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Abstract. We consider RSA-type schemes with modulus N = prq for
r ≥ 2. We present two new attacks for small secret exponent d. Both ap-
proaches are applications of Coppersmith’s method for solving modular
univariate polynomial equations [5]. From these new attacks we directly
derive partial key exposure attacks, i.e. attacks when the secret expo-
nent is not necessarily small but when a fraction of the secret key bits is
known to the attacker. Interestingly, all of these attacks work for public
exponents e of arbitrary size. Additionally, we present partial key expo-
sure attacks for the value dp = d mod p−1 which is used in CRT-variants
like Takagi’s scheme [11]. Our results show that RSA-type schemes that
use moduli of the form N = prq are more susceptible to attacks that
leak bits of the secret key than the original RSA scheme.

Keywords: N = prq, Coppersmith’s method, Partial Key Exposure
Attacks

1 Introduction

We investigate attacks on cryptographic schemes that use public moduli of the
form N = prq for some constant r > 1. Moduli of this type have recently been
used in different cryptographic designs. Fujioke, Okamoto and Uchiyama [6]
presented an electronic cash scheme using a modulus N = p2q. Furthermore,
Okamoto and Uchiyama [10] designed an elegant public-key crypto scheme that
is provably as secure as factoring a modulus N = p2q. A fast CRT-RSA variant
using moduli of the form N = prq was introduced by Takagi [11] in 1998. The
larger one chooses r in Takagi’s scheme, the more efficient is the scheme for a
fixed bit-size of the modulus N .

Consider an RSA-type scheme with public key (N, e), where N = prq for
some fixed r > 1 and p, q are of the same bit-size. The secret key d satisfies
ed = 1 mod φ(N), where φ(N) is Euler’s totient function. We denote by

�
∗

φ(N)

the multiplicative group of invertible integers modulo φ(N).
In 1999, Boneh, Durfee and Howgrave-Graham [3] showed that schemes with

moduli of the form N = prq are more susceptible to attacks that leak bits
of p than the original RSA-scheme. Using Coppersmith’s method for solving



univariate modular equations [5], they showed that it suffices to know a fraction
of 1

r+1 of the MSBs of p to factor the modulus. It is an interesting task, whether
schemes with N = prq are also more susceptible to attacks that leak bits of the
secret exponent d. In most side-channel attack scenarios (see for instance [7, 8]),
it is more reasonable to assume that an adversary gains knowledge of a fraction
of the secret key bits than knowledge of the prime factor bits.

Intuitively, one should expect that crypto-systems with moduli of the form
N = prq, r > 1 are more vulnerable to secret key attacks than the original RSA-
scheme, since for a fixed bit-size of N the amount of secret information encoded
in the prime factors is smaller than in RSA. Hence, these schemes should be
more susceptible to small secret key attacks like the Wiener attack [12] and the
Boneh-Durfee attack [1]. Likewise, these schemes should be more susceptible to
so-called partial key exposure attacks that use the knowledge of a fraction of
the secret key bits like the Boneh-Durfee-Frankel attack [2] and the Blömer-May
attack [4].

In contrast to this intuition, it was stated in the work of Takagi [11] that
RSA-type schemes with N = prq seem to be less vulnerable to attacks for small
decryption exponents d than the original RSA-scheme. Namely, Takagi showed

a generalized Wiener-bound of d ≤ N
1

2(r+1) . However, we introduce two attacks
with improved bounds for the size of d. Both new attacks are applications of
Coppersmith’s method for solving modular univariate polynomial equations [5].

Our first attack directly uses the results of Boneh, Durfee and Howgrave-
Graham [2] for factoring N = prq. It yields an improved bound of

d ≤ N
r

(r+1)2 for r ≥ 2.

Let us compare the results for r = 2: Takagi requires that d ≤ N
1
6 whereas our

new method works whenever d ≤ N
2
9 .

Our second method makes use of Coppersmith’s method in the univariate
case and leads to the bound

d ≤ N( r−1
r+1 )

2

= N
1− 4r

(r+1)2 for r ≥ 2.

Interestingly in contrast to the previous bounds, this new bound converges to
N for growing r instead of converging to 1. It improves upon our first attack
for all parameter choices r ≥ 3: The second attack requires that d ≤ N

1
4 in the

case r = 3 compared to d ≤ N
3
16 for our first method. Thus, our first attack

is only superior to the other methods in the case r = 2. On the other hand,
moduli of the form N = p2q are frequently used in cryptography and therefore
they represent one of the most important cases.

Interestingly, the new attacks for small decryption exponents d have two new
features which the original Wiener attack and the Boneh-Durfee attack do not
possess:

– One cannot counteract the new attacks by choosing large public exponents
e, since the attacks are independent of the value of e. In comparison, the
Wiener bound d ≤ N

1
4 and the Boneh-Durfee bound d ≤ N 0.292 require



that e < φ(N). It is known that the attacks cannot be applied for any size
of d if e > N1.5 or e > N1.875, respectively.

– The new attacks immediately imply a partial key exposure attack for d with
known most significant bits (MSBs). Namely, it makes no difference in the
attacks whether the most significant bits of d are zero (and thus d is a small
decryption exponent) or are known to the attacker. In contrast, Wiener’s
attack and the Boneh-Durfee attack for small decryption exponents do not
work when the MSB’s are non-zero but known. In addition, the new attacks
also provide partial key exposure attacks for known least significant bits
(LSBs).

Using the first attack, we are able to prove that a fraction of

1 −
r

(r + 1)2
of the MSBs or LSBs of d

suffice to find the factorization of N = prq. The second attack yields partial key
exposure attacks that require only a fraction of

4r

(r + 1)2
of the MSBs or LSBs of d

in order to factor N .
The resulting partial key exposure attacks share the same property as the

underlying attacks for small decryption exponents d: They do not rely on the size
of the public exponent e. Note that all partial key exposure attacks mentioned in
the literature [2, 4] are dependent on e and do not work for arbitrary e ∈

�
∗

φ(N).
The new methods are the first partial key exposure attacks that work for all
public exponents e.

The reason that all former attacks on RSA-type schemes depend on the
size of e is that they all compute the parameter k in the RSA key equation
ed − 1 = kφ(N). In contrast, our new attacks do not require the computation
of k. Thus, k must not be a small parameter and hence the parameters e and
d can be increased (thereby increasing k) without affecting the usability of the
attacks.

The reason that our new attacks do not require the direct computation of k is
mainly that for moduli N = prq the group order of the multiplicative group Z∗

N is
φ(N) = pr−1(p−1)(q−1). Thus for r ≥ 2, φ(N) and N share the common divisors
p and pr−1, respectively, and this can be used in the attacks by constructing
polynomials with small roots modulo p (our first attack) and modulo pr−1 (our
second attack), respectively. But looking at the equation ed−1 = kφ(N) modulo
p (respectively modulo pr−1) removes the unknown parameter k.

We want to point out that these new attacks are normally not a threat to
Takagi’s scheme [11]. Since Takagi’s CRT-decryption process only makes use of
the values dp = d mod p − 1 and dq = d mod q − 1, it suffices to choose an d

which satisfies ed = 1 mod (p− 1)(q − 1). For this kind of public-key/secret-key
pair (e, d), our previous attacks do not apply. Even worse, normally one would
not even store the value of d but only the values of dp and dq for the decryption



process. Therefore, it is reasonable to assume that an attacker may only get bits
of dp or dq . Hence, it is an interesting task to derive partial key exposure attacks
for known bits of dp (respectively dq).

We show that the partial key exposure attacks of Blömer and May [4] for
moduli N = pq generalize to the case N = prq. Interestingly, the results are again
much better for r > 1. Namely, we present attacks that need only a fraction of

1

r + 1
of the MSBs or LSBs of dp

when the public exponent e is small. This shows that Takagi’s scheme is also
more susceptible to attacks that leak bits of dp than normal CRT-RSA.

The paper is organized as follows: In Section 2, we review Coppersmith’s
method for modular univariate polynomial equations [5]. Here, we introduce a
reformulation of Coppersmith’s orginal theorem that unifies all known applica-
tions (see [2–5]) of the method in the univariate case. As an example, we derive
the result of Boneh, Durfee and Howgrave-Graham [3] for factoring N = prq as
a direct application of Coppersmith’s theorem. The first attack for small d and
the corresponding partial key exposure attacks are presented in Section 3. In
Section 4, we describe our second attack. The partial key exposure attacks for
dp are presented in Section 5.

2 Coppersmith’s method and the result of BDH

Let us recall Coppersmith’s theorem for solving modular univariate polynomial
equations [5]. Here, we give the theorem in a slightly more general form than
originally stated. However, one can prove the theorem in a completely analogous
way to the reasoning in the original proof of Coppersmith. We give the details
of the proof in the full version of the paper.

Theorem 1 (Coppersmith) Let N be an integer of unknown factorization,
which has a divisor b ≥ Nβ. Let fb(x) be an univariate, monic polynomial of
degree δ. Furthermore, let cN be a function that is upper-bounded by a polynomial
in log N . Then we can find all solutions x0 for the equation fb(x) = 0 mod b with

|x0| ≤ cNN
β2

δ

in time polynomial in (log N, δ).

Coppermith formulated Theorem 1 for the special case where N = b. Then
the bound for the solutions becomes |x0| ≤ cNN

1
δ . However, the above formu-

lation of Coppersmith’s theorem has some advantages: For instance, it is not
hard to see that the result of Boneh, Durfee and Howgrave-Graham [3] for fac-
toring N = prq with known bits is a direct application of Theorem 1 using the
polynomial fpr(x) = (x + p̃)r.

In fact, the following theorem is stated in the original work of Boneh, Durfee
and Howgrave-Graham for the special case k = 1, but we formulate it in a
slightly more general way, since we will use this generalization in Section 3.



Theorem 2 (BDH) Let N = prq, where r is a known constant and p, q are of
the same bit-size. Let k be an (unknown) integer that is not a multiple of pr−1q.
Suppose we know an integer p̃ with

| kp − p̃ | ≤ N
r

(r+1)2 .

Then N can be factored in polynomial time.

Let us interpret the result of Theorem 2. In order to factor N it suffices to

find an integer p̃ which is within the range N
r

(r+1)2 of some multiple of p (which
is not a multiple of N). In the following section, we present our first new attack
that constructs an integer p̃ with the above property whenever d is sufficiently
small.

3 The attack modulo p

We present our first attack for small decryption exponents d and afterwards
extend this approach to partial key exposure attacks.

Theorem 3 Let N = prq, where r ≥ 2 is a known constant and p, q are primes
of the same bit-size. Let (e, d) ∈

�
×

�
∗

φ(N) be the public-key/secret-key pair

satisfying ed = 1 mod φ(N). Suppose that

d ≤ N
r

(r+1)2 .

Then N can be factored in probabilistic polynomial time.

Proof: We know that φ(N) = pr−1(p − 1)(q − 1) and therefore the key pair
(e, d) satisfies the equation

ed − 1 = kpr−1(p − 1)(q − 1) for some k ∈ � . (1)

Let E be the inverse of e modulo N , i.e. Ee = 1 + cN for some c ∈ � . If E does
not exist then gcd(e, N) must be a non-trivial divisor of N .

Note that each possible non-trivial divisor ps, psq or q (1 ≤ s ≤ r) does
immediately yield the complete factorization of N : ps can be easily factored by
guessing s and taking the sth root over the integers. On the other hand, psq

yields N
psq

= pr−s which reduces this case to the previous one. Similarly, q gives
us pr.

Hence, let us assume wlog that the inverse E of e modulo N exists. Multi-
plying equation (1) by E leads to

d − E = (Ekpr−2(p − 1)(q − 1) − cpr−1qd)p.

Thus, E is a multiple of p up to an additive error of d ≤ N
r

(r+1)2 . In order to apply
Theorem 2, it remains to show that the expression Ekpr−2(p−1)(q−1)−cpr−1qd

is not a multiple of pr−1q. Since pr−1q divides the second term, this is equivalent



to show that Ek(p − 1)(q − 1) is not a multiple of pq. By assumption, we have
gcd(E, N) = 1 and thus it remains to prove that pq does not divide k(p−1)(q−1).
Assume k(p − 1)(q − 1) = c′pq for some c′ ∈ � . Then equation (1) simplifies to

ed − 1 = c′N.

On the other hand we know that eE − 1 = cN . Combining both equalities we
obtain that d = E mod N . Since d, E < N we have d = E even over

�
. It is a

well-known fact that the knowledge of the secret key d yields the factorization
of N in probabilistic polynomial time (see for instance [9], Chapter 4.6.1).

We briefly summarize our factorization algorithm.'

&

$

%

(Mod p)-attack for small d using a modulus N = p � q

INPUT: (N, e), where N = prq and ed = 1 mod φ(N) for some d ≤

N
r

(r+1)2 .

1. Compute E = e−1 mod N . If the computation of E fails, output p, q.
2. Run the algorithm of Theorem 2 on input E. If the algorithm’s output

is p, q then EXIT.
3. Otherwise set d = E and run a probabilistic factorization algorithm on

input (N, e, d).

OUTPUT: p, q

Since every step of the algorithm runs in (probabilistic) polynomial time, this
concludes the proof of the theorem.

Theorem 3 gives us a polynomial time factoring algorithm whenever a certain
amount of the MSBs of d are zero. The following corollary shows how the proof
of Theorem 3 can be easily generalized such that the result does not only hold if
the MSBs of d are zero but instead if they are known to the attacker. This gives
as a partial key exposure attack for known MSBs with an analogous bound.

Corollary 4 (MSB) Let N = prq, where r ≥ 2 is a known constant and p, q are
primes of the same bit-size. Let (e, d) ∈

�
×

�
∗

φ(N) be the public-key/secret-key

pair satisfying ed = 1 mod φ(N). Given d̃ such that

| d − d̃ | ≤ N
r

(r+1)2 .

Then N can be factored in probabilistic polynomial time.

Proof: The key-pair (e, d) satisfies the equality

e(d − d̃) + ed̃ − 1 = kpr−1(p − 1)(q − 1) for some k ∈ � .



Let E = e−1 mod N , i.e. Ee = 1 + cN for some c ∈ � . If E does not exist, we
obtain the factorization of N . Multiplying the above equation by E yields

(d − d̃) + E(ed̃ − 1) = (Ekpr−2(p − 1)(q − 1) − cpr−1q(d − d̃))p.

Thus, E(ed̃ − 1) is a multiple of p up to an additive error of |d − d̃| ≤ N
r

(r+1)2 .
The rest of the proof is completely analogous to the proof of Theorem 3.

Corollary 4 implies that one has to know roughly a fraction of 1− r
(r+1)2 of the

MSBs of d for our partial key exposure attack. We can also derive a partial key
exposure attack for known LSBs with an analogous bound.

Corollary 5 (LSB) Let N = prq, where r ≥ 2 is a known constant and p, q are
primes of the same bit-size. Let (e, d) ∈

�
×

�
∗

φ(N) be the public-key/secret-key

pair satisfying ed = 1 mod φ(N). Given d0, M with d = d0 mod M and

M ≥ N
1− r

(r+1)2 .

Then N can be factored in probabilistic polynomial time.

Proof: Let us write d = d1M + d0, were the unknown d1 satisfies d1 = d−d0

M
<

N
M

≤ N
r

(r+1)2 . We have the key equation

ed1M + ed0 − 1 = kpr−1(p − 1)(q − 1) for some k ∈ � .

Multiply the equation by E = (eM)−1 mod N . We see that E(ed0 − 1) is a

multiple of p up to an additive error of |d1| < N
r

(r+1)2 . The rest of the proof is
analogous to the proof of Theorem 3.

4 Attack modulo p
���

1

Our first attack applied Theorem 2 which in turn uses a polynomial with small
roots modulo p. In our second attack we will construct a polynomial with a small
root modulo pr−1 and directly apply Coppersmith’s method in the univariate
case (Theorem 1). This approach yields better results than the first one whenever
r ≥ 3.

Theorem 6 Let N = prq, where r ≥ 2 is a known constant and p, q are primes
of the same bit-size. Let (e, d) ∈

�
×

�
∗

φ(N) be the public-key/secret-key pair

satisfying ed = 1 mod φ(N). Suppose that

d ≤ N( r−1
r+1 )

2

.

Then N can be factored in probabilistic polynomial time.



Proof: The key pair (e, d) satisfies the equation

ed − 1 = kpr−1(p − 1)(q − 1) for some k ∈ � .

Let E be the inverse of e modulo N , i.e. Ee = 1 + cN for some c ∈ N . In the
case that E does not exist, gcd(e, N) yields the complete factorization of N as
shown in the proof of Theorem 3. Multiplying our equation by E leads to

d − E = (Ek(p − 1)(q − 1) − cdpq)pr−1.

This gives us a simple univariate polynomial

fpr−1(x) = x − E

with the root x0 = d modulo pr−1.

Thus, we have a polynomial fpr−1 of degree δ = 1 with a root x0 modulo
pr−1. In order to apply Theorem 1, we have to find a lower bound for pr−1 in
terms of N .

Since p and q are of the same bit-size, we know that p ≥ 1
2q. Hence pr−1 =

N
pq

≥ N
2p2 . This gives us

pr−1 ≥

(

1

2
N

)

r−1
r+1

≥
1

2
N

r−1
r+1 .

Thus, we can choose β = r−1
r+1 − 1

log N
and apply Theorem 1 with the parameter

choice β, δ and cN = 4. We can find all roots x0 that are in absolute value
smaller than

4N
β2

δ = 4N
( r−1

r+1 )2− 2(r−1)
(r+1) log N

+ 1
log2 N ≥ 4N ( r−1

r+1 )2− 2
log N = N ( r−1

r+1 )2 .

Hence, we obtain the value x0 = d. We can run a probabilistic factorization
algorithm on input (N, e, d) in order to obtain the factorization of N in expected
polynomial time.

Remark 7 Another (deterministic) polynomial time method to find the fac-
torization of N could be the computation of gcd(ed − 1, N). Since ed − 1 =
kpr−1(p− 1)(q− 1), the computation yields a non-trivial divisor of N iff pq does
not divide k(p− 1)(q − 1), which is unlikely to happen. As shown in the proof of
Theorem 3, a non-trivial divisor of N reveals the complete factorization of the
modulus. So in practice, one might try this alternative gcd-method first and if it
fails, one applies a probabilistic algorithm on the key-pair (N, e, d).

Let us summarize our new factorization algorithm.



'

&

$

%

(Mod p � )-attack for small d using a modulus N = p � q

INPUT: (N, e), where N = prq and ed = 1 mod φ(N) for some d ≤

N( r−1
r+1 )

2

.

1. Compute E = e−1 mod N . If E does not exist, compute gcd(e, N) and
output p, q.

2. Apply the algorithm of Theorem 1 on input N , fpr−1 = x − E, β =
r−1
r+1 − 1

log N
and cN = 2. This gives us the value d.

3. If the computation gcd(ed − 1, N) yields the factorization, EXIT.
4. Run a probabilistic factorization algorithm on input (N, e, d).

OUTPUT: p, q

Every step of the algorithm can be computed in probabilistic polynomial time,
which concludes the proof of Theorem 6

Similar to the first attack (the (Mod p)-attack) for small decryption exponent
d, we can also easily derive partial key exposure attacks for the new attack of
Theorem 6. The proof of Theorem 6 shows that in order to find the factorization
of N , it suffice to find a linear, univariate polynomial fpr−1(x) = x + c with a

root x0, |x0| ≤ N( r−1
r+1 )

2

modulo pr−1.
We will show that this requirement is satisfied in the following partial key

exposure attacks. Instead of using small decryption exponents d < N ( r−1
r+1 )

2

=

N
1− 4r

(r+1)2 , the attacker has to know a fraction of roughly 4r
(r+1)2 of the bits of

N in order to succeed.

Corollary 8 (MSB) Let N = prq, where r ≥ 2 is a known constant and p, q are
primes of the same bit-size. Let (e, d) ∈

�
×

�
∗

φ(N) be the public-key/secret-key

pair satisfying ed = 1 mod φ(N). Given d̃ with

| d − d̃ | ≤ N( r−1
r+1 )

2

.

Then N can be factored in probabilistic polynomial time.

Proof: We know that

e(d − d̃) + ed̃ − 1 = 0 mod φ(N),

and φ(N) is a multiple of pr−1. Multiply the equation by E = e−1 mod N , which
gives us the desired linear polynomial

fpr−1(x) = x + E(ed̃ − 1)



with the small root x0 = d − d̃, |x0| ≤ N( r−1
r+1 )

2

modulo pr−1. The rest of the
proof is analogous to the proof of Theorem 6.

In a similar fashion, we derive a partial key exposure attack for known LSBs.

Corollary 9 (LSB) Let N = prq, where r ≥ 2 is a known constant and p, q are
primes of the same bit-size. Let (e, d) ∈

�
×

�
∗

φ(N) be the public-key/secret-key

pair satisfying ed = 1 mod φ(N). Given d0, M with d = d0 mod M and

M ≥ N
4

(r+1)2 .

Then N can be factored in probabilistic polynomial time.

Proof: Let us write d = d1M + d0. Then the unknown parameter satisfies

d1 < N
M

≤ N( r−1
r+1 )

2

. For the key-pair (e, d) we have

e(d1M + d0) − 1 = 0 mod φ(N),

where φ(N) is a multiple of pr−1. Multiplying this equation by E = (eM)−1

modulo N gives us the desired linear polynomial

fpr−1(x) = x + E(ed0 − 1)

with the small root d1 modulo pr−1. The rest of the proof is analogous to the
proof of Theorem 6.

5 Partial Key Exposure Attacks for d � = d modulo p − 1

The partial key exposure attacks that we consider in this section for moduli
N = prq can be considered as a generalization of the results of Blömer and
May [4]. The attacks are an application of the theorem of Boneh, Durfee and
Howgrave-Graham (Theorem 2).

We derive simple partial key exposure attacks for small public exponents e

in both cases: known MSBs and known LSBs. The new attacks are a threat to
schemes that use CRT-decoding (for instance Takagi’s scheme [11]) in combina-
tion with small public exponents.

Let us state our LSB-attack.

Theorem 10 Let N = prq, where r ≥ 1 is a known constant and p, q are primes
of the same bit-size. Let e be the public key and let dp satisfy edp = 1 mod p− 1.
Given d0, M with d0 = dp mod M and

M ≥ 2N
1

(r+1)2 .

Then N can be factored in time e · poly(log(N)).



Proof: Let us consider the RSA key equation

edp − 1 = k(p − 1) for some k ∈
�
.

Since dp < (p− 1), we obtain the inequality k < e. Let us write dp = d1M + d0.

We can bound the unknown d1 by d1 < p

M
≤ N

r

(r+1)2 . Our equation above can
be rewritten as

ed1M + ed0 + k − 1 = kp.

Compute the inverse E of eM modulo N , i.e. EeM = 1 + cN for some c ∈ � .
If E does not exist, we obtain from gcd(eM, N) the complete factorization of N

as shown in Theorem 3. Multiplying our equation with E leaves us with

d1 + E(ed0 + k − 1) = (Ek − cpr−1qd1)p.

Thus, E(ed0 + k − 1) is a multiple of p up to some additive error d1 ≤ N
r

(r+1)2 .
Since the parameter k is unknown, we have to do a brute force search for k in
the interval [1, e). In order to apply Theorem 2, it remains to show that the term
(Ek − cpr−1qd1) is not a multiple of pr−1q. This is equivalent to the condition
that pr−1q does not divide Ek, but we know that gcd(E, N) = 1 and thus pr−1q

must not divide k. But pr−1q cannot divide k in the case e ≤ pr−1q and otherwise
we can easily check the condition by computing gcd(k, N) for every possible k.
The algorithm of Theorem 2 yields the factorization of N for the correct guess
of k.

We briefly summarize our factorization algorithm.'

&

$

%

Algorithm LSB-Attack for d � and moduli N = p � q

INPUT: – (N, e), where N = prq and dp satisfies edp = 1 mod p − 1

– d0, M with d0 = dp mod M and M ≥ 2N
1

(r+1)2

1. Compute E = (eM)−1 mod N . If the computation of E fails, find the
factors p, q of N using gcd(eM, N).

2. FOR k = 1 TO e

(a) If gcd(k, N) > 1 find the factors p, q.
(b) Run the algorithm of Theorem 2 on input E(ed0 + k − 1). If the

algorithm’s output is p, q then EXIT.

OUTPUT: p, q

The running time of the algorithm is e·poly(log N), which concludes the proof.

Note that our method from Theorem 10 is polynomial time for public expo-
nents of the size poly(log(N)) and requires only a 1

(r+1)2 -fraction of the bits (in



terms of the size of N), which is a 1
r+1 -fraction of the bits of dp. The following

theorem gives us a similar result for partial key exposure attacks with known
MSBs, but in contrast the method is polynomial time for all public exponents

e < N
r

(r+1)2 .
We show that an approximation of dp up to N

r

(r+1)2
−α

suffices to find the

factorization of N . Note that dp is of size roughly N
1

r+1 . Hence in the case α = 0,
a fraction of 1

r+1 − r
(r+1)2 = 1

(r+1)2 of the bits is enough (in terms of the size of

N).

Theorem 11 Let N = prq, where r ≥ 1 is a known constant and p, q are
primes of the same bit-size. Let e = Nα, α ∈ [0, r

(r+1)2 ] be the public key and let

dp satisfy edp = 1 mod p − 1. Given d̃ with

| dp − d̃ | ≤ N
r

(r+1)2
−α

.

Then N can be factored in polynomial time.

Proof: We know that

edp − 1 = k(p − 1) for some k ∈ � ,

with k < e. The term ed̃ is an approximation of kp up to an additive error of

|kp − ed̃| = |e(dp − d̃) + k − 1| ≤ |e(dp − d̃)| + |k − 1|

≤ N
r

(r+1)2 + Nα ≤ 2N
r

(r+1)2 .

Thus, one of the terms ed̃±N
r

(r+1)2 satisfies the bound of Theorem 2. Note that

the algorithm of Theorem 2 can be applied since k < e < N
r

(r+1)2 and thus k

cannot be a multiple of pr−1q = Ω(N
r

r+1 ).
Let us briefly summarize the factorization algorithm.'

&

$

%

MSB-Attack for d � and moduli N = p � q

INPUT: – (N, e), where N = prq and dp satisfies edp = 1 mod p − 1

– d̃ with |dp − d̃| ≤ N
r

(r+1)2
−α

, where α = logN (e).

1. Compute p̃ = ed̃.

2. Run the algorithm of Theorem 2 on input p̃+N
r

(r+1)2 . If the algorithm’s
output is p, q then EXIT.

3. Otherwise run the algorithm of Theorem 2 on input p̃ − N
r

(r+1)2 .

OUTPUT: p, q

The algorithm runs in time polynomial in log(N), which concludes the proof.
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