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Abstract. In recent years, Mixed Integer Linear Programming (MILP)
has been successfully applied in searching for differential characteristics
and linear approximations in block ciphers and has produced the
significant results for some ciphers such as SIMON (a family of
lightweight and hardware-optimized block ciphers designed by NSA)
etc. However, in the literature, the MILP-based automatic search
algorithm for differential characteristics and linear approximations is
still infeasible for block ciphers such as ARX constructions. In this
paper, we propose an MILP-based method for automatic search for
differential characteristics and linear approximations in ARX ciphers.
By researching the properties of differential characteristic and linear
approximation of modular addition in ARX ciphers, we present a method
to describe the differential characteristic and linear approximation with
linear inequalities under the assumptions of independent inputs to the
modular addition and independent rounds. We use this representation as
an input to the publicly available MILP optimizer Gurobi to search for
differential characteristics and linear approximations for ARX ciphers. As
an illustration, we apply our method to Speck, a family of lightweight and
software-optimized block ciphers designed by NSA, which results in the
improved differential characteristics and linear approximations compared
with the existing ones. Moreover, we provide the improved differential
attacks on Speck48, Speck64, Speck96 and Speck128, which are the best
attacks on them in terms of the number of rounds.

Keywords: Automatic Search, Differential Characteristic, Linear
Approximation, ARX, Speck

? Corresponding author.



1 Introduction

Differential attacks [3] and linear attacks [15] are the most fundamental
cryptanalytic methods. They have been used in the cryptanalysis of numerous
symmetric ciphers. Since the first and most important thing for the two methods
is to identify differential characteristics and linear approximations, the automatic
search algorithms for differential characteristics and linear approximations
have been a focus of cryptographer’s concern. At EUROCRYPT’94, Matsui
[16] presented the branch-and-bound search algorithm and found the
differential characteristics and linear approximations for DES block cipher. The
branch-and-bound search algorithm is one of the most powerful and classic search
tools and is still widely used now. Another research line for the application of
automatic search algorithm is to provide the provable security against differential
cryptanalysis and linear cryptanalysis, which is usually achieved by automatic
searching for the minimal number of active S-boxes.

Mixed-Integer Linear Programming (MILP) has been explicitly applied in
constructing automatic search algorithm in differential and linear cryptanalysis.
The problem of MILP is a class of optimization problems derived from Linear
Programming which aims to optimize an objective function under certain
constrains. Mouha et al. [18] and Wu et al. [28] translated the problem of
counting the minimal number of differentially active S-boxes to an MILP problem
which can be solved automatically with open source or commercially available
MILP solvers. Their method has been applied in searching for the differential
and linear characteristics with specific patterns [14,29] and counting the minimal
number of active S-boxes of bit-oriented block ciphers by introducing bit-level
representations [21,27].

Recently, the MILP-based method has been developed to be a general
method to automatically search for the real differential characteristics. Sun
et al. [22] constructed the MILP-based model to search for (related-key)
differential characteristics by generating linear inequalities from the differential
distribution table of S-box, where only partial linear inequalities are used in
MILP model to make it solvable in practical time. Their search algorithm,
however, is heuristic, since the identified differential characteristics may not
be consistent. By computing a small number of inequalities which can exactly
describe the differential distribution table of an S-box with the greedy algorithm,
Sun et al. [24] transformed the heuristic searching method to the exact and
practical searching method. Moreover, they constructed the MILP-based model
for automatically searching for linear approximations and extended these models
to search for differential and linear hull. Sun et al.’s method [22,24] is applicable
to block ciphers involving bitwise XOR, S-box operation and the linear layer
with bit permutation5. Although the general linear layer can be transformed
into bit XOR operations, it makes the MILP problem much more difficult to be

5 Although SIMON has no S-box, the And and XOR operations for SIMON could be
regarded as one S-box. So they also applied the method to SIMON.



solved in practical time since more XOR operations result in more variables and
constraints.

Due to the excellent performance of ARX-based ciphers in software, many
symmetric-key ciphers are designed based on ARX operations6. It is worth
noting that the cryptanalytic techniques for ARX ciphers are very different
from those for ciphers with S-boxes such as AES and DES. In particular,
the search algorithms for differential characteristics and linear approximations
for ARX cipher utilize the different principle compared with those for ciphers
with S-boxes. In [10, 12, 17], the methods of automatic search for differential
characteristics in ARX designs are provided, but the methods are only
compatible with ARX-based Hash functions where the key is known and can
be freely chosen. By using the partial differential distribution table and Matsui’s
branch-and-bound algorithm, Biryukov and Velichkov [4] presented the first
automatic search algorithm for differential characteristics in ARX block ciphers,
such as (X)TEA and Speck. In a very recent paper [5] appearing in this volume
of FSE’16, Biryukov et al. proposed the first adaptation of Matsui’s algorithm
for finding the best differential and linear trails in ARX ciphers.

Although MILP-based search algorithm has got extremely remarkable
application for some block ciphers, the current method cannot be applied to
ARX block ciphers. A straightforward method to apply MILP model for ARX
constructions is to regard the modular addition in Fn2 as a 2n × n S-box and
compute a small number of linear inequalities to exactly represent the differential
or linear pattern of the modular addition. However, in this way the number of
linear inequalities is too large to be solved in practical time for real ARX ciphers
where n is typically at least 16. This motivates us to study MILP-based search
method for ARX block ciphers.

1.1 Our Contributions.

In this paper, we revisit the differential property and linear property for
modular addition and provide a new framework of constructing the MILP model.
Concretely, we transform the differential property of modular addition shown
in [13] into linear inequalities to describe all possible differential patterns and
the corresponding differential probabilities. Moreover, we use linear inequalities
to capture all possible linear patterns and the corresponding correlations based
on the automaton algorithm for correlation of modular addition in [19,25]. The
number of the resulting linear inequalities is significantly less than that of linear
inequalities produced by regarding modular addition as one S-box. With the
linear inequalities, we can construct the MILP model to automatically search for
differential characteristics and linear approximations using the the commercial
optimizer Gurobi, where the object function is the probability of differential
characteristic or the correlation of linear approximation.

During constructing MILP models, we assume that the two inputs to modular
addition and the consecutive rounds are independent. However, as demonstrated

6 ARX operation: modular addition, bit rotation and XOR.



in [26], for some ARX constructions, the inputs to modular addition and the
consecutive rounds are not independent, which will result that the practical
probability (resp. correlation) of our identified differential (resp. linear) tails for
some fixed key may vary significantly from that derived from our model. This
deviation will have effect on the success rate of the attacks from practitioner’s
perspective.

As an illustration, we apply our method to the block cipher Speck, which
is a family of lightweight block ciphers publicly released by the National
Security Agency (NSA) and has been optimized for performance in software
implementations [2]. A variety of block sizes and key sizes for different
implementations are provided for it. Since its publication, Speck has received
much attention and many cryptanalytic results have been given. Abed et al.
presented differential and rectangle attacks for almost all variants of Speck [1].
At FSE’14 [6], Biryukov et al. searched for the differential characteristics, which
cover 9, 11 and 14 rounds for Speck32, Speck48 and Speck64, respectively, and
are better than the differential characteristics in [1]. In [9], Dinur proposed the
sub-cipher attack and improved the key recovery attacks on all variants of Speck
using the differential characteristics in [6]. In [5], Biryukov et al. presented the
probabilities of the best differential trails for up to 10, 9, 8, 7, and 6 rounds
of Speck32, Speck48, Speck64, Speck96 and Speck128 respectively and evaluate
the security bounds of Speck against single-trail differential cryptanalysis under
the Markov assumption. As regards to linear cryptanalysis, Yao et al. identified
9, 9, 12, 6 and 6 rounds linear approximations for Speck32, Speck48, Speck64,
Speck96 and Speck128, respectively [30], and gave the key recovery attacks.

We use our models to search for the differential and linear trails for Speck.
In order for the MILP tool to run in reasonable time for larger block sizes (>
48 bits), we split the block cipher into two or three parts – upper (middle) and
lower. We then search for trails independently in each part, by ensuring that
the output difference (mask) for one part is the same as the input difference
(mask) for its following part. For Speck48, Speck64, Speck96 and Speck128, we
find better differential characteristics and linear approximations than those of
previous works under the assumptions of independent inputs to the modular
addition and independent rounds. With the new differential characteristics, we
improve the differential attacks on the four variants of Speck. Comparing with
the previous best attacks for them [9], we can attack one, one, three and five
more rounds for Speck48, Speck64, Speck96 and Speck128 with any key size,
respectively. We summarize known attacks on Speck in Table 1. We compare
our identified differential characteristics and linear approximations with those of
previous works in Table 2.

Outline. The remainder of this paper is organized as follows. Section 2 gives
a brief description of the existing MILP-based search methods for block cipher.
Section 3 and Section 4 introduce MILP-based algorithm for automatic searching
for differential characteristics and linear approximations for ARX ciphers. We
apply the new search tools in Speck and give the improved differential attacks



Table 1: Summary of Attacks on Speck

Variant Rounds Attacked/ Time Data Memory Method Ref.
2n/mn Total Rounds

48/72 11/22 267.93 243.727 - Linear [30]
12/22 258.8 243.2 245.8 Rectangle [1]
12/22 245.3 245 224 Differential [1]
14/22 265 241 222 Differential [9]
15/22 270 246 222 Differential This Paper

48/96 12/23 291.93 243.727 - Linear [30]
12/23 258.8 243.2 245.8 Rectangle [1]
12/23 245.3 245 224 Differential [1]
15/23 289 241 222 Differential [9]
16/23 294 246 222 Differential This Paper

64/96 14/26 294.9 262.7 - Linear [30]
14/26 289.4 263.6 265.6 Rectangle [1]
15/26 261.1 261 232 Differential [1]
18/26 293 261 222 Differential [9]
19/26 295 263 222 Differential This Paper

64/128 15/27 2126.9 262.7 - Linear [30]
14/27 289.4 263.6 265.6 Rectangle [1]
15/27 261.1 261 232 Differential [1]
19/27 2125 261 222 Differential [9]
20/27 2127 263 222 Differential This Paper

96/96 8/28 274.7 227.6 - Linear [30]
15/28 289.1 289 248 Differential [1]
16/28 285 285 222 Differential [9]
19/28 288 288 222 Differential This Paper

96/144 9/29 2122.7 227.6 - Linear [30]
16/29 2135.9 290.9 294.5 Rectangle [1]
15/29 289.1 289 248 Differential [1]
17/29 2133 285 222 Differential [9]
20/29 2136 288 222 Differential This Paper

128/128 8/32 292.7 228.3 - Linear [30]
16/32 2111.1 2116 264 Differential [1]
17/32 2113 2113 222 Differential [9]
22/32 2120 2120 222 Differential This Paper

128/192 9/33 2156.7 228.3 - Linear [30]
16/33 2111.1 2116 264 Differential [1]
18/33 2182.7 2125.9 2121.9 Rectangle [1]
18/33 2177 2113 222 Differential [9]
23/33 2184 2120 222 Differential This Paper

128/256 7/34 2220.7 228.3 - Linear [30]
16/34 2111.1 2116 264 Differential [1]
18/34 2182.7 2125.9 2121.9 Rectangle [1]
19/34 2241 2113 222 Differential [9]
24/34 2248 2120 222 Differential This Paper



Table 2: Summary of Differential Characteristics and Linear Approximations for Speck
Differential Characteristic Linear Approximation

Cipher # Rounds log2p Ref. # Rounds log2c Ref.
Speck32 9 -31 [1] 9 -14 [30]

9 -30 [6] 9 -14 This paper
9 -30 This paper

Speck48 10 -41 [1] 9 -20 [30]
11 -47 [6] 10 -22 This paper
11 -45 This paper

Speck64 13 -59 [1] 11 -25 [30]
13 -51 This paper 12 -31 [30]
14 -60 [6] 13 -30 This paper
14 -56 This paper
15 -62 This paper

Speck96 13 -84 [1] 6 -11 [30]
13 -67 This paper 15 -45 This paper
16 -87 This paper

Speck128 14 -112 [1] 6 -11 [30]
14 -90 This paper 16 -58 This paper
19 -119 This paper

on all variants of Speck except Speck32 in Section 5. Finally, we conclude the
paper in Section 6.

2 Sun et al.’s MILP-Based Automatic Search for
(Related-Key) Differential and Linear Trails (Hull)

In this section, we briefly recall Sun et al.’s algorithm. For more details of their
algorithm, we refer to [22,24].

Objective Function of Differential Model. Let xi denote the difference
variable for the bit i. That is, xi = 0 if there is no difference at bit i; Otherwise,
xi = 1. Another bit variable Aj is used to denote the activity of an S-box, i.e.,
Aj = 0 if the S-box is non-active; Otherwise, Aj = 1. The objective function
is to minimize the sum of all variables

∑
j Aj , which indicates the activities of

the S-boxes appearing in the schematic description of the encryption and key
schedule algorithm.

Constraints of Differential Model. For every XOR operation with bit-level
input differences a, b and bit-level output difference c, the constraints include

d⊕ ≥ a, d⊕ ≥ b, d⊕ ≥ c
a+ b+ c ≥ 2d⊕

a+ b+ c ≤ 2

(1)

where d⊕ is a dummy bit variable.



Next, we describe the constraints of the differential properties of an S-box in
a more accurate way. For an ω × ν S-box denoted by At, the input and output
differences are (x0, . . . , xω−1) and (y0, . . . , yν−1), respectively. Then

At − xk ≥ 0, k ∈ {0, . . . , ω − 1}

−At +
ω−1∑
j=0

xj ≥ 0
(2)

which ensures that nonzero input difference must activate the S-box.
Let (x0, . . . , xω−1, y0, . . . , yν−1) ∈ {0, 1}ω+ν ⊆ Rω+ν denote an (ω +

ν)-dimensional vector, where R is the real number field. By computing the
H-Representation of the convex hull of all possible input-output differential
patterns of an S-box, many linear inequalities which can be used to remove some
impossible differential patterns of the S-box are obtained. The greedy algorithm
in [24] is applied to select a subset of the H-Representation of the convex hull
with less inequalities. As a result, they generate only a small number of linear
inequalities, which can be used to exactly describe the differential pattern of
S-box and construct the MILP problem. Using any MILP optimizer such as
Gurobi [11], good differential characteristics can be found. If we set the value
of the object function as N , finish the solving process and output the current
solution till the value of object function is reduced to N . The corresponding
solution is the identified differential characteristic with N active S-boxes.

Note that this exact searching method is also applicable to searching for the
linear approximations.

Objective Function of Linear Model. Some notations for differential model
are also used in linear model, e.g., Aj denotes the activity of an S-box and the
objective function is to minimize

∑
j Aj .

Constraints of Linear Model. For every XOR operation with input masks
a, b and output mask c, the constraints should be

a = b = c.

For every three-forked branch with input mask a and output masks b and c, the
constraints should be 

di ≥ a, di ≥ b, di ≥ c
a+ b+ c ≥ 2di

a+ b+ c ≤ 2

(3)

where di is a dummy bit variable.
For an ω × ν S-box denoted by At, the input and output masks are

(x0, . . . , xω−1) and (y0, . . . , yν−1), respectively. If the output mask is nonzero,
At = 1; Otherwise, At = 0. Then, we have

At − yk ≥ 0, k ∈ {0, . . . , ν − 1}

−At +
ν−1∑
j=0

yj ≥ 0



which ensures that nonzero output mask must activate the S-box.

For an (ω+ ν)-dimensional vector (x0, . . . , xω−1, y0, . . . , yν−1) ∈ {0, 1}ω+ν ⊆
Rω+ν , compute a small number of linear inequalities to exactly represent the
linear pattern of S-box. The other processes are similar to those in the model of
searching for differential characteristics.

In addition, the technique has been extended to find differential or linear
hull [24]. By adding the constraints imposed by the given properties (such as
fixed difference or linear mask), they updated the MILP model and obtained all
trails which consist of the given differential or linear hull.

3 MILP-Based Algorithm for Automatic Search for
Differential Characteristics in ARX Ciphers

In this section, we analyze the differential characteristics of modular addition
and identify important properties, which are crucial to the construction of
our MILP-based models for ARX ciphers. Using our method, we can give the
linear inequalities which can exactly describe all differential patterns for modular
addition.

3.1 XOR-Differential Characteristics of Modular Addition

Definition 1. Let α, β and γ be fixed n-bit XOR differences. The XOR-differential
probability (DP) of addition modulo 2n (xdp+) is the probability with which α
and β propagate to γ through the ADD operation, computed over all pairs of n-bit
inputs (x,y):

xdp+(α, β → γ) = 2−2n ·#{(x, y) : ((x⊕ α) + (y ⊕ β))⊕ (x+ y) = γ}.

In [13], Lipmaa et al. showed Algorithm 2 to compute xdp+(α, β → γ) which
consists of two steps: the first step is to verify if the differential characteristic
is possible and the second step is to compute the differential probability xdp+.
More precisely, the above two steps are shown in Theorem 1 and Theorem 2,
respectively.

Theorem 1 (see [13]). The differential (α, β → γ) is possible iff (α[0]⊕β[0]⊕
γ[0]) = 0 and α[i − 1] = β[i − 1] = γ[i − 1] = α[i] ⊕ β[i] ⊕ γ[i] for α[i − 1] =
β[i− 1] = γ[i− 1], i ∈ [1, n− 1].

Theorem 2 (see [13]). Assume that (α, β → γ) is a possible differential

characteristic, then the differential probability xdp+ = 2−
∑n−2

i=0 ¬eq(α[i],β[i],γ[i]),
where

eq(α[i], β[i], γ[i]) =

{
1 α[i] = β[i] = γ[i]

0 others
.



Theorem 1 can be used to decide if the differential characteristic (α, β →
γ) for modular addition is possible. For instance, the differential (α, β →
γ) = (11100, 11100 → 11110) is impossible as α[0] = β[0] = γ[0] 6=
α[1] ⊕ β[1] ⊕ γ[1]. Using Theorem 2, the probability of the differential
characteristic can be computed efficiently. For example, for the differential
(α, β → γ) = (11100, 00110 → 10110), the probability xdp+(α, β →
γ)=2−(¬eq(0,0,0)+¬eq(0,1,1)+¬eq(1,1,1)+¬eq(1,0,0))= 2−2.

From Theorem 2, if the n-bit differential characteristic is possible, the
probability is only related with (α[i], β[i], γ[i]) for i ∈ [0, n−2]. Taking advantage
of this property, we can construct the MILP model to compute the differential
probability xdp+. More details are shown in the following.

3.2 MILP Model for Differential Characteristics of Modular
Addition

In order to append the first condition α[0]⊕β[0]⊕ γ[0] = 0 in Theorem 1 to the
set of the linear inequalities, we derive five linear inequalities satisfying the first
condition. The five linear inequalities are listed as follows,

d⊕ ≥ α[0], d⊕ ≥ β[0], d⊕ ≥ γ[0]

α[0] + β[0] + γ[0]− 2d⊕ ≥ 0

α[0] + β[0] + γ[0] ≤ 2

(4)

where d⊕ is a dummy bit variable.
Let the vector (α[i], β[i], γ[i], α[i + 1], β[i + 1], γ[i + 1]) denote the relation

of the differential values for the i-th and the (i+ 1)-th bits. We have that there
are totally 56 possible patterns for the vector in accordance with Theorem 1.
For example, the differential pattern (0, 0, 0, 1, 1, 1) is impossible as αi = βi
= γi 6= αi+1 ⊕ βi+1 ⊕ γi+1. Moreover, in order to compute the differential
probability efficiently, we append ¬eq(α[i], β[i], γ[i]) to the vector. As described
in [23], using the inequality generator() function in the sage. geometry.
polyhedron class of the SAGE Computer Algebra System [20], we get 65
linear inequalities satisfying all 56 possible patterns. Based on the greedy
algorithm in [24], the number of linear inequalities can be reduced from 65 to 13.
Furthermore, the 13 linear inequalities can be used to compute the probability
of (α[i]‖β[i]‖γ[i]→ α[i+ 1]‖β[i+ 1]‖γ[i+ 1]) as the variable ¬eq(α[i], β[i], γ[i])
is involved.

Actually, the 13 linear inequalities only represent the second condition α[i]
= β[i] = γ[i] = α[i + 1] ⊕ β[i + 1] ⊕ γ[i + 1], i ∈ [0, n − 2] in Theorem 1. In
total, there are (13× (n− 1) + 5) linear inequalities to represent the differential
property of addition modulo 2n with two inputs of n-bit length. As described in

Theorem 2, the differential probability xdp+ = 2−
∑n−2

i=0 ¬eq(α[i],β[i],γ[i]).

3.3 MILP Model for Differential Characteristics of ARX Ciphers

Besides modular addition, the XOR operations, three-forked branch and the
circular shift operations are also involved in ARX ciphers. For each XOR



operation, we can also use Inequalities (4). For each three-forked branch
operation with input differences a, b and output difference c, the constraints
should be

a = b = c.

For the case of circular shift, we can also list some equations for the related bits.
So far, we have finished the construction of all linear inequalities or equations
for each operations in ARX ciphers which compose the constraints of MILP
model for differential characteristics of ARX ciphers.

As the differential probability xdp+ = 2−
∑n−2

i=0 ¬eq(α[i],β[i],γ[i]) can
be computed using the method described in Section 3.2, we set the
objective function for the r-round differential characteristic as the∑r
j=1

∑n−2
i=0 ¬eq(αj [i], βj [i], γj [i]) where αj , βj and γj are the input differences

and output difference of modular addition for the j-th round. We aim to
find the minimal value of

∑r
j=1

∑n−2
i=0 ¬eq(αj [i], βj [i], γj [i]) which represents

the differential probability of the best identified differential characteristic. We
can use the Gurobi optimizer to solve the system of inequalities to search
for differential characteristics for ARX ciphers. However, just being able to
obtain one differential characteristic may be not enough. We can apply Sun’s
method [24] to our new MILP model and find the differential of ARX ciphers.

Note that in the above model, we assume that the two inputs to modular
addition and the consecutive rounds are independent. However, for some ARX
constructions, they are not independent, which will result that the practical
probability of our identified differential characteristics for some fixed key may
vary significantly from that derived from our model.

4 MILP Models for Automatic Search for Linear
Approximations in ARX Ciphers

In this section, we revisit the property of linear approximations for modular
addition operation and develop a new MILP-based tool to search for the linear
approximations for ARX ciphers.

4.1 Linear Approximations for Modular Addition

Let n be a non-negative integer. Given two vectors x = (an−1, . . . , a0) and y =
(bn−1, . . . , b0)∈ Fn2 , let x ·y denote the standard inner product x ·y = an−1bn−1⊕
· · · ⊕ a0b0.

Definition 2. Let Λα, Λβ and Γ be fixed n-bit linear masks. The correlation of
addition modulo 2n (cor�) with input masks Λα, Λβ and output mask Γ can be
computed over all pairs of n-bit inputs (x, y):

cor�(Γ,Λα, Λβ) = cor(Γ · (x+ y)⊕ Λα · x⊕ Λβ · y)

= 2−2n(#{x, y ∈ Fn2 : Γ · (x+ y)⊕ Λα · x⊕ Λβ · y = 0}
−#{x, y ∈ Fn2 : Γ · (x+ y)⊕ Λα · x⊕ Λβ · y = 1}).



Based on a fairly simple classification of the linear approximations of the
carry function, Nyberg and Wallén derive an efficient algorithm for computing
the correlation of linear approximation of addition modulo 2n with k inputs
in [19,25]. Since we only consider modular addition with two inputs, we describe
this method only for two inputs in [19,25] as follows.

Theorem 3 (see [19,25]). For the linear approximation of addition modulo 2n

of two inputs with input masks Λα, Λβ and output mask Γ , Λα, Λβ , Γ ∈ Fn2 and
Λα = (Λα[n−1], . . . , Λα[0]), Λβ = (Λβ [n−1], . . . , Λβ [0]), Γ = (Γ [n−1], . . . , Γ [0]),
we define the vector u = (u[n−1], . . . , u[0]) where u[i] = 4Γ [i]+2Λα[i]+Λβ [i], 0 ≤
u[i] < 8, 0 ≤ i < n. The correlation can be computed with the following linear
representation,

cor�(Γ,Λα, Λβ) = LAu[n−1]Au[n−2] · · ·Au[1]Au[0]C, (5)

where Ar, r = 0, . . . , 7, is 2× 2 matrice,

A0 =
1

2

[
2 0
0 1

]
, A1 = A2 = −A4 =

1

2

[
0 0
1 0

]
,

A7 =
1

2

[
0 2
1 0

]
,−A3 = A5 = A6 =

1

2

[
0 0
0 1

]
,

L is a row vector L = (1 0),and C is a column vector C = (1 1)T .

For example, for the linear approximation with binary vector masks (Γ =
10100, Λα = 11110, Λβ = 11000), u = 736208 and cor�=LA7A3A6A2A0C =
−2−3.

In order to provide a fast implementation for Theorem 3, Nyberg and
Wallén utilized the automaton to calculate LAu[n−1]Au[n−2] · · ·Au[1]Au[0]C by
multiplying from left to right. Let e0 = L = (1 0) and e1 = (0 1), then we
can show the state transitions in Fig. 1. When reading u from left to right, if
the automaton ends up in state 0, then LAu[n−1]Au[n−2] · · ·Au[1]Au[0]C = 0. If
the automaton ends up in state e0 or e1, then LAu[n−1]Au[n−2] · · ·Au[1]Au[0]C =
±2−t, where t is the number of transitions marked by a solid arrow, and the sign
is determined by the number of occurrences of {3, 4}:

LAu[n−1]Au[n−2] · · ·Au[1]Au[0]C > 0

if and only if the number of occurrences is even. For example, as u = 736208,
LA7A3A6A2A0C = −2−3.

Based on the Picture 1, we will give Proposition 1 to calculate the absolute
value of the correlation cor�(Γ,Λα, Λβ).

Proposition 1. For the linear approximation of addition modulo 2n of two
inputs with input masks Λα, Λβ and output mask Γ , the state transitions of
the automaton are shown in Fig. 2, where u[i] = 4Γ [i] + 2Λα[i] + Λβ [i], 0 ≤
u[i] < 8, 0 ≤ i < n and εj ∈ {e0, e1}, 0 ≤ j < n. If the correlation for the linear
approximation is non-zero, the absolute value of the correlation can be computed
as follows,

|cor�(Γ,Λα, Λβ)x| = 2−#{0<i<n|εi=e1}. (6)
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Based on Proposition 1, we construct the MILP model to compute the absolute
value of correlation of modular addition with two inputs in the following.

4.2 MILP Model for Linear Approximations of Modular Addition

In this part, we will introduce a method to describe linear property of modular
addition in Theorem 3 and Proposition 1 as linear inequalities.

For the state transition from εi+1 to εi under u[i], 0 ≤ i < n, the bit
variable si is defined as follows, si = 0 if εi = e0, and si = 1 if εi = e1.
We utilize the vector (si+1, Γ [i], Λα[i], Λβ [i], si) to denote the state transition,
so esi+1

Au[i] = esi . For the vector (si+1, Γ [i], Λα[i], Λβ [i], si), there are only 10
possible transitions for the vector. As described in Section 3.2, we also use the
inequality generator() function in the sage. geometry. polyhedron class of
SAGE and the greedy algorithm in [24] to get eight linear inequalities satisfying
all 10 possible transitions. Note that there is an additional constraint εn = e0

according to Fig. 2. Hence, for linear approximation of addition modulo 2n with
two inputs, the constraints contain 8×n+ 1 linear inequalities and the absolute

value of correlation is |cor�| = 2−
∑n−1

i=1 si .

4.3 MILP Model for Linear Approximations for ARX Ciphers

For each XOR, three-forked branch and circular shift operations, we can also
use the method in Section 2 to produce the linear inequalities or equations. All
linear inequalities or equations for each operations in ARX ciphers compose
the constraints of MILP model for linear approximations of ARX ciphers.
We can set the objective function for r-round linear approximation as the



∑r
j=1

∑n−1
i=1 si to find the minimal value of it. It means to find the optimized

linear approximation. We use the Gurobi optimizer to solve the system of
inequalities to search for the linear approximations.

As describe in the model of searching for differential characteristics, we
assume that the two inputs to modular addition and the consecutive rounds are
independent. However, for some ARX constructions, they are not independent.
So the practical correlation of our identified linear approximations for some fixed
key may vary significantly from that derived from our model.

5 Application to Speck

5.1 Description of Speck

Speck is a family of ARX-based block ciphers proposed by the National
Security Agency of the USA in [2], which contains 10 variants. The variants
are characterized by the block size of 2n bits (where n is the word size) and the
key size of mn bits. The Speck block cipher variant with block size 2n and key
size mn is denoted as Speck2n/mn. The rotation constants α, β used in round
functions and the number of rounds r are listed in Table 3 for all variants of the
Speck.

The round function of Speck consists of XOR, modular addition in Fn2 and
rotation operations. If we denote the subkey in the i-th round as ki, the input
and output of the i-th round as (xi−1, yi−1) and (xi, yi), the round function is
operated as follows,

xi = ((xi−1 ≫ α)� yi−1)⊕ ki, yi = (yi−1 ≪ β)⊕ xi,

where α and β are rotation constants listed in Table 3.

Table 3: Parameters for Speck Family of Block Ciphers

Variant 2n/mn Block Size 2n Word Size n Key Size mn Key Words m Rounds r α β
32/64 32 16 64 4 22 7 2
48/72 48 24 72 3 22 8 3
48/96 48 24 96 4 23 8 3
64/96 64 32 96 3 26 8 3
64/128 64 32 128 4 27 8 3
96/96 96 48 96 2 28 8 3
96/144 96 48 144 3 29 8 3
128/128 128 64 128 2 32 8 3
128/192 128 64 192 3 33 8 3
128/256 128 64 256 4 34 8 3

5.2 Differential Characteristics and Linear Approximations of
Speck

In this subsection, we will give the details how to use the models in Section 3 and
Section 4 to search for the differential characteristics and linear approximations
for Speck.



Firstly, we produce the system of inequalities to construct the model for
the differential or linear trails for Speck based on the methods in Section 3
and Section 4. Then we use Gurobi optimizer to solve our MILP model as [21–
24]. Indeed, other MILP optimizers, such as CPLEX [8], can also be used. The
procedure of our method is outlined as follows.

Step 1: Convert the system of inequalities describing r rounds of Speck into a
format that is readable by Gurobi.

Step 2: Use Gurobi to search for the trails with the input from Step 1.

Without loss of generality, we describe how to construct the model to search
for the differential characteristic of r-round Speck32. We denote the input
difference and the output difference for the i-th round as ∆zi−1 and ∆zi,
respectively, ∆zi = (∆z31

i , . . . ,∆z
0
i ), 0 < i ≤ r.

If we denote the two input differences of modular addition in the
i-th round as αi and βi and the output difference as γi, then we have
αi = (∆z22

i−1, . . . ,∆z
16
i−1, ∆z

31
i−1, . . . ,∆z

23
i−1), βi = (∆z15

i−1, . . . ,∆z
0
i−1), γi =

(∆z31
i , . . . ,∆z

16
i ). According to Section 3, we can produce 13×(16−1)+5 = 200

linear inequalities to represent the differential property of (αi, βi → γi) for
modular addition in the i-th round.

For the XOR operation of two branches in the i-th round, the two input
differences are (∆z13

i−1, . . . ,∆z
0
i−1, ∆z

15
i−1, ∆z

14
i−1) and (∆z31

i , . . . ,∆z
16
i ), and the

output difference is (∆z15
i , . . . ,∆z

0
i ). Thus we have

∆z13
i−1 ⊕∆z31

i = ∆z15
i ,

...

∆z14
i−1 ⊕∆z16

i = ∆z0
i .

Then we use Inequalities (4) to describe the differential property of XOR
operation of two branches in the i-th round, so 5 × 16 = 80 linear inequalities
are produced. Therefore, we use the above produced 200 + 80 = 280 linear
inequalities to describe the differential property of (∆zi−1 → ∆zi).

In the similar way, 280 · r linear inequalities are derived to describe the
differential property of r rounds (∆z0 → ∆z1 → . . . → ∆zr). Moreover, one

additional condition
∑31
j=0∆z

j
0 > 0 is required to ensure the non-zero plaintext

difference.

We set the objective function as the minimal value of∑r
i=1

∑32−2
j=0 ¬eq(αi[j], βi[j], γi[j]) and convert the above 280 · r + 1 linear

inequalities as constraints into the LP format that is readable by Gurobi.
Finally, we use the Gurobi to find the the differential characteristic of r rounds
of Speck32.

Similarly, the process of constructing the model to search for the linear
approximations for Speck can be implemented using the model in Section 4.
Here we will not provide the details about it due to the limited space. The
source code is published in https://github.com/fukai6/milp speck.git.



As we search for the differential and linear trails for Speck with block size
greater than 48, we use the splicing heuristic in order to speed up the search
process. The splicing heuristic is to search two short trails and concatenate
them to produce a long trail. For example, we can search r1-round differential
characteristic with output difference δ and r2-round differential characteristic
with input difference δ to construct an (r1 +r2)-round differential characteristic.
Based on the observation from our identified differential characteristic for small
number of rounds and differential characteristics presented in [4], we find that
the differential probability probably is better when the left of δ is 0x80 and
the right of δ is 0. In this way, we manually choose different values of r1 and
r2, and set δ = 0x80||0 as the output difference or input difference to search
two differential trails, then concatenate them to produce an (r1 + r2)-round
differential characteristic. For the linear approximation, we set the input mask
or output mask as 0x1||0.

Finally, the best differential characteristics and linear approximations we
found are listed in Table 4, Table 5, Table 6 and Table 7, where

∑r
i=1 log2pi and∑r

i=1 log2ci are the probability of differential characteristic and the correlation
of linear approximation, respectively.

Table 4: Differential Characteristics for Speck32, Speck48 and Speck64

Speck32 Speck48 Speck64

i ∆L ∆R log2pi ∆L ∆R log2pi ∆L ∆R log2pi

0 0211 0A04 001202 020002 04092400 20040104
1 2800 0010 -4 000010 100000 -3 20000820 20200001 -6
2 0040 0000 -2 000000 800000 -1 00000009 01000000 -4
3 8000 8000 0 800000 800004 -0 08000000 00000000 -2
4 8100 8102 -1 808004 808020 -2 00080000 00080000 -1
5 8004 840E -3 8400A0 8001A4 -4 00080800 00480800 -2
6 8532 9508 -8 608DA4 608080 -9 00480008 02084008 -4
7 5002 0420 -7 042003 002400 -11 06080808 164A0848 -7
8 0080 1000 -3 012020 000020 -5 F2400040 40104200 -13
9 1001 5001 -2 200100 200000 -3 00820200 00001202 -8
10 202001 202000 -3 00009000 00000010 -4
11 210020 200021 -4 00000080 00000000 -2
12 80000000 80000000 0
13 80800000 80800004 -1
14 80008004 84008020 -3
15 808080A0 A08481A4 -5∑r

i=1 log2pi -30 -45 -62

Note that the differential characteristics in Table 5 have been produced with
r1 = 11, r2 = 4 for Speck64 and r1 = 11, r2 = 5 for Speck 96, respectively. For
Speck128, with the splicing heuristic, we can only get an 18-round differential
characteristic with the probability 2−126 by setting r1 = r2 = 9 with reasonable
time. Thus, in order to find a better trail, we firstly search for a 13-round
differential trail with the splicing heuristic by setting r1 = 9 and r2 = 4,
then extend six rounds before the 13-round differential trial to get the 19-round



Table 5: Differential Characteristic for Speck96 and Speck128

i ∆L ∆R log2pi ∆L ∆R log2pi

0 240004000009 010420040000 0124000400000000 0801042004000000
1 082020000000 000120200000 -6 0800202000000000 4808012020000000 -6
2 000900000000 000001000000 -4 4800010000000000 0840080100000002 -6
3 000008000000 000000000000 -2 0808080000000006 4A08480800000016 -7
4 000000080000 000000080000 -1 4000400000000032 1042004000000080 -12
5 000000080800 000000480800 -2 0202000000000080 8012020000000480 -7
6 000000480008 000002084008 -4 0010000000000480 0080100000002084 -5
7 0800FE080808 0800EE4A0848 -12 8080000000002080 84808000000124A0 -5
8 000772400040 400000104200 -21 0400000000012440 2004000000080144 -9
9 000000820200 000000001202 -11 2000000000080220 2020000000480801 -9
10 000000009000 000000000010 -4 0000000000480001 0100000002084008 -7
11 000000000080 000000000000 -2 000000000E080808 080000001E4A0848 -8
12 800000000000 800000000000 0 00000000F2400040 4000000000104200 -15
13 808000000000 808000000004 -1 0000000000820200 0000000000001202 -8
14 800080000004 840080000020 -3 0000000000009000 0000000000000010 -4
15 808080800020 A08480800124 -5 0000000000000080 0000000000000000 -2
16 800400008124 842004008801 -9 8000000000000000 8000000000000000 0
17 8080000000000000 8080000000000004 -1
18 8000800000000004 8400800000000020 -3
19 8080808000000020 A084808000000124 -5∑r

i=1 log2pi −87 −119

differential characteristic in Table 5, where the 6-round trail has been also found
with Gurobi.

The linear approximations in Table 6 and Table 7 have been identified with
the parameters: r1 = 10, r2 = 3 for Speck64, r1 = 3, r2 = 12 for Speck96 and
r1 = 6, r2 = 10 for Speck128.

Table 6: Linear Approximations of Speck32, Speck48 and Speck64

Speck32 Speck48 Speck64

i ΓL ΓR log2ci ΓL ΓR log2ci ΓL ΓR log2ci

0 0380 5224 000131 050021 18600010 10724800
1 4880 4885 -1 018100 200101 -2 1B000000 03104000 -3
2 20A0 2071 -2 000100 000001 -1 18000000 18120000 -2
3 40A0 00C1 -2 000001 000000 0 C0000000 C0100000 -1
4 0080 4001 -3 0D0000 0C0000 -1 04000006 04800006 -1
5 0000 0001 0 606100 606C00 -2 00260030 04200030 -2
6 0004 0004 0 00024A 00620B -2 01010501 21013181 -5
7 3810 3010 -1 181040 731042 -4 01800126 00018021 -4
8 2180 01C0 -3 D812C0 9802D0 -3 00018100 20000101 -5
9 066A 0608 -2 040600 C4961A -5 00000100 00000001 -1
10 2484F2 2480F6 -2 00000001 00000000 0
11 09800000 08000000 -1
12 40610000 40680000 -2
13 00024982 00420802 -3∑r

i=1 log2ci 2−14 2−22 2−30

For the runtime of the searching algorithm, we spent about several hours
on personal computer (4 Core, Intel(R) Core(TM) i5 CPU 650 @3.20GHz) for
Speck32 and about one day on IBM server (64 Core, Intel(R)Xeon(R) CPU



Table 7: Linear Approximation of Speck96 and Speck128

i ΓL ΓR log2ci ΓL ΓR log2ci

0 000001000130 040000010021 0001010000018798 6A800101300601C1
1 000000018100 200000000101 -2 0000018000300720 9400000180300625 -7
2 000000000100 000000000001 -1 0000000181818100 200000000181B105 -4
3 000000000001 000000000000 0 0000000001800120 0000000000018021 -3
4 0D0000000000 0C0000000000 -1 0000000000018100 2000000000000101 -4
5 604500000000 604C00000000 -2 0000000000000100 0000000000000001 -1
6 00224D000003 006228000003 -4 0000000000000001 0000000000000000 0
7 181070001018 1B105A680018 -12 0980000000000000 0800000000000000 -1
8 001200000010 180210400000 -6 4045000000000000 4048000000000000 -2
9 101000000000 00101A000000 -3 00224D0000000002 0042280000000002 -4
10 001800000000 000010000000 -2 1810600000000010 1A10536C00000010 -9
11 000010000000 000000000000 -1 0012000000000080 1002186000000080 -4
12 000000D00000 000000C00000 -1 0010000000000406 8010130000000406 -3
13 000006041800 000006048000 -2 3680000000002000 3080180000002004 -3
14 000030003490 000030043080 -3 8500000000010181 8524C000000101A1 -4
15 180181910500 800181A10526 -5 8002000000080001 2106000000080100 -6
16 01301A0000404401 0030180000404801 -3∑r

i=1 log2ci 2−45 2−58

E7330, 2.40GHz) for other variants of Speck. Note that we have searched for all
the differential characteristics and linear approximations for Speck32, however,
for other variants we aim to only find better trails than the previous ones but
we cannot guarantee they are the best trails.

A summary of the differential characteristics and the linear approximations
for Speck is provided in Table 2, which shows that we got better differential
characteristics and linear approximations for Speck48, Speck64, Speck96 and
Speck128.

In order to check the effect of the assumptions of independent inputs to
the modular addition and independent rounds for Speck, we experimentally
calculate the probability for our identified differential characteristics in Table 4,
??, 5. As it is not feasible to do this for many rounds, we break down
the differential characteristics to small overlapping segments according to the
differential probability of the segments. The calculated probability of each one of
these segments has been verified experimentally by encrypting sufficiently many
random plaintext pairs for some arbitrary keys. The test results are shown in
Table 8. In Table 8, the first column is the tested cipher, the second column
shows rounds covered by the segment of differential characteristic, the third
column is the theoretic differential probability of the corresponding segment
of differential characteristic, the fourth column is the total number of random
chosen plaintext pairs used in the test, the fifth column is the total number
of tested key values, and the last column is the number of keys which can
get the calculated differential probability no less than the theoretic differential
probability. Note that we only test the last segment from round 12 to round
19 for Speck-128 because the theoretic differential probabilities for the previous
segments are too low to be tested. From Table 8, we can see that the number of
good keys significantly deviates from the mean for some cases, which is due to



the independent assumptions for Speck cipher. Such deviation will have effect
on the success rate of the attacks in the practitioner’s perspective.

5.3 Key Recovery Attack on Speck

In [9] Dinur presented a generic key recovery framework for Speck which can
extend the differential attack for more rounds. The idea of the framework uses
the guess-and-determine technique instead of counting technique for standard
key recovery attack. Furthermore, the cryptanalytic technique of ARX cipher is
utilized to speed up the attack on Speck.

For Speck2n/mn, if the differential characteristic with probability p for
r − 1 rounds has been found, the attacker can add one round at the top of
the differential characteristic and m rounds at the bottom of the differential
characteristic to cover r + m rounds in total. It is not necessary to guess
the subkey in the first round as it has no effect on the input difference. At
last, the attacker can recover the mn-bit secret key of a variant with r + m
rounds of Speck2n/mn using 2 · p−1 chosen plaintexts with time complexity of
2 · p−1 · 2(m−2)n and memory complexity of 222 bytes.

With our identified differential characteristics for Speck, we can give the
improved key recovery attack. Since the attack is same as that in [9], details are
omitted. For each variant of Speck, we summarize our attacks and the previous
differential attacks in Table 1, which shows that our attacks for the variants of
Speck with block size 48, 64, 96 and 128 are best attacks in terms of the number
of rounds.

Table 8: Test for Differential Characteristics in Table 4 and 5

Cipher Rounds Differential Number of Total Number of Number of
of Segment Probability Plaintext Pairs Keys Good Keys

Speck32/64 0-9 2−30 232 7040 3456

Speck48/96 0-6 2−19 222 10000 4093

Speck48/96 6-11 2−26 230 6400 2989

Speck64/128 0-6 2−19 222 10000 5513

Speck64/128 6-8 2−20 224 10000 4887

Speck64/128 8-15 2−23 226 10000 4918

Spec96/144 0-5 2−15 218 10000 5123

Spec96/144 5-7 2−16 220 10000 5039

Spec96/144 7-8 2−21 224 10000 5454

Spec96/144 8-11 2−17 220 10000 5020

Spec96/144 11-16 2−18 222 10000 4645

Spec128/256 12-19 2−23 226 10000 4876



6 Conclusion

In this paper, we construct the MILP model to automatically search for
differential and linear approximations for ARX ciphers by researching the
differential and linear property of modular addition under the assumptions of
independent inputs to the modular addition and independent rounds. Then
we use the new MILP model to search for the differential characteristics and
linear approximations for Speck cipher. Compared with the previous best
differential characteristics for them, our identified differential characteristics
for Speck64, Speck96 and Speck128 are extended for one, three and five
rounds, respectively, and our differential characteristic for Speck48 has higher
probability. We use those new differential characteristics to improve the currently
best public attacks on the four variants of Speck. In addition, we searched for
the linear approximations for Speck cipher and improved the previous linear
approximations for Speck variants with block size greater than 32.
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