools, to derive assembly-
level correctness and security properties for MEE-CBCx86.

PROOF STRATEGY. We first go briefly over each of the steps in our proof strategy, and
then detail each of them in turn in the remainder of this section. In the first step, we spec-
ify and verify the correctness and black-box computational security of the MEE-CBC
construction using EasyCrypt. In a second step, we use Frama-C to prove the func-
tional correctness of program MEE-CBCC with respect to the EasyCrypt specification.
Finally, we focus on the x86 assembly code generated by CompCert (MEE-CBCx86),
and prove: i. its functional correctness with respect to the C code (and thus the top-level
EasyCrypt specification); and ii. its leakage security. An instantiation of Theorem 2 al-
low us to conclude the proof of Theorem 1.

BLACK-BOX SPECIFICATION SECURITY. We use EasyCrypt to prove that the MEE-
CBC construction provides IND$-CPA security (when used with freshly and uniformly
sampled IVs for each query) and INT-PTXT security.

Lemma 1 (Machine-checked MEE-CBC security). The following two results hold:
– For all legitimate IND$-CPA adversary Acpa that makes at most q queries, each of

length at most n octets, to its RoR oracle, there exists an explicitly constructed
PRP adversary Bprp that makes q · d(n+ 1) / λe+ 2 queries to its forward oracle
and such that:

Advind$-cpa
Π,φ,A ≤ Advprp

Perm,Bprp + 2 ·
(q ·

⌈
n+1
λ

⌉
+ 2)2

28·λ
,

where φ(i) = d(i+ 1) / λe + 3 reveals only the number of blocks in the plaintext
(and adds to it the fixed number of blocks due to IV and MAC tag).

– For all PTXT adversary A that makes qV queries to its Dec oracle, there exists
an explicitly constructed SUF-CMA adversary Bcma that makes exactly qV queries
to its Ver oracle and such that:

Advint-ptxt
Π,A ≤ Advuf-cma

Mac,Bcma .



Our EasyCrypt specification relies on abstract algorithms for the primitives. More
precisely, it is parameterized by an abstract, stateless and deterministic block cipher
Perm with block size λ octets, and by an abstract, stateless and deterministic MAC
scheme Mac producing tags of length 2 ·λ.14 The proofs, formalized in EasyCrypt, are
fairly standard and account for all details of padding and message formatting in order
to obtain the weak length-hiding property shown in this lemma. Running times for Bprp

and Bcma are as usual.

We note that, although we have not formalized in EasyCrypt the proof of INT-CTXT
security (this would imply a significant increase in interactive theorem proving effort)
the known security results for MEE-CBC also apply to this specification and, in partic-
ular, it follows from [26] that it also achieves this stronger level of security when the
underlying MAC and cipher satisfy slightly stronger security requirements.

IMPLEMENTATION GENERATION. Using Frama-C, a verification platform for C pro-
grams,15 we prove functional equivalence between the EasyCrypt specification and
our C implementation. Specifically, we use the deductive verification (WP) plugin to
check that our C code fully and faithfully implements a functionality described in the
ANSI/ISO C Specification Language (ACSL). To make sure that the ACSL specifica-
tion precisely corresponds to the EasyCrypt specification on which black-box security
is formally proved, we rely on Frama-C’s ability to link ACSL logical constructs at
the C annotation level to specific operators in underlying Why3 theories, which we for-
mally relate to those used in the EasyCrypt proof. This closes the gap between the tools
by allowing us to refer to a common specification. Note that, since the abstract block ci-
pher Perm and MAC scheme Mac are concretely instantiated in the C implementation,
we instantiate λ = 16 (the AES block length in bytes) in this common specification
and lift the assumptions on Perm and Mac to the C implementation of their chosen in-
stantiation. We then use the CompCert certified compiler [24] to produce our final x86
assembly implementation.

To prove leakage security, we use the certifying information-flow type system for
x86 built on top of CompCert [4], marking as public those inputs that correspond to
values revealed by τSKE. Obtaining this proof does not put any additional burden on the
user—except for marking program inputs as secret or public. However, the original C
code must satisfy a number of restrictions in order to be analyzed using the dataflow
analysis from [4]. Our C implementations were constructed to meet these restrictions,
and lifting them to permit a wider applicability of our techniques is an important chal-
lenge for further work.16

14 This is only for convenience in these definitions.
15 http://frama-c.com/
16 In a recent development in this direction, Almeida et al. [3] describe a method, based on limited

product programs, for verifying constant-time properties of LLVM code. Their method and
the implementation they describe can deal with many examples that the type system from [4]
cannot handle, including a less ad hoc version of our code and some of the OpenSSL code
for MEE-CBC, whilst preserving a high degree of automation. In addition, their construction
easily extends to situations where public outputs are needed to simulate the leakage trace.



PROOF OF THEOREM 1. Let us denote by CLEC→x86 the implementation generation
procedure that consists of hand-crafting a C implementation (annotated with τSKE con-
sistent security types), equivalence-checking it with an EasyCrypt specification using
Frama-C, and then compiling it to assembly using CompCert (accepting only assem-
bly implementations that type-check under the embedded secure information-flow type
system), as we have done for our use case. We formalize the guarantees provided by
this procedure in the following lemma.

Lemma 2 (Implementation generation). CLEC→x86 is a MCT
x86-correct implementation

generation procedure that produces MCT
x86-leakage secure SKE implementations.

Proof. Correctness follows from the combination of the Frama-C functional correct-
ness proof and the semantic preservation guarantees provided by CompCert. Com-
pCert’s semantics preservation theorem implies that the I/O behaviour of the assembly
program exactly matches that of the C program. Functional equivalence checking using
Frama-C yields that the C implementation has an I/O behaviour that is consistent with
that of the EasyCrypt specification (under the C semantics adopted by Frama-C). Fi-
nally, under the reasonable assumption that the CompCert semantics of C are a sound
refinement of those used in Frama-C, we obtain functional correctness of the assem-
bly implementation with respect to the EasyCrypt specification. For leakage security,
we rely on the fact that the information-flow type system of [4] enforces τSKE-non-
interference and hence only accepts (MCT

x86, τSKE)-leakage secure implementations. ut

Theorem 1 follows immediately from the application of Theorem 2 instantiated with
Lemmas 1 and 2. Furthermore, foregoing machine-checking of the black-box specifi-
cation security proof and simply accepting known results on MEE-TLS-CBC [26], we
can also show that MEE-CBCx86 is MCT

x86-INT-CTXT-secure under slightly stronger
black-box assumptions on AES128NaCl and HMACSHA256NaCl.

6 Performance Comparison

We now characterize the different assurance/performance trade-offs of the timing miti-
gation strategies discussed in this paper. Figure 4 shows the time taken by 5 different im-
plementations of MEE-CBC (one of them compiled in different ways) when decrypting
a 1.5KB TLS1.2 record using the AES128-SHA256 ciphersuite.17 More specifically,
we consider code from s2n (#1) and OpenSSL (#2), and five different compilations of
our formally verified MEE-CBC implementation (#3-7), focusing on raw invocations
of MEE-CBC. It is clear that the s2n code (#1) benefits from its less strict timing coun-
termeasures, gaining roughly 1.8x performance over OpenSSL’s (semi-)constant-time
implementation approach (#2). The figures for our verified implementation of MEE-
CBC show both the cost of formal verification and the cost of full constant-time guar-
antees. Indeed, the least efficient results are obtained when imposing full code and data
memory access independence from secret data (#4-6).

The assembly implementation produced using the constant-time version of Com-
pCert (#6), is roughly 8400x slower than s2n, but still over twice as fast as unoptimized
17 The numbers were obtained in a virtualized Intel x86-64 Linux machine with 4 GB RAM.



# Implementation Compiler Clock Cycles Time
1 s2n GCC x86-64 -O2 14K 5µs
2 OpenSSL GCC x86-64 -O2 23K 9µs
3 MEE-CBCC (AES-NI) CompCert x86-32 51K 21µs
4 MEE-CBCC GCC x86-64 -O2 59M 25ms
5 MEE-CBCC GCC x86-64 -O1 62M 26ms
6 MEE-CBCx86 CompCert x86-32 101M 42ms
7 MEE-CBCC GCC x86-64 -O0 237M 99ms

Fig. 4. Performance comparison of various MEE-CBC implementations. (Median over 500 runs.)

GCC. However, the fact that the same C code compiled with GCC -O2 (#4) is only
1.7x faster18 than the fully verified CompCert-generated code shows that the bottle-
neck does not reside in verification, but in the constant-time countermeasures. Indeed,
profiling reveals that NaCl’s constant-time AES accounts for 97% of the execution time.
These results confirm the observations made in [12] as to the difficulties of reconciling
resistance against cache attacks and efficiency in AES implementations. To further il-
lustrate this point, we also include measurements corresponding to a modification of
our MEE-CBC implementation that uses hardware-backed AES (#3). This cannot, in
fairness, be compared to the other implementations, but it does demonstrate that, with
current verification technology, the performance cost of a fully verified constant-time
MEE-CBC implementation is not prohibitive.

7 Discussions

ON RANDOMNESS. Restricting our study to deterministic programs with an argument
containing random coins does not exclude the analysis of real-world systems. There,
randomness is typically scarce and pseudorandom generators are used to expand short
raw high-entropy bitstrings into larger random-looking strings that are fed to determin-
istic algorithms, and it is common to assume that the small original seed comes from
an ideal randomness source, as is done in this paper. Our approach could therefore be
used to analyze the entire pseudorandom generation implementation, including poten-
tial leakage-related vulnerabilities therein.

ON LENGTH-HIDING SECURITY. Existing implementations of MEE-TLS-CBC (and
indeed our own implementation of MEE-CBC) are not length-hiding as defined in [26]
in the presence of leakage. Indeed, the constant-time countermeasures are only applied
in the decryption oracle and precise information about plaintext lengths may be leaked
during the execution of the encryption oracle. Carrying length-hiding properties down
to the level of those implementations may therefore require, either the implementation
to be modified (and the Frama-C equivalence proof adapted accordingly), or the spec-
ification of implementation security to more closely reflect particular scenarios–such
as the TLS record layer–where it may be difficult for the adversary to make chosen-
plaintext queries, but easy to make padding and verification oracle queries. In any

18 This is in line with general CompCert benchmarks.



case, Lemma 1 does capture the length-hiding property given by our choice of mini-
mal padding, and could be adapted to capture the more general length-hiding property
of Paterson, Ristenpart and Shrimpton [26] by making padding length a public choice.

LEAKAGE SIMULATION AND WEAKER NON-INTERFERENCE NOTIONS. Our use of
leakage security in proving that leakage is not useful to an adversary naturally general-
izes to a notion of leakage simulation, whereby an implementation is secure as long as
its leakage can be efficiently and perfectly simulated from its public I/O behaviour, in-
cluding its public outputs. For example, an implementation of Encrypt-then-MAC that
aborts as soon as MAC verification fails, but is otherwise fully constant-time should nat-
urally be considered secure,19 since the information gained through the leakage traces
is less than that gained by observing the output of the Ver oracle. The more general
notion of leakage simulation informally described here would capture this and can be
related to weaker notions of non-interference, where equality on low outputs is only
required on traces that agree on the value of public outputs. Theorem 2 can be modified
to replace leakage security with the (potentially weaker) leakage simulation hypothesis.

8 Conclusions and directions for future work

Our proposed methodology allows the derivation of strong security guarantees on as-
sembly implementations from more focused and tractable verification tasks. Each of
these more specialized tasks additionally carries its own challenges.

Proving security in lower-level leakage models for assembly involves considering
architectural details such as memory management, scheduling and data-dependent and
stateful leakage sources. Automatically relating source and existing assembly imple-
mentations requires developing innovative methods for checking (possibly conditional
or approximate) equivalences between low-level probabilistic programs. Finally, ob-
taining formal proofs of computational security and functional correctness in general
remain important bottlenecks in the proof process, requiring high expertise and effort.
However, combining formal and generic composition principles (such as those used in
our case study) with techniques that automate these two tasks for restricted applica-
tion domains [5,20,11] should enable the formal verification of extensive cryptographic
libraries, in the presence of leakage. We believe that this goal is now within reach.

On the cryptographic side, the study of computational security notions that allow
the adversary to tamper with the oracle implementation [10] may lead to relaxed func-
tional correctness requirements that may be easier to check, for example by testing.
Extensions of our framework to settings where the adversary has the ability to tamper
with the execution of the oracle are possible, and would allow it to capture recent formal
treatments of countermeasures against fault injection attacks [27].
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and Benedikt Schmidt. Pierre-Yves Strub provided support for extracting Why3 definitions from
EasyCrypt specifications. We thank Mathias Pedersen and Bas Spitters for useful comments.

References

1. Martin R. Albrecht and Kenneth G. Paterson. Lucky microseconds: A timing attack on
amazon’s s2n implementation of tls. Cryptology ePrint Archive, Report 2015/1129, 2015.
http://eprint.iacr.org/.

2. Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS and DTLS
record protocols. In IEEE Symposium on Security and Privacy, SP 2013, pages 526–540.
IEEE Computer Society, 2013.
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