
A Practical Attack on Some Braid Group Based

Cryptographic Primitives

Dennis Hofheinz and Rainer Steinwandt

IAKS, Arbeitsgruppe Systemsicherheit, Prof. Dr. Th. Beth
Fakultät für Informatik, Universität Karlsruhe
Am Fasanengarten 5, 76 131 Karlsruhe, Germany

Abstract. A simple heuristic approach to the conjugacy problem in
braid groups is described. Although it does not provide a general solu-
tion to the latter problem, it demonstrates that various proposed key
parameters for braid group based cryptographic primitives do not offer
acceptable cryptographic security. We give experimental evidence that
it is often feasible to reveal the secret data by means of a normal PC
within a few minutes.

Keywords: braid groups, cryptanalysis

1 Introduction

Within the last years various attempts have been made to derive cryptographic
primitives from problems originating in combinatorial group theory (see, e. g.,
[WM85, Wag90, GZ91, AAG99, KLC+00, AAFG01]). One theoretically rather
appealing family of schemes is derived from braid groups. These finitely pre-
sented groups are well-studied (e. g., [Gar69, Bir74]), and various proposals have
been made for deriving cryptographic primitives from the conjugacy problem in
these groups.
No general efficient solution for the conjugacy problem in braid groups is

known so far, but the attacks from [LL02, Hug02] exhibit weaknesses in the key
agreement scheme considered in [AAG99, AAFG01]. The attacks of J. Hughes,
S.J. Lee and E. Lee focus on the so-called multiple simultaneous conjugacy prob-
lem in braid groups, and they propose a modification of the original specification
to avoid their attack on the scheme of [AAG99, AAFG01].
In this contribution we demonstrate that the modification considered there is

not sufficient for saving the scheme in [AAG99, AAFG01]. Moreover, we demon-
strate the vulnerability of the key exchange scheme and the public key cryp-
tosystem from [KLC+00] with respect to a simple heuristic procedure for the
conjugacy problem. This procedure does by no means provide a general efficient
method for solving the conjugacy problem in braid groups, but our experimen-
tal results demonstrate that with the proposed parameter choices both the key
agreement and the encryption scheme from [KLC+00] do not offer acceptable
cryptographic security.

Y.G. Desmedt (Ed.): PKC 2003, LNCS 2567, pp. 187–198, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

188 Dennis Hofheinz and Rainer Steinwandt

In more detail our contribution is organized as follows: in the next section
we recall some basic terminology concerning braid groups with the main focus
on some algorithmic aspects of the word and conjugacy problem. Thereafter
we describe our heuristic approaches for tackling the variants of the conjugacy
problem underlying the proposals in [AAG99, KLC+00, AAFG01]. We recall
the set-up of these proposals to the extent necessary for describing our attack
and give experimental results that illustrate the cryptographic relevance of our
approach. Finally, some conclusions are given.

2 Braid Groups

The braid group Bn (n ∈ N) is a finitely presented group that is defined through
the following presentation (cf. [Art25]):〈

σ1, . . . , σn−1
σiσjσi = σjσiσj if |i− j| = 1
σiσj = σjσi if |i− j| > 1

〉

We refer to σ1, . . . , σn−1 as (Artin) generators and to arbitrary elements of Bn

as braids. If we refer to a concrete representation of a braid in terms of Artin
generators, we use the term braid word. A braid is said to be positive iff it can
be written as a product of generators σi, i. e., in this case no negative powers of
the σi are involved. Here the identity ε ∈ Bn is also regarded as positive, and it
can be shown that the positive braids in Bn form a monoid B+

n which embeds
into Bn (cf. [Gar69]).

2.1 The ∆-Normal Form

Setting inductively ∆1 := σ1 and ∆i = σ1 · · ·σi ·∆i−1 for 1 < i < n, we define
the fundamental braid ∆ ∈ Bn as ∆ := ∆n−1. Next, we establish a partial
ordering ≤ on the elements of Bn by setting v ≤ w iff there are positive braids
α, β ∈ B+

n such that w = αvβ. Now any braid α ∈ Bn which satisfies ε ≤ α ≤ ∆
is called a canonical factor. There is a canonical homomorphism π : Bn → Sn

from the braid group Bn into the symmetric group Sn which maps σi onto
the transposition interchanging i and i + 1 and whose restriction to the set of
canonical factors in Bn induces a bijection; see [EM94].
A factorization γ = αβ of a positive braid γ into a canonical factor α and

a positive braid β is said to be left-weighted iff α has the maximal length among
all such decompositions. A right-weighted factorization is defined analogously.
For any braid w ∈ Bn we denote the greatest i ∈ Z with ∆i ≤ w by inf w;
analogously, supw stands for the smallest i ∈ Z with w ≤ ∆i. With this notation
every braid w ∈ Bn can be written uniquely as

w = ∆rW1 · · ·Ws (1)

with r = inf w, s = supw − inf w and canonical factors ε < Wi < ∆ such
that WiWi+1 is left-weighted for 1 ≤ i < s (cf. [Gar69]). In this context, we refer
to s as the canonical length of w.

A Practical Attack on Some Braid Group Based Cryptographic Primitives 189

The explicit decomposition (1) is called the ∆-normal form or simply the
normal form of w. Note here that the Wi are canonical factors, so each of them
can be represented uniquely by the correspending permutation π(Wi) in the
symmetric group Sn. For a given braid word w ∈ Bn, its normal form can be
computed in time O(|w|2n logn) with |·| denoting the word length (see [CKL+01]
for details).

2.2 The Conjugacy Problem in Bn

For convenience, we introduce the notion of a tail: γ ∈ B+
n is said to be a tail of

some braid α ∈ B+
n , iff there is a factorization α = βγ with β ∈ B+

n . Also we
define the automorphism τ of Bn through τ(w) := ∆−1w∆ (w ∈ Bn). With this
terminology we can formulate a lemma that is of importance for the heuristic
approach to the conjugacy problem discussed below; the first part of this result
has already been stated in [LL02]:

Lemma 1. Let v, w ∈ Bn be two positively conjugate braid words such that
w = α−1vα for some α ∈ B+

n . Let ∆rW1 · · ·Ws be the normal form of w. Then
the following relations hold:

– If inf w < inf v, then the canonical factor ∆τr(W−1
1) is a tail of α.

– If supw > sup v, then Ws is a tail of α.

Proof. A proof of the first claim can be found in the proof of Lemma 4.3
in [EM94]; using the terminology from [EM94], the second part follows immedi-
ately by noticing that ‘reverse cycling’ some braid word w ∈ Bn can be achieved
by cycling its inverse w−1. �

Note that the restriction to positively conjugated braids is not really a restriction:
suppose we have v, w ∈ Bn with w = x−1vx for some braid word x ∈ Bn,
whose normal form is ∆rX1 · · ·Xs, with r ∈ Z possibly non-zero. Since ∆2 lies
in the centre of Bn (cf. [Gar69]), then also for x̃ := ∆r mod2X1 · · ·Xs we find
w = x̃−1vx̃, and x̃ is obviously positive.
Lemma 1 tells us for any given braid word w ∈ Bn how to eventually find

a word with minimal canonical length in w’s conjugacy class. (To see this, note
that minimal canonical length is equivalent to minimal sup and maximal inf.)
The set of all words with minimal canonical length in w’s conjugacy class is called
the super summit set S(w) of w and can be shown to be finite; moreover, there is
an algorithm for computing S(w) for any given braid word w ∈ Bn (cf. [EM94]).
Of course, two super summit sets S(v),S(w) of braid words v, w ∈ Bn are either
equal or disjoint. So we eventually obtain an algorithm for the conjugacy problem
in the braid group Bn: given v, w ∈ Bn, we compute S(v) and one element w′

of S(w). Then v and w are conjugate iff w′ ∈ S(v). This approach cannot only
be used to decide whether v and w are conjugated; it can also be used to obtain
a positive braid word α ∈ B+

n with w = α−1vα. Unfortunately, the complexity
of this algorithm is not clear, since no precise estimate for the cardinality of S(v)
is known.

190 Dennis Hofheinz and Rainer Steinwandt

Remark There is another presentation for the braid group Bn due to Birman,
Ko, and Lee [BKL98]. In this presentation, we may find a unique normal form
for any braid word w ∈ Bn in time O(|w|2n).

3 A Heuristic Approach to the Conjugacy Problem

Given two conjugate braid words v, w ∈ Bn, we would like to find a conjugat-
ing braid α ∈ Bn so that w = α−1vα. Actually, for certain proposed parameters
n ∈ N and specific braids v, w ∈ Bn, this problem is hoped to be computationally
intractable and has been suggested as a tool for deriving cryptographic prim-
itives (see, e. g., [KLC+00, AAFG01]). In the sequel, we present an algorithm
using Lemma 1 and some additional heuristics which tries to solve the conju-
gacy problem for the parameter sizes considered in proposals for cryptographic
primitives. We do not aim at providing a general efficient solution for the con-
jugacy problem in braid groups. Nevertheless, the heuristic approach described
below exhibits security problems in several cryptographic proposals based on
braid groups.

3.1 The Algorithm

Consider Algorithm A (shown in Figure 1) for tackling an instance of the con-
jugacy problem in Bn (the function GuessPermutation is discussed in the next
section).

Algorithm A:

– Input: v, w ∈ Bn with w = x−1vx for some unknown x ∈ B+
n with inf x = 0.

– Output: either α ∈ B+
n with w = α−1vα or ‘failed’.

1. Initialize α as the empty word ε.
2. Put v and w in normal form, so that w = ∆rW1 · · ·Ws.

3. While inf w < inf v do

Let γ := ∆τ r(W−1
1), α := γα, w := γwγ−1,

Put w in normal form as in 2.

4. While supw > sup v do

Let γ := Ws, α := γα, w := γwγ−1,

Put w in normal form as in 2.

5. Let µ :=GuessPermutation(v, w), α := µα, w := µwµ−1.

6. If v = w, then

Return α,
else

Return ‘failed’.

Fig. 1. Algorithm A

A Practical Attack on Some Braid Group Based Cryptographic Primitives 191

As mentioned already, the restriction to inputs v, w ∈ Bn that are positively
conjugated is not relevant. Requiring the conjugating braid x = ∆rX1 · · ·Xs

to fulfill the condition r(= inf x) = 0 is of no practical relevance, either: if
w = x−1vx holds, then also w = x̃−1vx̃ for x̃ := ∆r mod2X1 . . . Xs holds. But
either x̃ or ∆−1x̃ is a positive braid with zero inf. So in the general case it suffices
to run Algorithm A twice (maybe in parallel): once with inputs v, w and once
with inputs ∆−1v∆,w.

3.2 Discussion of the Algorithm

Let us take a closer look at the behaviour of Algorithm A: in Step 1 and Step 2
our guess α for the conjugating element x is initialized and the words v, w ∈ Bn

are prepared. Steps 3 and 4 conjugate w in a way that after completion of these
steps the canonical length of our new w is not greater than the canonical length
of v. Using Lemma 1, at the beginning of Step 5 we therefore have w = x′−1vx′

with x = x′α and x′ ∈ B+
n .

Now we assume that in this situation, the ‘not yet uncovered’ part x′ of
the conjugating word x is ‘essentially determined’ by its induced permutation
π(x′). Consequently, in Step 5, we guess the permutation π(x′), i. e., the function
GuessPermutation(v,w) is to return a canonical factor µ with π(µ) = π(x′).
To find such a braid word µ in the general case, we would have to solve the
conjugacy problem π(w) = π(x′)−1π(v)π(x′) in the symmetric group Sn; also
there might be a vast number of possible solutions for π(x′) when we consider
pure braids v, i. e., braids v ∈ Bn satisfying π(v) = id. We’ll discuss this ‘pure
case’ below. For non-pure braids v, experimentally it turned out that in many
cases π(x′) is a sufficiently ‘simple’ permutation and that the simple implemen-
tation of GuessPermutation shown in Figure 2 works fine (it exploits that in
cycle notation conjugating a permutation σ by a permutation τ means applying
τ to the ‘entries’ of σ).
Of course, in the case of pure braid words v we have to modify the function

GuessPermutation accordingly. A promising heuristic approach seems then to
be the following: supposing that v = ∆rvV1 · · ·Vsv and w = ∆rwW1 · · ·Wsw

are in their normal forms, chances are good that µ = π−1
(
π(V1W

−1
1)

)
or µ =

π−1
(
π(V −1

sv
Wsw)

)
. For our experiments, we optimized this strategy a little: in

case neither one of these candidates for µ solves our conjugation problem in Bn,
we then guess the right meet of these candidates as only a tail of µ; here by
a right meet of two positive braid words α, β we mean a tail of both α and β with
maximal length in generators.
Back to Algorithm A, in Step 6 we return α in case it actually is a conjugating

element.
Note that neither Algorithm A nor the function GuessPermutation is prob-

abilistic, so there is no chance that, once one of them has failed, successive
applications might improve this result. In particular, there is lots of room for
improving and adding heuristics to Algorithm A. E. g., in our experiments with
the following variation we were able to solve the conjugacy problem in certain
cases in which at the beginning of Step 5 no canonical factor µ alone satisfied

192 Dennis Hofheinz and Rainer Steinwandt

Function GuessPermutation:

– Input: v, w ∈ Bn with w = x−1vx, for some unknown x ∈ B+
n with inf x = 0.

– Output: a canonical factor µ ∈ B+
n , such that π(µ) = π(x).

1. Let τ ∈ Sn be the identity permutation.

2. Let (χ1, . . . , χn) := (false, . . . , false).
3. For i from n downto 1 do

Let r := i, s := i,
While χr = false do

Let χr := true,
Let r := π(v)(r), s := π(w)(s),
If r �= s, then

Let τ (r) := s.
4. Let (ξ1, . . . , ξn) := (false, . . . , false).
5. For i from n downto 1 do

If ξi = false, then

Let ξi := true, r := i,
While ξτ(r) = false and τ (r) �= r do

Let r := τ (r), ξr := true.
Let τ (r) := i.

6. Return π−1(τ).

Fig. 2. The function GuessPermutation

w = µ−1vµ: instead of guessing the whole braid word µ in Step 5, one guesses
only a tail of some canonical factor µ satisfying π(µ) = π(x). Then in Step 6, if
we are not yet finished (i. e., if v 	= w), we repeat Steps 3–5 until we are.—Of
course, here we rely on the assumption that the tails of µ we guess in Step 5 are
indeed tails of x.

3.3 The Multiple Simultaneous Conjugacy Problem

Algorithm A can be modified to work for an instance of the multiple simultaneous
conjugacy problem: given m ≥ 1 braid words vi, wi ∈ Bn with wi = x−1vix (1 ≤
i ≤ m) for some unknown braid x ∈ Bn, we are looking for some α ∈ Bn which
also satisfies wi = α−1viα for all i. Consider the modification of Algorithm A
shown in Figure 3, which can be regarded as an extension to the algorithm used
in [LL02, Theorem 2].
Here the function GuessSimultPerm takes as input pairs (vi, wi) ∈ B2

n of
braid words such that wi = x−1vix for all i, and yields a guess for a canonical fac-
tor β with π(β) = π(x) as a result. For implementing this function, similar ideas
as for the function GuessPermutation can be used; we skip a detailed discussion
of this topic and do not give a sample implementation of GuessSimultPerm here.
However, it is worthwhile to remark that—just like in the case of Algo-

rithm A—sometimes it may be helpful to use a variation of Algorithm B which
in Step 5 only guesses some tail of µ and then repeats Steps 3–6 as necessary.

A Practical Attack on Some Braid Group Based Cryptographic Primitives 193

Algorithm B:

– Input: m ≥ 1 pairs (vi, wi) ∈ B2
n such that wi = x−1vix (1 ≤ i ≤ m) for some

unknown x ∈ B+
n with inf x = 0.

– Output: either α ∈ B+
n with wi = α−1viα for all i or ‘failed’.

1. Initialize α as the empty word ε.
2. Put all vi and all wi in normal form,

so that wi = ∆riW
(i)
1 · · ·W (i)

si .

3. While inf wj < inf vj for some j ∈ {1, . . . , m} do

Let γ := ∆τ r((W
(j)
1)−1), α := γα,

Let wi := γwiγ
−1 for all i ∈ {1, . . . , m},

Put all wi in normal form as in 2.

4. While supwj > sup vj for some j ∈ {1, . . . , m} do

Let γ := W
(j)
s , α := γα,

Let wi := γwiγ
−1 for all i ∈ {1, . . . , m},

Put all wi in normal form as in 2.

5. Let µ :=GuessSimultPerm((v1 , w1), . . . , (vm, wm)).
6. Let α := µα, and wi := µwiµ

−1 for all i ∈ {1, . . . , m}.
7. If vi = wi for all i, then

Return α,
else

Return ‘failed’.

Fig. 3. Algorithm B

Also another heuristic step turned out to be helpful: after Step 4, it can be
worthwhile to ‘combine’ pairs of braid words vi, wi to extend the set of these
pairs. Namely, if wi = x−1vix for i = 1, . . . ,m, then also w′ = x−1v′x, where
v′ = v−1

i vjvi and w′ = w−1
i wjwi for any i, j ∈ {1, . . . ,m}. In particular, new

found pairs v′, w′ with inf w′ < inf v′ or supw′ > sup v′ are interesting in view
of a re-application of Steps 3–4.

4 Braid Groups in Cryptography

Several suggestions have been put forward for deriving cryptographic primitives
from the conjugacy problem in braid groups. In the sequel we shortly recall the
key agreement schemes from [KLC+00, AAFG01] and the public key encryption
scheme from [KLC+00]; all of these schemes are based on variants of the conju-
gacy problem in braid groups. We do not give all details of these proposals and
put our main focus on the suggested parameters of the underlying variant of the
conjugacy problem. Then we apply the techniques described above to concrete
instances of these systems with realistic parameter sizes to get an idea of the
practical significance of our approach. For our experiments we used Linux PCs
with a clock rate of 1.8 GHz and the CBraid package of [Cha01]. The concrete
running times varied in dependence on the actual parameter choice and the

194 Dennis Hofheinz and Rainer Steinwandt

type of the conjugacy problem: while for individual conjugacy problems usually
a few seconds were sufficient, instances of the multiple simultaneous conjugacy
problem typically required some (less than 30) minutes of CPU time.

4.1 Commutator Based Key Agreement Protocol

In [AAG99], a key agreement protocol has been proposed that is based on the
multiple simultaneous conjugacy problem. In [AAFG01], the addition of a so-
called key extractor is suggested. But as the latter modification does not affect
our attack, we omit the details on the key extractor in our description:

Public information:
– braid index n ∈ N

– a subgroup GA = 〈a1, . . . , ar〉 ≤ Bn

– a subgroup GB = 〈b1, . . . , bs〉 ≤ Bn

Private key:
– Alice selects a ∈ GA

– Bob selects b ∈ GB

Public key:
– Alice publishes [a−1b1a, . . . , a

−1bsa]
– Bob publishes [b−1a1b, . . . , b

−1arb]
Shared key: derived from a−1b−1ab

In [AAG99], no concrete parameter choices for the above scheme are suggested.
So for our experiments we used the parameters suggested in [AAFG01]. Namely,
we chose the braid index n = 80 and public subgroups GA, GB ≤ Bn with
r = s = 20 generators each. Each of the generators ai resp. bi of the public
subgroups was comprised of 5 ≤ � ≤ 10 Artin generators. The private keys a
and b were made up of 100 public generators each.
Using Algorithm B and some of the techniques described in Section 3.3 to

attack the multiple simultaneous conjugacy problem with these parameters, we
obtained the following success rates for our attack on the secret key of Alice
(resp. Bob):

n r = s � number of samples success rate
80 20 5 1000 99.0%
80 20 10 1000 98.9%

To prevent the attack described in [LL02], in [LL02] S. J. Lee and E. Lee sug-
gest to take pure braid words ai, resp. bi as public generators. More precisely,
they suggest to raise any one of the already created generators ai (resp. bi) to
a suitable power, so that the induced permutation becomes the identity. We
implemented this construction and applied Algorithm B with some additional
ideas from Sections 3.2 and 3.3. Our results are shown below:

n r = s � number of samples success rate
80 20 5 1000 100.0%
80 20 10 1000 100.0%

A Practical Attack on Some Braid Group Based Cryptographic Primitives 195

Based on a reference to a private communication with one of the authors of
[AAFG01], in [Hug02] J. Hughes describes a slightly different parameter choice.
Namely, the public generators ai resp. bi are words of length 5 comprised of
Artin generators and their inverses. Also, when Alice resp. Bob forms the secret
word a resp. b, the description of [Hug02] suggests to use a word of length 100
in the public generators ai resp. bi and their inverses.
We’ve also done a few experiments with such a modified parameter choice,

but these parameters also turned out to be vulnerable with respect to our attack,
and at the moment it is unclear how a practical parameter choice for the schemes
from [KLC+00, AAFG01] should look like.

4.2 A Diffie-Hellman Type Key Agreement Protocol and a Public
Key Cryptosystem

The following key agreement protocol has been proposed in [KLC+00]. Analo-
gously as in the commutator based scheme just described, in [AAFG01] a mod-
ification by means of a so-called key extractor is suggested. This modification
does not affect our attack and is therefore not discussed in the sequel.
We denote by LB� resp. RBr (1 < �, r < n) the subgroup of Bn generated

by σ1, . . . , σ�−1 resp. σn−r+1, . . . , σn−1. Now a key agreement scheme can be
described as follows:

Public information:
– braid index n ∈ N

– integers �, r ∈ N with �+ r = n
– a braid word x ∈ Bn

Private key:
– Alice selects a ∈ LB�

– Bob selects b ∈ RBr

Public key:
– Alice publishes a−1xa
– Bob publishes b−1xb

Shared key: derived from (ab)−1x(ab)

The parameters considered in [KLC+00, AAFG01] for this key exchange protocol
coincide with those for a public key cryptosystem also described in [KLC+00].
Hence, we recall the description of this encryption scheme before giving our
experimental results. For this we denote by H : Bn −→ {0, 1}k an ideal hash
function from the braid group Bn to the message space {0, 1}k.

Public information:
– braid index n ∈ N

– integers �, r ∈ N with �+ r = n
Private key: Alice chooses a ∈ LB�

Public key:
– Alice publishes a braid word x ∈ Bn, and
– she publishes y := a−1xa

196 Dennis Hofheinz and Rainer Steinwandt

Encryption: To transmit m ∈ {0, 1}k to Alice,
– Bob chooses b ∈ RBr at random, and
– he sends (c, d) := (b−1xb,H(b−1yb) XOR m) to Alice

Decryption: Alices computes m = H(a−1ca) XOR d

For our experiments we used the parameters that have also been considered
in [KLC+00, AAFG01]. Namely, we used braid groups of index n ≥ 45 and chose
� = �n/2�, r = n−�. For x and a (resp. b) we used braid words of canonical length
p ≥ 3. In [KLC+00] the braid word x is required to be ‘sufficiently complicated’.
Lacking a specification on how to determine such a ‘sufficiently complicated’
x ∈ Bn, we decided to pick such a braid word in the same manner as proposed
in [CKL+01] for generating ‘random braid words’. Then we attacked so-obtained
instances y = a−1xa of the generalized conjugacy problem in Bn by Algorithm A.
Below are the results of our experiments for some proposed parameters n and p,
where p denotes the canonical length of both x and a (resp. b):

n p Total samples Success rate
45 3 1000 78.1%
50 5 1000 79.1%
70 7 1000 79.0%
90 12 1000 80.0%

Without further specification, in [KLC+00] it is also suggested to use pure
braid words x. We decided to generate pure braids as follows: after generating
a ‘random’ braid word x of canonical length p as above, we appended to x the
(simple) braid word π−1

(
π

(
x−1

))
, and attacked the so-obtained instances of

the system with Algorithm A and the variant of GuessPermutation discussed
in section 3.2. The figures below show the results of these attacks:

n p Total samples Success rate
45 3 1000 76.9%
50 5 1000 82.4%
70 7 1000 87.5%
90 12 1000 88.9%

So from a cryptographic point of view the parameters in [KLC+00, AAFG01]
look rather worrisome, and it remains open how to generate practical instances
of the above schemes.

5 Conclusion

We have described a heuristic algorithm for the conjugacy problem in braid
groups. This algorithm does not solve the conjugacy problem in the general
case, yet it applies in most of the cases considered for public key cryptosystems.
We have run various experiments with parameters proposed for braid group
cryptosystems to back this result; indeed, we do not know of any public key

A Practical Attack on Some Braid Group Based Cryptographic Primitives 197

cryptosystem based on the conjugacy problem in braid groups whose proposed
parameters yield hard instances of this problem with respect to our algorithm.
Furthermore, we believe that our algorithm can be improved to succeed for

some parameters not considered yet for cryptographic applications. So it remains
unclear how to efficiently find hard instances of the conjugacy problem in braid
groups for such purposes.

References

[AAFG01] Iris Anshel, Michael Anshel, Benji Fisher, and Dorian Goldfeld. New Key
Agreement Protocols in Braid Group Cryptography. In David Naccache,
editor, ”Topics in Cryptology — CT-RSA 2001”, volume 2020 of Lecture
Notes in Computer Science, pages 13–27. Springer, 2001. 187, 188, 190,
193, 194, 195, 196

[AAG99] Iris Anshel, Michael Anshel, and Dorian Goldfeld. An Algebraic Method
for Public-Key Cryptography. Mathematical Research Letters, 6:287–291,
1999. 187, 188, 194

[Art25] Emil Artin. Theorie der Zöpfe. Hamb. Abh., 4:47–72, 1925. 188
[Bir74] Joan S. Birman. Braids, Links, And Mapping Class Groups. Number 82 in

Annals of Mathematics Studies. Princeton University Press and University
of Tokyo Press, Princeton, New Jersey, 1974. 187

[BKL98] Joan S. Birman, Ki Hyoung Ko, and Sang Jin Lee. A new approach
to the word and conjugacy problems in the braid groups. Advances in
Mathematics, 139:322–353, 1998. 190

[Cha01] Jae Choon Cha. CBraid: a C++ library for computations in braid groups,
2001. At the time of writing available electronically at
http://knot.kaist.ac.kr/~jccha/cbraid/. 193

[CKL+01] Jae Choon Cha, Ki Hyoung Ko, Sang Jin Lee, Jae Woo Han, and Jung Hee
Cheon. An Efficient Implementation of Braid Groups. In Colin Boyd, edi-
tor, Advances in Cryptology — ASIACRYPT 2001, volume 2248 of Lecture
Notes in Computer Science, pages 144–156. Springer, 2001. 189, 196

[EM94] Elsayed A. Elrifai and H.R. Morton. Algorithms for positive braids. Quar-
terly Journal of Mathematics Oxford, 45:479–497, 1994. 188, 189

[Gar69] F. A. Garside. The Braid Group and Other Groups. Quarterly Journal of
Mathematics Oxford, 20:235–254, 1969. 187, 188, 189

[GZ91] Max Garzon and Yechezkel Zalcstein. The Complexity of Grigorchuk
groups with application to cryptography. Theoretical Computer Science,
88:83–98, 1991. 187

[Hug02] Jim Hughes. A Linear Algebraic Attack on the AAFG1 Braid Group
Cryptosystem. In Lynn Batten and Jennifer Seberry, editors, Information
Security and Privacy. 7th Australasian Conference, ACISP 2002, volume
2384 of Lecture Notes in Computer Science, pages 176–189. Springer, 2002.
187, 195

[KLC+00] Ki Hyoung Ko, Sang Jin Lee, Jung Hee Cheon, Jae Woo Han, Ju sung
Kang, and Choonsik Park. New Public-Key Cryptosystem Using Braid
Groups. In Mihir Bellare, editor, Advances in Cryptology — CRYPTO
2000, volume 1880 of Lecture Notes in Computer Science, pages 166–183.
Springer, 2000. 187, 188, 190, 193, 195, 196

http://knot.kaist.ac.kr/~jccha/cbraid/

198 Dennis Hofheinz and Rainer Steinwandt

[LL02] Sang Jin Lee and Eonkyung Lee. Potential Weaknesses of the Commutator
Key Agreement Protocol Based On Braid Groups. In Lars Knudsen, editor,
Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture
Notes in Computer Science, pages 14–28. Springer, 2002. 187, 189, 192,
194

[Wag90] Neal R. Wagner. Searching for Public-Key Cryptosystems. In Proceedings
of the 1984 Symposium on Security and Privacy (SSP ’84), pages 91–98,
Los Angeles, Ca., USA, 1990. IEEE Computer Society Press. 187

[WM85] Neal R. Wagner and Marianne R. Magyarik. A Public Key Cryptosystem
Based on the Word Problem. In G.R. Blakley and D. Chaum, editor,
Advances in Cryptology. Proceedings of CRYPTO 1984, volume 196 of
Lecture Notes in Computer Science, pages 19–36. Springer, 1985. 187

	A Practical Attack on Some Braid Group Based Cryptographic Primitives
	Introduction
	Braid Groups
	The Δ-Normal Form
	The Conjugacy Problem in B_n

	A Heuristic Approach to the Conjugacy Problem
	The Algorithm
	Discussion of the Algorithm
	The Multiple Simultaneous Conjugacy Problem

	Braid Groups in Cryptography
	Commutator Based Key Agreement Protocol
	Public information
	Private key
	Public key
	Shared key

	A Diffie-Hellman Type Key Agreement Protocol and a Public Key Cryptosystem
	Public information
	Private key
	Public key
	Shared key

	Conclusion
	References

