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Abstract. DSA and ECDSA are well established standards for digi-
tal signature based on the discrete logarithm problem. In this paper we
survey known properties, certification issues regarding the public param-
eters, and security proofs.
ECDSA also includes a standard certification scheme for elliptic curve
which is assumed to guarantee that the elliptic curve was randomly se-
lected, preventing from any potential malicious choice. In this paper we
show how to bypass this scheme and certify any elliptic curve in char-
acteristic two. The prime field case is also studied. Although this does
not lead to any attack at this time since all possible malicious choices
which are known at this time are specifically checked, this demonstrates
that some part of the standard is not well designed. We finally propose
a tweak.

DSA was published in 1994 following a long dynasty of digital signature schemes
based on the ElGamal scheme [10, 11, 12]. Since then an extensive literature ad-
dressed security analysis, performances, and variants. Among the famous vari-
ants ECDSA was proposed in 1998. In this paper we aim to survey dedicated
attacks and provable security. We also address the parameter validation issue. In
particular we show that we may be able to maliciously choose an elliptic curve
for ECDSA despite the standard validation scheme.

1 DSA and ECDSA

In order to define the notations, we first summarize the DSA as presented in
ANSI X9.30 Part 1 [1] and FIPS 186 [5].

Public Parameters: integers p, q, g and a seed in order to validate q
p is a prime of L bits (L is at least 512, at most 1024, and a multiple
of 64)
q is a prime of 160 bits and a factor of p− 1
g is in [1, p− 1] and of order q modulo p

Secret Key: integer x in [1, q − 1]
Public Key: y = gx mod p

Y.G. Desmedt (Ed.): PKC 2003, LNCS 2567, pp. 309–323, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



310 Serge Vaudenay

Signature Generation for M : generate k ∈ [1, q − 1] and compute

r = (gk mod p) mod q

s =
SHA-1(M) + xr

k
mod q

If r = 0 or s = 0, try again. The signature is (r, s)
Signature (M, r′, s′) Verification: check that r′ and s′ are in [1, q−1]

and that
r′ = (g

SHA-1(M)
s′ y

r′
s′ mod p) mod q

SHA-1 is not specified in FIPS 186 [5]. It is standardized in FIPS 180-1 [4] and
the Part 2 of ANSI X9.30. The Appendixes of ANSI X9.30 [1] and FIPS 186 [5]
however specify how public parameters, secret keys and k values shall be gener-
ated. They do not specify how the parameters validity should be checked. They
simply say that the parameters must be transmitted in an authenticated way.

Let us now summarize the ECDSA as presented in ANSI X9.62 [2].

Public Parameters: finite field Fq and a field representation choice,
two parameters a and b which define an elliptic curve C over Fq,
a seed which validates C, a prime integer n > 2160, and a point
G ∈ C of order n. Here q is either prime or a power of 2

Secret Key: integer d in [1, n− 1]
Public Key: Q = dG
Signature Generation for M : generate k ∈ [1, n− 1] and compute

(x1, y1) = kG

r = x1 mod n

s =
SHA-1(M) + dr

k
mod n

If r = 0 or s = 0, try again. The signature is (r, s)
Signature (M, r′, s′) Verification: check that r′ and s′ are in [1, n −

1] and that r′ = x1 mod n for (x1, y1) = u1G + u2Q, u1 =
SHA-1(M)

s′ mod n, and u2 = r′
s′ mod n

Here x1 is simply a way of converting a field element into an integer and
SHA-1 is a hash function specified in FIPS 180-1 [4].

The signature is a pair of integers. The public key is a point on a curve.
So ANSI X9.62 [2] needs to define a standard way for representing an integer,
a point, and therefore a field element. In addition we need a standard way to
represent the public parameters: the field representation, the curve definition, ...
ANSI X9.62 [2] extensively defines all this.

Additionally, users need to check if the public parameters are valid as follows.

1. Check that q is an odd prime or a power of 2. In the latter case, check that
the field representation choice is valid.
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2. Check that a, b, xG, yG where G = (xG, yG) lies in Fq.
3. Check that seed certifies a and b. (This point will be discussed in Section 5.)
4. For q prime, check that 4a3 + 27b2 mod q �= 0. For q a power of two, check

that b �= 0.
5. Check that G lies in C.
6. Check that n is a prime greater than 2160 and 4

√
q.

7. Check that nG = O, the neutral element in C.
8. Check the MOV and anomalous condition for C.

The verifier further validates the public key by checking that Q �= O, Q ∈ C,
and nQ = O.

2 Dedicated Attacks

In this section we survey some known properties of DSA and ECDSA.

2.1 Signature Manipulation in ECDSA

Interestingly, the (x1, y1) �→ x1 mod n function does not use the information
about y1. We have two points in the elliptic curve with the same x1 coordinate
which happen to be opposite of each other. (Hence dropping y1 looses one bit of
information.) It means that replacing k by −k mod n would lead to the same x1

hence the same r. This manipulation replaces s by −s mod n. Hence we can
replace any (r, s) signature by (r,−s mod n) which is another valid signature for
the same message.

The drop of one bit has the other consequence that one can choose his secret
key in order to create a valid signature for two different messages simultaneously
as pointed out by Stern et al. [24]. Indeed we can just compute r from a random k
then select

d = −SHA-1(M1) + SHA-1(M2)
2r

mod n.

2.2 Bleichenbacher Attack against the Pseudorandom Generator

The initial standard pseudorandom generator in DSA for k was simply a 160-bit
pseudorandom number reduced modulo q. Bleichenbacher1 observed that the
probability of k in the [0, 2160 − q] range have probability which is twice of the
others. This leads to a bias

E
(
e

2iπk
q

)
≈ qeiπ N−1

q

πN
× sin

(
πN

q

)

where N = 2160. Since q ≈ N , this may be large depending on the πN
q angle.

Bleichenbacher actually used it in order to approximate the secret key more
and more precisely with signatures. Based on that the standard was tweaked by
basically replacing N by N2. (See [6].)

The same remark holds for ECDSA with n instead of q (but the πN
n angle is

very small most of the time).
1 Private communication.
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2.3 Restart Attack

Assuming that the pseudorandom generator for k is deterministic and that one
can reset the internal state of the generator, then we can break the scheme with
signatures of two different messages: if the signer signs M1 by generating k and
we can reset it so that it generates the same k for M2, we have a signature (r, s1)
for M1 and a signature (r, s2) for M2. Hence we obtain that

x = −s2SHA-1(M1) − s1SHA-1(M2)
r(s2 − s1)

mod q.

This attack model makes sense if we have a clone of the signer with the same
initial state.

A similar attack holds for ECDSA.

3 Parameter Validation

In this section we survey some parameter certification issues.

3.1 Public Keys Certificate

Authentication of public keys is a well known problem. It can be solved by us-
ing certificates which are basically signatures of the public key by a certificate
authority. Certificates then rely on the authentication of the certificate author-
ity public key. This is still an important issue since there is no other mean
than physical protection: when delivered, the public key needs to be manually
authenticated, then physically protected in the memory.

We show in the next sections that we have similar issues for the public pa-
rameters.

3.2 p and q Validation

As pointed out by Vaudenay [25], one can choose p and q in DSA such that
a collision on SHA-1 mod q is known. One simply take random q = SHA-1(M1)−
SHA-1(M2) until it is a 160-bit prime number and take random p = aq+ 1 until
it is a prime. With this choice one can forge a signature for M2 with a signature
of M1.

In order to avoid this attack we generate p and q following a standard gener-
ator and use the initial seed as a certificate of good forgery. As specified in [5], q
is generated by

q = (SHA-1(seed) ⊕ SHA-1(seed + 1)) ∨ 2159 ∨ 1

until it is valid where ⊕ and ∨ denote the bitwise XOR and OR operations. This
means that we take the XOR of two random values coming out from SHA-1 and
we force the least and most significant bits to 1. The certificate for p and q is
thus simply the seed.
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As pointed out in [25], the attack still holds whenever

SHA-1(seed) = SHA-1(seed + 1) ± q

which occurs with probability 2× 1
4×

(
3
4

)158× 1
4 ≈ 2−68.6. (2 is for ±, each 1

4 is for
a difference equal to 1 without carry bit, each 3

4 is for a difference without carry
bit).2 Therefore it takes roughly 280 trials in order to get a seed which satisfies
the condition due to the additional overhead due to the primality tests. This is
within the order of magnitude of the brute force attacks which are discussed in
Sec. 4.1.

3.3 g Validation

As pointed out in [25], there is no similar certificate for g (resp. G). If we had
no verification on g at all, we may have attacks against a given DSA signature
verifier as follows. (Similar attacks hold for ECDSA.)

Replacing g by 0. If we can corrupt g in the memory of the verifier we can replace
it by 0. Then any signature with r = 0 becomes valid for any public key.

Replacing g by 1. If we can corrupt g in the memory of the verifier we can replace
it by 1. Then we can forge a signature for any message for a given public key y
by picking random r = (yα mod p) mod q, then s = r

α mod q.

Other replacement. One may want to check that g has an order of q which would
thwart the last two attacks. However we can still replace g by a random power
of y. In this case the attacker knows the discrete logarithm of y in this basis and
can sign any message.

4 Provable Security

In this section we survey provable security results for DSA and ECDSA.

4.1 Necessary Conditions

Theorem 1. Here are necessary security conditions for DSA (resp. ECDSA).

1. The discrete logarithm in the subgroup spanned by g (resp. G) is hard.
2. SHA-1 is a one-way hash function.
3. SHA-1 is a collision-resistant hash function.
4. The generator for k is unpredictable.

As will be noticed later these conditions are “more or less” sufficient in some
particular models.
2 In [25] a probability of 2−68.16 was given but there was a computation error in the
estimate.
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Proof. Condition 1 is quite obvious: if the condition does not hold, we can just
compute the discrete logarithm of the public key and obtain the secret key.
(One need to randomize the public key by standard whitening techniques.) One
should however notice that the discrete logarithm problem is not equivalent to
computing the secret key. The legitimate signer indeed knows how to compute
it but does not necessarily know how to solve the discrete logarithm problem.

Condition 2 comes from the existential forgery attack which enables forging
(h, r, s) triplets where h plays the role of SHA-1(M): for DSA, one can just
pick r = (gαyβ mod p) mod q for random α and β, take s = r

β mod q, then
h = sα mod q. (A similar existential forgery attack holds for ECDSA.) With the
triplet one can try inverting SHA-1 on h and get a valid signed message.

Condition 3 is trivial: if one can get a collision SHA-1(M1) = SHA-1(M2)
then one can ask for the signature of M1 (in a chosen message attack) then forge
the signature for M2.

If Condition 4 does not hold one can predict k then extract the secret key
from s and r. 
�

We can quantify the workload of brute force attacks: Shanks algorithm can
break Condition 1 within a complexity Ω(

√
q) (resp. Ω(

√
n)). Random search

can break Condition 2 within 2160 computations. The birthday attack breaks
Condition 3 within 280 computations. One can also break Condition 4 within 2160

trials.

4.2 Brickell Model

In the Brickell model3, we assume that both SHA-1 and the mod q (resp.
(x1, y1) �→ x1 mod n) function from the subgroup spanned by g (resp. G) behave
like random oracles. (Note that it implies Conditions 2 and 3 of Theorem 1.) Un-
der this assumption, Condition 1 and another assumption which may be stronger
and Condition 4, one can formally prove that DSA (resp. ECDSA) is secure. We
quote the result from [19]. The proof comes from the Forking Lemma techniques
of Pointcheval and Stern [18] and is available in [19, 8]. The same result holds
for ECDSA.

Theorem 2. In DSA we assume that SHA-1 is replaced by a uniformly dis-
tributed random oracle H1 and the computation of r is replaced by H2(gk mod p)
where H2 is another uniformly distributed random oracle. We further assume
that the pseudorandom generator for k is indistinguishable from a uniformly
distributed random generator. Given an algorithm which given the public key y
forges a valid (M,h, r, s) quadruplet in time O(T ), probability greater than ε,
and O(N) oracle accesses, we can make an algorithm which given y computes x
within O(N/ε) replays of the given algorithm.

We notice that all conditions are necessary but for

– the one on the mod q (resp. (x1, y1) �→ x1 mod n) function,
3 This was presented as an invited talk at CRYPTO’ 96 but unpublished. See [19, 8].
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– the one on the pseudorandom generator (which is stronger than Condition 4),
– the random oracle model which is known to be controversial.

The condition on the mod q function is not very satisfactory for DSA. It may
look better for ECDSA since the x1 �→ x1 is arbitrary.

This model was later generalized by Yung et al. in [8] as the TEGTSS-I
scheme.

4.3 Pointcheval-Vaudenay Model

The Pointcheval-Vaudenay result (see [19]) holds with more realistic assumptions
for a variant of DSA which is included in the ISO/IEC 14888 [3] standard. In this
variant SHA-1(M) is replaced by SHA-1(r|M) as in the Schnorr signature [20,
21].

In the Pointcheval-Vaudenay result, SHA-1 still needs to behave like a ran-
dom oracle. The hypothesis on the mod q (resp. (x1, y1) �→ x1 mod n) function
is replaced by a O(log q)-collision freedom (resp. O(log n)-collision freedom).4

This means that all preimage sizes are bounded by O(log q) (resp. O(log n)).
This hypothesis is quite realistic (it actually holds for random functions with
same range). Therefore all assumptions are realistic, but for the controversy on
the random oracle model.

Theorem 3 (Pointcheval-Vaudenay [19, 8]). We consider the Pointcheval-
Vaudenay variant of DSA in which SHA-1(M) is replaced by SHA-1(r|M). In
this scheme we assume that SHA-1 is replaced by a uniformly distributed random
oracle H. The function f over Zq which maps k to f(k) = (gk mod p) mod q is
assumed to be O(log q)-collision free. We further assume that the pseudorandom
generator for k is indistinguishable from a uniformly distributed random gener-
ator. Given an algorithm which given the public key y forges a valid (M,h, r, s)
quadruplet in time O(T ), probability greater than ε, and O(N) oracle accesses,
we can make an algorithm which given y computes x within O(N log q log log q/ε)
replays of the given algorithm.

The key idea in the proof is in an improvement of the Forking Lemma which
makes forks with Ω(log q) branches instead of two.

This model was later generalized by Yung et al. in [8] as the TEGTSS-II
scheme. As shown by Lee and Smart [15], the same variant and result can be
made for ECDSA.

4.4 Brown Model

Brown [9] presented another proof model in which functions are no longer ran-
dom oracles, but the underlying group operations are performed in a generic
group. One property of generic group is that discrete logarithm is provably hard
4 In this paper, t-collision free means that no t inputs collide on their outputs. It is
stronger than collision resistance in the sense that collisions really do not exists.
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which implies Condition 1 of Theorem 1. The best attack requires Ω(
√
q) (resp.

Ω(
√
n)) as proven by Shoup [22]. For DSA, it means that multiplications mod-

ulo p are assumed to be represented by a generic group, which is a wrong assump-
tion since sieving algorithms can compute discrete logarithm in sub-exponential
time. For ECDSA, it means that elliptic curve points addition is assumed to
be represented by a generic group. It is quite natural for random elliptic curves
as long as our understanding on the group structure is currently limited. For
some special curves like Koblitz curves this hypothesis is not valid at all since
some exponential can be computed faster than the regular square-and-multiply
algorithm.

Brown also requires the assumption that the (x1, y1) �→ x1 mod n function
is invertible, which is correct for ECDSA, but we have no similar property for
DSA. (One would need that the mod q function of the subgroup spanned by g is
invertible which is an open problem so far.) Hence the Brown model is meaningful
for ECDSA with random elliptic curves only.

In this model Brown has shown that ECDSA is secure under Conditions 2
and 3 and undistinguishability of the generator for k. His proof was a little
flawed, but fixable as pointed out by Stern et al. [24].

Theorem 4. In ECDSA we assume that elliptic curve is replaced by a generic
group of order n greater than 2160. We assume that the (x1, y1) �→ x1 mod n
function from the generic group to Zn is invertible. We further assume that
the pseudorandom generator for k is indistinguishable from a uniformly dis-
tributed random generator. Given an algorithm which given the public key y
forges a valid (M, r, s) triplet in time O(T ), probability greater than ε, and
N = O(

√
nε) oracle accesses, we can make an algorithm which inverts SHA-

1 with a complexity of O((T + N logN)N/ε) or which finds a collision with
complexity O((T + N logN)/ε).

5 Elliptic Curve Validation

The proposed elliptic curve generator of ECDSA works as follows. It consists of
selecting first a finite field, second a seed of a pseudorandom generator (denoted
seed) which generates a j-invariant, and third the elliptic curve of required j-
invariant over the field.

Curves over Fp with p > 3 Prime:
1. We choose a prime p > 3 and consider Fp.
2. We generate a random bitstring c from seed.
3. We translate c into a field element.
4. We arbitrarily select a and b such that a3/b2 ≡ c (mod p) and take the

elliptic curve defined by

y2 ≡ x3 + ax + b (mod p).
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We recall that in this case the j-invariant is

j = 6912
a3/b2

4a3/b2 + 27
mod p = 6912

c

4c+ 27
mod p

hence j is fully validated by seed.
Curves over Fq of Characteristic 2:

1. We choose q a power of 2 and consider Fq. We choose a representation
of Fq (i.e. an irreducible polynomial).

2. We generate a random bitstring c from seed.
3. We translate c into a field element and call it b.
4. We arbitrarily select a and take the elliptic curve defined over Fq by

y2 + xy = x3 + ax2 + b.

We recall that in this case the j-invariant is j = 1
b hence j is fully validated

by seed.

Then the seed is kept as a certificate of good forgery. Users can check that seed
validates the j-invariant of the curve. This certificate is assumed to convince
that one hid no trapdoor in the specific choice of the curve.

5.1 Elliptic Curves with Same j-Invariant

As noticed, only j is validated from seed. The j invariant is however not a com-
plete characteristic for the elliptic curve. One can replace an elliptic curve by its
twist which has the same j-invariant but is not isomorphic. In the prime field
case, we can replace (a, b) by (u2a mod p, u3b mod p) where u is a non-quadratic
residue in Fp. In characteristic two fields, we can replace (a, b) by (a+θ, b) where
θ is an element of trace 1 over F2, i.e. Tr(θ) = 1 where Tr is defined by

Tr(θ) = θ + θ2 + θ22
+ θ23

+ . . .+ θ
q
2 .

Both curves have the same j-invariant. Although they are isomorphic in some
extension field, they are not isomorphic in general over the chosen field. Therefore
the exact choice of the curve is not certified by this scheme. This means that if
users accept an elliptic curve with the field/seed certificate, they also implicitly
accept its twist.

This property can easily be avoided by requiring that seed generates c to-
gether with an extra bit which is such that

–
(

b
p

)
= (−1)bit for prime fields,

– Tr(a) = bit for characteristic two fields.

In this case seed fully validates the elliptic curve up to an isomorphism.
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5.2 Bypassing the Scheme in the Characteristic Two Case

In the standard validation scheme, the pseudorandom generator for c is used
after the finite field choice, though it does not really use it. One can wonder
what happens if we first generate c then choose the finite field. The characteristic
two case is easy since the field representation choice is open, and basically free.
Hence one can easily bypass the validation scheme as follows. We assume that
we have an elliptic curve defined by

y2 + xy = x3 + ax2 + b

over a given field Fq of characteristic two. We want to validate it by looking for
a field representation and seed.

1. Pick seed at random.
2. Generate a bitstring c from seed.
3. Look for the field representation of Fq such that the string c represents the

field element b. If not possible go back to step 1.

As shown in Appendix A, this works within less than log2 q iterations on average
for any b but b = 0 (for which the curve is singular) or b = 1 (which is quite
relevant for Koblitz curves). Note that Step 3 simply consists of looking for
roots of the polynomial equation C(X) = b where C(X) is defined by c. (See
Appendix A.)

Therefore the pseudorandom generation of the elliptic curve provided in
ANSI X9.62 [2] brings a very weak guaranty of honest elliptic curve generation.

5.3 Prime Fields Case

The prime field case do not offer any choice for the field representation. However
we can still try to choose p after having generated c. At the time this paper is
written we have no clue how to maliciously pick p so that the elliptic curve is
weak. We let this as an open problem.

Given a random integer c, can we choose a prime p such that an elliptic
curve over Fp whose j-invariant is j = 6912 c

4c+27 mod p is flawed?

As a challenge we propose

Given a random integer c, can we choose a prime p such that j =
6912 c

4c+27 mod p is the j-invariant of an anomalous elliptic curve over
Fp?

Anomalous elliptic curves over Fp are known to be weak.5

5 See [23, 17].
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5.4 A Possible Tweak for ECDSA

We recommend to update the validation scheme by concatenating the seed with p
(resp. q and the field representation) in the generator and by generating an extra
bit. Here is the tweaked scheme.

Curves over Fp with p > 3 Prime:
1. We choose a prime p > 3 and consider Fp.
2. We generate a random bitstring c and bit from seed and p.
3. We translate c into a field element.
4. We arbitrarily select a and b such that a3/b2 ≡ c (mod p) and

(
b
p

)
=

(−1)bit, and take the elliptic curve defined by a, b, p.
Curves over Fq of Characteristic 2:

1. We choose q a power of 2 and consider Fq. We choose a representation
of Fq (i.e. an irreducible polynomial).

2. We generate a random bitstring c and bit from seed, q, and the field
representation choice.

3. We translate c into a field element and call it b.
4. We arbitrarily select a such that Tr(a) = bit and take the elliptic curve

defined over Fq by a, b, q.

This way we are ensured that the elliptic curve was randomly selected up to an
isomorphism.

6 Conclusion

We surveyed security properties of DSA and ECDSA.

– We have seen that, like for many cryptographic schemes, DSA and ECDSA
are highly vulnerable when used in a poor way. For instance the pseudoran-
dom generator must be cryptographically strong. We also need to care about
cloning issues.

– We also investigated the parameter validation issue. Like the public key vali-
dation problem, parameter must be validated and securely stored. Otherwise
one can hide trapdoors in p, q, or g (resp. G).

– DSA and ECDSA are provably secure in the random oracle model by assum-
ing that the k �→ r has nice properties. Slight variants of DSA and ECDSA
benefit from stronger security proofs.

Finally, the standard elliptic curve validation scheme happens to provide weak
guaranty for honest generation. While the prime field case is proposed as an
open problem, the validation process is easy to bypass in the characteristic two
case. Therefore we recommend to update the elliptic curve validation scheme as
proposed in Section 5.4.
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A Number of Field Representations

Theorem 5. Let ( be an integer. Let q = 2� and consider Fq. Let b ∈ Fq. Let
C(X) = c0 + c1X + . . .+ c�−1X

�−1 ∈U F2[X ] be a uniformly distributed random
binary polynomial of degree at most ( − 1. We consider the probability Pr that
there exists an element x ∈ Fq of degree ( such that C(x) = b.

– For b = 0 or b = 1, we have Pr = 2−�.
– In other cases, we have Pr ≥ 1

� for ( �= 6, and Pr ≥ 1
7 for ( = 6.

Given an element x ∈ Fq of degree (, we know that 1, x, x2, . . . , x�−1 is a basis
of Fq over F2 so we can choose the minimal polynomial µx(X) of x in order to
represent Fq as F2[X ]/µx(X). This way C represents b.

This theorem thus means that for any b which is neither 0 nor 1 and any
bitstring C there is a probability greater than 1

� that there exists a representation
of Fq in which C represents b.
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Proof. When b = 0 or b = 1, we notice that C(x) = b implies that x is a root of
C(X) − b which is a binary polynomial. When this polynomial is nonzero, this
means that x is a root of a polynomial of degree less than (, so x cannot have
a degree of (. Hence x exists only when C(X) is identically equal to b which
holds with probability 2−�. Let us now consider other cases.

Let A be the set of all x ∈ Fq of degree (. For any x ∈ A, we know that
1, x, x2, . . . , x�−1 is a basis of Fq over F2. Thus we can represent b as a linear
combination and obtain b = C(x) for some polynomial C(X) of degree less than
(. Hence to any x ∈ A corresponds a unique polynomial which we denote Cx(X).

For any polynomial C(X) = c0 + c1X + . . . + c�−1X
�−1 in F2[X ] the values

x ∈ A such that Cx(X) = C(X) are all roots of C(X) − b which is a nonzero
polynomial in Fq[X ] of degree at most (−1. Hence we have at most (−1 values
x ∈ A which are mapped onto the same Cx(X). Hence the number of C(X)
for which we have a solution is at least |A|

�−1 where |A| is the cardinality of A.
Thanks to the following lemma we obtain that Pr ≥ 1

�−1

(
1 − 1

�

)
= 1

� for ( �= 6.
For ( = 6 we have Pr ≥ 1

5

(
1 − 11
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) ≥ 1
7 . 
�

Lemma 1. Let ( be an integer. Let q = 2� and consider Fq. The number N
of x ∈ Fq of degree ( is such that N ≥ q − √

q log2 (. For ( �= 6 we also have
N ≥ q − q

� which is tighter for ( ≤ 10. For ( = 6 we have N = q − 11.

Proof. We proceed by upper bounding the number of x whose degree is less
than (. Let ( = pα1

1 . . . pαr
r be the factorization of (. We assume that the pis are

pairwise different prime integers and that the αis are non negative integers.
Let x ∈ Fq of degree d < (. The minimal polynomial µx(X) of x is an

irreducible polynomial of F2[X ] of degree d whose roots are the conjugates of x.
The F2[X ]/µx(X) finite field contains the roots of µx(X) and is thus a subfield
of Fq and d divides (. We deduce that x2d

= x. Since d < ( and d divides ( there
must exists i such that d divides �

pi
. Raising to the power 2



pi is equivalent to

raising �
dpi

times to the power 2d. Hence x is a root of X2



pi − X . We deduce

that the number of x ∈ Fq of degree d < ( is at most
∑r

i=1 2



pi . Since pi ≥ 2

we have 2



pi ≤ √
q. Similarly we have r ≤ log2 ( so the number of elements of

degree less than ( is at most
√
q log2 (.

In order to deduce a tighter bound we use the explicit number of irreducible
polynomial of degree ( over F2[X ] which is

1
(

∑
d divides �

µ(d)2


d

where µ is the Mœbius function (see [14, pp. 84–86]). To each irreducible poly-
nomial corresponds ( roots so we have

N =
∑

d divides �

µ(d)2


d
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which leads us to

N =
1∑

β1=0

. . .

1∑
βr=0

(−1)β1+...+βr × 2�/(p
β1
1 ...pβr

r ).

We can check that N ≥ q − q
� for all ( ≤ 10 but ( = 6 for which N = 26 − 23 −

22 + 21 = 26 − 11.
We easily demonstrate that for ( ≥ 11 we have

√
q log2 ( ≤ q

� so N ≥ q − q
�

holds for all ( but ( = 6. 
�
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