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Abstract. We reconsider the formalization of known-key attacks against
ideal primitive-based block ciphers. This was previously tackled by An-
dreeva, Bogdanov, and Mennink (FSE 2013), who introduced the notion
of known-key indifferentiability. Our starting point is the observation,
previously made by Cogliati and Seurin (EUROCRYPT 2015), that this
notion, which considers only a single known key available to the attacker,
is too weak in some settings to fully capture what one might expect
from a block cipher informally deemed resistant to known-key attacks.
Hence, we introduce a stronger variant of known-key indifferentiability,
where the adversary is given multiple known keys to “play” with, the
informal goal being that the block cipher construction must behave as an
independent random permutation for each of these known keys. Our main
result is that the 9-round iterated Even-Mansour construction (with the
trivial key-schedule, i.e., the same round key xored between permutations)
achieves our new “multiple” known-keys indifferentiability notion, which
contrasts with the previous result of Andreeva et al. that one single round
is sufficient when only a single known key is considered. We also show
that the 3-round iterated Even-Mansour construction achieves the weaker
notion of multiple known-keys sequential indifferentiability, which implies
in particular that it is correlation intractable with respect to relations
involving any (polynomial) number of known keys.

Keywords: block cipher, ideal cipher, known-key attacks, iterated Even-Man-
sour cipher, key-alternating cipher, indifferentiability, correlation intractability

1 Introduction

Background on Known-Key Attacks. Informally, a known-key attack
against a block cipher E consists in the following: the adversary is given a key k
from the key space of E, and must find a “non-trivial” property of the permutation
Ek associated with k faster than what it would cost given only black-box access
to a truly random permutation. An example of such a non-trivial property would
be a plaintext/ciphertext pair (x, y) under the key k such that, say, the first
half of x and the first half of y seen as bit strings are both zero (for a random
permutation P over n-bit strings, it is easy to see that this requires roughly 2n/2
queries to P ). Known-key attacks against block ciphers were first introduced by



Knudsen and Rijmen [18], who exhibited such attacks against a reduced-round
version of AES and against certain kinds of Feistel ciphers. These attacks were
extended in a number of follow-up papers, e.g. [23, 15, 24, 28, 14].

Even though the informal idea underlying known-key security might intuitively
seem clear (given a key k, the permutation Ek associated with k must “look
random”), how to put known-key attacks on theoretical sound grounds has
remained elusive. Indeed, any attempt to rigorously formalize what is a known-
attack against a fixed block cipher runs into impossibility results similar to those
undermining a sound definition of what a “good” hash function should be [4]. In
particular, seeing a block cipher as a family of permutations indexed by the key,
the fact that the key-length is similar to the input-length of the permutations (i.e.,
the block-length of the block cipher) leads to the following “diagonal” problem:
consider the set of pairs (k,Ek(k)) for k ranging over the key space (we assume
that the block-length and the key-length are equal for ease of exposition); then it
is hard, given oracle access to a random permutation, to find an input/output pair
in this set, whereas given any key k for E it is very easy to find an input/output
pair for Ek in this set.

A way to circumvent these impossibilities is to consider block cipher construc-
tions based on some ideal primitive (for example, a Feistel cipher based on public
random round functions or (iterated) Even-Mansour ciphers based on public
permutations). In that case, even though the adversary is given the known key,
it only has oracle access to the underlying primitive, which effectively acts as an
(exponentially long) seed indexing the permutation associated with the key. A
first step towards formalizing known-key attacks for ideal primitive-based block
ciphers was taken by Andreeva, Bogdanov, and Mennink (ABM) [2] through
what they called known-key indifferentiability (KK-indifferentiability for short), a
variant of the standard indifferentiability notion [22]. A block cipher construction
CF from some underlying primitive F is said indifferentiable from an ideal cipher
E if there exists an efficient simulator S with black box access to E such that the
two pairs of oracles (CF , F ) and (E,SE) are indistinguishable. Hence the simula-
tor must make E “look like” CF by returning answers that are coherent with the
distinguisher’s queries to E (without, in general, knowing these E-queries) and
that are statistically close to answers of a real F oracle.

The KK-indifferentiability notion of ABM modifies the security experiment
as follows: a key k is drawn at random and made available to the distinguisher
and the simulator; the distinguisher is then allowed to query its left oracle
(construction/ideal cipher) only for this specific key k. Hence the simulator’s
job is somehow made simpler since it has a “hint” about which queries the
distinguisher can make to its left oracle. Note that in the ideal (simulated) world,
the distinguisher effectively has access to a single random permutation (since
an ideal cipher behaves as an independent random permutation for each key).
Hence this KK-indifferentiability notion intuitively captures the requirement
that for each key k, the block cipher construction CF must “look like” a random
permutation. In contrast, the standard indifferentiability notion is related with
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chosen-key attacks, since the distinguisher is allowed to freely choose the keys it
examines.

Shortcoming of the ABM Security Notion. The starting point of this
paper is an observation, previously made by Cogliati and Seurin (Appendix C
of the full version of [7]) that the ABM security notion might be too restrictive
in some situations because it considers one single known-key. This might be
problematic in some cryptosystems where intuitively resistance to known-key
attacks should be sufficient to provide security, but where the ABM security
notion fails because the cryptosystem usesmultiple known keys. Think for example
of the permutation-based hashed functions by Rogaway and Steinberger [26, 27]:
these constructions are based on a few (typically 3 to 6) public permutations,
which would typically be instantiated by a block cipher used with distinct publicly
known keys. A crucial requirement for the security proof of these constructions to
hold (in the ideal permutation model) is that the permutations are independent.
Since this is not ensured by the ABM security notion, it is not applicable here,
even though one would like to say that a block cipher which is secure against
known-key attacks can safely be used in the Rogaway-Steinberger constructions.
(Jumping ahead, our new KK-indifferentiability notion will be sufficient to safely
instantiate the block cipher in the same constructions.)

To better emphasize this gap between a single known-key notion and a multiple
known-key notion, consider the case of the 1-round Even-Mansour (EM) [12, 11]
construction based on a permutation P on {0, 1}n, which maps a key k ∈ {0, 1}n
and a plaintext x ∈ {0, 1}n to the ciphertext defined as

EMP (k, x) = k ⊕ P (k ⊕ x).

ABM showed that when the permutation P is ideal, this construction is KK-
indifferentiable from an ideal cipher in the single known-key setting. However, if
the adversary is given any pair of distinct keys (k1, k2), it can pick any x1 ∈ {0, 1}n,
define x2 = x1 ⊕ k1 ⊕ k2, and compute y1 = EMP

k1
(x1) and y2 = EMP

k2
(x2). Then

one can easily check that x1 ⊕ x2 = y1 ⊕ y2. Yet for an ideal cipher E, given
two distinct keys k1 6= k2, finding two pairs (x1, y1) and (x2, y2) such that
Ek1(x1) = y1, Ek2(x2) = y2, and x1 ⊕ x2 = y1 ⊕ y2 can be shown to be hard:
more precisely, an adversary making at most q queries to E can find such pairs
with probability at most O( q

2

2n ). In other words, the permutations associated with
distinct keys for the 1-round EM construction do not “behave” independently.

Our Contribution. Our first contribution is definitional: in order to remedy
the limitation that we just pointed out, we extend and strengthen the known-key
security definition of [2], by allowing the distinguisher to be given multiple known
keys. Our new notion is parameterized by an integer µ, the number of known
keys that the adversary is given. For µ = 1, one recovers the ABM definition. If
one lets µ = |K|, where K is the key space of the block cipher, one recovers the
standard indifferentiability notion. In fact, our KK-indifferentiability notion will
emerge as a special case of a more general notion that we name restricted-input-
indifferentiability, which might be of independent interest. We also formulate
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our KK-indifferentiability notion in a “worst-case” fashion (it must hold for any
subset of keys of size µ), whereas the ABM notion was in the “average-case”
style (the known key being randomly drawn). In addition, we define a weaker
“sequential” variant [21, 7] of our new µ-KK-indifferentiability notion, called
µ-KK-seq-indifferentiability, where the adversary must query its two oracles
in a specific order. This notion is useful since it implies the weaker notion of
correlation intractability.

Our second contribution is about constructions: we show that KK-indifferen-
tiability is a meaningful notion by proving that the iterated Even-Mansour (IEM)
construction with nine rounds is µ-KK-indifferentiable from an ideal cipher for
any µ = poly(n) (where n is a security parameter indexing the construction),
which contrasts with the fact that one round is sufficient when considering one
single known-key, and also with the best number of rounds known to be sufficient
to achieve full indifferentiability from an ideal cipher, namely twelve [20]. We
also show that three rounds are necessary and sufficient to achieve the weaker
µ-KK-seq-indifferentiability notion, which again contrast with the fact that four
rounds are necessary and sufficient to achieve (full) seq-indifferentiability from
an ideal cipher [7]. See Table 1 for a summary of known results on the IEM
construction.

More Related Work. A number of papers have studied the indifferentiability
of variants of the IEM construction. In particular, Andreeva et al. [1] have studied
the case where the key-schedule is modeled as a random oracle, and Guo and Lin
have studied the case of Even-Mansour ciphers with two interleaved keys [16]
and of key-alternating Feistel ciphers [17].

Organization. We start with some general definitions in Section 2. Then
we define precisely our strengthened KK-indifferentiability notion (as well as
the more general notion of restricted-input-indifferentiability, of which KK-
indifferentiability is a special case) in Section 3. In Section 4, we give a known-key
attack (using two known keys) against the 2-round IEM construction. Finally,
we prove that the 3-round, resp. 9-round, IEM construction achieves µ-KK-seq-
indifferentiability, resp. µ-KK-indifferentiability, in Sections 5 and 6.

2 Preliminaries

General Notation. In all the following, we fix an integer n ≥ 1 and denote
N = 2n. Given a non-empty set M, the set of all permutations of M will be
denoted Perm(M). We simply denote Perm(n) the set of all permutations over
{0, 1}n. A block cipher with key space K and message space M is a mapping
E : K ×M →M such that for any key k ∈ K, x 7→ E(k, x) is a permutation.
We interchangeably use the notations E(k, x) and Ek(x). We denote BC(K,M)
the set of all block ciphers with key space K and message spaceM, and BC(n, n)
the set of block ciphers with key space and message space {0, 1}n. For integers
1 ≤ s ≤ t, we will write (t)s = t(t− 1) · · · (t− s+ 1) and (t)0 = 1 by convention.
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Table 1. Summary of provable security results for the iterated Even-Mansour cipher
with independent inner permutations and the trivial key-schedule. The first two notions
are secret-key notions, the other ones are indifferentiability-based.

Sec. notion # rounds Sec. bound
Sim. complexity

Ref.
(query / time)

Single-key 1 q2/2n — [12, 11]
(pseudorandomness) 2 q3/2/2n — [5]

XOR Related-Key 3 q2/2n — [7, 13]

1-KK-indiff. 1 0 q / q [2]

µ-KK-Seq-indiff., µ > 1 3 µ2q2/2n µq / µq this paper

Full Seq-indiff. 4 q4/2n q2 / q2 [7]

µ-KK-indiff., µ > 1 9 µ6q6/2n µ2q / µ2q this paper

Full indiff. 12 q12/2n q4 / q6 [20]

Ideal Primitives. An ideal primitive F is a triplet (F.Dom,F.Rng,F.Inst): the
domain F.Dom and the range F.Rng are two non-empty sets, and the instance
space F.Inst is a set of functions F : F.Dom→ F.Rng.

The two main ideal primitives we will be interested in are ideal permutations
and ideal ciphers. Given a non-empty setM, the ideal permutation P overM is
defined as follows. Let P.Dom = {+,−} ×M and P.Rng =M, and define

P.Inst def=
{
P : ∃π ∈ Perm(M), P (+, x) = π(x) and P (−, y) = π−1(y)

}
.

Clearly, there is a one-to-one correspondence between P.Inst and Perm(M).
Similarly, given two non-empty sets K andM, the ideal cipher with key space

K and message spaceM is defined as follows. Let E.Dom = {+,−} × K ×M,
E.Rng =M, and define

E.Inst def=
{
E : ∃η ∈ BC(K,M), E(+, k, x) = ηk(x) and E(−, k, y) = η−1

k (y)
}
.

Again, there is a one-to-one correspondence between E.Inst and BC(K,M).

The Iterated Even-Mansour Cipher. Fix integers n, r ≥ 1. Let f =
(f0, . . . , fr) be a (r + 1)-tuple of permutations of {0, 1}n. The r-round iter-
ated Even-Mansour construction EM[n, r, f ] specifies, from any r-tuple P =
(P1, . . . , Pr) of permutations of {0, 1}n, a block cipher with n-bit keys and n-bit
messages, simply denoted EMP in all the following (parameters [n, r, f ] will al-
ways be clear from the context), which maps a plaintext x ∈ {0, 1}n and a key
k ∈ {0, 1}n to the ciphertext defined by (see Fig. 1):

EMP(k, x) = fr(k)⊕ Pr(fr−1(k)⊕ Pr−1(· · ·P2(f1(k)⊕ P1(f0(k)⊕ x)) · · · )).
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Fig. 1. The r-round iterated Even-Mansour cipher.

We say that the key-schedule is trivial when all fi’s are the identity.
While the pseudorandomness of the IEM cipher was mostly studied with

independent round keys [3, 19, 6] (with the notable exception of [5]), it is well
known that independent round keys cannot, in general, provide any security in
the setting where the adversary has some control over the master key (related-,
known-, or chosen-key attacks) [20]. Hence, in this paper, we focus on the case
where the round keys are derived from an n-bit master key (actually, all our
results deal with the case of the trivial key-schedule).

3 Restricted-Input Indifferentiability and Variants

We introduce the notion of restricted-input indifferentiability (RI-indifferentia-
bility), and explain how known-key indifferentiability is a special case of it. Let
E and F be two ideal primitives.1 A construction implementing E from F is a
deterministic algorithm C with oracle access to an instance F of F, which we
denote CF , such that for any F ∈ F.Inst, CF ∈ E.Inst. A simulator for F is a
randomized algorithm with oracle access to an instance E of E, which we denote
SE , such that for any E ∈ E.Inst, SE : F.Dom → F.Rng. A distinguisher D is
a deterministic2 algorithm with oracle access to two oracles, the first one with
signature E.Dom→ E.Rng, the second one with signature F.Dom→ F.Rng, and
which returns a bit b, which we denote D(O1,O2) = b. We will call O1 the left
oracle and O2 the right oracle. Following [21], we define the total oracle query cost
of D as the maximum, over F ∈ F.Inst, of the total number of queries received by
F (from D or C) when D interacts with (CF , F ). The indifferentiability advantage
of D against (C,S) is defined by

Advindiff
C,S (D) =

∣∣∣Pr
[
E ←$ E.Inst : D(E,SE) = 1

]
− Pr

[
F ←$ F.Inst : D(CF , F ) = 1

] ∣∣∣. (1)

(Note that the first probability is also taken over the randomness of S).
1 This might be any ideal primitives, in particular E might not be an ideal cipher.
2 Since we will consider computationally unbounded distinguishers, this is without loss
of generality.
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For any subset of X of E.Dom, D is said X-restricted if it only makes queries
to its left oracle (E or CF ) from the set X.
Definition 1 (Restricted-Input Indifferentiability). Let E and F be two
ideal primitives and C be a construction implementing E from F. Let q, σ, t ∈ N
and ε ∈ R+. Let X be a family of subsets of E.Dom. Construction C is said
(X , q, σ, t, ε)-RI-indifferentiable from E if for any X ∈ X , there exists a simulator
S such that for any X-restricted distinguisher D of total oracle query cost at
most q, S makes at most σ oracle queries, runs in time at most t, and

Advindiff
C,S (D) ≤ ε.

Informally, we simply say that C is X -RI-indifferentiable from E if it is
(X , q, σ, t, ε)-RI-indifferentiable for “reasonable” values of σ, t, and ε expressed
as functions of q (in particular, when C is indexed by some security parameter
n ∈ N, if σ, t ∈ poly(n) and ε ∈ negl(n) for any q ∈ poly(n)).

As is standard in works on indifferentiability, this definition is information-
theoretic, i.e., the distinguisher is allowed to be computationally unbounded (this
is sometimes called statistical indifferentiability), and demands the existence of a
universal simulator which does not depend on the distinguisher (this is sometimes
called strong indifferentiability; when the simulator is allowed to depend on the
distinguisher, this is called weak indifferentiability).

Note also the following points:
– by letting X = {E.Dom} in the definition above, one recovers the standard

definition of indifferentiability [22];
– when X = {X} is reduced to a single subset of E.Dom, the definition is

equivalent to the standard definition of indifferentiability of the restriction of
CF to X from the restriction of E to X; hence this definition is only “new”
when considering at least two distinct subsetsX andX ′ such thatX * X ′ and
X ′ * X (since aX-restricted distinguisher is also aX ′-restricted distinguisher
when X ⊆ X ′), and can be equivalently rephrased as the indifferentiability
of the family of restrictions of C to sets in X , with a uniform upper bound
on the simulator’s complexity and the distinguisher’s advantage;

– the simulator is allowed to depend on the specific set X ∈ X considered;
– the upper bound on the advantage of the distinguisher must hold for any
X ∈ X (not, say, on average on the random draw of X from X ).
The RI version of indifferentiability can be combined with other flavors

of indifferentiability, in particular with public indifferentiability [10, 29] and
sequential indifferentiability [21, 7]. Let us elaborate for the case of sequential
indifferentiability. A distinguisher is called sequential if after its first query to
its left (E/CF ) oracle, it does not make any query to its right (SE/F ) oracle
any more. In other words, it works in two phases: first it only queries its right
oracle, and then only its left oracle. Then we can define RI-seq-indifferentiability
exactly as in Definition 1, except that we quantify over X-restricted sequential
distinguishers only. (Hence this is a weaker definition since for each subset X ∈ X ,
the simulator has to be effective only against a smaller class of distinguishers,
namely sequential ones.)
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Composition Theorem. The meaningfulness of the indifferentiability notion
comes from the following composition theorem [22]: if a cryptosystem is proven
secure when implemented with ideal primitive E, then it remains provably secure
when E is replaced with C based on ideal primitive F, assuming C is indifferentiable
from E. (For this theorem to hold, the security of the cryptosystem must be
defined with respect to a class of adversaries which “supports” the simulator used
to prove that C is indifferentiable from E [25, 9].) This theorem straightforwardly
translates to X -RI-indifferentiability as follows: if a cryptosystem is proven secure
when implemented with ideal primitive E and if for any adversary A, there is
X ∈ X such that the challenger of the security game only queries E on inputs
x ∈ X when interacting with A, then it remains provably secure when E is
replaced with C based on ideal primitive F, assuming C is X -RI-indifferentiable
from E. The short proof is as follows: denote Γ the challenger for the security
game, which has access to an instance of E, and fix an adversary A against the
cryptosystem implemented with CF (hence A has oracle access to the instance
F of the ideal primitive F); see the combination of Γ and A as a single X-
restricted distinguisher D; by the X -RI-indifferentiability assumption, there is
a simulator S such that (CF , F ) cannot be distinguished from (E,SE); then
the combination of A and S constitutes an attacker against the cryptosystem
implemented with E, and the winning probability of A′ is small by the assumption
that the cryptosystem is secure when implemented with E; hence the winning
probability of A is small as well.

Known-Key Indifferentiability. We now explain how to formalize resistance
to known-key attacks using RI-indifferentiability. Fix non-empty sets K andM,
and let E be the ideal cipher with key space K and message spaceM. Recall that
E.Dom = {+,−} × K ×M. For any integer 1 ≤ µ ≤ |K|, let Xµ be the family of
subsets of E.Dom consisting of queries whose key is in K′, for K′ ranging over all
subsets of K of size µ; more formally,

Xµ = {{(+, k, x) : k ∈ K′} ∪ {(−, k, y) : k ∈ K′} : K′ ⊆ K, |K′| = µ}.

Note that X|K| = {E.Dom}.

Definition 2 (µ-Known-Key Indifferentiability). Let C be a construction
of a block cipher with key space K and message spaceM from an ideal primitive
F. Let µ, q, σ, t ∈ N and ε ∈ R+. Construction C is said to be (µ, q, σ, t, ε)-
KK-indifferentiable from an ideal cipher if and only if it is (Xµ, q, σ, t, ε)-RI-
indifferentiable from an ideal cipher, with Xµ defined as above.

Unfolding the definition, this is equivalent to the following: for any subset
K′ ⊆ K of size µ, there exists a simulator S such that for any distinguisher D
whose queries to its first (construction/ideal cipher) oracle use only keys k ∈ K′
and of total oracle query cost at most q, S makes at most σ oracle queries, runs
in time at most t, and

Advindiff
C,S (D) ≤ ε.
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12k ∈ K′

D

0/1
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12k ∈ K′

Fig. 2. Various flavors of the indifferentiability notion. For full indifferentiability, the
queries of the distinguisher are completely unrestricted. For µ-known-key indifferentia-
bility, queries to the left oracle (ideal cipher/construction) can only be made for keys
k ∈ K′ for some subset K′ of size µ of the key space K (the simulator being allowed
to depend on K′). For sequential indifferentiability, the numbers next to query arrows
indicate in which order the distinguisher accesses both oracles. After its first query to
the left oracle, the distinguisher cannot query the right oracle any more. Combining
the two constraints results in the KK-seq-indifferentiability notion.

The KK-indifferentiability notion of Andreeva et al. [2] corresponds to the
definition above for µ = 1. In fact, this is slightly more subtle. Their variant
is rather an “average” version of this definition over the random draw of the
known key, resulting from the following changes: the security experiment starts
by drawing a random key k which is given as input to both the distinguisher
and the simulator, and the two probabilities involved in the definition (1) of
the advantage of the distinguisher are also taken over the random draw of the
challenge key k ←$ K. It is not hard to see that our “worst-case” variant of the
definition is stronger (i.e., implies) the average-case version (the average-case
simulator simply has a copy of each worst-case simulator SK′ for each possible
subset K′ ⊆ K of size µ, and on input the challenge subset of keys runs the
corresponding worst-case simulator).

The standard indifferentiability notion [22] is recovered by letting µ = |K| in
the definition above. The composition theorem specializes to the case of µ-KK-
indifferentiability as follows: if a cryptosystem is proven secure when implemented
with an ideal cipher E with key space K and if for any adversary A, there is a
subset of keys K′ of size µ such that the challenger of the security game only
queries E with keys k ∈ K′ when interacting with A, then it remains provably
secure when E is replaced with C based on ideal primitive F, assuming C is
µ-KK-indifferentiable from an ideal cipher.

Known-Key Correlation Intractability. As for the general notion of
RI-indifferentiability, KK-indifferentiability can be combined with the notion of
sequential indifferentiability. Hence, if we restrict Definition 2 by quantifying only
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over sequential distinguishers, we obtain the notion of KK-seq-indifferentiability
(see also Fig. 2). This notion is interesting because it implies the (arguably more
natural) notion of known-key correlation intractability, as we explain now.

For this, we first recall the concept of evasive relation and correlation in-
tractability [4, 21, 7]. Let E be an ideal primitive. For an integer m ≥ 1, an
m-ary relation R (for E) is simply a subset R ⊂ (E.Dom)m × (E.Rng)m. Infor-
mally, a relation is evasive with respect to E if it is hard, on average, for an
adversary with oracle access to a random instance E of E to find a tuple of inputs
(α1, . . . , αm) such that ((α1, . . . , αm), (E(α1), . . . , E(αm))) satisfies this relation.
The definition below is very general and applies to any ideal primitive.

Definition 3 (Evasive Relation). Let E be an ideal primitive. An m-ary rela-
tion R for E is said (q, ε)-evasive if for any adversary A with oracle access to an
instance E of E, making at most q oracle queries, one has

Pr
[
E ←$ E.Inst, (α1, . . . , αm)← AE :

((α1, . . . , αm), (E(α1), . . . , E(αm))) ∈ R
]
≤ ε,

where the probability is taken over the random draw of E and the random coins
of A.

Recall that the domain and the range of an ideal cipher E with key space K
and message spaceM are E.Dom = {+,−}×K×M and E.Rng =M so that, if
we particularize the definition above for an ideal cipher, each αi is a triplet in
E.Dom, and E(αi) ∈M.

If we now consider a construction C implementing E from some other ideal
primitive F, a natural thing to ask is that any relation which is evasive with
respect to E remains hard to find for CF , on average over the random draw of F ,
for any adversary with oracle access to F . This is formalized by the following
definition.

Definition 4 (Correlation Intractability). Let E and F be two ideal primi-
tives, and let C be a construction implementing E from F. Let R be an m-ary
relation for E. Then C is said to be (q, ε)-correlation intractable with respect to
R if for any adversary A with oracle access to an instance of F, making at most
q oracle queries, one has

Pr
[
F ←$ F.Inst, (α1, . . . , αm)← AF :

((α1, . . . , αm), (CF (α1), . . . , CF (αm))) ∈ R
]
≤ ε,

where the probability is taken over the random draw of F and the random coins
of A.

A theorem by Mandal et al. [21] (see also [7, Theorem 4]) establishes that
seq-indifferentiability allows, for any relation R, to “reduce” the correlation
intractability of C with respect to R to the evasiveness of R (with respect to
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E). More precisely, if C is seq-indifferentiable from E and if a relation R is
(q, ε)-evasive with respect to E, then C is (q′, ε′)-correlation intractable with
respect to R, and the “degradation” of security parameters (q′, ε′) compared
with (q, ε) depends on the seq-indifferentiability parameters. In other words, if
C is seq-indifferentiable from E, then any relation which is hard to find for E
remains hard to find for CF (on average over the random draw of F ).

This result can be straightforwardly declined for the case of KK-seq-indif-
ferentiability (and more generally RI-seq-indifferentiability): if C is X -RI-seq-
indifferentiable from E for some family X of subsets of E.Dom, then a similar
result holds, but only for relations R such that all inputs involved in R belong
to some subset X ∈ X ; similarly, if C is µ-KK-seq-indifferentiable from an ideal
cipher E with key space K, then the result holds for relations R such that all
inputs involved in R use the same µ keys.

Concretely we have the following theorem. The proof is similar to the proof
of [7, Theorem 4] and therefore deferred to the full version of the paper [8]. First
we give two preliminary definitions. Let E be an ideal primitive, and X be a
subset of E.Dom; then an m-ary relation R for E is said X-restricted if

∀((α1, . . . , αm), (β1, . . . , βm)) ∈ R, ∀i = 1, . . . ,m, αi ∈ X.

Similarly, let E be an ideal cipher with key space K, and µ ≥ 1; then an m-ary
relation R for E is said µ-restricted if there exists a subset K′ of K of size µ such
that

∀((δi, ki, zi), . . . , (δm, km, zm)), (z′1, . . . , z′m)) ∈ R, ∀i = 1, . . . ,m, ki ∈ K′.

Theorem 1. Let E and F be two ideal primitives, and let C be a construction
implementing E from F such that C makes at most c queries to its oracle on any
input. Let X be a family of subsets of E.Dom. Assume that C is (X , q+cm, σ, t, ε)-
RI-seq-indifferentiable from E. Then for any m-ary relation R which is X-
restricted for some X ∈ X , if R is (σ +m, εR)-evasive with respect to E, then C
is (q, ε+ εR)-correlation intractable with respect to R.

In particular, let E be an ideal cipher with key space K, and assume that C is
(µ, q+cm, σ, t, ε)-KK-seq-indifferentiable from E. Then for any µ-restricted m-ary
relation R, if R is (σ +m, εR)-evasive with respect to E, then C is (q, ε+ εR)-
correlation intractable with respect to R.

Remark 1. We need to dispel some confusion that might be created by the
following observation (this will also help illustrate all definitions above with a
concrete example): Lampe and Seurin [20] have exhibited an attacker against the
3-round IEM construction which, given oracle access to the inner permutations,
finds four tuples (ki, xi, yi), i = 1, . . . , 4, satisfying the following evasive relation:k1 ⊕ k2 ⊕ k3 ⊕ k4 = 0

x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0
y1 ⊕ y2 ⊕ y3 ⊕ y4 = 0.

Since we will later prove that the 3-round IEM construction is µ-KK-seq-
indifferentiable from an ideal cipher for any polynomial µ, this might seem
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contradictory with Theorem 1. The catch is that two of the four keys involved
in the relation and obtained at the end of the attack are not controlled by the
adversary and in fact range over the entire key space when the inner permutations
range over Perm(n). Hence, the evasive relation actually involves keys from the
entire key space (not just a small subset of it).

4 KK-Attack on the Two-Round IEM Construction

We explained in Section 1 that the 1-round EM construction is not resistant to µ-
known-key attacks for µ ≥ 2. We show here that this extends to the 2-round IEM
construction (with independent inner permutations and the trivial key-schedule),
more formally, that this construction is not µ-KK-seq-indifferentiable from an
ideal cipher for µ ≥ 2. Our attack shares some similarities with the related-key
attack against the same construction of [7]. Formally, we prove the following
theorem.

Theorem 2. The 2-round IEM construction EM[n, 2, f ] with independent inner
permutations and the trivial key schedule3 f is not 2-KK-seq-indifferentiable
from an ideal cipher. More precisely, for any pair of distinct keys (k1, k2), there
is an adversary which distinguishes the construction from an ideal cipher with
advantage close to 1 by making only queries to its left (construction/ideal cipher)
oracle involving these two keys. The adversary makes no queries to its right
(inner permutations/simulator) oracle.

Proof. We denote generically (E,F ) the oracles to which the adversary has
access and (k1, k2) two distinct keys the attacker is allowed to use. Consider the
following distinguisher (see Fig. 3 for a diagram of the attack):

(1) choose an arbitrary value x1 ∈ {0, 1}n, and query y1 := E(+, k1, x1);
(2) compute x2 := x1 ⊕ k2 ⊕ k1, and query y2 := E(+, k2, x2);
(3) compute y3 := y1 ⊕ k1 ⊕ k2, and query x3 := E(−, k2, y3);
(4) compute y4 := y2 ⊕ k2 ⊕ k1, and query x4 := E(−, k1, y4);
(5) check whether x4 = x3 ⊕ k1 ⊕ k2.

When the distinguisher is interacting with an ideal cipher E, two cases can occur.
Either y4 = y1, or y4 6= y1. In the first case, this means that y1 ⊕ y2 = k1 ⊕ k2,
which happens with probability 2−n since x1 and x2 are the first queries to
the uniformly random and independent permutations Ek1 and Ek2 . If y4 6= y1,
then y4 is the second query to the uniformly random permutation Ek1 , thus
x4 is uniformly random and this equality happens with probability at most
1/(2n − 1). Moreover one has y2 6= y1 ⊕ k1 ⊕ k2 which happens with probability
1− 2−n since x2 is the first query to Ek2 . Since E is a uniformly randomly drawn
blockcipher, Ek1 and Ek2 are independent permutations and this case happens
with probability at most 2−n. Overall, when E is an ideal cipher, this relation is
satisfied with a probability at most 2n−1.
3 In fact, the attack applies whenever the key-schedule is linear.
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Now we show that when the distinguisher is interacting with the two round
Even-Mansour construction, it always returns 1, independently of k, and the
inner permutations, which we denote P1 and P2. Noting that, by definition,
x2 = x1 ⊕ k2 ⊕ k1, we denote u1 the common value

u1
def= x1 ⊕ k1 = x2 ⊕ k2,

and we denote v1 = P1(u1). We also denote

u2 = v1 ⊕ k1 (2)
v2 = P2(u2)
u′2 = v1 ⊕ k2 (3)
v′2 = P2(u′2).

Hence, one has

y1 = v2 ⊕ k1 (4)
y2 = v′2 ⊕ k2. (5)

Since y3 = y1 ⊕ k1 ⊕ k2, we can see, using (4), that

y3 ⊕ k2 = y1 ⊕ k1 = v2.

Define

v′1 = u2 ⊕ k2 (6)
u′1 = P−1

1 (v′1).

This implies that
x3 = u′1 ⊕ k2. (7)

Since y4 = y2 ⊕ k2 ⊕ k1, we see by (5) that

y4 ⊕ k1 = y2 ⊕ k2 = v′2.

Moreover, we have

u′2 ⊕ k1 = u′2 ⊕ k2 ⊕ k1 ⊕ k2

= v1 ⊕ k1 ⊕ k2 by (3)
= u2 ⊕ k2 by (2)
= v′1 by (6).

This finally implies by (7) that

x4 ⊕ k1 = u′1 = x3 ⊕ k2,

which concludes the proof.
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Fig. 3. A 2-known-key attack on the iterated Even-Mansour cipher with two rounds
and the trivial key-schedule.

5 KK-Seq-Indifferentiability for Three Rounds

We have just given a 2-known-keys attack against the 2-round IEM cipher. This
implies that the 2-round IEM construction cannot be µ-KK-seq-indifferentiable
from an ideal cipher as soon as µ ≥ 2. (Remember on the other hand that the
1-round EM construction is 1-KK-indifferentiable from an ideal cipher [2].) Hence,
at least three rounds are necessary (and, as we will see now, sufficient) to achieve
µ-KK-seq-indifferentiability from an ideal cipher for µ ≥ 2.

Concretely, the main result of this section regarding the KK-seq-indifferentia-
bility of the 3-round IEM cipher is as follows.

Theorem 3. Let N = 2n. For any integers µ and q such that µq ≤ N/4, the
3-round IEM construction EM[n, 3, f ] with independent permutations and the
trivial key-schedule f is (µ, q, σ, t, ε)-KK-seq-indifferentiable from an ideal cipher
with n-bit blocks and n-bit keys, with

σ = µq, t = O(µq), and ε = 57µ2q2

N
.

As a corollary, we obtain from Theorem 1 that for any m-ary relation R which
is µ-restricted and (µq, ε)-evasive w.r.t. an ideal cipher (and assuming q is large
compared with c = 3 and m), the 3-round IEM cipher is

(
q, ε+O

(
µ2q2/2n

))
-

correlation intractable with respect to R.
It is also known [21] that for stateless ideal primitives (i.e., primitives whose an-

swers do not depend on the order of the queries it receives), seq-indifferentiability
implies public indifferentiability [29, 10], a variant of indifferentiability where
the simulator gets to know all queries of the distinguisher to the ideal primitive
E. Since an ideal cipher is stateless, Theorem 3 implies that the 3-round IEM
construction is also KK-publicly indifferentiable from an ideal cipher.

Proof Idea. The proof of Theorem 3 is very similar to the proof of (full, not KK)
seq-indifferentiability for the 4-round IEM construction of [7]. The main difference
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Fig. 4. Detection and adaptations zones used by the simulator for proving KK-seq-
indifferentiability of the 3-round iterated Even-Mansour construction from an ideal
cipher.

in the simulation strategy is the following: in the full seq-indifferentiability setting,
the simulator has no hint about which key(s) the adversary is using to try to
distinguish the real world from the ideal (simulated) world. Hence, it uses a
2-round “detection” zone in the middle made of permutations P2 and P3, which
allows, given a query to P2 (say, P2(u2) = v2) and a query to P3 (say, P3(u3) = v3),
to deduce the key associated to this “chain” of queries (namely, k = v2 ⊕ u3).
Permutations P1 and P4 are then used to “adapt” these detected chains and
make them match the ideal cipher E. In the KK-setting, the simulator knows the
set K′ of keys that the distinguisher is allowed to use in its ideal cipher queries.
Hence, the detection zone can be reduced to one single round (the middle one,
i.e. P2 for the 3-round IEM): each time the distinguisher makes a query to P2,
the simulator completes the µ chains corresponding to this query and each key
k ∈ K′, again using extremal round P1 and P3 to adapt the chains (see Fig. 4).

We only give an informal description of the simulator here and defer the formal
description in pseudocode and the full proof of Theorem 3 to the full version of
the paper [8]. The simulator is given the subset K′ of keys that the distinguisher
is bound to use. It offers an interface Query(i, δ, w) to the distinguisher for
querying the internal permutations, where i ∈ {1, 2, 3} names the permutation,
δ ∈ {+,−} indicates whether this a direct or inverse query, and w ∈ {0, 1}n is
the actual value queried. For each i = 1, . . . , 3, the simulator internally maintains
a table Πi reflecting which values have been already internally set for each
simulated permutation. Each table maps entries (δ, w) ∈ {+,−} × {0, 1}n to
values w′ ∈ {0, 1}n, initially undefined for all entries. We denote Π+

i , resp.
Π−i , the (time-dependent) sets of strings w ∈ {0, 1}n such that Πi(+, w), resp.
Πi(−, w), is defined. When the simulator receives a query (i, δ, w), it checks in
table Πi whether the corresponding answer Πi(δ, w) is already defined. When this
is the case, it returns the answer to the distinguisher and waits for the next query.
Otherwise, it randomly draws an answer w′ ∈ {0, 1}n and defines Πi(δ, w) := w′

as well as the answer to the opposite query Πi(δ̄, w′) := w. The randomness
used by the simulator is made explicit through a tuple of random permutations
P = (P1, P2, P3) with Pi := {+,−}×{0, 1}n → {0, 1}n, and for any u, v ∈ {0, 1}n,
Pi(+, u) = v ⇔ Pi(−, v) = u. We assume that the tuple (P1, P2, P3) is drawn
uniformly at random at the beginning of the experiment, but we note that S
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could equivalently lazily sample these permutations throughout its execution.
Then w′ is simply defined by the simulator as w′ := Pi(δ, w).4

Before returning w′ to the distinguisher, the simulator takes additional steps
to ensure that the whole IEM construction matches the ideal cipher E by running
a chain completion mechanism. Namely, if the distinguisher called Query(i, δ, w)
with i = 2, the simulator completes the “chains” for each known key k ∈ K′ by
executing a procedure CompleteChain(u2, v2, k, `), where ` indicates where the
chain will be “adapted” and (u2, v2) is the pair of values that was just added
to Π2. For example, assume that the distinguisher called Query(2,+, u2) and
that the answer randomly chosen by the simulator was v2. Then for each k ∈ K′,
the simulator computes the corresponding value u3 = v2 ⊕ k, and evaluates
the IEM construction backward, letting v1 := u2 ⊕ k, u1 := Π1(−, v1) (setting
this value at random in case it was not in Π1), x := u1 ⊕ k, y := E(+, k, x)
(hence making a query to E to “wrap around”), and v3 := y ⊕ k, until the
corresponding input/output values (u3, v3) for the third permutation are defined.
It then “adapts” (rather than setting randomly) table Π3 by calling procedure
ForceVal(u3, v3, 3) which sets Π3(+, u3) := v3 and Π3(−, v3) := u3 in order to
ensure consistency of the simulated IEM construction with E. (A crucial point
of the proof will be to show that this does not cause an overwrite, i.e., that these
two values are undefined before the adaptation occurs.) In case the query was to
Query(2,−, ·), the behavior of the simulator is symmetric, namely adaptation of
the chain takes place in table Π1.

6 KK-indifferentiability for Nine Rounds

In this section, we show that nine rounds of the IEM construction are sufficient
to achieve µ-KK-indifferentiability from an ideal cipher. Note that this is less
than what is currently known to be sufficient to achieve full indifferentiability
from an ideal cipher, namely twelve rounds, as shown by Lampe and Seurin [20].
We conjecture that four rounds are actually sufficient.

We use the same technique as in Section 5 for going from four rounds for
seq-indifferentiability to three rounds for KK-seq-indifferentiability: we start from
the 12-round simulator of [20], and shorten the detection zones using the fact
that the simulator knows the subset of keys used by the distinguisher.

We only give an informal description of the simulator and sketch how to
modify the indifferentiability proof of [20], so that the result should rather be
considered as a (substantiated) conjecture. (Given that nine is unlikely to be the
minimal number of rounds needed to achieve µ-KK-indifferentiability, and that we
already known that twelve rounds are sufficient to achieve full indifferentiability
and hence µ-KK-indifferentiability, the benefit of writing down the full proof is
rather low.) The high-level principle of how the simulator works is similar to
4 Note that for i = 1 and i = 3, this is not equivalent to letting w′ ←$ {0, 1}n \Π δ̄

i

since the simulator sometimes “adapts” the value of these tables, so that the tables
Πi and the permutations Pi will differ (with overwhelming probability) on adapted
entries.
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Fig. 5. Detection and adaptation zones used by the simulator for proving KK-
indifferentiability of the 9-round iterated Even-Mansour construction from an ideal
cipher.
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Section 5 except that there are now additional detection zones besides the middle
one preventing the distinguisher from creating “wrap around” chains (remember
that the distinguisher is not bound to be sequential here, so it can make an
ideal cipher query y := E(+, k, x) and evaluate the IEM construction from both
extremities by making permutation queries until the simulator is trapped into a
contradiction). Moreover, since the simulator can now recurse (i.e., completing a
chain can create new chains to be completed), it uses a queue of chains detected
and to be completed as in [20].

As before, the simulator reacts on any query to P5, and completes the chains
for any key k ∈ K′ by adapting at P7 if this is a direct query and adapting at P3
if this is an inverse query. Moreover, the simulator also reacts on direct queries to
P1 or inverse queries to P9. Let us consider the case of a query P1(+, u1). Then
for each key k ∈ K′, the simulator computes x := u1 ⊕ k, queries y := E(+, k, x),
lets v9 := y ⊕ k, and checks if v9 ∈ Π−9 . If this is the case, then the chain (u1, k)
is enqueued to be completed and adapted at P3. For an inverse query to P9,
adaptation takes place at P7. As in [20], the four “buffer” rounds P2, P4, P6
and P8 surrounding adaptation rounds ensure that no collision can occur when
adapting distinct chains.

The analysis of this simulator then follows the same lines as in [20]. Its
complexity can be upper bounded as follows: first, one applies the standard
argument that the number of wrap-around chains that will be detected is upper
bounded (with very high probability) by the number of ideal cipher queries of
the distinguisher, hence by q. This implies that the size of table Π5 is always
at most 2q (since it increases only because of a distinguisher’s query or when
completing a wrap-around chain). It follows that the number of middle chains
completed is at most 2µq, and the size of all tables Πi for i 6= 5 is at most
q + q + 2µq = 2(µ+ 1)q. Also, the number of calls made by the simulator to the
ideal cipher can be upper bounded by 2µq (number of middle chains that are
completed), plus 4µ(µ+ 1)q (number of wrap-around chains that are checked),
hence it is O(µ2q) (the running time is similar).

Finally, proving a rigorous upper bound on the distinguishing advantage is a
cumbersome task that remains to be done. A rough estimation following the lines
of [20] would be that bad events that would make the simulator to overwrite
a value when adapting chains (which is what dominates the security bound)
happen with probability at most (max |Πi|)6/2n, hence O(µ6q6).
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