
A Fast and Secure Implementation of Sflash�

Mehdi-Laurent Akkar, Nicolas T. Courtois, Romain Duteuil, and Louis Goubin

SchlumbergerSema, CP8 Crypto Lab
36-38 rue de la Princesse, 78430 Louveciennes, France
{MAkkar,NCourtois,RDuteuil,LGoubin}@slb.com

Abstract. Sflash is a multivariate signature scheme, and a candidate
for standardisation, currently evaluated by the European call for prim-
itives Nessie. The present paper is about the design of a highly opti-
mized implementation of Sflash on a low-cost 8-bit smart card (without
coprocessor). On top of this, we will also present a method to protect
the implementation protection against power attacks such as Differential
Power Analysis.
Our fastest implementation of Sflash takes 59 ms on a 8051 based CPU
at 10MHz. Though the security of Sflash is not as well understood as
for example for RSA, Sflash is apparently the fastest signature scheme
known. It is suitable to implement PKI on low-cost smart card, token or
palm devices. It allows also to propose secure low-cost payment/banking
solutions.

Keywords: Digital Signatures, PKI, Addition Chains, Multivari-
ate Cryptography, Matsumoto-Imai cryptosystem C∗, C∗−− trapdoor
function, HFE, portable devices, Smart cards, Power Analysis, SPA,
DPA.

1 Introduction

The design of Flash and Sflash signature schemes is due to Courtois, Patarin
and Goubin [17, 18]. Sflash is based on a so called C∗−− multivariate signa-
ture scheme, the name of C∗−− being due to Patarin [14]. The idea goes back
to the Matsumoto-Imai cryptosystem proposed at Eurocrypt’88, also called C∗

in [12], that is a remote cousin of RSA, that uses a power function over an
extension of a finite field. At the time the Matsumoto-Imai or C∗ cryptosys-
tem was believed very secure, and were amazingly fast. At the same time, in
France, the smart cards become a great success: they allow to divide by ten
the fraud figures in the payment systems. However RSA is too slow to be used
on a smart card, and this keeps the security achieved by smart cards solutions
insufficient: unable to implement a real public key signature. From this arises
the motivation to find a signature scheme that could be implemented on low-
cost smart cards. Unfortunately, at Crypto’95 Patarin shows Matsumoto-Imai
is insecure1, see [13, 10]. Subsequently Patarin studied many other variants and
� The work described in this paper has been supported by the French Ministry of
Research under RNRT Project “Turbo-signatures”.

1 Note that H. Dobbertin claims to have independently found this attack in 93/94.

Y.G. Desmedt (Ed.): PKC 2003, LNCS 2567, pp. 267–278, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

268 Mehdi-Laurent Akkar et al.

generalizations of Matsumoto-Imai (or C∗) (for example the Dragons). Most of
them are broken, and very few remain. Among these, C∗− is particularly sim-
ple, and remains unbroken. It is simply the original scheme combined with the
idea of preventing structural attacks by simply removing some of the equations
that constitute the public key, due initially to Shamir [19]. At Asiacrypt’98 [14],
Courtois, Patarin and Goubin show that C∗− can be attacked, and if r is the
number of removed equations, a factor of qr appears in the attack. For various
reasons it is conjectured that the security of C∗− does increase with at least qr

when removing equations [1], and the same is also conjectured for other multi-
variate cryptosystems2. When qr is very big, e.g. 280, it is believed that C∗− is
secure, we then call it C∗−−, as a lot of equations are removed. It is possible to
see that due to many equations removed, C∗−− can only be used in signature,
no longer in encryption.

From C∗−, in 2000, Courtois, Patarin and Goubin designed the Flash sig-
nature scheme, submitted to Nessie European call for cryptographic primitives,
and also a special version of Flash called Sflash that manages to decrease the
size of the public key3. Unfortunately at Eurocrypt’2002, Gilbert and Minier,
showed that this very trick, used to decrease the size of the public key of Sflash,
is insecure, and broke Sflash, see [6]. Since then the specification of Sflash has
been revised, the new version of Sflash is in fact a version of Flash with a better
choice of parameters.

Finally, it is important to note that the design of Flash and Sflash does not
reduce to C∗−−. There is difficulty in the design of multivariate signature schemes
that comes from the fact that the systems of equations, have in general many
solutions, and only the knowledge of the internal algebraic structure allows to
find one of them, which is usually done by fixing some internal variables. If this
process is not handled correctly, it might leak information about this internal
structure, and eventually allow to recover the private key of Flash/Sflash. See [17]
and [1].

Sflash is therefore the best solution that has been found so far to make digital
signatures in a low-cost device such as smart card, USB token or a palm device.
However, the security of an implementation of a cryptographic algorithm in such
a device does not reduce to the security of the cryptographic algorithm itself. It
is hard to protect a secret that is entirely in the hands of a potential attacker:
the implementation should also have in mind possible side-channel attacks. In
1998, Kocher, Jaffe and Jun showed the feasibility of such attacks [11] using
the power consumption of the device, and since then other side-channel attacks
have been proposed. In this paper we will also describe, on top of our optimized
implementation, a protection against side-channel attacks.
2 For example see the experiments with Buchberger’s algorithm applied to HFE-,
presented in [2] (in these proceedings) or on slide 35 of [3].

3 The main drawback of many multivariate cryptosystems.

A Fast and Secure Implementation of Sflash 269

2 Structure of the Smart Card

We consider a low-end smart card built on a 8-bit CPU core, an Intel 8051.
It has no arithmetic or cryptographic coprocessor. The memory of this card is
divided in three parts as follows:
• The data: 128 bytes which one can address directly in one CPU clock.
• The xdata: between 1 and 4 Kbytes, indirectly addressable in two CPU
clocks.
• The code: between 4 and 64 Kbytes of unrewritable memory, indirectly ad-
dressable in two CPU clocks.
• Most smart card processors that are based on 8051 contain also between 2
and 128 Kkbytes of E2PROM memory, that can be used to store keys.

As a comparison one could see the data, the idata and the xdata like the RAM
of a classical PC, whereas the code would be the ROM. According to those
considerations, we will try to store the most manipulated variables in the data
in order to save as much time as possible in the computation.

3 Basis Structures and Variables Used in Sflash

A complete description of Sflash can be found in [17, 18]. The signature process
consists mainly of a composition of three functions defined over the extensions
of finite fields: s−1 ◦ f−1 ◦ t−1, with two multivariate affine functions s, t and one
univariate power function f , In this paper we concentrate on the implementation
of the basic operations that are used in Sflash.

3.1 Main Structures

The algorithm mainly manipulates elements of the finite field L = GF (12837),
constructed as an extension of the base Galois field K = GF (128). The field
K = GF (128) defined as GF (2)[X] polynomials modulo (X7 +X + 1):

K = GF (2)[X]/(X7 +X + 1)
Each element ofK is written as 7 bits stored in one byte; the coefficient of X i

becomes the coefficient of 2i, i = 0..6. The big field L = GF (12837) is defined as
follows:

L = K[X]/(X37 +X12 +X10 +X2 + 1) (1)
We also identify L with K37 and represent an element of L by 37 elements

of K (the coefficients of X i, i = 0..36), that in turn are written as 37 bytes, each
of them using only 7 bits.

Our implementation uses two temporary variables called y and temp, that
are structures containing an element of L, in the data zone of the smart card.
This allows them to be easily accessible so that the computation is faster. We
will also store another structure of type L, called x, in the xdata zone because at
some moment we need to manipulate three elements of L, when using a function
having two inputs and one output (we are not able to store this third one in the
data as we need additional space in the data zone for something else).

270 Mehdi-Laurent Akkar et al.

3.2 The Private Key of Sflash

The secret parameters of the signature scheme are the two transformations
from L to L, s and t, that are multivariate affine functions, i.e. they are affine
when seen as functions from K37 → K37. We do not actually store s and t but
their inverses s−1 and t−1. We have t−1 : x �→ Tmx+ Tc and s−1 : x �→ Smx+ Sc

with Tm and Sm being two matrixes 37× 37 and with Tc and Sc being the con-
stant vectors4. All these are stored in either the code zone or the E2PROM of
the card.
We will also store the 80-bit secret string ∆ in the code zone (or E2PROM).

4 Fast Implementation of the Operations over the Fields

The Implementation of K:
1. Addition: Easy in characteristic 2 of K = GF (128), the addition in K =
GF (128) is implemented by XORing the byte representations of the ele-
ments.

2. Multiplication: more work is required here. Since the multiplicative groupK∗

is cyclic, say generated by α, each element of K (but zero) can be seen as
a power of α. Powers add when we multiply two non-zero elements: αx.αy =
αx+y, and the multiplication by zero is obvious. In order to execute this
operation, we store two tables of 127 bytes, one (named expo and stored in
the code zone) giving the exponent of α corresponding to a given non-zero
element of K, and the reciprocal operation (named log and also in code)
giving the element of K corresponding to a given exponent of α.
The Implementation of L: Based on the definition of L in (1).

1. Addition: given two elements of L represented by two polynomials a =∑36
i=0 aiX

i and b =
∑36

i=0 biX
i, their sum is computed by XORing the coef-

ficients of the same degree:
c = a+ b

def
=

36∑
i=0

(ai ⊕ bi)X i

with ⊕ being the XOR operation.
2. Multiplication: It is costly, because we compute the product of two polyno-

mials a and b which will be of degree 72, and then compute its euclidian
reduction modulo the irreducible polynomial X37 +X12 +X10 +X2 +1 (as
there are no trinomials for this field).
(a) Build c′ =

∑72
i=0 c

′
iX

i, where ci =
∑

l+k=i al.bk.
(b) Then reduce c′ by X37+X12+X10+X2+1, the result c is the product

a.b in L.
4 Actually these two constant vectors are not really secret as shown in [8]. Therefore
one can choose s and t linear instead of affine, which reduces the size of the secret
key.

A Fast and Secure Implementation of Sflash 271

3. Square: It is interesting to code the squaring operation in L independently,
it can be done at least 5 times faster than a multiplication of an element
by itself. The above multiplication algorithm requires a quadratic-time com-
putation on the coordinates of the two operands (the building of c′ in (a)
above) whereas, to square an element a, we only have to compute:

a′ =
36∑

i=0

a2
iX

2i

which is linear in the ai, and then reduce a′ moduloX37+X12+X10+X2+1,
like in step (b) above.
The Affine Transformations s and t: They are computed as classical

matrix multiplications, with additional XOR with the constant vector. As in
each step of the matrix multiplication we have to compute several multiplications
in K (one of the coordinates of the input with one of the matrix’ coefficients),
and regarding to how we compute such a multiplication (cf above), it will be
faster if we store base α logarithms of the coefficients of the matrix.

5 How to Compute A = f−1(B) in Sflash ?

We need to compute A = Bh in L, with:

h = (12811 + 1)−1 mod (12837 − 1)
= 1000000 1000000 1000000 0111111 0111111 0111111 0111111 1000000
1000000 1000000 1000000 0111111 0111111 0111111 1000000 1000000
1000000 1000000 0111111 0111111 0111111 0111111 1000000 1000000
1000000 0111111 0111111 0111111 0111111 1000000 1000000 1000000
1000000 0111111 0111111 0111111 1000000

The cost of a classical “square and multiply” algorithm to carry on this
power h would be, at least, 259 squaring and 145 multiplications ! The slowest
operation is the multiplication in the field L (squarings are faster). Our best
implementation of multiplication in L requires about 10 000 CPU cycles (which
takes at least 2.4 ms on a 10 MHz smart card).

We need to find an addition chain for h involving as little multiplications as
possible. We did not limit ourselves to finding a “classical” addition chain for h,
but also privileged some special powers, namely 128 and 1287 which, as we will
see in the next part, are quite easy to compute. After numerous attempts we
have found the following method:

• α←− (B2)2;
• β ←− B × α;
• γ ←− (α2)2;
• δ ←− β × γ;
• u←− δ2 × δ;
• v ←− (γ2)2;

272 Mehdi-Laurent Akkar et al.

• t←− ((v128)128)128 × u;
• w ←− ((t128 × t)128 × t)128;
• x←− ((w × u)128)1287

;
• z ←− v1287 × w × v × x;
• A←− (((z128

7
)128

7
)128 × x)1287 × z.

This method has a particularly low number of multiplications: 12, instead of 145
for “square and multiply”.

5.1 Special Operations Involved in the Computation of f−1:

We already described the implementation of the multiplication and the squar-
ing. What remain, are the efficient implementations of x �→ x128 and x �→ x1287

.
In K = GF (128), those two operations are K-linear on L, so they can be seen
fulfilled with a matrix multiplication. Moreover, due to the fact that the poly-
nomial by which we reduced (X37 +X12 +X10 +X2 +1) has only coefficients 0
and 1, the matrices involved are only made up of 0s and 1s, which allows us to
store their coefficients on single bits.

The Function x �→ x1287

: As the matrix used for the raising to the power
1287 is fixed, we can also accelerate this computation by finding a “cheap” road
in the matrix, which is related to the idea of the Gray code. The Gray code is an
ordering of all binary n-bits words, such two consecutive words differ by only one
bit, see [9] for example. This allows to compute all possible linear combinations
over GF (2) of some n vectors, with one XOR by combination, instead of n/2.
We use an even better, specific solution that is adapted to the particular matrix
that is fixed (even for two different private keys). Our goal is to compute:

y =M.x ; with x, y ∈ K37 and M ∈M37,37(GF (2))
For this we divide the matrix in some 37 × n submatrices for some small n.

For each submatrix we look for a “cheap” road: each yi is a XOR of different xi,
how to compute them minimizing the number of XORs as possible. For example
we assume that the first submatrix begins with:




y1
y2
y3
y4
..




=




0 0 1 0 1 0 0
0 0 1 1 1 0 0
0 0 0 0 1 0 0
0 0 1 1 0 0 0
.



· (x1 x2 x3 x4 x5 x6 x7 . . .

)T

We store x1, ..., xn in separate registers. Let A be the main register. We
first put A← x5. Then we XOR A with x3: A← A⊕ x3 and then put y1 ← A,
now y3 = x3⊕x5. Then we put y2 ← A← A⊕x4. Finally we do y4 ← A← A⊕x5,
etc.. A “cheap” road should use about 1 XOR per yi computed. We need to find
the cheapest road in each submatrix and also to find the best n for such an
operation. For our specific matrices 37× 37 n = 7 seemed to be optimal and our
best solution has been found with some computer simulations.
This technique allows to accelerate quite a lot (about 40 times !) the operation
x �→ x1287

, however it takes a lot of space in term of program code (0.7 Kbyte).

A Fast and Secure Implementation of Sflash 273

The Function x �→ x128: It is useless to use the above technique to com-
pute the power 128 = 27. Doing 7 successive squarings is faster than a matrix
multiplication, even if done in a clever way. It is also much cheaper in term of
code size, not only we have no matrix to store, but we will mostly re-use the
existing code. In addition to that, x �→ x128 can be computed faster than doing
seven squarings in a row. Indeed, seven squares will be a succession of squares in
GF (128) done position by position on 37 values, and a multivariate linear oper-
ation over GF (128)37 that comprises expansion and modular reduction modulo
the irreducible polynomial. It is easy to see that “position by position” squaring
commutes with the multivariate linear part. Thus we may postpone all the 7
“position by position” squarings to the end, and then we realize that they are
not needed, because in GF (128) we have always x128 = x.

6 The Performance Data

To summarize, our implementation of Sflash requires:
– 2 matrix products to apply Tm and Sm.
– 12 multiplications in L.
– 7 squarings in L.
– 8 raisings to the power 128 in L.
– 5 raisings to the power 1287.

From here we have two possible implementations of Sflash:

– A fast one, using the technique above to compute the power 1287 which is
quite fast but a bit large in term of code size:
• RAM: 334 bytes (112 bytes of data and 222 bytes of xdata).
• Code size (ROM): 3.1 Kbytes.

– A slower one, using a classical matrix product which is slower (but still
acceptable) and have a shorter code:
• RAM: 334 bytes (112 bytes of data and 222 bytes of xdata).
• Code size (ROM): 2.5 Kbytes.

We have implemented the two versions of Sflash on two Intel 8051 CPU based
components: an original Intel 8051 CPU and an Infineon SLE66 component
without cryptoprocessor. The timings (without hashing) are the following:

Component

Frequency [MHz]

Code version

ROM size [kbytes]

Timings [ms]

8051 8051 SLE66 SLE66 8051 8051 SLE66 SLE66
3.57 10 3.57 10 3.57 10 3.57 10
fast fast fast fast slow slow slow slow
3.1 3.1 3.1 3.1 2.5 2.5 2.5 2.5
750 268 164 59 1075 384 230 82

We see that on a smart card without any coprocessor and in usual conditions
(10 MHz is today a normal frequency for a low-cost component such as SLE66)
one can compute digital signatures in as little as 59 ms ! It is much less than for
RSA or Elliptic Curves, even if a cryptographic co-processor is used (!), see the
comparison in Section 8.

274 Mehdi-Laurent Akkar et al.

7 Protecting Sflash against Side-Channel Attacks

In the side-channel attacks, the adversary tries to recover the private key of
a signature scheme (or other useful information) given the information that
leaks from the intermediate data that appears during the computation, or from
the computation itself, see for example [11].

7.1 Protecting against SPA-Like Attacks

For Sflash, the computation is always the same, whatever the value of the private
key is. Moreover, all the computations in Sflash use full bytes of the private
key, making the dependency of power consumption on the key very complex to
exploit. This prevents SPA attacks known for unprotected implementations of
RSA, in which the power consumption allows to see the values of single bits of
the private key.

7.2 Protecting against DPA-Like Attacks

For DPA-like attacks, the protection boils down to masking the intermedi-
ate data. The signature of Sflash involves mainly the composition of 3 func-
tions, t−1, f−1 and s−1. The best way to prevent an information leak (of any
type) is to mask completely the two intermediate values: the output of t−1 and
of f−1. For this, we will use the homomorphic properties of the functions t−1

and f−1 with regard to respectively the addition and the multiplication. Thus,
since t−1 is affine, its output is still masked additively (with another mask).
Similarly we may pass through f−1 with a multiplicative masking.

The proposed method for a secured implementation of Sflash is shown on
Figure (1).

7.3 Algorithmic Considerations

A. Computation of f(λ): The function f is the following :

f : x �→ x12811+1 =
(
((((x1287

)128)128)128)128
)
· x

so we can compute f(λ) with one raising to the power 1287, 4 raisings to the
power 128 and one multiplication.

B. Computation of λ−1: First of all we begin with remarking that |L∗| =
12837 − 1, so inverting an element of L can be done by raising it to the power
12837−2. Besides 12837−2 = (11...110)2 (i.e. 258 “1” followed by “0” in basis 2).
Thus we can compute λ−1 as follows:

• z ←− λ
• z ←− z2.z (i.e. z = λ(11)2 that we store)
• z ←− z22

.z (z = λ(1111)2)

A Fast and Secure Implementation of Sflash 275

x←− hashed message to sign.
r ←− random ∈ L.
λ←− random ∈ L∗.

✲

❄ ❄

❅
❅

❅❅❘

�
�

��✠

❄

❄

❄

❅
❅

❅❅❘

�
�

��✠

❄

x (x⊕ r) r

t−1 × Tm

t−1(x)⊕ Tmr Tmr

× f(λ) × f(λ)

⊕

f(λ) t−1(x)

f−1

λ (f−1 ◦ t−1(x)) ⊕ λ r

× λ−1

f−1 ◦ t−1(x)⊕ r r

⊕
× Sms−1

Signature of x: s−1 ◦ f−1 ◦ t−1(x)

Fig. 1. A randomized masking method to protect Sflash against side-channel
attacks

276 Mehdi-Laurent Akkar et al.

• z ←− z24
.z (z = λ(11111111)2)

• z ←− (z128)2.z (z = λ(1111111111111111)2)
• z ←− ((z128)128)4.z (z = λ(11111111111111111111111111111111)2)
• z ←− ((((z128)128)128)128)2

4
.z (z = λ(11...11)2 with 64 “1”)

• z ←− z264
.z = (((z128

7
)128)128)2.z (z = λ(11...11)2 with 128 “1”)

• z ←− z2128
.z = ((((z128

7
)128

7
)128)128)128)128)4.z

(now we have z = λ(11...11)2 with 256 “1”)
• z ←− z22

.λ(11)2 (z = λ(11...11)2 with 258 “1”)
• z ←− z2 which gives indeed z = λ−1 = λ(11...110)2 with 258 “1” and one “0”.

C. Computation of Tmr et Smr:We compute them with a classical matrix
product.

Computations Added Compared to an Unprotected Version:
– 2 matrix products to compute Tmr and Smr.
– 13 multiplications in L.
– 20 squarings in L.
– 17 raisings to the power 128 in L.
– 4 raisings to the power 1287 in L.

Comparing to what we achieved with our (unprotected) implementation of
Sflash, see the results in Section 6, the version which is protected against DPA-
like attacks implies to approximately double the running time.

8 Digital Signatures on a Smart Card – a Comparison

In this section we compare Sflash to some other known implementations of the
signature schemes in smart cards. The numerical data for schemes other than
Sflash are based on unverified claims of the vendors.

cryptosystem
platform

word size [bits]
ROM size [Kbytes]

speed [MHz]
co-processor

Signature Length
Timings

Sflash NTRU-251 RSA-1024 RSA-1024 ECC-191
SLE-66 Philips 8051 SLE-66 ST-19XL SLE-66

8 8 8 8 8
3.1 5
10 16 10 10 10
no no no yes yes
259 1757 1024 1024 382
59 ms 160 ms many s 111 ms 180 ms

Apparently, the only signature scheme known that might be able to compete
with Sflash is NTRUSign. An NTRUSign signature seems to be slower, but also
about 6 times longer. Knowing that the communication ports of low-end smart
cards are quite slow, at 9600 bit/s, an NTRUSign card would take additional
200 ms to transmit the signature.

A Fast and Secure Implementation of Sflash 277

9 Conclusion

In this paper we described a highly optimized implementation of the Sflash
signature schemes on a low-cost smart card. Our fastest implementation of Sflash
takes 59 ms on a 8051 based CPU at 10MHz. We also presented a method to
protect this implementation against DPA-like attacks that requires about twice
as much time.

Though the security of Sflash is not as well understood as for example for
RSA, Sflash is apparently the fastest signature scheme known. It is suitable to
implement PKI on low-cost smart card, token or palm devices. It allows also to
propose secure low-cost payment/banking solutions.

References

[1] Nicolas Courtois, La sécurité des primitives cryptographiques basées sur les
problèmes algébriques multivariables MQ, IP, MinRank, et HFE, PhD Thesis,
Paris 6 University, 2001, in French. Available at
http://www.minrank.org/phd.pdf 268

[2] Nicolas Courtois, Magnus Daum, Patrick Felke, On the Security of HFE, HFEv-
and Quartz, PKC’2003, to appear in LNCS, Springer. 268

[3] Magnus Daum, Patrick Felke, Some new aspects concerning the Analysis of HFE
type Cryptosystems, Presented at Yet Another Conference on Cryptography
(YACC’02), June 3-7, 2002, Porquerolles Island, France. 268

[4] Magnus Daum, Das Kryptosystem HFE und quadratische Gleichungssysteme
über endlichen Körpern, Diplomarbeit, Universität Dortmund, 2001. Available
at daum@itsc.ruhr-uni-bochum.de

[5] Jean-Charles Faugère, Report on a successful attack of HFE Challenge 1 with
Gröbner bases algorithm F5/2, announcement that appeared in sci.crypt news-
group on the internet on April 19th 2002.

[6] Henri Gilbert, Marine Minier, Cryptanalysis of Sflash, EUROCRYPT’2002, LNCS
2332, Springer, pp. 288-298. 268

[7] Michael Garey, David Johnson, Computers and Intractability, a guide to the the-
ory of NP-completeness, Freeman, p. 251.

[8] Willi Geiselmann, Rainer Steinwandt, Thomas Beth, Revealing 441 Key Bits of
SFLASH-v2, Third NESSIE Workshop, November 6-7, 2002, Munich, Germany.
270

[9] A page about the Gray code, http://www.nist.gov/dads/HTML/graycode.html
272

[10] Neal Koblitz, Algebraic aspects of cryptography, Springer, ACM3, 1998, Chapter
4: “Hidden Monomial Cryptosystems”, pp. 80-102. 267

[11] Paul Kocher, Joshua Jaffe, Benjamin Jun, Introduction to Differential Power
Analysis and Related Attacks. Technical Report, Cryptography Research Inc.,
1998. Available at http://www.cryptography.com/dpa/technic/index.html

268, 274
[12] Tsutomu Matsumoto, Hideki Imai, Public Quadratic Polynomial-tuples for ef-

ficient signature-verification and message-encryption, EUROCRYPT’88, LNCS
330, Springer 1998, pp. 419-453. 267

[13] Jacques Patarin, Cryptanalysis of the Matsumoto and Imai Public Key Scheme
of Eurocrypt’88, CRYPTO’95, LNCS 963, Springer, pp. 248-261. 267

278 Mehdi-Laurent Akkar et al.

[14] Jacques Patarin, Nicolas Courtois , Louis Goubin, C*-+ and HM - Variations
around two schemes of T. Matsumoto and H. Imai, ASIACRYPT’98, LNCS 1514,
Springer, pp. 35-49. 267, 268

[15] Jacques Patarin, Louis Goubin, Nicolas Courtois, Quartz, 128-bit long digital
signatures, Cryptographers’ Track RSA Conference 2001, San Francisco 8-12 April
2001, LNCS 2020, Springer, pp. 282-297.
Note: The Quartz signature scheme has been updated since, see [16].

[16] Jacques Patarin, Louis Goubin, Nicolas Courtois, Quartz, 128-bit long dig-
ital signatures, An updated version of Quartz specification. available at
http://www.cryptosystem.net/quartz/ or http://www.cryptonessie.org 278

[17] Jacques Patarin, Louis Goubin, Nicolas Courtois, Flash, a fast multivariate signa-
ture algorithm, Cryptographers’ Track RSA Conference 2001, San Francisco 8-12
April 2001, LNCS 2020, Springer, pp. 298-307. 267, 268, 269

[18] An updated version of Sflash specification. Available at
http://www.cryptosystem.net/sflash/ or http://www.cryptonessie.org 267,
269

[19] Adi Shamir, Efficient signature schemes based on birational permutations,
CRYPTO’93, LNCS 773, Springer, pp. 1-12. 268

	A Fast and Secure Implementation of Sflash
	Introduction
	Structure of the Smart Card
	Basis Structures and Variables Used in Sflash
	Main Structures
	The Private Key of Sflash

	Fast Implementation of the Operations over the Fields
	The Implementation of K

	How to Compute A=f^-1(B) in Sflash ?
	Special Operations Involved in the Computation of f^-1:

	The Performance Data
	Protecting Sflash against Side-Channel Attacks
	Protecting against SPA-Like Attacks
	Protecting against DPA-Like Attacks
	Algorithmic Considerations
	Computations Added Compared to an Unprotected Version

	Digital Signatures on a Smart Card -- a Comparison
	Conclusion
	References

