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Abstract. Universal hash functions (UHFs) have been extensively used
in the design of cryptographic schemes. If we consider the related-key
attack (RKA) against these UHF-based schemes, some of them may not
be secure, especially those using the key of UHF as a part of the whole
key of scheme, due to the weakness of UHF in the RKA setting. In or-
der to solve this issue, we propose a new concept of related-key almost
universal hash function, which is a natural extension to almost universal
hash function in the RKA setting. We define related-key almost uni-
versal (RKA-AU) hash function and related-key almost XOR universal
(RKA-AXU) hash function. However almost all the existing UHFs do
not satisfy the new definitions. We construct one fixed-input-length uni-
versal hash function named RH1 and two variable-input-length universal
hash functions named RH2 and RH3. We show that RH1 and RH2 are
both RKA-AXU, and RH3 is RKA-AU for the RKD set Φ⊕. Further-
more, RH1, RH2 and RH3 are nearly as efficient as previously similar
constructions. RKA-AU (RKA-AXU) hash functions can be used as com-
ponents in the related-key secure cryptographic schemes. If we replace
the universal hash functions in the schemes with our corresponding con-
structions, the problems about related-key attack can be solved for some
RKD sets. More specifically, we give four concrete applications of RKA-
AU and RKA-AXU in related-key secure message authentication codes
and tweakable block ciphers.

Keywords: Almost universal hash function, related-key attack, related-
key almost universal hash function, message authentication code, tweak-
able block cipher.

1 Introduction

Universal hash functions. Ever since introduced by Carter and Wegman [15,52]
in the design of message authentication code (MAC), universal hash functions



(UHFs) have become common components in numerous cryptographic construc-
tions, especially in modes of operation, to provide security services as confi-
dentiality, authenticity or both. A universal hash function (UHF) is a family
of functions indexed by keys. Unlike other components such as block ciphers,
keyed hash functions and permutations, which are often used as pseudorandom
permutations (PRPs), pseudorandom functions (PRFs) and public random per-
mutations respectively, UHFs have no cryptographic strength such as pseudo-
randomness. So UHFs usually come along with other primitives, such as PRPs,
PRFs, etc., to set up cryptographic schemes. The basic property of UHF is that
the collision probability of hash values from any two different messages is small
when the key is uniformly random.

One of examples is the polynomial evaluation hash function [8] in which
the variable is the key and the coefficients consist of message blocks, such as :
Poly : {0, 1}n × {0, 1}nm → {0, 1}n,

PolyK(M) = M1K
m ⊕M2K

m−1 ⊕ · · · ⊕MmK (1)

where M = M1‖M2|| · · · ‖Mm ∈ {0, 1}nm, Mi ∈ {0, 1}n, i = 1, 2, · · · ,m and
all the operations are in the finite field GF (2n). This kind of UHF appears in
GCM [37], XCB [29], HCTR [50], HCH [16,17], COBRA [2], Enchilada [27],
POET [1] and many other constructions. For any M 6= M ′, PolyK(M) ⊕
PolyK(M ′) is a polynomial in K whose degree is nonzero and no more than
m, so there are at most m keys leading to PolyK(M) = PolyK(M ′), that is the
collision probability is at most m/2n when K is uniformly random. We say that
this hash function is m/2n-almost-universal (AU). Obviously the probability of
PolyK(M) ⊕ PolyK(M ′) = C is also at most m/2n for any M 6= M ′ and C.
That is another commonly used concept: almost XOR universal (AXU) hash
functions. Poly is also m/2n-AXU.

A direct application of UHFs is in message authentication codes (MACs)
in which the message is hashed by the UHF into a short digest which then
encrypted into a tag. MACs of this kind have been standardized in ISO/IEC
9797-3:2011 [31] which includes UMAC [13], Badger [14], Poly1305-AES [6]
and GMAC [37]. UHFs are also used in tweakable block ciphers (TBCs) [36]
and tweakable enciphering schemes (TESes), e.g. XTS-AES in IEEE Std 1619-
2007 [28] and NIST SP 800-38E [40], XCB in IEEE Std 1619.2-2010 [29], HCTR [50]
and HCH [16,17], etc. The third application of UHF is in authenticated encryp-
tion (AE) schemes, e.g. the most widely used AE scheme GCM [37] standardized
in ISO/IEC-19772:2009 [30] and NIST SP 800-38D [39]. In the recent CAESAR
competition, several UHF-based AE schemes were proposed, e.g. COBRA [2],
Enchilada [27] and POET [1], etc. In the security proofs of all these schemes,
a crucial point is the collision probability about the inputs to other primitives.
The property of UHF guarantees that the collision seldom happens.

Related-key attacks. Related-key attack (RKA) was firstly introduced by
Biham et al. [10] against block ciphers [22,12,48] and then extended to other
cryptographic algorithms such as stream ciphers [18], MACs [41], TESes [49],
AE schemes [21], etc. Bellare and Kohno [5] firstly gave a theoretical study of



related-key security of block cipher, modeling the concept of pseudorandom per-
mutation in the RKA setting (RKA-PRP) and pseudorandom function in the
RKA setting (RKA-PRF). Applebaum, Harnik and Ishai [3] gave the related-key
security definition of encryption. Bhattacharyya and Roy [9] gave the related-
key security definition of MAC. Related-key security has become an important
criteria for cryptographic constructions.

In the RKA setting, the adversary does not know the secret key as in the
usual invariable-key setting, but can apply related-key-deriving (RKD) transfor-
mations to change the secret key and observe outputs under the related keys. Let
Φ be a RKD set which consists of transformations on the key space K = {0, 1}k.
There are two canonical RKD sets: Φ⊕ = {XOR∆ : K 7→ K ⊕∆,∆ ∈ K} and
Φ+ = {ADDδ : K 7→ K + δ mod 2k, δ ∈ K}. In the following, we use Φ⊕ as the
default RKD set unless specified otherwise.

The related-key security requires that the queries under the related keys do
not threaten the security under the original key, as the definition of related-key
unforgeability in [9]. Or more strictly, for different related keys, the corresponding
algorithms are secure independently, as the definition of RKA-PRP in [5] and [3].

Motivations. How to guarantee the related-key security? An intuition is that if
the underlying components are related-key secure, the upper constructions should
be related-key secure. This is true for most of block cipher modes of operation,
especially for those one-key modes whose key is also that of the underlying block
cipher, including CBC, OFB, CFB, CTR, CMAC, OCB, etc. But for the UHF-
based schemes, it is not the case. Although almost all the UHF-based schemes
have security proofs in the usual invariable-key setting, there are a lot of examples
showing that some of them can not resist related-key attacks.

Let’s first check UHF-based MACs, in which a typical construction is to
encrypt the hash value into a tag by one-time-pad encryption. This method
originates from Carter and Wegman [15,52] and dominates the usages of UHF
in MACs [31]. Consider a simple example: MACK,K′(N,M) = PolyK(M) ⊕
FK′(N) where M = M1‖M2 ∈ {0, 1}2n, PolyK(M1‖M2) = M1K

2 ⊕M2K, F is
a function often instantiated by a block cipher and N is a nonce. It has been
proved that [44,7] if F is a PRF and Poly is almost XOR universal, MAC is
secure.

But if we query with A‖A under the related key (K⊕0n−11,K ′), the answer
is T = (A(K ⊕ 0n−11)2 ⊕A(K ⊕ 0n−11))⊕ FK′(N) = (AK2 ⊕AK))⊕ FK′(N).
Therefore we can predict that the tag of A‖A under the original key is also T . So
(N,A‖A, T ) is a successful forgery which breaks the RKA security of the MAC.
A similar attack can apply to Poly1305-AES [6] in ISO/IEC 9797-3:2011 [31].

In Appendix B, we give more RKA examples against TBC, TES and AE
schemes using Poly as UHF components. In all these examples, the key of UHF
is a part of the key of whole scheme, so that the adversary can derive the related
key of UHF and get input collisions to other primitives such as PRPs or PRFs.
The collision in the MAC example is PolyK⊕0n−11(A‖A) = PolyK(A‖A). We
stress that all these attacks only use the properties of UHF in the RKA setting
and have nothing to do with other underlying primitives, whether it is RKA



secure or not. In other words, the related-key weaknesses of the UHF alone results
in related-key attacks against the schemes.

Definitions. In order to prevent the above attacks, we propose a new concept
of related-key almost universal hash function which can ensure that the above
collisions seldom happen. The new concept is a natural extension to almost uni-
versal hash function in the RKA setting. We define related-key almost universal
(RKA-AU) hash function and related-key almost XOR universal (RKA-AXU)
hash function. We will show that these definitions solve the above problems
for some RKD set. Unfortunately almost all the existing UHFs do not satisfy
the new definitions, including Poly mentioned in the above, MMH [26], Square
Hash [23], NMH [26] and NH [13], etc. See Appendix C for details.

Constructions. We construct one fixed-input-length universal hash function
named RH1 and two variable-input-length universal hash functions named RH2
and RH3. We prove that RH1 and RH2 are both RKA-AXU, and RH3 is RKA-
AU for the RKD set Φ⊕. Furthermore, RH1, RH2 and RH3 are almost as efficient
as previous constructions.

Applications. If we replace the universal hash functions in the examples of
section 1 with our constructions, the problems about related-key attacks for
some RKD set can be solved. More specifically, we give four concrete examples
in MACs and TBCs.

2 Definitions

For a finite set S, x
$←− S means selecting an element x uniformly at random

from the set X. For a string M , |M | denotes the bit length of M . For b ∈ {0, 1},
bm denotes m bits of b. AO ⇒ b denotes that the algorithm A with an oracle O
outputs b.

For a function H : K × D → R, when K ∈ K is a key, we write H(K,M)
as HK(M), where (K,M) ∈ K × D. The following are the usual definitions of
UHF.

Definition 1 (AU [46]). H is an ε-almost-universal (ε-AU) hash function, if
for any M,M ′ ∈ D, M 6= M ′,

Pr[K
$←− K : HK(M) = HK(M ′)] ≤ ε.

When ε is negligible we say that H is AU.

Definition 2 (AXU [34]). Let (R,⊕) be an abelian group5. H is an ε-almost-
XOR-universal (ε-AXU), if for any M,M ′ ∈ D, M 6= M ′, and C ∈ R,

Pr[K
$←− K : HK(M)⊕HK(M ′) = C] ≤ ε.

When ε is negligible we say that H is AXU.

5 For arbitrary abelian groups a generalized notion is almost Delta universal (A∆U)
hash function [47]. In the following when we say AXU we may sometimes refer to
A∆U.



Clearly, if H is ε-AXU, it is also ε-AU, for ε-AU is a special case of ε-AXU when
C = 0.

RKA-AU and RKA-AXU. In the following, we extend the above definitions
in the RKA setting. Let Φ be a RKD set.

Definition 3 (RKA-AU). H is an ε-related-key-almost-universal (ε-RKA-AU)
hash function for the RKD set Φ, if for any φ, φ′ ∈ Φ, M,M ′ ∈ D, (φ,M) 6=
(φ′,M ′),

Pr[K
$←− K : Hφ(K)(M) = Hφ′(K)(M

′)] ≤ ε.
When ε is negligible we say that H is RKA-AU for Φ.

Definition 4 (RKA-AXU). Let (R,⊕) be an abelian group. H is an ε-related-
key-almost-universal (ε-RKA-AXU) hash function for the RKD set Φ, if for any
φ, φ′ ∈ Φ, M,M ′ ∈ D, (φ,M) 6= (φ′,M ′), and C ∈ R,

Pr[K
$←− K : Hφ(K)(M)⊕Hφ′(K)(M

′) = C] ≤ ε.

When ε is negligible we say that H is RKA-AXU for Φ.

For φ, φ′ ∈ Φ, φ 6= φ′ means there exists a key K ∈ K such that φ(K) 6= φ′(K).

Restricting RKD sets. As in the discussion of RKA-PRP [5], the related-key
properties of UHF are relevant to the choice of RKD set. For some RKD sets the
related-key almost universal hash function may not exist. It is necessary that
the RKD set is both output unpredictable and collision resistant. We must put
some restrictions on the RKD set.

1) Output unpredictability. A φ ∈ Φ that has predictable outputs if there
exists a constant S such that the probability of φ(K) = S is high. If it happens,
then for any function H the probability of Hφ(K)(M)⊕Hφ(K)(M

′) = HS(M)⊕
HS(M ′) is also high for any two distinct M and M ′. So the RKA-AXU function
is not available for the RKD set which has predictable transformations. We define

OU(Φ) = maxφ∈Φ,SPr[K
$←− K : φ(K) = S]. If OU(Φ) is negligible, we say that

Φ is output unpredictable.
2) Collision resistance. Two distinct φ, φ′ ∈ Φ have high collision probability

if the probability of φ(K) = φ′(K) is hight. If it happens, then for any function
H the probability of Hφ(K)(M) ⊕ Hφ′(K)(M) = 0 is also high for any M . So
neither the RKA-AXU nor RKA-AU function is available for the RKD set which
has high collision probability. We define CR(Φ) = maxφ,φ′∈Φ,φ 6=φ′Pr[K

$←− K :
φ(K) = φ′(K)]. If CR(Φ) is negligible, we say that Φ is collision resistant. More
strictly, if for any two distinct φ, φ′ ∈ Φ and any key K, we have φ(K) 6= φ′(K),
or in other words CR(Φ) = 0, we say that Φ is claw-free.

We note that Φ⊕ and Φ+ are output unpredictable, collision resistant and
claw-free. The example in section 1 shows that Poly is not RKA-AXU for the
RKD set Φ⊕. If we choose the message M to be 0mn, PolyK(M) will always be
0n. Therefore for any φ, φ′ ∈ Φ, we have Polyφ(K)(0

mn) = Polyφ′(K)(0
mn). So

Poly is not RKA-AU either. If we look at the other existing UHFs, unfortunately
almost all of them do not satisfy the new definitions, including MMH [26], Square
Hash [23], NMH [26] and NH [13], etc. See Appendix C for more details.



3 Constructions

We construct two types of related-key almost universal hash functions: one fixed-
input-length (FIL) UHF named RH1 and two variable-input-length (VIL) UHFs
named RH2 and RH3. We prove that RH1 and RH2 are both RKA-AXU, and
RH3 is RKA-AU, for the RKD set Φ⊕.

For a function F : K×D → R, we define a new function F ′ : K×(K×D)→ R

F ′K(∆,M) = FK⊕∆(M).

It is easy to see that F is RKA-AU (RKA-AXU) for the RKD set Φ⊕ if and
only if F ′ is AU (AXU). All the constructions are based on the polynomial
evaluation function Poly. From the above observation, our main idea is to modify
PolyK(M) into FK(M) such that FK⊕∆(M) is still an almost (XOR) universal
hash function.

FIL Constructions. We first construct a function based on PolyK(M) = MK
by adding a new term K3.

Construction 1 RH1 : {0, 1}n × {0, 1}n → {0, 1}n,

RH1K(M) = MK ⊕K3. (2)

Theorem 1. RH1 is 2/2n-RKA-AXU for the RKD set Φ⊕.

Proof. We prove that for anyM,M ′, ∆1, ∆2 ∈ {0, 1}n, (∆1,M) 6= (∆2,M
′), and

C ∈ GF (2n), Pr[K
$←− {0, 1}n : F (K) = C] ≤ ε, where F (K) = RH1K⊕∆1

(M)⊕
RH1K⊕∆2

(M ′). We have

F (K) = (∆1 ⊕∆2)K2 ⊕ (∆2
1 ⊕∆2

2 ⊕M ⊕M ′)K ⊕ (∆3
1 ⊕∆3

2 ⊕M∆1 ⊕M ′∆2).

If ∆2 6= ∆1, F (K) = C has two roots at most. If ∆1 = ∆2, then M 6= M ′. The
degree of F (K) is 1 and F (K) = C has one root. Therefore RH1 is 2/2n-RKA-
AXU. ut

Remark 1. As one of reviewers points out that RH1 is RKA-AXU for the RKD
set Φ⊕, but is not RKA-AXU or even RKA-AU for a RKD set containing just
containing two transformation: Φ = {id, fα} where id is the identity transfor-
mation and fα(K) = αK, α3 = 1. It is easy to verify that RH1fα(K)(α

−1M) =
RH1K(M).

Remark 2. More generally we consider polynomial Hi,j
K (M) = MKi + Kj over

the finite field GF (2n) or GF (p) where i, j are integers and p is a prime. We
show the results when 1 ≤ i, j ≤ 4 in Table 1.

VIL Constructions. Poly does not support variable input length. For any
message M ∈ {0, 1}∗, a general padding method as in [37] is to firstly pad



(i, j) (1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4)
GF (2n) 00 00 11 00 00 00 11 00 10 10 00 10 00 00 11 00
GF (p) 00 00 11 11 10 00 10 11 00 11 00 11 10 11 11 00

Table 1. For Hi,j
K (M) = MKi + Kj , “11” means it is RKA-AU and RKA-AXU for

the RKD set Φ⊕, “10” means it is RKA-AU but not RKA-AXU, and “00” means it is
neither RKA-AU nor RKA-AXU.

minimum zeroes to make the length multiple of the block length and then pad
the bit length of M as the last block:

pad(M) = M‖0i‖|M |.

Then PolyK(pad(M)) is variable-input-length AXU hash function but still is
not RKA-AU (RKA-AXU). Following the above method we add some term Ki

in order to get the RKA-AXU property.

Construction 2 RH2 : {0, 1}n × {0, 1}∗ → {0, 1}n,

RH2K(M) =

{
Kl+2 ⊕ PolyK(pad(M)), l is odd

Kl+3 ⊕ PolyK(pad(M))K, l is even
(3)

where l = d|M |/ne+ 1 is the number of blocks in pad(M).

Theorem 2. RH2 is (lmax+3)/2n-RKA-AXU for the RKD set Φ⊕, where lmax
is the maximum block number of messages after padding.

Proof. For any message M , suppose pad(M) = M1‖M2‖ · · · ‖Ml. When l is odd

RH2K(M) = Kl+2 ⊕M1K
l ⊕ · · · ⊕MlK.

When l is even

RH2K(M) = Kl+3 ⊕M1K
l+1 ⊕ · · · ⊕MlK

2.

We prove that for any M,M ′ ∈ {0, 1}∗, ∆1, ∆2, C ∈ {0, 1}n, (∆1,M) 6=
(∆2,M

′), Pr[F (K) = C] ≤ ε, where F (K) = RH2K⊕∆1(M) ⊕ RH2K⊕∆2(M ′).
We only need to show the degree of F (K) is nonzero. Suppose pad(M) =
M1‖M2‖ · · · ‖Ml and pad(M ′) = M ′1‖M ′2‖ · · · ‖M ′l′ . Consider F (K) in the fol-
lowing two cases.
Case 1. ∆1 6= ∆2. Suppose the degrees of RH2K⊕∆1(M) and RH2K⊕∆2(M ′)
are d and d′ respectively, which are both odd.

When d = d′, the coefficient of Kd−1 in F (K) is ∆1 ⊕∆2 which is nonzero.
When d 6= d′, suppose d > d′ w.l.o.g. the coefficient of Kd in F (K) is 1.

Case 2. ∆1 = ∆2. We treat K ⊕∆1 as a new key, so without loss of generality,
we only consider ∆1 = ∆2 = 0 in the following.

When l = l′, there exists 1 ≤ j ≤ l s.t. Mj 6= M ′j . So the coefficient of Kl+1−j



(if l is odd) or Kl+2−j (if l is even) in F (K) is Mj ⊕M ′j which is nonzero.
When l′ 6= l and are both odd, the coefficient of K is |M | ⊕ |M ′| which is

nonzero.
When l′ 6= l and are both even, the coefficient of K2 is |M | ⊕ |M ′| which is

nonzero.
When l′ 6= l, one is odd and one is even, the coefficient of K is |M | or |M ′|

which are both nonzero.
Therefore the degree of F (K) is nonzero. ut

Since RH2 is RKA-AXU, it is also RKA-AU. But sometimes we only need
RKA-AU functions. We can improve the efficiency of RKA-AU construction by
one less multiplication in finite field if replace Poly in RH2 with the following
Poly′:

Poly′K(M) = M1K
m−1 ⊕M2K

m−2 ⊕ · · · ⊕Mm

where M = M1‖M2|| · · · ‖Mm ∈ {0, 1}nm. Poly′ is AU but not AXU. We have
the following construction and the proof is similar to that of theorem 2.

Construction 3 RH3 : {0, 1}n × {0, 1}∗ → {0, 1}n,

RH3K(M) =

{
Kl+2 ⊕ Poly′K(pad(M)), l is odd

Kl+3 ⊕ Poly′K(pad(M))K, l is even
(4)

where l = d|M |/ne+ 1 is the number of blocks in pad(M).

Theorem 3. RH3 is (lmax + 3)/2n-RKA-AU for the RKD set Φ⊕, where lmax
is the maximum number of blocks in messages after padding.

Efficiency of constructions. We analyze the efficiency of RH1, RH2 and RH3
compared with previous similar constructions.

1) RH1. Compared with PolyK(M) = MK, in RH1K(M) = MK ⊕K3 the
monomial K3 can be pre-computed. So RH1 needs extra one pre-computation
and one XOR operation.

2) RH2. The polynomial T = M1K
m ⊕M2K

m−1 ⊕ · · · ⊕MmK is usually
evaluated by Horner’s rule: T ← 0, T ← (T ⊕Mi)K for 1 ≤ i ≤ m. Assume
that pad(M) = M1‖M2‖ · · · ‖Ml, Table 2 shows the computation processes of
RH2K(M) and PolyK(pad(M)) by Horner’s rule respectively. We can see that
compared with PolyK(pad(M)), RH2 needs one additional pre-computation of
K2, and one more multiplication if l is even.

3) RH3. Similar to the analysis of RH2, RH3 needs one additional pre-
computation of K2, and one more multiplication if l is even, compared with
Poly′K(pad(M)).

In brief, RH1, RH2 and RH3 are almost as efficient as previous similar con-
structions.



RH2K(M) :
T ← K2

for i = 1 to l
T ← (T ⊕Mi)K

if l is even
T ← TK

return T

PolyK(pad(M)) :
T ← 0
for i = 1 to l

T ← (T ⊕Mi)K

return T

Table 2. Computation of RH2K(M) and PolyK(pad(M)) by Horner’s rule.

4 Applications

RKA-AU (RKA-AXU) hash functions can be used as components, along with
other primitives such as RKA-PRPs and RKA-PRFs, in the design of related-
key secure cryptographic schemes. If we replace the UHFs in the cryptographic
schemes in section 1 with our corresponding constructions, the issues about
related-key attacks can be solved for some RKD set. Informally speaking, if the
UHF is RKA-AU or RKA-AXU for the RKD set Φ1 and the underlying primitive
is RKA-PRP or RKA-PRF for the RKD set Φ2, the scheme is related-key secure
for the RKD set Φ1 × Φ2.

In the following, we give four concrete applications of RKA-AU and RKA-
AXU in related-key secure MACs and TBCs. In the analyses of these schemes,
we mainly give intuitive interpretations by establishing the relationship between
the RKA setting and the invariable-key setting and the detailed proofs will
be given in the full paper [51]. Then the remaining proof is similar to that in
the invariable-key setting. Let RKA-PRF be PRF against related-key attacks.
We define a chosen-ciphertext attack (CCA) secure tweakable block cipher as
a strongly tweakable pseudorandom permutation (STPRP, SPRP if it has no
tweak). If it is also related-key secure we denote it as RKA-STPRP (RKA-SPRP
if it has no tweak). The detailed definitions are in Appendix A.

For simplicity we only consider the claw-free RKD set Φ in which for any
φ1, φ1 ∈ Φ and any key K we have φ1(K) 6= φ2(K). The relationships are based
on three observations on the underlying components when we regard the RKD
transformation as an additional input.

Observation 1. For a function F : K×D → R and a claw-free RKD set Φ on K.
We define a new function F ′ : K × (Φ × D) → R, F ′K(φ,M) = Fφ(K)(M). It is
directly derived from the definition that F is ε-RKA-AU (ε-RKA-AXU) for the
RKD set Φ if and only if F ′ is ε-AU (ε-AXU).

Observation 2. Furthermore, we have that F is a RKA-PRF for the RKD set Φ
if and only if F ′ is a PRF.

Observation 3. For a block cipher E : K × {0, 1}n → {0, 1}n and a claw-free
RKD set Φ on K, define a tweakable block cipher E′ : K×Φ×{0, 1}n → {0, 1}n,
E′K(φ,M) = Eφ(K)(M). E is a RKA-SPRP for the RKD set Φ, if and only if E′

is a STPRP.



4.1 Related-key secure MACs

Beside the Carter-Wegman scheme to construct MAC [52]

MAC1K,K′(N,M) = HK(M)⊕ FK′(N) (5)

the other method [45] is

MAC2K,K′(M) = FK′(HK(M)) (6)

where H : K1 × D → {0, 1}n and F : K2 × {0, 1}n → {0, 1}n are two keyed
functions, M is a message and N is a nonce. We show that the two schemes are
both related-key secure by the following two theorems.

Theorem 4. If H is ε-RKA-AXU for the RKD set Φ1 and F is a RKA-PRF
for the RKD set Φ2, then MAC1 is related-key unforgable (RKA-UF) for the
RKD set Φ1 × Φ2. More specifically,

Advrka−ufMAC1 (q, t) ≤ Advrka−prfF (q, t′) + ε

where the adversary makes q queries to MAC1 and t′ = t+O(q).

From Observation 1, H ′K(φ1,M) = Hφ1(K)(M) is AXU; from Observation 2,
F ′K′(φ2, N) = Fφ2(K′)(N) is a PRF. If we look φ1 as a part of the message and
φ2 as a part of the nonce, we only need to prove that GK,K′(φ2, N, φ1,M) =
H ′K(φ1,M) ⊕ F ′K′(φ2, N) is unforgeable in the invariable-key setting. The re-
maining proof is similar to that in [34].

Theorem 5. If H is ε-RKA-AU for the RKD set Φ1 and F is a RKA-PRF for
the RKD set Φ2, then MAC2 is a RKA-PRF for the RKD set Φ1 × Φ2. More
specifically,

Advrka−prfMAC2 (q, t) ≤ Advrka−prfF (q, t′) + εq2/2

where the adversary makes q queries to MAC2 and t′ = t+O(q).

From Observation 1, H ′K(φ1,M) = Hφ1(K)(M) is AXU; from Observation 2,
F ′K′(φ2,M) = Fφ2(K′)(M) is a PRF. If we look φ1 and φ2 as a part of the
message, we only need to prove that GK,K′(φ1, φ2,M) = F ′K′(φ2, H

′
K(φ1,M))

is a PRF in the invariable-key setting. The remaining proof is similar to that
in [45].

4.2 Related-key secure TBCs

Block cipher based schemes. In [36] Liskov et al. gave a construction of
tweakable block cipher (TBC) from a block cipher and a universal hash function:

TBC1K,K′(T,M) = EK′(M ⊕HK(T ))⊕HK(T ) (7)

where H : K1×D → {0, 1}n is the universal hash function and E : K2×{0, 1}n →
{0, 1}n is the block cipher. In Appendix B we show that TBC1 is not related-
key secure if HK(T ) = TK. But if H is RKA-AXU, we show that TBC1 is
related-key secure for some RKD set in theorem 6.



Theorem 6. If H is ε-RKA-AXU for the RKD set Φ1 and E is RKA-SPRP
for the RKD set Φ2, then TBC1 is a RKA-STPRP for the RKD set Φ1 × Φ2.
More specifically,

Advrka−stprpTBC1 (q, t) ≤ Advrka−sprpE (q, t′) + 3εq2

where the adversary makes q queries to TBC1 or TBC1−1 and t′ = t+O(q).

From Observation 1, H ′K(φ1,M) = Hφ1(K)(M) is AXU; from Observation 3,
E′K′(φ2,M) = Eφ2(K′)(M) is a STPRP. If we consider φ1 and φ2 as a part

of the tweak, we only need to prove that ẼK,K′(φ1, φ2, T,M) = E′K′(φ2,M ⊕
H ′K(φ1, T ))⊕H ′K(φ1, T ) is a STPRP in the invariable-key setting. The remaining
proof is similar to that in [36].

Permutation based schemes. If we replace the block cipher in TBC1 as a
permutation, we get

TBC2K(T,M) = π(M ⊕HK(T ))⊕HK(T ) (8)

where π is the permutation from {0, 1}m to {0, 1}m, n ≤ m. For A ∈ {0, 1}n,
B ∈ {0, 1}m, when n < m, A ⊕ B is defined as (A‖0m−n) ⊕ B. We show the
related-key security of TBC2 in theorem 7. We need that H is both RKA-AXU
and related-key almost uniform. H is δ-related-key-almost-uniform means for

any φ ∈ Φ, M ∈ D and C ∈ {0, 1}n, Pr[K
$←− K : Hφ(K)(M) = C] ≤ δ.

When H is also ε-RKA-AXU, we say that it is (ε, δ)-RKA-AXU. For example,
RH1 = MK ⊕K3 is (2/2n, 3/2n)-RKA-AXU.

TBC2 is a one-round tweakable Even-Mansour cipher. How to add tweak
and retain related-key security of the Even-Mansour cipher is a popular topic in
recent years [24,20,19,38,25]. Compared with previous constructions in [38] and
[25] we only need one permutation invocation (two in [38,25] ).

Theorem 7. If H is (ε, δ)-RKA-AXU for the RKD set Φ and π is public random
permutation, then TBC2 is a RK-TSPRP for the RKD set Φ. More specifically,

Advrka−stprpTBC2 (q0, q1) ≤ q20ε+ 2q0q1δ + 2−m(q20 + 2q0q1)

where the adversary makes q0 queries to TBC2 or TBC2−1and q1 queries to π
or π−1.

From Observation 1,H ′K(φ,M) = Hφ(K)(M) is AXU. If we look φ as a part of the

nonce, we only need to prove that ẼK(φ, T,M) = π(M ⊕H ′K(φ, T ))⊕H ′K(φ, T )
is a STPRP in the invariable-key setting. The remaining proof is similar to that
in [35] or [19].

5 Conclusions

In this paper we mainly focus on two-key schemes, e.g. one key for the UHF
and the other key for the block cipher. In order to resist related-key attacks, we



define a new concept of related-key almost universal hash function, which is a
natural extension to almost universal hash function in the RKA setting.

Not every UHF-based scheme suffers from related-key attacks. For example
GCM [37] has only one key which is also the key of the underlying block cipher.
The key of UHF is derived from the master key K as EK(0128). GCM has been
proved to be secure in the invariable-key setting [32] given that E is a PRP. If
E is a RKA-PRP, for each φ ∈ Φ, Eφ(K) is an independent PRP. So GCM is
secure independently for each related key, and thus GCM is also secure in the
RKA setting. In this roughly reasoning, we only require that the UHF is AXU
but not RKA-AXU. Therefore it is possible that the upper scheme “inherit” the
related-key security only from the underlying block cipher. It is also true to some
other one-key schemes such as XCB [29], POET [1], etc. We can even modify the
vulnerable schemes in this paper into related-key secure ones without the notion
of RKA-AXU or RKA-AU by generating the keys in the schemes as Ki = EK(i),
i = 1, 2, · · · where K is the master key. But there are still a lot of two-key schemes
such as Poly1305-AES [6], HCTR [50], HCHp and HCHfp [16,17]. Furthermore, if
we regard related-key attacks as a class of side-channel attacks, the attacker may
have the ability to change a stored key via tampering or fault injection [11,4].
The key of UHF stored somewhere, no matter whether it is a part of the master
key or derived from the master key, can be changed in this scenario.

We also give several efficient constructions named RH1, RH2 and RH3 which
are nearly as efficient as previous similar ones. RKA-AU (RKA-AXU) hash func-
tions can be used as components, along with other primitives such as RKA-PRPs
and RKA-PRFs etc., in the design of related-key secure cryptographic schemes.
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A Related-key security of MAC, TBC, TES and AE
schemes

1) RKA-PRF. For a function F : K×D → R, the adversary A can make related-
key oracle queries (φ,M) ∈ Φ × D and is responded with Fφ(K)(M) where K
is the secret key. Let ρ be a uniformly random function from K × D to R. The
advantage of A is defined as

Advrka−prfF (A) = Pr[AF·(K)(·) ⇒ 1]− Pr[Aρ·(K)(·) ⇒ 1].

For all adversaries with computation time at most t, oracle queries at most q,
we denote Advrka−prfF (q, t) = maxAAdvrka−prfF (A). When the advantage is
negligible, we say that F is a RKA-PRF for Φ.

2) RKA-UF. A message authentication code (MAC) is a function F : K ×N ×
M→ {0, 1}n, where K, N ,M and {0, 1}n are spaces of key, nonce, message and
tag respectively. The nonce space can be an empty set N = ∅. For a RKD set Φ,
the adversary A queries the MAC algorithm with (φ,N,M) ∈ Φ×N ×M but
never repeats N , and gets T = Fφ(K)(N,M). After several queries A returns a
quadruple (φ′, N ′,M ′, T ′) which never appear before in the queries. We define
the probability of T ′ = Fφ′(K)(N

′,M ′) as the advantage of A and write it as:

Advrka−ufF (A) = Pr[AF·(K)(·,·) forges].

For all adversaries with computation time at most t, oracle queries at most
q, we denote Advrka−ufF (q, t) = maxAAdvrka−ufF (A). When the advantage is
negligible, we say that F is related-key unforgeable (RKA-UF) or related-key
unpredictable for Φ.
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3) RKA-STPRP and RKA-SPRP. A tweakable block cipher consists of two al-
gorithms S = (E,D). The encryption algorithm E : K × T × {0, 1}n → {0, 1}n,
where K, T and {0, 1}n are spaces of key, tweak, plaintext/ciphertext respec-
tively. For input (K,T, P ) ∈ K×T ×{0, 1}n, we write the result as C = ET

K(P )
The decryption algorithm D : K × T × {0, 1}n → {0, 1}n. We require that for
any (K,T ) ∈ K×T , ET

K(·) and DT
K(·) are permutations, and DT

K(ET
K(P )) = P .

For a RKD set Φ, an adversary A queries E with (φ, T, P ) ∈ Φ× T × {0, 1}n or
queries D with (φ, T, C) ∈ Φ×T ×{0, 1}n. A tries to distinguish S from an ideal
TBC, where for any (K,T ) ∈ K × T , πTK is an independent uniformly random
permutation. Without loss of generality we assume that the adversary never
make pointless queries that the adversary “knows” the answer. For example, if
the adversary query (φ, T, P ) to the encryption oracle and get the answer C, he
will never query (φ, T, C) to the decryption oracle. We define the advantage as

Advrka−stprpS (A) = Pr[AE··(K)(·),D
·
·(K)(·) ⇒ 1]− Pr[Aπ

·
·(K)(·),π

−1·
·(K)

(·) ⇒ 1].

For all adversaries with computation time at most t, oracle queries at most q,
we denote Advrka−stprpS (q, t) = maxAAdvrka−stprpS (A). When the advantage
is negligible, we say that S is a related-key strongly tweakable pseudorandom
permutation (RKA-STPRP) for Φ. When the tweak space T is a empty set E
becomes a block cipher. The corresponding security notion is related-key strongly
pseudorandom permutation (RKA-SPRP). Tweakable enciphering schemes are
TBCs with large or variable input length. The definition is the same as that of
TBC.

4) RKA-AE. An authenticated encryption scheme consists of two algorithms
SE = (E,D). The encryption E : K×N ×A×P → C, where K, N , A, P and C
are spaces of key, nonce, associated data, plaintext and ciphertext respectively.
For input (K,N,A, P ) ∈ K×N×A×P, we write the result as C = EK(N,A, P ).
The decryption algorithm D : K × N × A × C → P ∪ {⊥}. We require that
DK(N,A,EK(N,A, P )) = P . For a RKD set Φ, an adversary A queries the E
with (φ,N,A, P ) ∈ Φ × N × A × P but never repeats (φ,N), or queries the
D with (φ,N,A,C). A tries to distinguish SE from an ideal AE scheme($,⊥),
where for any query $ returns a random string and ⊥ always returns ⊥. We
define the advantage as

Advrka−aeSE (A) = Pr[AE·(K)(·,·,·),D·(K)(·,·,·) ⇒ 1]− Pr[A$(·,·,·,·),⊥(·,·,·,·) ⇒ 1].

For all adversaries with computation time at most t, oracle queries at most q, we
denote Advrka−aeSE (q, t) = maxAAdvrk−aeSE (A).When the advantage is negligible,
we say that SE is related-key secure for Φ.

B More examples of related-key attacks against
UHF-based Schemes

1) TBC. A tweakable block cipher (TBC) is a generalized block cipher with
an extra input called tweak. TBCs were first formalized by Liskov, Rivest and



Wagner [36] and found applications largely in modes of operation [42]. In their
seminal paper, Liskov et al. gave a construction of TBC from a block cipher:
TBCK,K′(T,M) = EK′(M ⊕ HK(T )) ⊕ HK(T ) where E is the block cipher,
H is a universal hash function and T is the tweak. They proved that when
E is a PRP against chosen ciphertext attacks (CCAs) and H is almost XOR
universal, TBC is secure against CCA attacks. If we use PolyK(T ) = TK as
the underlying UHF, the following is an attack. First we query with (T,M)
under the derived key (K ⊕ ∆,K ′) where ∆ 6= 0, then the answer is C =
EK′(M ⊕ T (K ⊕ ∆)) ⊕ T (K ⊕ ∆) = EK′((M ⊕ T∆) ⊕ TK) ⊕ TK ⊕ T∆. So
we can predict that the ciphertext of (T, (M ⊕ T∆)) under the original key is
C ⊕ T∆. Therefore it does not resist related-key attack.

2) TES. A tweakable enciphering scheme is a generalized TBC with large or
variable input length, suitable for disk sector encryption. Recently Sun et al. [49]
show that HCTR [50], HCHp and HCHfp [16,17] suffer related-key attacks. All
these TESes use the polynomial evaluation hash function as the underlying UHF.

3) AE scheme. An authenticated encryption scheme achieves both confidential-
ity and authenticity. One of AE schemes OCB [43,42] following from IAPM [33],
encrypts the message blocks using independent PRPs into ciphertext blocks
and encrypts the XOR of the message blocks into a tag using another indepen-
dent PRP. Kurosawa [35] proposed a modified IAPM, the encryption of message
blocks is

Ci = EK′(Mi ⊕ PolyK(IV ‖(2i− 1)))⊕ PolyK(IV ‖(2i− 1))

where Mi is the i-th message block, E is the block cipher and the key of the
scheme is (K,K ′). Kurosawa proved that this modified IAPM is secure even if
the underlying block cipher is publicly accessible. But if we query with (IV,M)
under the derived key (K⊕0n−11,K ′), the first ciphertext block C1 = EK′((Mi⊕
IV ⊕ 0n−11)⊕ (PolyK(IV ‖0n−11))⊕ PolyK(IV ‖0n−11)⊕ IV ⊕ 0n−11. We can
predict that the first ciphertext block of (IV,M ′) under the original key is C1⊕
IV ⊕ 0n−11, where M ′ is changed from M by changing the first block into
M1 ⊕ IV ⊕ 0n−11. If we define the confidentiality as the indistinguishability
between ciphertexts and uniformly random bits, this scheme does not resist the
related-key attack.

In the above examples, the key of UHF is a part of the key of whole scheme, so
that the adversary can derive the related key of UHF and get the input collision
to other primitives such as PRPs or PRFs. The collisions in the above attacks
are listed as following.
1) PolyK⊕∆(T )⊕ PolyK(T ) = ∆T used in the TBC example;
2) PolyK⊕∆(A‖B) ⊕ PolyK(A‖B) = A∆2 ⊕ B∆ used in the TES and AE

scheme examples.

C Existing UHFs that are not RKA-AXU (RKA-AU)

The following universal hash functions are proved to be AXU (A∆U).



1) MMH [26]:HK(M) = (((
∑t
i=1MiKi) mod 264) mod p) mod 232,Mi,Ki ∈

Z232 and p = 232 + 15;
2) Square Hash [23]: HK(M) =

∑t
i=1(Mi +Ki)

2 mod p, Mi,Ki ∈ Zp;

3) NMH [26]: HK(M) = (
∑t/2
i=1(M2i−1 +K2i−1)(M2i+K2i)) mod p, Mi,Ki ∈

Z232 , p = 232 + 15;

4) NH [13]:HK(M) = (
∑t/2
i=1((M2i−1+K2i−1) mod 2w)((M2i+K2i) mod 2w))

mod 22w, Mi,Ki ∈ Z2w .
In 1) we set t = 1, then HK(M) = (MK mod 232 + 15) mod 232. If M =

M ′ = ∆′ = 1, ∆ = 0, then HK(M) = K, HK+∆′(M
′) = K + 1 mod 232,

therefore HK(M) + 1 = HK+∆′(M
′), MMH is not RK-A∆U. 2), 3) and 4) all

have the term M1 + K1. From M1 + K1 = (M1 − 1) + (K1 + 1) we know that
they are all not RKA-AU.
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