
Improved Linear Hull Attack on Round-Reduced
Simon with Dynamic Key-guessing Techniques

Huaifeng Chen1, Xiaoyun Wang1,2?

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

2 Institute of Advanced Study, Tsinghua University, Beijing 100084, China
hfchen@mail.sdu.edu.cn, xiaoyunwang@mail.tsinghua.edu.cn

Abstract. Simon is a lightweight block cipher family proposed by NSA
in 2013. It has drawn many cryptanalysts’ attention and varieties of
cryptanalysis results have been published, including differential, linear,
impossible differential, integral cryptanalysis and so on. In this paper, we
give the improved linear attacks on all reduced versions of Simon with
dynamic key-guessing technique, which was proposed to improve the dif-
ferential attack on Simon recently. By establishing the boolean function
of parity bit in the linear hull distinguisher and reducing the function ac-
cording to the property of AND operation, we can guess different subkeys
(or equivalent subkeys) for different situations, which decrease the num-
ber of key bits involved in the attack and decrease the time complexity in
a further step. As a result, 23-round Simon32/64, 24-round Simon48/72,
25-round Simon48/96, 30-round Simon64/96, 31-round Simon64/128,
37-round Simon96/96, 38-round Simon96/144, 49-round Simon128/128,
51-round Simon128/192 and 53-round Simon128/256 can be attacked.
As far as we know, our attacks on most reduced versions of Simon are
the best compared with the previous cryptanalysis results. However, this
does not shake the security of Simon family with full rounds.

1 Introduction

In 2013, NSA proposed a new family of lightweight block cipher with Feistel
structure, named as Simon, which is tuned for optimal performance in hard-
ware applications [7]. The Simon family consists of various block and key sizes
to match different application requirements. There is no S-box in the round func-
tion. The round function consists of AND, rotation and Xor (ARX structure),
leading to a low-area hardware requirement.

Related Works. Simon family has attracted a lot of cryptanalysts’ attention
since its proposition. Many cryptanalysis results on various versions of Simon
were published. For differential attack, Alkhzaimi and Lauridsen [5] gave the
first differential attacks on all versions of Simon. The attacks cover 16, 18, 24,
29, 40 rounds for the versions with block size 32, 48, 64, 96 and 128 respectively.
? Corresponding Author



At FSE 2014, Abed et al. [3] gave differential attack on variants of Simon re-
duced to 18, 19, 26, 35, 46 rounds with respective block size 32, 48, 64, 96 and
128. At the same time, Biryukov et al. [9] gave differential attack on several
versions of Simon independently. And 19-round Simon32, 20-round Simon48,
26-round Simon64 were attacked. Then Wang et al. [20] proposed better differen-
tial attacks with existing differentials, using dynamic key-guessing techniques. As
a result, 21-round Simon32/64, 23-round Simon48/72, 24-round Simon48/96,
28-round Simon64/96, 29-round Simon64/128, 37-round Simon96/96, 37-round
Simon96/144, 49-round Simon128/128, 49-round Simon128/192, 50-round Si-
mon128/256 were attacked.

For the earlier linear cryptanalysis, 11, 14, 16, 20, 23-round key recovery
attacks on Simon with block size 32, 48, 64, 96, 128 were presented in [2].
Then, Alizadeh et al. [4] improved the linear attacks on 13-round Simon32, 15-
round Simon48, 19-round Simon64, 28-round Simon96, 35-round Simon128.
Recently, Abdelraheem et al. [1] took advantage of the links between linear
characteirstics and differential characteristics for Simon and found some lin-
ear distinguishers using differential characteristics found earlier. They presented
various linear attacks on Simon with linear, multiple linear, linear hull crypt-
analysis. The linear hull cryptanalysis has better attack results, which can at-
tack 21-round Simon32/64, 20-round Simon48/72, 21-round Simon48/96, 27-
round Simon64/96, 29-round Simon64/128, 36-round Simon96/144, 48-round
Simon128/192 and 50-round Simon128/256. Then, with the Mixed-integer Lin-
ear Programming based technique, Shi et al. [17] searched new linear trails and
linear hulls, and 21, 21, 29 rounds for Simon32/64, Simon48/96, Simon64/128
were attacked respectively. Also, Sun et al. [18] found a 16-round linear hull dis-
tinguisher of Simon48, with which he attacked 23-round Simon48/96. Ashur
[6] introduced a new way to calculate the correlations of short linear hulls
and provided a more accurate estimation for some previously published linear
trails. He gave multiple linear cryptanalysis on 24-round Simon32/64, 23-round
Simon48/72, 24-round Simon48/96, 24-round Simon64/96 and 25-round Si-
mon64/128. However, it uses the correlation when all the subkeys are zero as
the expected correlation under random key situations, which is not exact. More-
over, if the potential of each linear hull of the cipher is smaller than that of
random permutations, then the combination of these linear hulls can not distin-
guish between the cipher and a random permutation.

Also, there are some results with other attack models, such as impossible
differential cryptanalysis [4,10,12,21], zero-correlation cryptanalysis [21] and in-
tegral cryptanalysis [21].

Our Contributions. In this paper, we give the improved linear hull attacks
on all reduced versions of Simon family with dynamic key-guessing technique,
which was proposed initially to improve the differential attack on Simon [20],
using existing linear hull distinguishers. In linear attack, one important point
is to compute the empirical correlations (bias) of the parity bit, which derives

2



Table 1: Summary of Linear Hull Attacks on Simon

Cipher Attacked rounds Data Time Reference

Simon32/64
21 230.56 255.56 [1]
21 - - [17]
23 231.19 261.84A+ 256.3E Section 4.2

Simon48/72 20 244.11 270.61 [1]
24 247.92 267.89A+ 265.34E Section 4.3

Simon48/96

21 244.11 270.61 [1]
21 - - [17]
23 247.92 292.92 [18]
25 247.92 289.89A+ 288.28E Section 4.3

Simon64/96 27 262.53 288.53 [1]
30 263.53 293.62A+ 288.13E Section 4.3

Simon64/128
29 262.53 2123.53 [1]
29 - - [17]
31 263.53 2119.62A+ 2120.00E Section 4.3

Simon96/96 37 295.2 267.94A+ 288E Section 4.3

Simon96/144 36 294.2 2123.5 [1]
38 295.2 298.94A+ 2136.00E Section 4.3

Simon128/128 49 2127.6 287.77A+ 2120E Section 4.3

Simon128/192 48 2126.6 2187.6 [1]
51 2127.6 2155.77A+ 2184.00E Section 4.3

Simon128/256 50 2126.6 2242.6 [1]
53 2127.6 2239.77A+ 2248.01E Section 4.3

* ’-’ means not given; A means addition; E means encryption;

from the Xor-sum of the active bits at both sides of the linear hull distinguisher,
under some key guess. Our attack on Simon improves this procedure efficiently.

The non-linear part in the round function of Simon is mainly derived from
the bitwise AND (&) operation while it has a significant feature. For details, if
one of the two elements is equal to zero, the result of their AND will be zero, no
matter what value the other element takes. For a function f = f1(x1, k1)&f2(x2, k2),
if we GUESS k1 at first, and SPLIT the all x = x1||x2 into two cases: case 1,
f1(x1, k1) = 0; case 2, f1(x1, k1) = 1, there is no need to guess the key bits k2

in case 1, since f = 0 holds for any value of f2 in case 1. Then, we can compute
the correlations in each case with less time and at last, we COMBINE the two
correlations together for corresponding key k = k1||k2.

At first, we give the boolean representations for the parity bit in the linear
distinguisher of Simon. And then we apply the GUESS, SPLIT and COMBINE
technique in the calculation of the empirical correlations, which mainly exploits
the dynamic key-guessing idea to reduce the number of subkey bits guessed
significantly. For example, in the attack on 21-round Simon32, 32 subkey bits
are involved. With above technique, we can only guess 12.5 bits from the total
32-bit subkey on average to compute the correlations.

3



As a result, the improved attack results are shown as follows. We can at-
tack 23-round Simon32/64, 24-round Simon48/72, 25-round Simon48/96, 30-
round Simon64/96, 31-round Simon64/128, 37-round Simon96/96, 38-round
Simon96/144, 49-round Simon128/128, 51-round Simon128/192 and 53-round
Simon128/256. This improves the linear attack results for all versions. From the
point of number of rounds attacked, the results on most versions are best up to
now. The existing and new linear hull attack results on Simon are summarized
in Table 1. Also, we implement the 21-round attack on Simon32. In the attack,
we can decrease the 32 subkey bits involved in the attack by 8 bits. The ex-
periments show that the attack success probability is about 27.7% using 231.19

plaintext-ciphertext pairs.

The paper is organised as follows. In section 2, we introduce the linear (hull)
cryptanalysis and give the description of Simon family. Section 3 gives the dy-
namic key-guessing technique used in the linear cryptanalysis. Then the im-
proved attacks on Simon32/64 and all other variants are given in section 4.
Finally, we conclude in section 5. Appendix A gives the time complexities to
calculate the empirical correlations in some simple situations.

2 Preliminaries

2.1 Linear Cryptanalysis and Linear Hull

F2 denotes the field with two elements and Fn2 is the n-dimensional vector space
of F2. Let g : Fn2 → F2 be a Boolean function. Let B(g) =

∑
x∈Fn

2
(−1)g(x). The

correlation c(g) of g and 0 (in the following paper, when we say the correlation
of a function, it means the correlation of this function and 0) is defined by

c(g) = 2−n
∑
x∈Fn

2

(−1)g(x) = 2−nB(g). (1)

(In some situations of the remainder of this paper, we regard B(g) as the cor-
relation for simplicity of description.) The bias of g is defined by half of c(g),
which is represented as ε(g) = 1

2c(g).
Linear cryptanalysis [13] is a powerful cryptanalytic method proposed in 1993

to cryptanalysis DES. At first, one tries to find a good linear approximation
involving some plaintext bits, ciphertext bits and the subkey bits as follows

α · P ⊕ β · C = γ ·K, (2)

where α, β, γ are masks and P,C,K represent the plaintext, ciphertext and keys.
’good’ means that the probability of the linear approximations is far away from
1/2, which is the probability in random situations. In other words, higher abso-
lute of bias ε(α · P ⊕ β · C ⊕ γ ·K) leads to better linear crypanalysis result in
general. Algorithm 1 and Algorithm 2 in [13] are two attack models exploiting
the linear approximation as distinguisher. O( 1

ε2 ) known plaintexts are needed in
the key-recovery attacks.

4



Then in 1994, Nyberg [15] studied the linear approximations with same input
mask α and output mask β, and denoted them as linear hull. The potential of a
linear hull is defined as

ALH(α, β) =
∑
γ

ε2(α · P ⊕ β · C ⊕ γ ·K) = ε̄2. (3)

The effect of linear hull is that the final bias ε̄ may become significantly higher
than that of any individual linear trail. Then the linear attacks with linear hull
require less known plaintexts, i.e., O( 1

ε̄2 ).
Selçuk and Biçak [16] gave the estimation of success probability in linear

attack for achieving a desired advantage level. The advantage is the complexity
reduction over the exhaustive search. For example, if m-bit key is attacked and
the right key is ranked t-th among all 2m candidates, the advantage of this attack
is m − log2(t). Theorem 2 in [16] described the relation between success rate,
advantage and number of data samples.

Theorem 1 (Theorem 2 in [16]). Let PS be the probability that a linear at-
tack, as defined by Algorithm-2 in [13], where all candidates are tried for an m-bit
subkey, in an approximation of probability p, with N known plaintext blocks, de-
livers an a-bit or higher advantage. Assuming that the approximation’s probablity
is independent for each key tried and is equal to 1/2 for all wrong keys, we have,
for sufficiently large m and N ,

PS =

∫ ∞
−2
√
N |p−1/2|+Φ−1(1−2−a−1)

φ(x)dx, (4)

independent of m.

2.2 Description of Simon

Simon is a family of lightweight block cipher with Feistel structure designed
by NSA, which is tuned for optimal performance in hardware applications [7].
The Simon block cipher with an n-bit word (hence 2n-bit block) is denoted
Simon2n, where n is limited to be 16, 24, 32, 48 or 64. The key length is required
to be mn where m takes value from 2, 3 and 4. Simon2n with m-word key is
referred to Simon2n/mn. There are ten versions in the Simon family and the
detailed parameters are listed in Table 2. Before introducing the round functions
of Simon, we give some notations of symbols used throughout this paper.

Xr 2n-bit output of round r (input of round r + 1)
Xr
L left half n-bit of Xr

Xr
R right half n-bit of Xr

Kr subkey used in round r + 1
xi the i-th bit of x, begin with bit 0 from right (e.g., Xr

L,0 is the LSB of Xr
L )

xi1,...,it the XOR-sum of xi for i = i1, i2, . . . , it (e.g., x0,1 = x0 ⊕ x1)
x≪ i left circulant shift by i bits of x
⊕ bitwise XOR
& bitwise AND
F (x) F (x) = ((x≪ 1)&(x≪ 8))⊕ (x≪ 2)

5



block size (2n) key size (mn) rounds
32 (n = 16) 64 (m = 4) 32

48 (n = 24)
72 (m = 3) 36
96 (m = 4) 36

64 (n = 32)
96 (m = 3) 42
128 (m = 4) 44

96 (n = 48)
96 (m = 2) 52
144 (m = 3) 54

128 (n = 64)
128 (m = 2) 68
192 (m = 3) 69
256 (m = 4) 72

Table 2: The Simon Family Block Ciphers

Xr−1
L Xr−1

R

≪ 8

≪ 1

≪ 2

&
⊕ ⊕ Kr−1

Xr
L Xr

R

Fig. 1: Round Function of Simon

The r-th round function of Simon2n is a Feistel map

FKr−1 : Fn2 × Fn2 → Fn2 × Fn2 ,
(Xr−1

L , Xr−1
R )→ (Xr

L, X
r
R)

where Xr
R = Xr−1

L and Xr
L = F (Xr−1

L )⊕Xr−1
R ⊕Kr−1. The round function of

Simon is depicted in Figure 1. Suppose the number of rounds is T , the whole
encryption of Simon is the composition FKT−1 ◦· · ·◦FK1 ◦FK0 . The subkeys are
derived from the master key. The key schedules are a little different depending
on the key size. However, the master key can be derived from any m consecutive
subkeys. Please refer to [7] for more details.

3 Time Reduction in Linear Cryptanalysis for
Bit-Oriented Block Cipher

For bit-oriented block cipher, such as Simon, the operations of round function
can be seen as the concatenation of some boolean functions. For example, in
Simon32, the 0-th bit of Xr

L is a boolean function of some bits of Xr−1 and
subkeys as follows,

Xr
L,0 = (Xr−1

L,15&Xr−1
L,8 )⊕Xr−1

L,14 ⊕X
r−1
R,0 ⊕K

r−1
0 . (5)

Other bits in Xr
L have similar boolean representations and the bits in Xr

R are
same with the bits in Xr−1

L . The boolean representation of one bit can be ex-
tended to multiple rounds.

3.1 Linear Compression

In Matsui’s improved linear cryptanalysis [14], the attacker can pre-construct
a table to store the plaintexts and ciphertexts. We call this pre-construction
procedure as linear compression, since the purpose is to reduce the size of efficient
states by compressing the linear part. The detail of the compression is as follows.

6



Suppose x is a l1-bit value derived from the n-bit plaintext or ciphertext and
k is a l2-bit value derived from the subkey. y ∈ F2 is a boolean function of x and
k, y = f(x, k). Let V [x] stores the count number of x. We define Bk(y) with
counter vector V and function y = f(x, k) for k as

Bk(y) =
∑
x

(−1)f(x,k)V [x]. (6)

So, Bk(y) is the correlation of y with x under key guess k. One needs to do
2l1+l2 computations of function f to calculate the correlations of y for all k with
a straight-forward method at most. If y is linear with some bits of x and k, the
time can be decreased.

For simplicity, let x = x′||x0, k = k′||k0 and y = x0 ⊕ k0 ⊕ f1(x′, k′), where
both x0 and k0 are single bits. The correlation of y under some k is

Bk(y) = (−1)k0
∑
x′

(−1)f1(x′,k′)(V [x′||0]− V [x′||1]). (7)

It is obvious the correlations of y under same k′ and different k0 have same abso-
lute value, and they are different just in the sign. So if we compress the x0 bit at
first according to V ′[x′] = V [x′||0]−V [x′||1], Bk

′
(y′) with counter vertor V ′ and

function y′ = g′(x′, k′) for k′ can be computed with 2l1+l2−2 calculations of f1.
And the correlation Bk(y) can be derived directly from Bk(y) = (−1)k0Bk

′
(y′).

We define k0 the related bit. If the absolute correlations are desired, the related
bit k0 can be omitted directly, since it has no effect on the absolute values.

If y is linear with multiple bits of x and k, the linear bits can be combined
at first, then above linear compression can be applied. For example, y = (x0 ⊕
k0) ⊕ · · · ⊕ (xt ⊕ kt) ⊕ ft(x

′′, k′′) where x′′, k′′ are the other bits of x and k
respectively. We can initialize a new counter vector V ′[x′′||x′0] where x′0 is 1-bit
value of the xor sum of x0, x1, . . . , xt. We set V ′[x′′||x′0] =

∑
x0⊕···⊕xt=x′0

V [x].
Let k′0 = k0⊕ · · · ⊕ kt. The target value y becomes y = x′0⊕ k′0⊕ ft(x′′, k′′) with
counter vector V ′[x′′||x′0], which is the case discussed above.

3.2 Dynamic key-guessing in linear attack: Guess, Split and
Combination

Suppose one want to compute Bk(y) with counter vector V and boolean function
y = f(x, k), along with the definitions in the above section. With a straight-
forward method, the time to compute Bk(y) is 2l1+l2 . If for different values of
x, different key bits of k are involved in function f(x, k), the time to calculate
Bk(y) can be decreased.

For simplicity, let k = kG||kA||kB ||kC , where kG, kA, kB , kC are lG2 , lA2 , lB2 and
lC2 bits (lG2 + lA2 + lB2 + lC2 = l2) respectively. Suppose when kG is known, the all x
can be splitted into two sets, i.e. SA with NA elements and SB with NB elements
(NA +NB = 2l1). And when x ∈ SA, f(x, k) = fA(x, kA||kC) which is indepen-
dent of kB ; when x ∈ SB , f(x, k) = fB(x, kB ||kC) which is independent of kA

7



y = f(x, k) Guess KG fA(x, kA||kC)
fB(x, kB ||kC)SA

SB

Fig. 2: When kG is known, the set of x can be splitted to two sets. f is independent of
kB in set SA and independent of kA in set SB .

(See Figure 2). Then, Bk(y) can be obtained from the following combination

Bk(y) =
∑
x∈SA

(−1)fA(x,kA||kC)V [x] +
∑
x∈SB

(−1)fB(x,kB ||kC)V [x] (8)

for some guessed kG. The time to compute
∑

(−1)fA(x,kA||kC)V [x] for the x ∈ SA
needs NA2l

G
2 +lA2 +lC2 calculations, while

∑
(−1)fB(x,kB ||kC)V [x] for x ∈ SB needs

NB2l
G
2 +lB2 +lC2 . The combination needs 2l2 additions. So the time complexity in

total is about
NA2l

G
2 +lA2 +lC2 +NB2l

G
2 +lB2 +lC2 + 2l2

which improves the time complexity compared with 2l1+l2 .
The AND operation in Simon will generate the situations discussed above.

Let x, k ∈ F2
2 and y = f(x, k) = (x0 ⊕ k0)&(x1 ⊕ k1). V [x] denotes the count

number of x. With a straight-forward method, the calculation of correlations for
all k need time 22+2 = 24. If one side of the AND in f(x, k) is 0, y would be
0 without knowing the value in the other side. Exploiting this property, we can
improve the time complxity for calculating the correlations. At first, we guess one
bit of k, e.g. k0. Then we split the x into two sets and compute the correlations
in each set. At last, we combine the correlations according to the keys guessed.

– GUESS k0 and SPLIT the x into two sets
• For the x with x0 = k0, initialize a counter T0 and set T0 = V [0||x0] +
V [1||x0]

• For the x with x0 = k0⊕1, initialize a counter T1 and set T1 = V [0||x0]−
V [1||x0] (Linear compression)

• COMBINE B(y) = T0 + (−1)k1T1 (k1 is a related bit)

So in total, it needs 2(1 + 1 + 2) = 23 additions to compute the correlations for
all the k, which improves the time complexity compared to the straight-forward
method. Although there are 2 bits of k involved in the attack, we guess only
one bit and make some computations while another bit is just involved in the
final combination. This can be viewed as that we reduce the number of key bits
guessed from 2 to 1. Morever, this technique adapts to some complicated boolean
functions and more key (or equivalent key) bits can be reduced significantly.
Some cases have been discussed in Appendix A.

4 Linear Cryptanalysis on Simon

In this section, we will give the improved procedure of linear attack on Simon
using existing linear hull distinguishers for all versions of Simon

8



Table 3: Linear Hulls for Simon

BS Input Active Bits Output Active Bits ALH #R Ref.
32 Xi

L,6 Xi+13
R,14 2−31.69 13 [1]

Xi
L,5 Xi+13

R,13 2−30.19 13 [17]
Xi

L,0 Xi+14
L,8 , Xi+14

R,6 2−32.56 14 [1]
48 Xi

L,7, X
i
L,11, X

i
L,19, X

i
R,9, X

i
R,17 Xi+15

L,5 , Xi+15
R,3 , Xi+15

R,7 , Xi+15
R,11 , X

i+15
R,19 2−44.11 15 [1]

Xi
L,6, X

i
L,14, X

i
L,18, X

i
L,22, X

i
R,16

Xi+15
L,4 , Xi+15

L,20 , X
i+15
R,6 , Xi+15

R,18 , X
i+15
R,20 , 2−42.28 15 [17]

Xi+15
R,22

Xi
L,1, X

i
L,5, X

i
L,21, X

i
R,23 Xi+16

L,1 , Xi+16
L,5 , Xi+16

R,23 2−44.92 16 [18]
64 Xi

L,20, X
i
L,24, X

i
R,22 Xi+21

L,22 , X
i+21
R,20 , X

i+21
R,24 2−62.53 21 [1]

Xi
L,6 Xi+21

L,0 , Xi+21
R,2 , Xi+21

R,6 , Xi+21
R,30 2−60.72 21 [17]

Xi
L,3, X

i
L,27, X

i
L,31, X

i
R,29 Xi+22

L,3 , Xi+22
R,1 , Xi+22

R,2 2−63.83 22 [17]
96 Xi

L,2, X
i
L,34, X

i
L,38, X

i
L,42, X

i
R,36 Xi+30

L,2 , Xi+30
L,42 , X

i+30
L,46 , X

i+30
R,0 , Xi+30

R,40 2−94.2 30 [1]
128 Xi

L,2, X
i
L,58, X

i
L,62, X

i
R,60 Xi+41

L,60 , X
i+41
R,0 , Xi+41

R,2 , Xi+41
R,58 , X

i+41
R,62 2−126.6 41 [1]

* BS means the block size of Simon; #R means the number of rounds for the linear hull

4.1 Linear Hulls of Simon

Some linear hulls have been proposed recently in [1, 17, 18], and they are dis-
played in Table 3. Abdelraheem et al. [1] took advantage of the connection
between linear- and differential- characteristics for Simon and transformed the
differential characteristics proposed in [2, 9] to linear characteristics directly.
Similarly, differentials can be transformed to the linear hulls. Also, they found
a new 14-round linear hull for Simon32/64, by constructing squared correlation
matrix to compute the average squared correlation. Shi et al. [17] searched the
linear characteristics with same input and output masks using the Mixed-integer
Linear Programming modelling, which was investigated to search the differential
characteristics for bit-oriented block cipher [19] and then extended to search the
linear characteristics (hull) later [18].

Similar to the rotational property of integral distinguishers and zero-correlation
linear hull shown in [21], more linear hulls can be constructed as follows.

Property 1. Assume thatXi
L,j00

, . . . , Xi
L,j0t0

, Xi
R,j10

, . . . , Xi
R,j1t1

→ Xi+r
L,j20

, . . . , Xi+r
L,j2t2

,

Xi+r
R,j30

, . . . , Xi+r
R,j3t3

is a r-round linear hull with potential ε̄2 for Simon2n, where

j0
0 , . . . , j

0
t0 , j

1
0 , . . . , j

1
t1 , j

2
0 , . . . , j

2
t2 , j

3
0 , . . . , j

3
t3 ∈ {0, . . . , n − 1}. Let jp,sq = (jpq +

s) mod n, where p = 0, . . . , 3, q = 0, . . . , tp, then for 0 ≤ s ≤ n− 1, we have that
the potential of the r-round linear hullXi

L,j0,s0

, . . . , Xi
L,j0,st0

, Xi
R,j1,s0

, . . . , Xi
R,j1,st1

→

Xi+r

L,j2,s0

, . . . , Xi+r

L,j2,st2

, Xi+r

R,j3,s0

, . . . , Xi+r

R,j3,st3

for Simon2n is also ε̄2.

Observe the two 13-round linear hulls of Simon32 in Table 3 and we can find
they are in fact the rotations of same linear hull. The potential of Xi

L,6 → Xi+13
L,14

is estimated as 2−31.69 in [1] while that of Xi
L,5 → Xi+13

L,13 is estimated as 2−30.19

in [17]. The difference may come from the different search methods and different
linear trails found. Since Simon32 has small block size, we can test the bias

9



(potential) of the 13-round linear hull experimentally. In the experimentation,
we choose 600 keys randomly, and compute the corresponding bias from the
whole plaintexts space. The results are shown in the following table.

Table 4: Experimental bias for the 13-round linear hull of Simon32

ε2 = |p− 1/2|2 Number Number/600
ε2 ≥ 2−27.19 7 0.012

227.19 > ε2 ≥ 2−28.19 21 0.035
228.19 > ε2 ≥ 2−29.19 58 0.097
229.19 > ε2 ≥ 2−30.19 72 0.12
230.19 > ε2 ≥ 2−31.19 104 0.173

ε2 < 2−31.19 338 0.563

From the table, we know that about 26.4% of the keys have ε2 ≥ 2−30.19. So
230.19 is a little optimistic for the other 73.6% keys . However, this linear hull
distinguisher is interesting and in the following, we will give the key recovery
procedure using this linear hull. Also, we implement the 21-round attack on
Simon32 and the results shows that we can decrease the candidate key space by
8 bits when the potential under the real key is large.

4.2 Improved Key Recovery Attack on Simon32/64

We exploit the 13-round linear hull proposed in [17] to make key recovery attack
on round-reduced Simon32. The linear hull is

Xi
L,5 → Xi+13

R,13 .

We mount a key recovery attack on 21-round Simon32/64 by adding four rounds
before and appending four rounds after the distinguisher. Here let P = Xi−4

be the plaintext and C = Xi+17 be the corresponding ciphertext. Suppose the
subkeys involved in the first four rounds are KP and those in the last four rounds
are KC . Then Xi

L,5 is a function of P and KP , Xi
L,5 = E(P,KP ). Similarly,

Xi+13
R,13 = D(C,KC) is a function of C and KC . Let S be the set of N plaintext-

ciphertext pairs obtained, the empirical correlation under some key KP ,KC is

c̄KP ,KC
=

1

N

∑
P,C∈S

(−1)E(P,KP )⊕D(C,KC). (9)

In a further step, Xi
L,5 can be represented as Xi

L,5 = f(x, k) where

10



Table 5: 4 rounds before Xi
L,5 for Simon32

x Representation of xi k Representation of ki

x0
Xi−4

L,13 ⊕ (Xi−4
L,14&X

i−4
L,7 )⊕X

i−4
R,15 ⊕X

i−4
L,1 k0

Ki−4
15 ⊕K

i−3
1 ⊕Ki−3

5 ⊕Ki−2
3

⊕Xi−4
L,5 ⊕Ki−1

5

x1 Xi−4
L,14 ⊕ (Xi−4

L,15&X
i−4
L,8 )⊕X

i−4
R,0 k1 Ki−4

0

x2 Xi−4
L,7 ⊕ (Xi−4

L,8 &X
i−4
L,1 )⊕X

i−4
R,9 k2 Ki−4

9

x3 Xi−4
L,2 ⊕ (Xi−4

L,3 &X
i−4
L,12)⊕X

i−4
R,4 k3 Ki−4

4

x4 Xi−4
L,11 ⊕ (Xi−4

L,12&X
i−4
L,5 )⊕X

i−4
R,13 k4 Ki−4

13

x5 Xi−4
L,14 ⊕ (Xi−4

L,15&X
i−4
L,8 )⊕X

i−4
R,0 ⊕X

i−4
L,2 k5 Ki−4

0 ⊕Ki−3
2

x6 Xi−4
L,15 ⊕ (Xi−4

L,0 &X
i−4
L,9 )⊕X

i−4
R,1 k6 Ki−4

1

x7 Xi−4
L,8 ⊕ (Xi−4

L,9 &X
i−4
L,2 )⊕X

i−4
R,10 k7 Ki−4

10

x8 Xi−4
L,7 ⊕ (Xi−4

L,8 &X
i−4
L,1 )⊕X

i−4
R,9 ⊕X

i−4
L,11 k8 Ki−4

9 ⊕Ki−3
11

x9 Xi−4
L,1 ⊕ (Xi−4

L,2 &X
i−4
L,11)⊕X

i−4
R,3 k9 Ki−4

3

x10
Xi−4

L,14 ⊕ (Xi−4
L,15&X

i−4
L,8 )⊕X

i−4
R,0 k10 Ki−4

0 ⊕Ki−3
2 ⊕Ki−4

4 ⊕Ki−2
4⊕(Xi−4

L,3 &X
i−4
L,12)⊕X

i−4
R,4

x11 Xi−4
L,15 ⊕ (Xi−4

L,0 &X
i−4
L,9 )⊕X

i−4
R,1 ⊕X

i−4
L,3 k11 Ki−4

1 ⊕Ki−3
3

x12 Xi−4
L,0 ⊕ (Xi−4

L,1 &X
i−4
L,10)⊕X

i−4
R,2 k12 Ki−4

2

x13 Xi−4
L,9 ⊕ (Xi−4

L,10&X
i−4
L,3 )⊕X

i−4
R,11 k13 Ki−4

11

x14 Xi−4
L,8 ⊕ (Xi−4

L,9 &X
i−4
L,2 )⊕X

i−4
R,10 ⊕X

i−4
L,12 k14 Ki−4

10 ⊕K
i−3
12

x15
Xi−4

L,7 ⊕ (Xi−4
L,8 &X

i−4
L,1 )⊕X

i−4
R,9 k15 Ki−4

9 ⊕Ki−3
11 ⊕K

i−4
13 ⊕K

i−2
13⊕(Xi−4

L,12&X
i−4
L,5 )⊕X

i−4
R,13

x16 Xi−4
L,1 ⊕ (Xi−4

L,2 &X
i−4
L,11)⊕X

i−4
R,3 ⊕X

i−4
L,5 k16 Ki−4

3 ⊕Ki−3
5

1 Notice: x10 = x3 ⊕ x5, x15 = x4 ⊕ x8
2 Xi−4 is the plaintext P , Ki−4, . . . ,Ki−1 are the subkeys used in the initial
four rounds, i.e. KP

3 In the description of the paper, xP = x = (x0, . . . , x16), kP = k = (k0, . . . , k16)

f(x, k) = x0 ⊕ k0 ⊕ ((x1 ⊕ k1)&(x2 ⊕ k2))⊕ ((x3 ⊕ k3)&(x4 ⊕ k4))⊕
[(x5 ⊕ k5 ⊕ ((x6 ⊕ k6)&(x7 ⊕ k7)))&(x8 ⊕ k8 ⊕ ((x9 ⊕ k9)&(x7 ⊕ k7)))]⊕
{(x10 ⊕ k10 ⊕ ((x6 ⊕ k6)&(x7 ⊕ k7))⊕
[(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))&(x14 ⊕ k14 ⊕ ((x3 ⊕ k3)&(x13 ⊕ k13)))])&

(x15 ⊕ k15 ⊕ ((x7 ⊕ k7)&(x9 ⊕ k9))⊕
[(x14 ⊕ k14 ⊕ ((x13 ⊕ k13)&(x3 ⊕ k3)))&(x16 ⊕ k16 ⊕ ((x3 ⊕ k3)&(x4 ⊕ k4)))])}

where the representation of x and k are 17-bit value shown in Table 5. With
the same way, Xi+13

R,13 can also be represented as f(x, k) where the corresponding
x and k are described in Table 6. To distinguish them, let xP , kP be the x, k
described in Table 5 and xC , kC be the x, k described in Table 6. TheN plaintext-
ciphertext pairs in S can be compressed into a counter vector V [xP , xC ], which
stores the number of xP , xC . Then there is

c̄kP ,kC =
1

N

∑
xP ,xC

(−1)f(xP ,kP )⊕f(xC ,kC)V [xP , xC ]. (10)

11



Table 6: 4 rounds after Xi+13
R,13 for Simon32

x Representation of xi k Representation of ki

x0
Xi+17

R,5 ⊕ (Xi+17
R,6 &Xi+17

R,15 )⊕X
i+17
L,7 ⊕X

i+17
R,9 k0

Ki+16
7 ⊕Ki+15

9 ⊕Ki+15
13 ⊕Ki+14

11

⊕Xi+17
R,13 ⊕Ki+13

13

x1 Xi+17
R,6 ⊕ (Xi+17

R,7 &Xi+17
R,0 )⊕Xi+17

L,8 k1 Ki+16
8

x2 Xi+17
R,15 ⊕ (Xi+17

R,0 &Xi+17
R,9 )⊕Xi+17

L,1 k2 Ki+16
1

x3 Xi+17
R,10 ⊕ (Xi+17

R,11&X
i+17
R,4 )⊕Xi+17

L,12 k3 Ki+16
12

x4 Xi+17
R,3 ⊕ (Xi+17

R,4 &Xi+17
R,13 )⊕X

i+17
L,5 k4 Ki+16

5

x5 Xi+17
R,6 ⊕ (Xi+17

R,7 &Xi+17
R,0 )⊕Xi+17

L,8 ⊕X
i+17
R,10 k5 Ki+16

8 ⊕Ki+15
10

x6 Xi+17
R,7 ⊕ (Xi+17

R,8 &Xi+17
R,1 )⊕Xi+17

L,9 k6 Ki+16
9

x7 Xi+17
R,0 ⊕ (Xi+17

R,1 &Xi+17
R,10 )⊕X

i+17
L,2 k7 Ki+16

2

x8 Xi+17
R,15 ⊕ (Xi+17

R,0 &Xi+17
R,9 )⊕Xi+17

L,1 ⊕X
i+17
R,3 k8 Ki+16

1 ⊕Ki+15
3

x9 Xi+17
R,9 ⊕ (Xi+17

R,10&X
i+17
R,3 )⊕Xi+17

L,11 k9 Ki+16
11

x10
Xi+17

R,6 ⊕ (Xi+17
R,7 &Xi+17

R,0 )⊕Xi+17
L,8 k10 K

i+16
8 ⊕Ki+15

10 ⊕Ki+16
12 ⊕Ki+14

12⊕(Xi+17
R,11&X

i+17
R,4 )⊕Xi+17

L,12

x11 Xi+17
R,7 ⊕ (Xi+17

R,8 &Xi+17
R,1 )⊕Xi+17

L,9 ⊕X
i+17
R,11 k11 K

i+16
9 ⊕Ki+15

11

x12 Xi+17
R,8 ⊕ (Xi+17

R,9 &Xi+17
R,2 )⊕Xi+17

L,10 k12 K
i+16
10

x13 Xi+17
R,1 ⊕ (Xi+17

R,2 &Xi+17
R,11 )⊕X

i+17
L,3 k13 K

i+16
3

x14 Xi+17
R,0 ⊕ (Xi+17

R,1 &Xi+17
R,10 )⊕X

i+17
L,2 ⊕X

i+17
R,4 k14 K

i+16
2 ⊕Ki+15

4

x15
Xi+17

R,15 ⊕ (Xi+17
R,0 &Xi+17

R,9 )⊕Xi+17
L,1 k15 K

i+16
1 ⊕Ki+15

3 ⊕Ki+16
5 ⊕Ki+14

5⊕(Xi+17
R,4 &Xi+17

R,13 )⊕X
i+17
L,5

x16 Xi+17
R,9 ⊕ (Xi+17

R,10&X
i+17
R,3 )⊕Xi+17

L,11 ⊕X
i+17
R,13 k16 K

i+16
11 ⊕Ki+15

13

1 Notice: x10 = x3 ⊕ x5, x15 = x4 ⊕ x8
2 Xi+17 is the ciphertext C, Ki+13, . . . ,Ki+16 are the subkeys used in the last four
rounds, i.e. KC

3 In the description of the paper, xC = x = (x0, . . . , x16), kC = k = (k0, . . . , k16)

Notice that f(x, k) is linear with x0 ⊕ k0. According to the linear compression
technique, the 0-th bit of xP and xC could be compressed initially. Suppose
that x′P is the 16-bit value of xP without the 0-th bit (same representations for
x′C , k

′
P , k

′
C). Initialize a new counter vector V1 which has values

V1[x′P , x
′
C ] =

∑
xP,0,xC,0

(−1)xP,0⊕xC,0V [xP , xC ]. (11)

Then the correlation becomes

c̄k′P ,k′C =
1

N

∑
x′P ,x

′
C

(−1)f
′(x′P ,k

′
P )⊕f ′(x′C ,k

′
C)V1[x′P , x

′
C ]

=
1

N

∑
x′C

(−1)f
′(x′C ,k

′
C)

∑
x′P

(−1)f
′(x′P ,k

′
P )V1[x′P , x

′
C ], (12)

where f ′ is part of f , i.e. f(x, k) = x0 ⊕ k0 ⊕ f ′(x′, k′), x′ = (x1, . . . , x16), k′ =
(k1, . . . , k16).

12



So we can guess k′P (16-bit) at first and compress the plaintexts into a counter.
Then guess k′C (16-bit) to decrypt the appending rounds, to achieve the final
correlations. In the following, we introduce the attack procedure in the forward
rounds in detail. The procedure to compute

∑
x′P

(−1)f
′(x′P ,k

′
P )V1[x′P , x

′
C ] for each

x′C is same with the procedure to compute Bk
′
(y) with some counter vector V ′1 [x′]

and boolean function f ′. Counter vector V ′1 is part of counter vector V1. For each
specific x′C ,

V ′1 [x′] = V1[x′, x′C ],

which means V ′1 [x′] takes value of V1[x′P , x
′
C ] where x′P = x′ and x′C is fixed.

Morever, there are relations that x10 = x3 ⊕ x5, x15 = x4 ⊕ x8 in Table 5,6,
which means there are only 14 independent bits for x′ (x′P or x′C).

Compute Bk′
(y) with counter vector V ′

1 [x
′] and Boolean function f ′.

(For simplicity, we define this procedure as Procedure A.) Although x′ is a 16-
bit value, there are only 214 possible values for x′ as explained above. We use
the guess, split and combination technique to decrease the time complexity to
compute Bk

′
(y) with counter vector V ′1 [x′] and boolean function y = f ′, for 216

key vaules k′.

1. Guess k1, k3, k7 and split the plaintexts into 8 sets according to the value
(x1⊕k1, x3⊕k3, x7⊕k7). The simplification for f ′(x′, k′) after guessing some
keys are shown in Table 7.
The representation of fij are as follows,

f00 =((x5 ⊕ k5)&(x8 ⊕ k8))⊕ {(x10 ⊕ k10 ⊕ [(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))
&(x14 ⊕ k14)])&(x15 ⊕ k15 ⊕ [(x14 ⊕ k14)&(x16 ⊕ k16)])},

f01 =((x5,6 ⊕ k5,6)&(x8,9 ⊕ k8,9))⊕ {(x6,10 ⊕ k6,10 ⊕ [(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)
&(x13 ⊕ k13)))&(x14 ⊕ k14)])&(x9,15 ⊕ k9,15 ⊕ [(x14 ⊕ k14)&(x16 ⊕ k16)])},

f10 =((x5 ⊕ k5)&(x8 ⊕ k8))⊕ {(x10 ⊕ k10 ⊕ [(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))
&(x13,14 ⊕ k13,14)])&(x15 ⊕ k15 ⊕ [(x13,14 ⊕ k13,14)&(x4,16 ⊕ k4,16)])},

f11 =((x5,6 ⊕ k5,6)&(x8,9 ⊕ k8,9))⊕ {(x6,10 ⊕ k6,10 ⊕ [(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13

⊕ k13)))&(x13,14 ⊕ k13,14)])&(x9,15 ⊕ k9,15 ⊕ [(x13,14 ⊕ k13,14)&(x4,16 ⊕ k4,16)])}.

The counter vectors for x′ can be compressed in a further step according
to the new representations of f ′. For example, if (x1 ⊕ k1, x3 ⊕ k3, x7 ⊕
k7) = (0, 0, 0), f ′ will be equal to the formula f00, which is independent of
x2, x4, x6, x9. So we compress the corresponding counters into a new counter
V000, and

V000[x5, x8, x10 − x16] =
∑

x1=k1,x3=k3,x7=k7,x2∈F2,x4∈F2,x6∈F2,x9∈F2

V ′1 [x′].

Notice x10 = x3⊕ x5, so there are 8 independent x bits for x5, x8, x10− x16.
Notice x15 = x4 ⊕ x8, for some fixed value of x5, x8, x10 − x16, there are

13



Table 7: Simplification for f ′(x′, k′) after guessing k1, k3, k7

Guess x1 ⊕ k1, x3 ⊕ k3, x7 ⊕ k7 f ′ Related Bit

k1, k3, k7

0,0,0 f00
0,0,1 f01
0,1,0 f10 k4
0,1,1 f11 k4
1,0,0 f00 k2
1,0,1 f01 k2
1,1,0 f10 k2,4
1,1,1 f11 k2,4

7 times addition in above equation. So generating this new counter vector
needs 28 × 7 additions.
We give another example to illustrate the situations with related key bit.

If (x1⊕k1, x3⊕k3, x7⊕k7) = (1, 0, 0), there is f ′ = (x2⊕k2)⊕f00. Notice in
this subset, f ′ is linear with x2⊕ k2 and x2 can be compressed into the new
counters with related key k2. So the new counter vector V100 is as follows,

V100[x5, x8, x10−x16] =
∑

x1=k1⊕1,x3=k3,x7=k7,x2∈F2,x4∈F2,x6∈F2,x9∈F2

(−1)x2V ′1 [x′].

Also, there are 8 independent x bits for x5, x8, x10 − x16. For each fixed
x5, x8, x10−x16, the new counter can be obtained with 7 additions according
to above equation.

The procedures to generate the new counter vectors for other cases are
similar as that of case (x1⊕k1, x3⊕k3, x7⊕k7) = (0, 0, 0) or (1, 0, 0). Morever,
the time complexity to split the plaintexts and construct new counter vectors
is same for each case. Observing the four functions f00, f01, f10 and f11, we
know that they are with same form. In the following step, we explain the
attack procedure of case (x1 ⊕ k1, x3 ⊕ k3, x7 ⊕ k7) = (0, 0, 0) in detail and
the others can be obtained in the same way.
Note that, there are 9 subkey bits in each function of f00, f01, f10 and f11

after guessing k1, k3, k7. So this can be viewed as that 3 + 9 = 12 subkey
bits are involved in the attack while there are 16 subkey bits are involved
initially in f ′. In the following, the number of key bits can be reduced in a
further step.

2. For f00, guess k5, k14 and split the plaintexts into 4 sets according to the
value (x5⊕k5, x14⊕k14). The simplification for f00 after guessing some keys
are shown in Table 8.
The time complexity of computing the counters’ value Bk5,k8,k10−k16(y) with
counter vector V000 and function f00 is as follows:
(a) Guess k5, k14 and split the states into four parts

i. (x5 ⊕ k5, x14 ⊕ k14) = (0, 0)
A. Since x10 = x3⊕x5, x5 = k5 and x3 = k3 (the first case in Table

7), so the x10 here is fixed. There is one variable bit x15 to store.

14



Table 8: Simplification for f00 after guessing k5, k14

Guess Value f00 Related Bit

k5, k14

0,0 (x10 ⊕ k10)&(x15 ⊕ k15)
0,1 (x10,11 ⊕ k10,11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))&(x15,16 ⊕ k15,16)
1,0 (x10 ⊕ k10)&(x15 ⊕ k15) k8
1,1 (x10,11 ⊕ k10,11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))&(x15,16 ⊕ k15,16) k8

Let V 00
000[x10, x15] store the number of (x10, x15). There is

V 00
000[x10, x15] =

∑
x5=k5,x14=k14

V000[x5, x8, x10 − x16].

There are two possible values for (x10, x15) here and for each
value, the above sum needs 25 − 1 additions (5 variable bits
(x8, x11, x12, x13, x16)). So generating the new counter vector needs
2× (25 − 1) = 26 − 2 additions.

B. Computing Bk10,k1500 (y) with new function (the first case in Table
8) and vector V 00

000:
If k10 = x10, B

k10,k15
00 (y) = V 00

000[x10, 0] + V 00
000[x10, 1];

if k10 = x10⊕1, Bk10,k1500 (y) = (−1)k15(V 00
000[x10, 0]−V 00

000[x10, 1]).
So in total there are no more than 22 additions.

ii. (x5 ⊕ k5, x14 ⊕ k14) = (0, 1)
A. There are 4 variable bits (x10,11, x12, x13, x15,16) to store. Let

V 01
000[x10,11, x12, x13, x15,16] store the counter number of (x10,11, x12,
x13, x15,16). There is

V 01
000[x10,11, x12, x13, x15,16] =

∑
x5=k5,x14=k14⊕1

V000[x5, x8, x10−x16].

For each possible value of (x10,11, x12, x13, x15,16), the above sum
needs 22 − 1 additions (2 free variables (x8, x15), x10 is fixed,
x11 = x10 ⊕ x10,11, x16 = x15 ⊕ x15,16). So generating the new
counter vector needs: 24 × (22 − 1) = 26 − 24 additions.

B. Partial Bk10,11,k12,k13,k15,1601 (y) with new function and vector V 01
000:

25.64 additions. (See f3 in Appendix A)
iii. (x5 ⊕ k5, x14 ⊕ k14) = (1, 0)

A. Similar to the first case in Step (2(a)i), let V 10
000[x10, x15] store

the number of (x10, x15). There is

V 10
000[x10, x15] =

∑
x5=k5,x14=k14

V000(−1)x8 [x5, x8, x10 − x16].

So generating the new counter vector also needs 2 × (25 − 1) =
26 − 2 additions. k8 becomes a related bit.

B. Partial Bk10,k1510 (y) with new function and vector V 10
000: 22 addi-

tions (same with case (0, 0)).

15



iv. (x5 ⊕ k5, x14 ⊕ k14) = (1, 1)
A. Similar to the second case in Step (2(a)ii), let V 11

000[x10,11, x12, x13,
x15,16] store the counter number of (x10,11, x12, x13, x15,16). There
is

V 11
000[x10,11, x12, x13, x15,16]

=
∑

x5=k5,x14=k14⊕1

(−1)x8V000[x5, x8, x10 − x16].

So generating the new counter vector needs: 24×(22−1) = 26−24

additions. k8 becomes a related bit.
B. Partial Bk10,11,k12,k13,k15,1611 (y) with new function and vector V 11

000:
25.64 additions. (See f3 in Appendix A)

(b) For each of 29 keys involved in f00, partial Bk5,k8,k10−k16(y) with function
y = f00 and counter vector V000 under key guess k5, k14 is

Bk5,k8,k10−k16(y) = (Bk10,k1500 (y) +B
k10,11,k12,k13,k15,16
01 (y))

+ (−1)k8 (Bk10,k1510 (y) +B
k10,11,k12,k13,k15,16
01 (y)).

We can add Bk10,k1500 (y) and B
k10,11,k12,k13,k15,16
01 (y) at first, then add

Bk10,k1510 (y) and Bk10,11,k12,k13,k15,1601 (y), at last add the two parts accord-
ing to the index value and k8. The combination phase needs 26+26+27 =
28 additions in total when k5, k14 are fixed.

(c) In total, there are

22 × ((26 − 2 + 22 + 26 − 24 + 25.64)× 2 + 28) ≈ 211.19

additions to compute Bk5,k8,k10−k16(y) for all 29 possible key values.
Note that, about 1 subkey bit is guessed in the first (or third) step of
step 2a. In the second (or forth) step of step 2a, 1.5 subkey bits are
guessed on average. So, although there are 9 subkey bits in total, only
2+(1+1+1.5+1.5)/4=3.25 bits on average are guessed with dynamic key-
guessing technique.

3. The time of computing Bk
′
(y) with counter vector V ′1 [x′] and boolean func-

tion f ′ is shown in Table 9. T1 denotes the time of seperation of the plaintexts
according to the guessed bit of k. T2 denotes the time of computation in the
inner part. T3 is the time in the combination phase. When k1, k3, k7 are fixed,
in each case, T1 = 28 × 7 as explainted in Step 1. T2 is 211.19 as explained
in Step 2. There are 13 bits for k′ except k1, k3, k7, leading to T3 = 213 × 7.
For all guesses of k1, k3, k7, the total time is about 219.46 additions.

In Step 1, 3 key bits are guessed and the plaintexts are splitted into 8 situations.
For each situation, 3.25 key bits are guessed as explained above. So on average,
about 3 + 3.25 = 6.25 subkey bits are guessed in this procedure, while there are
16 subkey bits involved.

16



Table 9: Time Complexity of computing Bk′(y) with counter vector V ′1 [x′] and boolean
function f ′

Guess x1 ⊕ k1, x3 ⊕ k3, x7 ⊕ k7 f ′ Related Bit Time
T1 T2 T3

k1, k3, k7

0,0,0 f00 28 × 7 211.19

213 × 7

0,0,1 f01 28 × 7 211.19

0,1,0 f10 k4 28 × 7 211.19

0,1,1 f11 k4 28 × 7 211.19

1,0,0 f00 k2 28 × 7 211.19

1,0,1 f01 k2 28 × 7 211.19

1,1,0 f10 k2,4 28 × 7 211.19

1,1,1 f11 k2,4 28 × 7 211.19

Total Time ((28 × 7 + 211.19)× 8 + 213 × 7)× 23 = 219.46

21-round attack on Simon32/64. Adding four rounds and appending four
rounds after the 13-round linear hull distinguisher, we give the 21-round linear
attack on Simon32/64. The estimated potential of the linear hull is ε̄2 ≈ 2−30.19

in [17], which is a little optimistic for more than half of keys. In the attack, we
use N = 231.19 plaintext-ciphertext pairs. According to Theorem 1, the relation
between the bias and success probability is shown in Table 10 when using 231.19

plaintext-ciphertext pairs. So according to Table 4 and Table 10, the expected

Table 10: Relation between bias and success probability using 231.19 data and setting
advantage a = 8

ε2 = 227.19 p0 ≈ 1.000

ε2 = 228.19 p1 ≈ 0.997

ε2 = 229.19 p2 ≈ 0.864

ε2 = 230.19 p3 ≈ 0.477

ε2 = 231.19 p4 ≈ 0.188

success probability of the attack is larger than

0.012 ∗ p0 + 0.035 ∗ p1 + 0.097 ∗ p2 + 0.12 ∗ p3 + 0.173 ∗ p4 ≈ 0.22,

and it is smaller than

(0.012 + 0.035) ∗ p0 + 0.097 ∗ p1 + 0.12 ∗ p2 + 0.173 ∗ p3 ≈ 0.33.

There are 32 subkey bits involved in this attack. With our attack method,
only about 6.25 + 6.25 = 12.5 bits are guessed on average, which reduces the
number of key bits greatly.
Attack:

1. Compress the N plaintext-ciphertext pairs into the counter vector V1[x′P , x
′
C ]

of size 214+14.

17



2. For each of 214 x′C
(a) Call Procedure A. Store the counters according to x′C and k′P

3. For each k′P of 216 possible values.
(a) Call procedure A. Store the counters according to k′P and k′C .

4. The keys with counter values ranked in the largest 232−8 = 224 values would
be the right subkey candidates. Exploiting the key schedule and guessing
some other bits, use two plaintex-ciphertext pairs to check the right key.

Time: (1)N = 231.19 times compression (2) 214 × 219.46 = 233.46 additions.
(3)216 × 219.46 = 235.46 additions. So the time to compute the empirical bias
for the subkeys involved is about 235.84 while that given in [1] with similar lin-
ear hull is 263.69. The time is improved significantly. Step (4) is to recovery the
master key, which needs 264−8 = 256 21-round encryptions. However, [1] does
not give this step.

Also we implemented the 21-round attack on Simon32 using 231.19 plaintext-
ciphertext pairs. (The exhaustive search part of the attack is not included since
it would take about 264−8 = 256 encryptions, which takes too much time.) In
the implementation, we set the main key randomly and collect 231.19 plaintext-
ciphertext pairs (data collection part), then use the dynamic key-guessing tech-
niques to recover 8-bit key information for the 32 subkey bits (recovery part). We
store the 232−8 = 224 keys with large bias in set S as the right key candidates,
then compute the real 32 subkey bits from the main key and check whether it is
in S. In the implementation, about 5GB memory is needed. The data collection
part (231.19 encryptions) takes about 11 minutes and the recovery part takes
about 11 minutes too (using Intel(R) Xeon(R) CPU E5-2620, 2.00GHz). 1000
experiments were done and 277 of them were successful. This derives that the
experimental success probability is about 27.7%, which is consistent with the
expected success probability.

22-round attack on Simon32/64. Add one more round before the 21-
round attack, we can attack 22-round of Simon32/64. There are 13 active
key bits involved in round i − 5, which is κ1 = (Ki−5

0 − Ki−5
3 ,Ki−5

5 ,Ki−5
7 −

Ki−5
12 ,Ki−5

14 ,Ki−5
15 ), to obtain the x represented in Table 5.

Attack:

1. Guess each of 213 κ1

(a) Encrypt the plaintexts by one round.
(b) Do as the first three steps in the 21-round attack

2. The keys with counter values ranked in the largest 232+13−8 = 237 values
would be the right subkey candidates. Exploiting the key schedule and guess-
ing some other bits, use two plaintex-ciphertext pairs to check the right key.

Time: (1.a)213 × N = 244.19 one-round encryptions. (1.b) 213 × 235.84 = 248.84

additions. (2) Exhaustive phase needs about 264−8 = 256 22-round encryptions.
So the total time is about 256 22-round encryptions and 248.84 additions.

18



23-round attack on Simon32/64. Add one more round before and one
round after the 21-round attack, we can attack 23-round of SIMON32/64. There
are 13 active key bits involved in round i+17, which is κ2 = (Ki+17

0 −Ki+17
3 ,Ki+17

5 ,
Ki+17

7 −Ki+17
12 ,Ki+17

14 ,Ki+17
15 ), to obtain the x represented in Table 6.

Attack:

1. Guess each of 213+13 κ1||κ2

(a) Encrypt the plaintexts by one round and decrypt the ciphertexts by one
round.

(b) Do as the first three steps in the 21-round attack
2. The keys with counter values ranked in the largest 232+26−8 = 250 values

would be the right subkey candidates. Exploiting the key schedule and guess-
ing some other bits, use two plaintex-ciphertext pairs to check the right key.

Time: (1.a)226 × N = 257.19 two-round encryptions. (1.b) 226 × 235.84 = 261.84

additions. (2) Exhaustive phase needs about 264−8 = 256 23-round encryptions.
So the total time complexity is about 256.3 23-round encryptions and 261.84

additions.

4.3 Improved Key Recovery Attack on Other Variants of Simon

With the dynamic key-guessing technique shown in above attack, we can also
improve the linear hull attacks on all other variants of Simon. The linear hulls
used are displayed in Table 3. For Simon48, we exploit the 22-round linear hull
proposed in [18], which covers most rounds up to date. For Simon64, the 21-
round linear hull with potential 2−62.53 proposed in [1] is used in the attack.
Also, the 31-round (resp. 40-round) linear hull for Simon96 (resp. Simon128)
in [1] are used to attack corresponding variant. Due to limited space, we do not
give the detail of the attacks (please refer to the full version [11] of this paper for
the details). However, the improved results for these variants are listed in Table
1.

4.4 Multiple Linear Hull Attack on Simon

Combining multiple linear cryptanalysis [8] and linear hull together, one can
make multiple linear hull attack with improved data complexity. Our attack
technique can be used in the multiple linear hull attack of Simon well. According
to the rotational property, Property 1, of Simon, lots of linear hulls with high
potential can be found. For example, the two 13-round linear hulls for Simon32
in Table 3 are rotations of same linear hull.

Suppose that the time to compute the bias for one linear hull is T1 and
data complexity is N . If m linear hulls with same bias are used in the multiple
linear hull attack, the data complexity would be decreased to N/m. But the time
complexity would increase tomT1+2K, where K is the size of the independent key
bits involved in all m linear hull attacks. For example, there are 32 independent
key bits involved in the 21-round attack of Simon32 with linear hull Xi

L,5 →

19



Xi+13
R,13 . The data complexity is 231.19 known plaintext-ciphertext pairs and the

time needs about 235.84 additions to get the bias. When another linear hull
Xi
L,6 → Xi+13

R,14 is taken in to make a multiple linear hull attack, the data size
will decrease to 230.19. There are also 32 independent key bits involved in this
linear hull attack. But, the total independent key size of both linear hulls is 48.
So the time to compute the bias for the multiple linear hull attack with above
two linear hulls needs about 236.84 additions and 248 combinations.

5 Conclusion

In this paper, we gave the improved linear attacks on all the reduced versions of
Simon family with dynamic key-guessing techniques. By establishing the boolean
function of parity bit in the linear hull distinguisher and reducing the expressions
of function according to the property of AND operation, we decrease the number
of key bits involved in the attack and decrease the attack complexity in a further
step. As a result, we can attack 23-round Simon32/64, 24-round Simon48/72,
25-round Simon48/96, 30-round Simon64/96, 31-round Simon64/128, 37-round
Simon96/96, 38-round Simon96/144, 49-round Simon128/128, 51-round Si-
mon128/192 and 53-round Simon128/256. The differential attack in [20] and
our linear hull attack are bit-level cryptanalysis results, which provide the more
efficient and precise security estimation results on Simon. It is mentioned that,
the bit-level cryptanalysis combining with dynamic key-guessing techniques are
applicable to more light-weight block ciphers and hash functions etc.

Acknowledgements. This work was partially supported by the National Nat-
ural Science Foundation of China (Grant No. 61133013), also supported by Na-
tional Key Basic Research Program of China (Grant No. 2013CB834205).

References

1. Mohamed Ahmed Abdelraheem, Javad Alizadeh, Hoda A. Alkhzaimi, Mohammad
Resa Aref, Nasour Bagheri, Praveen Gauravaram, Martin M. Lauridsen. Improved
Linear Cryptanalysis of Reduced-Round Simon. IACR Cryptology ePrint Archive
2014/681, 2014

2. Farzaneh Abed, Eik List, Stefan Lucks, Jakob Wenzel. Differential and Lin-
ear Cryptanalysis of Reduced-Round Simon. IACR Cryptology ePrint Archive,
2013/526, 2013.

3. Farzaneh Abed, Eik List, Stefan Lucks, Jakob Wenzel. Differential Cryptanalysis of
Reduced-Round Simon and SPECK. FSE 2014, LNCS 8540, pp. 525-545. Springer
Berlin Heidelberg, 2015

4. Javad Alizadeh, Hoda A. Alkhzaimi, Mohammad Reza Aref, Nasour Begheri,
Paraveen Gauravaram, Abhishek Kumar, Martin M. Lauridsen, Somitra Kumar
Sanadhya. Cryptanalysis of SIMON Variants with Connections. In RFIDsec’14,
LNCS, 8651, pp.1-20. Springer-Heidelberg, 2014.

5. Hoda A. Alkhzaimi, Martin M. Lauridsen. Cryptanalysis of the SIMON Family of
Block Ciphers. IACR Cryptology ePrint Archive 2013, 543, 2013

20



6. Tomer Asgur. Improved Linear Trails dor the Block Cipher SIMON. IACR Cryp-
tology ePrint Archive 2015/285, 2015

7. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
Louid Wingers. The Simon and Speck Families of Lightweight Block Ciphers. 2013

8. Alex Biryukov, Christophe De Cannière, Michaël Quisquater. On Multiple Linear
Approximations. CRYPTO 2004, LNCS 3152, pp. 1-22, Springer- Heidelberg, 2004

9. Alex Biryukov, Arnab Roy, Vesselin Velichkov. Differential analysis of block ci-
phers SIMON and SPECK. FSE 2014, LNCS 8540, pp. 546-570. Springer Berlin
Heidelberg, 2015

10. Christina Boura, María Naya-Plasencia, Valentin Suder. Scrutinzing and improving
impossible differential attacks: Applications to Clefia, Camellia, Lblock and Simon.
ASIACRYPT 2014. pp. 179-199. Springer-Heidelberg, 2014

11. Huaifeng Chen, Xiaoyun Wang: Improved Linear Hull Attack on Round-Reduced
SIMON with Dynamic Key-guessing Techniques. IACR Cryptology ePrint Archive
2015/666, 2015

12. Zhan Chen, Ning Wang, Xiaoyun Wang. Impossible Differential Cryptanalysis of
Reduced Round SIMON. IACR Cryptology ePrint Archive 2015/286, 2015

13. Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. EUROCRYPT
1993, LNCS 765, pp. 386-397. Springer- Heidelberg, 1994

14. Mitsuru Matsui. The First Experimental Cryptanalysis of the Data Encryption
Standard. CRYPTO 1994. LNCS 839, pp. 1-11. Springer- Heidelberg, 1994

15. Kaisa Nyberg. Linear Approximation of Block Ciphers. EUROCRYPT 1994, LNCS
950, pp. 439-444. Springer- Heidelberg, 1995

16. Ali Aydin Selçuk, Ali Biçak. On Probability of Success in Linear and Differential
Cryptanalysis. SCN 2002. LNCS 2576, pp. 174-185. Springer- Heidelberg, 2003.

17. Danping Shi, Lei Hu, Siwei Sun, Ling Song, Kexin Qiao, Xiaoshuang Ma. Im-
proved Linear (Hull) Cryptanalysis of Round-reduced Versions of Simon. IACR
Cryptology ePrint Archive 2014/973, 2014

18. Siwei Sun, Lei Hu, Meiqin Wang, Peng Wang, Kexin Qiao, Xiaoshuang Ma, Dan-
ping Ma, Ling Song, Kai Fu. Towards Finding the Best Characteristics of Some
Bit-oriented Block Ciphers and Automatic Enumeration of (Related-Key) Differ-
ential and Linear Characteristics with Predefined Properties and Its Applications.
IACR Cryptology ePrint Archive 2014/747, 2014

19. Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, Ling Song. Auto-
matic Security Evaluation and (Related-Key) Differential Characteristic Search:
Application to SIMON, PRESENT, LBlock, DES(L) and Other Bit-Oriented Block
Ciphers. ASIACRYPT 2014, LNCS 8873, pp. 158-178. Springer- Heidelberg, 2014

20. Ning Wang, Xiaoyun Wang, Keting Jia, Jingyuan Zhao. Differential Attacks on Re-
duced SIMON Versions with Dynamic Key-guessing Techniques. IACR Cryptology
ePrint Archive 2014/448, 2014

21. Qingju Wang, Zhiqiang Liu, Kerem Varıcı, Yu Sasaki, Vincent Rijmen, Yosuke
Todo. Cryptanalysis of Reudced-round SIMON32 and SIMON48. INDOCRYPT
2014, LNCS 8885, pp. 143-160. Springer International Publishing, 2014

21



A Time complexity in some situations

In this section, we give the time complexities of computing the counters Bk(y)
for some simple functions of y = f(x, k). This would be the deepest layer’s
operation in the linear attack to Simon. Notice in the following, ’Guess’ denotes
the bits guessed at first. The second column xi⊕ki denotes the value of xi which
is used in the splitting phase. The third column denotes the new representation
of the target function according to the value of xi ⊕ ki. ’RB’ is the related
bit (defined in Section 3). T1 denotes the time of seperation of the plaintexts
according to the guessed bit of k. T2 denotes the time of computation in the
inner part. T3 is the time in the combination phase. Total Time is the final time
complexity, which is twice of the sum of all T1, T2 and T3. Notice that T1, T2 and
T3 represent the number of addition operations. For simplicity, we denote f∗ the
function with same form of f . For example, if f1 = (x0 ⊕ k0)&(x1 ⊕ k1) and
f ′1 = (x0 ⊕ k0)&(x3 ⊕ k3), we say f ′1 is with form f1∗. The calculation of B(y)
for the functions with same form have same procedures and time complexties.

1. f1 = (x0 ⊕ k0)&(x1 ⊕ k1)

Guess x0 ⊕ k0 f1 RB T1 T2 T3

k0
0 0 1 21 0 k1 1

Total Time 2× (1 + 1 + 2) = 23

2. f2 = (x0 ⊕ k0)⊕ (x1 ⊕ k1)&(x2 ⊕ k2)

Guess x0 f2 RB T1 T2 T3

f1∗ k0 22 × 1 23 23

Total Time 22 + 23 + 23 = 24.32

3. f3 = (x0 ⊕ k0)&((x1 ⊕ k1)⊕ (x2 ⊕ k2)&(x3 ⊕ k3))

Guess x0 ⊕ k0 f3 RB T1 T2 T3

k0
0 0 23 − 1

23

1 f2∗ 24.32

Total Time 2× (23 − 1 + 24.32 + 23) = 25.64

The detail of case 1, where f1(x, k) = (x0 ⊕ k0)&(x1 ⊕ k1), has been given in
Section 3.2. The other cases are derived similarly. For example, in case 2, linear
compression is done before any key guessing, leading to the compression of bit
x0 and generation of related bit k0.

22


