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Abstract. An aggregate signature is a single short string that convinces
any verifier that, for all 1 ≤ i ≤ n, signer Si signed message Mi, where
the n signers and n messages may all be distinct. The main motivation of
aggregate signatures is compactness. However, while the aggregate sig-
nature itself may be compact, aggregate signature verification might re-
quire potentially lengthy additional information – namely, the (at most)
n distinct signer public keys and the (at most) n distinct messages being
signed. If the verifier must obtain and/or store this additional informa-
tion, the primary benefit of aggregate signatures is largely negated.
This paper initiates a line of research whose ultimate objective is to find
a signature scheme in which the total information needed to verify is
minimized. In particular, the verification information should preferably
be as close as possible to the theoretical minimum: the complexity of
describing which signer(s) signed what message(s). We move toward this
objective by developing identity-based aggregate signature schemes. In
our schemes, the verifier does not need to obtain and/or store various
signer public keys to verify; instead, the verifier only needs a description
of who signed what, along with two constant-length “tags”: the short ag-
gregate signature and the single public key of a Private Key Generator.
Our scheme is secure in the random oracle model under the computa-
tional Diffie-Hellman assumption over pairing-friendly groups against an
adversary that chooses its messages and its target identities adaptively.

1 Introduction

Authentication is crucial for many cryptographic applications. Improving the
performance of building blocks, like digital signatures, that provide a means
for authentication is therefore an essential goal. While time complexity is a well-
known traditional measure for evaluating performance, communication complex-
ity is becoming increasingly important for two reasons. First, consider wireless
devices (e.g., PDAs, cell phones, RFID chips, and sensors). Here battery life is
often more of a limiting bottleneck than processor speed. Communicating a sin-
gle bit of data consumes several orders of magnitude more power than executing
a basic 32-bit arithmetic instruction [BA05]. Second, consider wireless network
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scenarios (e.g., MANETS, cellular networks, tactical networks, and sensor nets).
Here reliable bandwidth may be more of a limiting factor than computation. In
these cases it would be preferable to limit the communication requirements (i.e.,
the size) of a digital signature. An aggregate signature is one technique towards
achieving this aim.

Aggregate Signatures. In an aggregate signature scheme [BGLS03], mul-
tiple signatures can be aggregated into a compact “aggregate signature,” even
if these signatures are on (many) different documents and were produced by
(many) different signers. This is useful in many real-world applications. For ex-
ample, certificate chains in a hierarchical PKI of depth n consist of n signatures
by n different CAs on n different public keys; by using an aggregate signature
scheme, this chain can be compressed down to a single aggregate certificate.
Another application is secure routing. In Secure BGP [KLS00], each router suc-
cessively signs its segment of a path in the network, and forwards the collection
of signatures associated with the path to the next router; forwarding these sig-
natures entails a high transmission overhead that could be reduced by using
aggregate signatures. Aside from compactness, aggregate signatures have other
advantages. For example, in scenarios such as database outsourcing [MNT04]
and dynamic content distribution [SRF+04] one may want to prevent a mali-
cious party from removing a signature from a collection of signatures without
being detected. An aggregate signature scheme makes this possible, since a sig-
nature that has been aggregated cannot (under certain conditions) be separated.

Currently, two aggregate signature schemes exist. The first [BGLS03] uses
bilinear maps and supports flexible aggregation – i.e., given n individual sig-
natures σ1, . . . , σn, anyone can aggregate them in any order into an aggregate
signature σ. The second [LMRS04] uses a weaker assumption – namely, certified
trapdoor permutations – but it permits only sequential aggregation – i.e., the
n-th signer must aggregate its own signature into the aggregate signature formed
by the first n− 1 signers.

For both schemes above, the aggregate signature is compact (i.e., its size is
independent of n). However, the total information V needed to verify the aggre-
gate signature – namely, the aggregate signature itself, the public keys of the
individual signers, and a description of the respective messages that they signed
– is not necessarily compact at all. Of course, V must (information-theoretically)
contain a description D of what signer signed what message, since the verifica-
tion information must convince the verifier that certain signers signed certain
messages. But |D| can grow slowly with the number of individual signatures n;
e.g., in a routing application, one can use IP addresses as identities, and we can
reduce communication further since the higher-order bits of the IP addresses of
consecutive routers may be identical, so only need to be transmitted once.

Beyond this information-theoretic minimum, however, V in current aggregate
signature schemes must also contain individual signer public keys, whose length
is dictated by the security parameter of the signature scheme (not by basic
information-theoretic considerations). Theoretically, this means that |V| − |D|
grows linearly with n. Practically speaking, this means that current aggregate



signature schemes may not perform significantly better than traditional signature
schemes in situations where verifiers cannot be expected to already have the
signers’ public keys – e.g., in a dynamic multi-hop network in which a node is
unlikely to have a prior relationship with a neighboring node. Clearly, it would
be preferable if V could specify the signers by their identities rather than by
their individual public keys.

Identity-Based Signatures. In identity-based cryptography (IBC) [Sha84],
the central idea is to simplify public-key and certificate management by using a
user’s “identity” (e.g., its email address) as its public key. For this to be possible,
the IBC system requires a trusted third party, typically called a “Private Key
Generator” (PKG), to generate user private keys from its “master secret” and
the user’s identity. Only the PKG has a traditional “random-looking” public key.
In an identity-based encryption (IBE) scheme, the sender encrypts a message
using the recipient’s identity and the PKG’s public key; it need not obtain the
recipient’s public key and certificate before encrypting, since the recipient has
no traditional public key and since the sender knows that the recipient (or an
attacker) will not be able to decrypt unless it has received an identity-based
private key from the PKG (in effect, an implicit certificate). In an identity-based
signature (IBS) scheme, the verifier verifies a signature by using the signer’s
identity and PKG’s public key; the verification information does not include any
certificate or any individual public key for the signer.

Research on IBS has experienced a revival in the wake of the discovery – in-
dependently by Boneh and Franklin [BF03] and by Cocks [Coc01] – of practical
IBE schemes. (Early schemes include [Sha84,FS86,GQ88]; recent schemes and
analyses include [CC03,Boy03,LQ04,BNN04].) Unfortunately, IBS does not have
the significant infrastructural advantages over traditional public-key signing that
IBE has over traditional public-key encryption. In IBE, the fact that the sender
does not need to obtain the recipient’s public key and certificate before encrypt-
ing means that no infrastructure (i.e., public-key infrastructure (PKI)) needs
to be deployed to distribute such information to third parties (including non-
clients); rather, the authority (the PKG) only needs infrastructure to distribute
private keys directly to its clients. On the other hand, IBS and public-key signing
(PKS) are analogous infrastructurally: in IBS (resp. PKS), the PKG (resp. CA)
sends a private key (resp. certificate) to each client. Thus, the main advantage
of IBS over PKS, at least abstractly, turns out to be communication-efficiency,
since (unlike PKS) the signer does not need to send an individual public key and
certificate with its signature.

This advantage of IBS becomes more compelling when we consider multiple
signers, all of which are clients of the same PKG. In this setting, the verifier
needs only one traditional public key (the PKG’s) to verify multiple identity-
based signatures on multiple documents. Unfortunately, current identity-based
signatures are not aggregable. Interestingly, multiple-signer IBS therefore has
precisely the opposite problem of aggregate signing: for IBS, the public key is
(in some sense) aggregable, while the individual signatures are not.



Goals and Challenges. Our goal is simple: a signature scheme (allowing
distinct signers to sign distinct documents) in which the total verification infor-
mation is minimized. We cannot do better than the information-theoretic lower
bound of describing who signed what, but we would like to get as close to this
lower bound as possible.

Based on the above discussion, one natural approach is to construct an
“identity-based aggregate signature” (IBAS) scheme – i.e., a scheme in which
the verification information (apart from the required description of who signed
what) consists only of a single aggregate signature and a single public key (of the
PKG). In a sense, identity-based aggregate signatures would really address the
motivating applications considered first in the context of regular (non ID-based)
aggregate signatures.

However, there certainly does not appear to be any generic way of combining
an aggregate signature scheme with an IBS scheme to achieve this desideratum.
To see the difficulty, note that each of the current aggregate signature schemes
are deterministic, and with good reason; if each successive signer contributed
randomness to the aggregate signature in a trivial way, this randomness would
cause the size of the signature to grow linearly with n – hence the signature would
not be compact. On the other hand, identity-based signature schemes tend to be
randomized; typically, the signer uses the Fiat-Shamir heuristic (which involves
choosing a random commitment and treating the output of a hash function as the
challenge to which the signer responds) to prove knowledge of the authority’s
signature on its identity. In short, current approaches for constructing aggre-
gate signatures appear to be fundamentally at odds with current approaches for
constructing identity-based signatures. To construct an IBAS scheme, it seems
we must somehow find a way to “aggregate the randomness” provided by the
multiple signers.

Our Results. Our first contribution is a formal definition of identity-based
aggregate signatures and a corresponding formal security model. Second, we
describe, as a stepping stone, an identity-based multi-signature scheme (which
may be of independent interest). Third, we present a concrete IBAS scheme that
meets our definition. As desired, our scheme allows multiple signers to sign mul-
tiple documents in such a way that the total verification information, apart from
a description of who signed what, consists only of a short aggregate signature
(which consists of only 2 group elements and a short (e.g., 160-bit) string) and
the PKG’s public key (which is also short – about the same size as the PKG’s
public key in Boneh-Franklin). Our scheme is also very efficient computation-
ally. In fact, it allows more efficient verification than the aggregate signature
scheme of [BGLS03], since verification requires only three pairing computations,
regardless of the value of n, while [BGLS03] uses O(n) pairing computations.
(Note: verification in our scheme uses O(n) elliptic curve scalar multiplications,
but these can be computed quite quickly.) Later we describe certain extensions
and additional benefits of our scheme.

Our scheme is provably secure in the random oracle model, assuming the
hardness of computational Diffie-Hellman over groups with bilinear maps. In



our security model, the adversary can make qE adaptive key extraction queries
(wherein he receives the signing key corresponding to any ID of his choice), qS

adaptive signature queries (wherein he receives the signature on any message
of his choice), and qH hash queries (wherein he receives the output of a hash
function, modeled as a random oracle, on inputs of his choice). The adversary
succeeds if he constructs a single non-trivial forgery. The concrete security loss
in our scheme is roughly qE · qH · qS . While one would prefer a smaller loss, it
is worth noting that typical ID-based signature schemes usually suffer from a
concrete security loss of roughly qE · qS because the simulator usually has to
guess the ID and message that will be used in the forgery. We further note that
such a quadratic loss is also inherent in schemes where security is proved using
the forking lemma [PS96],[PS00]).

We remark that in our scheme all signers must use the same (unique) random
string w when signing – this step seems necessary to enable signature aggrega-
tion. Choosing such a w may be straightforward in certain settings. For example,
if the signers have access to loosely synchronized clocks, then w could be chosen
based on the current time. Further, if w is sufficiently long (i.e., accounting for
birthday bounds), then it will be statistically unique. In order to alleviate any
cost incurred in choosing w, we describe a simple extension of our scheme that
allows a signer to securely re-use the same w a constant number of times.

Aside from requiring a common value of w, aggregation in our scheme is
very flexible. Anybody can aggregate individual identity-based signatures into an
identity-based aggregate signature, and aggregate smaller aggregates into larger
aggregates. Moreover, our scheme permits aggregation across multiple trusted
authorities; i.e., signers under different PKGs can aggregate their signatures. As
a stepping stone to IBAS, we also describe an identity-based multisignature (in
which all signers sign the same message) that may be of independent interest.

Other Related Work. Aggregate signatures are related to, but more flexible
than, multisignatures [Oka98,OO99,MOR01,Bol03]. Although the term “mul-
tisignature” has been used in the literature to denote a variety of different types
of schemes, we will use the term to denote an aggregate signature in which all
users sign the same message. Aggregate signatures are also tenuously related to
threshold signatures [Sho00]. Recall that, in a threshold signature scheme, t sig-
nature components from any t signers can be combined into a single signature,
for some threshold t ≤ n. The signers must undergo a large setup cost, they
all sign the same message, and the verifier cannot tell which signers contributed
components to a complete threshold signature. Secure identity-based threshold
signature schemes are known [BZ04].

Subsequent to our work, a recent paper claimed an ID-based aggregate signa-
ture construction [CLW05]. However, “identity-based aggregate signatures” may
not be the best term to describe this result since each signer Si that participates
in the creation of a signature must first generate a random scalar ri and broadcast
riP (for a certain elliptic curve point P ) to all of the other signers so that they
can each compute (

∑

ri)P . Signer Si then inputs (
∑

ri)P and its message mi

into a hash function to obtain a signature scheme via the Fiat-Shamir heuristic.



Later, individual signatures can be aggregated. However, because of the large
setup cost (in which the users essentially broadcast their key shares) and the
fact that the signature cannot be verified until all of the signers contribute, this
scheme actually bears some resemblance to an identity-based threshold signature
scheme. Also subsequent to our work, Herranz [Her05] describes a Schnorr-based
IBAS scheme that permits “partial” aggregation – that is, signatures can only
be aggregated if they all come from the same signer.

Organization of the Paper. After providing some preliminaries in Section
2, we propose a definition of identity-based aggregate signatures in Section 3,
together with the security model. Next, as a stepping stone to our IBAS con-
struction, we give a simple identity-based multisignature scheme in Section 4.
We provide our IBAS construction in Section 5 and describe the security proof
in Section 6. Finally, we conclude and mention open problem in Section 7.

2 Preliminaries

Let λ denote the security parameter, which will be an an implicit input to the
algorithms in our scheme. For a set S, we let |S| denote the number of elements in

S, and x
D
←− S denote the experiment of choosing x ∈ S according to probability

distribution D.

2.1 Bilinear Maps

Our IBAS scheme uses a bilinear map, which is often called a “pairing.” Typ-
ically, the pairing used is a modified Weil or Tate pairing on a supersingular
elliptic curve or abelian variety. However, we describe bilinear maps and the
related mathematics in a more general format here.

Let G1 and G2 be two cyclic groups of some large prime order q. We write
G1 additively and G2 multiplicatively.

Admissible pairings: We will call ê an admissible pairing if ê : G1×G1 → G2

is a map with the following properties:

1. Bilinear: ê(aQ, bR) = ê(Q, R)ab for all Q, R ∈ G1 and all a, b ∈ Z.
2. Non-degenerate: ê(Q, R) 6= 1 for some Q, R ∈ G1.
3. Computable: There is an efficient algorithm to compute ê(Q, R) for any

Q, R ∈ G1.

Notice that ê is also symmetric – i.e., ê(Q, R) = ê(R, Q) for all Q, R ∈ G1 –
since ê is bilinear and G1 is a cyclic group.

2.2 Computational Assumptions

The security of our schemes is based on the assumed hardness of the computa-
tional Diffie-Hellman (CDH) problem in G1.



Definition 1 (Computational Diffie-Hellman Problem in G1 (CDHG1

Problem)). Given P, aP, bP ∈ G1, as well as an admissible pairing ê : G1 ×
G1 → G2, compute abP (for unknown randomly chosen a, b ∈ Z/qZ).

An algorithm A has an advantage ε in solving CDHG1
if Pr[A(P, aP, bP ) =

abP ] ≥ ε, where the probability is over the choice of P in G1, the random scalars
a and b in Zq, and the random bits used by A. Our computational assumption
is now formally defined as follows.

Definition 2 (Computational Diffie-Hellman Assumption in G1 (CDHG1

Assumption)). We say that the (t, ε)-CDHG1
Assumption holds if no t-time al-

gorithm A has advantage ε in solving the CDHG1
Problem.

We may occasionally refer to the CDHG1
Assumption without specifying t or ε.

The CDHG1
Assumption underlies the security of numerous cryptosystems (e.g.,

[BLS01,BGLS03,CC03]), and is weaker than other commonly-used assumptions
relating to bilinear maps, such as the “Bilinear Diffie-Hellman” assumption used
in Boneh-Franklin (given P, aP, bP, cP ∈ G1 and the bilinear map ê : G1×G1 →
G2, it is hard to compute ê(P, P )abc ∈ G2).

3 Identity-Based Aggregate Signatures

We now define the procedures involved in an IBAS scheme, and thereafter specify
what it means for IBAS scheme to be secure.

3.1 Components of an Identity-Based Aggregate Signature

An IBAS scheme is composed of five algorithms: key generation by the PKG,
private key extraction by the PKG for individual users, signing by an individual
user, aggregation of multiple individual signatures or aggregates of signatures,
and verification of an identity-based aggregate signature:

– KeyGen takes 1λ as input and outputs a suitable key pair (Pk,Sk).
– KeyExt takes Sk and a user identity IDi as input and outputs a user private

key USki.
– Sign takes USki, message mi and possibly some state information w as input

and outputs an individual identity-based signature σi.
– Agg takes as input Pk, w, two sets of identity-message pairs S1 and S2, and

two identity-based (aggregate) signatures σS1
and σS2

on the identity-message
pairs contained in sets S1 and S2 respectively; if Verify(Pk, w, S1, σS1

) =
Accept and Verify(Pk, w, S2, σS2

) = Accept, it outputs the identity-based ag-
gregate signature σS1∪S2

on the identity-message pairs in S1 ∪ S2 (where
identity-message pairs may be repeated).

– Verify takes as input Pk, w, an identity-based aggregate signature σS , and a
description of the identity-message pairs in set S, and outputs Accept if and
only if σS could be a valid output of Sign or Agg for Pk, w and S.



Remark 1. Depending on the instantiation, the state information w may be
empty. Also, it is possible that Sign and Agg may be inseparably combined
into a single step in certain instantiations – e.g., if the IBAS scheme permits
only sequential aggregation.

3.2 Security Model

An IBAS scheme should be secure against existential forgery under an adaptive-
chosen-message and an adaptive-chosen-identity attack. Informally, existential
forgery here means that the adversary attempts to forge an identity-based ag-
gregate signature on identities and messages of his choice.

We formalize the identity-based aggregate signature model as follows. The
adversary’s goal is the existential forgery of an aggregate signature. We give
the adversary the power to choose the identities on which it wishes to forge a
signature, the power to request the identity-based private key on all but one of
these identities, and the power to choose the state w used in its forgery. The
adversary is also given access to a signing oracle on any desired identity. The
adversary’s advantage AdvIBASA is defined as its probability of success (taken
over the coin tosses of the key-generation algorithm and of A) in the following
game.

Setup: The adversary A is given the public key Pk of the PKG, an integer n,
and any other needed parameters.

Queries: Proceeding adaptively, A may choose identities IDi and request the
private key USki. Also, A may request an identity-based aggregate signature σS

on (Pk, w, S, {mi}
k−1
i=1 ) where S = {IDi}

k−1
i=1 . We require that A has not made a

query (Pk, w, S′, {m′
i}

k−1
i=1 ) where IDi ∈ S ∩ S′ and m′

i 6= mi.

Response: For some (Pk, {IDi}
l
i=1, {mi}

l
i=1) for l ≤ n, A outputs an identity-

based aggregate signature σl.

A wins if σl is a valid signature on (Pk, {IDi}
l
i=1, {mi}

l
i=1), and the signature is

nontrivial – i.e., for some i, 1 ≤ i ≤ l, A did not request the private key for IDi

and did not request a signature including the pair (IDi, mi).

Definition 3. An IBAS adversary A (t, ε, n, qH , qE , qS)-breaks an IBAS scheme
in the above model if: for integer n as above, A runs in time at most t; A makes
at most qH hash function queries, at most qE private key extraction queries and
at most qS signing oracle queries; and AdvIBASA is at least ε.

Definition 4. An IBAS scheme is (t, ε, n, qH , qE , qS)-secure against existential
forgery if no adversary (t, ε, n, qH , qE , qS)-breaks it.

4 An Identity-Based Multisignature Scheme

Before presenting our construction of an IBAS scheme, we address, as a step-
ping stone, the simpler problem of constructing an identity-based ad-hoc mul-
tisignature scheme. In this scheme, all signers sign the same message, possibly



in a completely decentralized fashion. Thereafter, any subset of the individual
identity-based signatures on the message can be aggregated by anyone in any
order. We use the term “ad hoc” to stress this flexibility.

Interestingly, the individual signatures in this identity-based multisignature
scheme are very similar to one-level hierarchical identity-based signatures as
presented by Gentry and Silverberg [GS02]. We modify their scheme slightly by
hashing the message by itself, rather than together with the signer’s identity,
to enable aggregation; this makes our security reduction slightly looser. This
construction will be instructive as to how one can “aggregate the randomness”
provided by multiple signers. The scheme is as follows.

Setup: The Private Key Generator (PKG) generates parameters and keys es-
sentially as in [GS02]. Specifically, it:

1. generates groups G1 and G2 of prime order q with admissible pairing ê: G1×
G1 → G2;

2. chooses an arbitrary generator P ∈ G1;
3. picks a random s ∈ Z/qZ and sets Q = sP ;
4. chooses cryptographic hash functions H1, H2 : {0, 1}∗ → G1.

The PKG’s public key is (G1, G2, ê, P, Q, H1, H2); its secret is s ∈ Z/qZ.

Private key extraction: The client with identity IDi receives the value sPi

from the PKG as its private key, where Pi = H1(IDi) ∈ G1.

Individual Signing: To sign m, the signer with identity IDi:

1. computes Pm = H2(m) ∈ G1;
2. generates random ri ∈ Z/qZ;
3. computes its signature (S′

i, T
′
i ), where S′

i = riPm + sPi and T ′
i = riP .

Aggregation: Anyone can aggregate a collection of individual signatures (on
the same m) into a multisignature. In particular, individual signatures (S′

i, T
′
i )

for 1 ≤ i ≤ n can be aggregated into (Sn, Tn), where Sn =
∑n

i=1 S′
i and Tn =

∑n
i=1 T ′

i .

Verification: Let (Sn, Tn) be the multisignature (where n is the number of
signers). The verifier checks that:

ê(Sn, P ) = ê(Tn, Pm)ê(Q,

n
∑

i=1

Pi) ,

where Pi = H1(IDi) and Pm = H2(m).
Notice how, although each of the individual identity-based signatures is ran-

domized, the randomness is “aggregated” into the scalar coefficient of Pm, the
element of G1 corresponding to the common message being signed. Notice also
that aggregation is perfectly flexible. Users generate their signatures in a de-
centralized fashion; later, anyone can aggregate them. The users do not need to
maintain any state. Verification requires only three pairing computations (and
n point additions).

In the full version [GR06], we give a proof of the following theorem.



Theorem 1. Let A be an adversary that (t, ε, n, qE , qS)-breaks the identity-based
multisignature scheme. Then, there exists an algorithm B that solves CDHG1

in
time O(t) + O(log3 q) with probability at least ε(1− 1/q)/64(qE + qS)2.

5 Construction of an Identity-Based Aggregate Signature

Scheme

In our identity-based multisignature scheme, we were able to aggregate the ran-
domness contributed by the individual signers into the scalar coefficient of the
common message point Pm. However, for IBAS, signers may sign distinct mes-
sages, and aggregating the signers’ randomness seems difficult. Our solution to
this problem, at a high level, is simply to create a “dummy message” w that is
mapped to an element Pw of G1 whose scalar coefficient provides a place where
individual signers can aggregate their randomness, and to embed messages into
individual signatures using a different mechanism. The details follow.

Setup: The Private Key Generator (PKG) generates parameters and keys es-
sentially as above. Specifically, it:

1. generates groups G1 and G2 of prime order q and an admissible pairing ê:
G1 ×G1 → G2;

2. chooses an arbitrary generator P ∈ G1;
3. picks a random s ∈ Z/qZ and sets Q = sP ;
4. chooses a cryptographic hash functions H1, H2 : {0, 1}∗ → G1 and H3 :
{0, 1}∗ → Z/qZ.

The system parameters are params = (G1, G2, ê, P, Q, H1, H2, H3). The root
PKG’s secret is s ∈ Z/qZ.

Private key generation: The client with identity IDi receives from the PKG
the values of sPi,j for j ∈ {0, 1}, where Pi,j = H1(IDi, j) ∈ G1.

Individual Signing: The first signer chooses a string w that it has never
used before. Each subsequent signer checks that it has not used the string w
chosen by the first signer. (Alternatively, different signers may arrive at the same
w independently – e.g., if they issue signatures according to a pre-established
schedule.) To sign mi, the signer with identity IDi:

1. computes Pw = H2(w) ∈ G1;
2. computes ci = H3(mi, IDi, w) ∈ Z/qZ;
3. generates random ri ∈ Z/qZ;
4. computes its signature (w, S′

i, T
′
i ), where S′

i = riPw + sPi,0 + cisPi,1 and
T ′

i = riP .

Aggregation: Anyone can aggregate a collection of individual signatures that
use the same string w. For example, individual signatures (w, S′

i, T
′
i ) for 1 ≤ i ≤ n

can be aggregated into (w, Sn, Tn), where Sn =
∑n

i=1 S′
i and Tn =

∑n
i=1 T ′

i .
Our security proof does not permit the aggregation of individual (or aggregate)
signatures that use different w’s.



Verification: Let (w, Sn, Tn) be the identity-based aggregate signature (where
n is the number of signers). The verifier checks that:

ê(Sn, P ) = ê(Tn, Pw)ê(Q,

n
∑

i=1

Pi,0 +

n
∑

i=1

ciPi,1) ,

where Pi,j = H1(IDi, j), Pw = H2(w) and ci = H3(mi, IDi, w), as above.

Remark 2. This scheme is reasonably efficient. Unlike the BGLS [BGLS03] ag-
gregate signature, this scheme requires a constant number of pairing compu-
tations for verification (though the total work is still linear in the number of
signers).

Remark 3. If we were to just set the signature to be sPi,0 + c1sPi,1, then after
two signatures an adversary will likely be able to recover the values of sPi,0

and sPi,1 using linear algebra. The purpose of the one-time-use Pw is to disturb
this linearity, while providing a place where all the signers can “aggregate their
randomness.”

Remark 4. To allow each signer to produce k individual identity-based sig-
natures with a single value of w, we can change private key generation so
that the client with identity IDi receives from the PKG the values of sPi,j

for j ∈ [0, k], where Pi,j = H1(IDi, j) ∈ G1. To sign, the signer computes

cij = H3(mi, IDi, w, j) for 1 ≤ i ≤ k, and sets S′
i = riPw + sPi,0 +

∑k
j=1 cijsPi,j .

The result of the signing procedure is the same, and verification is modified in
the obvious fashion.

Remark 5. It is possible to aggregate individual identity-based signatures even if
the signers have different PKGs, and the security proof goes through. However,
to verify such a multiple-PKG identity-based aggregate signature, the verifier
needs the public key of every PKG. Thus, from a bandwidth perspective, the
single-PKG case is optimal.

6 The Security of Our IBAS Construction

We start by providing some intuition for how an algorithm B can solve a com-
putational Diffie-Hellman problem – i.e., compute sP ′ from P , sP , and P ′ –
by interacting with an algorithm A that breaks our IBAS scheme. The security
proof for the multisignature scheme in the full version [GR06] provides addi-
tional intuition. During the interaction, B must either respond correctly to A’s
queries, or abort. A can make several types of queries:

1. H1 and Extraction Queries: A can ask for the identity-based private keys
sPi,j for j ∈ {0, 1} that correspond to identity IDi. B handles these queries
through its control of the H1 oracle. In particular, it usually generates Pi,j

in such a way that it knows bi,j = logP Pi,j ; then, it can compute sPi,j =
bi,jsP . However, B occasionally sets Pi,j = bi,jP + b′i,jP

′. In this case, B



cannot respond to an extraction query on IDi, but if A later chooses IDi as a
target identity, A’s forgery may help B solve its computational Diffie-Hellman
problem.

2. H2 queries: B, through its control over the H2 oracle, will usually generate
Pw in such a way that it knows dw = logP ′ Pw, but occasionally generates Pw

so that it knows cw = logP Pw instead.
3. H3 and signature queries: B’s control over the H2 and H3 oracles helps

it to respond to signature queries regarding the tuple (IDi, mj, wk) when it
cannot even extract the private key corresponding to IDi. How can B generate
valid and consistent values of Pi,0, Pi,1, Pwk

, di,j,k = H3(IDi, mj , wk), S′
i =

rPwk
+ sPi,0 + dijksPi,1 and T ′

i = rP in such a situation? In particular, how
can it generate S′

i, which seems to require that B know sP ′? If B knows
logP ′ Pw, it can compute the value of r′ such that r′sPw “cancels out” the
multiple of sP ′ that comes from the final two terms; it then sets T ′

i to be r′sP .
If B doesn’t know logP ′ Pw, it has one more trick it can use; occasionally, B
sets dijk to be the unique value in Z/qZ that causes the multiples of sP ′ in
the final two terms to cancel. In this case, B can produce a valid signature.
Once this unique value is revealed for a given IDi, it cannot use this trick
again (otherwise, the simulation will not be convincing to A).

If B is lucky, its simulation does not abort and A produces a forgery on a tuple
(IDi, mj , wk) for which it does not know logP Pi,j , does know logP Pw , and where
dijk was not chosen using the trick above. In this case, A’s forgery gives B the
value of sP ′ with extremely high probability.

The following theorem characterizes the security of our IBAS scheme.

Theorem 2. Let A be an adversary that (t, ε, n, qH3
, qE , qS , )-breaks the IBAS

scheme. Then, there exists an algorithm B that solves CDHG1
in time O(t) +

O(log3 q) with success probability at least ε/1024qEqS(qH3
− qS).

Proof: Algorithm B is given an instance (P, Q, P ′, ê) (for Q = sP ) of the CDHG1

problem, and will interact with algorithm A as follows in an attempt to compute
sP ′.

Setup: B sets the public key of the PKG to be (G1, G2, ê, P, Q, H1, H2, H3), and
it transmits this key to A. Here the Hi’s are random oracles controlled by B.

Hash Queries: A can make an H1-query, H2-query, or H3-query at any time.
B gives identical responses to identical queries, maintaining lists relating to its
previous hash query responses for consistency. B also maintains H3-list2, which
addresses certain special cases of the H3 simulation. B responds to A’s H1-query
on (IDi, j) as follows:

For A’s H1-query on (IDi, j) for j ∈ {0, 1}:

1. If IDi was in a previous H1-query, B recovers (bi0, b
′
i0, bi1, b

′
i1) from its H1-list.

2. Else, B generates a random H1-coini ∈ {0, 1} so that Pr[H1-coini = 0] = δ1

for δ1 to be determined later. If H1-coini = 0, B generates random bi0, bi1 ∈
Z/qZ and sets b′i0 = b′i1 = 0; else, it generates random bi0, b

′
i0, bi1, b

′
i1 ∈ Z/qZ.

B logs (IDi, H1-coini, bi0, b
′
i0, bi1, b

′
i1) in its H1-list.



3. B responds with H1(IDi, j) = Pij = bijP + b′ijP
′.

For A’s H2-query on wk:

1. If wk was in a previous H2-query, B recovers ck from its H2-list.
2. Else, B generates a random H2-coink ∈ {0, 1} so that Pr[H1-coini = 0] = δ2

for δ2 to be determined later. B generates a random ck ∈ (Z/qZ)∗. It logs
(wk, H2-coink) in its H2-list.

3. If H2-coink = 0, B responds with H2(wk) = Pwk
= ckP ′; otherwise, it re-

sponds with H2(wk) = Pwk
= ckP .

For A’s H3-query on (IDi, mj , wk):

1. If (IDi, mj , wk) was in a previous H3-query, B recovers dijk from its H3-list.
2. Else, B runs an H1-query on (IDi, 0) to recover b′i0 and b′i1 from its H1-list. B

generates a random H3-coinijk ∈ {0, 1} so that Pr[H3-coinijk = 0] = δ3 for
δ3 to be determined later.

(a) If H1-coini = 1, H2-coink = 1, and H3-coinijk = 0, B checks whether H3-
list2 contains a tuple (IDi′ , mj′ , wk′ ) 6= (IDi′ , mj′ , wk′ ) with IDi′ = IDi.
If so, B aborts. If not, it puts (IDi, mj , wk) in H3-list2 and sets dijk =
−b′i0/b′i1(modq).

(b) If H1-coini = 0, H2-coink = 0, or H3-coinijk = 1, B generates a random
dijk ∈ (Z/qZ)∗.

(c) B logs (IDi, mj , wk, H3-coinijk, dijk) in its H3-list.

3. B responds with H3(IDi, mj , wk) = dijk.

Extraction Queries: When A requests the private key corresponding to IDi,
B recovers (H1-coini, bi0, b

′
i0). If H1-coini = 0, B responds with (sPi,0, sPi,1) =

(bi0Q, bi1Q). If H1-coini = 1, B aborts.

Signature Queries: When A requests a (new) signature on (IDi, mj , wk), B
first confirms that A has not previously requested a signature by IDi on wk

(otherwise, it is an improper query). Then, B proceeds as follows:

1. If H1-coini = H2-coink = H3-coinijk = 1, B aborts.
2. If H1-coini = 0, B generates random r ∈ Z/qZ and outputs the signature

(wk, S′
i, T

′
i ), where S′

i = sPi,0 + dijksPi,1 + rPwk
= bi0Q + dijkbi1Q + rPwk

and T ′
i = rP .

3. If H1-coini = 1 and H2-coink = 0, B generates random r ∈ Z/qZ and outputs
the signature (wk, S′

i, T
′
i ), where

S′
i = sPi,0 + dijksPi,1 + (r − (b′i0 + dijkb′i1)sc

−1
k )Pwk

= bi0Q + b′i0sP
′ + dijkbi1Q + dijkb′i1sP

′ + rckP ′ − (b′i0 + dijkb′i1)sP
′

= bi0Q + dijkbi1Q + rckP ′, and

T ′
i = (r − (b′i0 + dijkb′i1)sc

−1
k )P = rP − (b′i0 + dijkb′i1)c

−1
k Q .



4. If H1-coini = H2-coink = 1 and H3-coinijk = 0, B generates random r ∈
Z/qZ and outputs the signature (wk, S′

i, T
′
i ), where T ′

i = rP , and

S′
i = sPi,0 + dijksPi,1 + rPwk

= bi0Q + b′i0sP
′ + dijkbi1Q− (b′i0/b′i1)b

′
i1sP

′ + rckP

= bi0Q + dijkbi1Q + rckP .

A’s Response: Finally, with probability at least ε, A outputs {IDi}
l
i=1 and

{mj}
l
j=1 with l ≤ n, and string wK , such that there exists I, J ∈ [1, l] such

that it has not extracted the private key for IDI or requested a signature for
(IDI , mJ , wK). In addition, it also outputs an identity-based aggregate signature
(wK , Sl, Tl) satisfying the equation

ê(Sl, P ) = ê(Tl, PwK
)ê(sP,

l
∑

i=1

Pi,0 +
l
∑

i=1

ciPi,1) ,

where Pi,b = H1(IDi, b), PwK
= H2(wK) and ci = H3(mj , IDi, wK) as required.

B’s Final Action: If it is not the case that the above (I, J, K) can satisfy H1-
coinI = H2-coinJ = H3-coinIJK = 1, then B aborts. Otherwise, it can solve its
instance of CDHG1

with probability 1− 1/q as follows.

A’s forgery has the form (Sl, Tl), where Tl = rP and Sl = rPwK
+
∑l

i=1 sPi,0+
cisPi,1, where we let ci = H3(IDi, mj, wK) be the hash of the tuple “signed” by
the entity with identity IDi. Since H2-coink = 1, B knows the discrete logarithm
cK of PwK

with respect to P . It can therefore compute:

Sl − cKTl =

l
∑

i=1

sPi,0 + cisPi,1 = s

(

l
∑

i=1

bi,0P + b′i,0P
′ + ci(bi,1P + b′i,1P

′)

)

= s

(

l
∑

i=1

(bi,0 + cibi,1)

)

P + s

(

l
∑

i=1

(b′i,0 + cib
′
i,1)

)

P ′ .

If H1-coini = H3-coinijk = 1 for at least one of the signed tuples, then the

probability that
∑l

i=1(b
′
i,0 + cib

′
i,1) 6= 0 is 1 − 1/q; if

∑l
i=1(b

′
i,0 + cib

′
i,1) 6= 0, B

can easily derive sP ′ from the expression above.

We now demonstrate that the above simulation is perfect. The analysis as-
sumes that A makes no redundant queries and that A must make an H3 query
on a tuple (IDi, mj , wk) before making a signature query on it. Let E represent
the set of extraction query responses that B has made up to a specified point in
the simulation; similarly, let S be the set of signature query responses, and Hi

be the set of Hi query responses for i ∈ {1, 2, 3}. Let E1,∗,∗ be the event that
H1-coini = 1; here, “*” means that H2-coink and H3-coinijk may each be 0 or
1. Let E1,1,∗, E1,1,1 and E1,1,0 denote the corresponding events in the obvious
way.

Perfect Simulation: We claim that, if B does not abort, A’s view is the same
as in the “real” attack. In the “real” attack, each of the hash functions Hi



behave like random functions. Then, given the values of Pi,j = H1(IDi, j), Pwk
=

H2(wk), and dijk = H3(IDi, mj, wk), we choose a signature uniformly from:

{(wk, S′
i, T

′
i ) : S′

i = sPi,0 + dijksPi,1 + rPw , T ′
i = rP, r ∈ Z/qZ}.

Similarly, in the simulation, we choose a signature uniformly from {(wk, S′
i, T

′
i ) :

S′
i = sPi,0+dijksPi,1+rPw, T ′

i = rP, r ∈ Z/qZ} given values of Pi,j = H1(IDi, j),
Pwk

= H2(wk), and dijk = H3(IDi, mj , wk). Also, the Hi behave like random
functions – i.e., they are one-to-one and the outputs are chosen with uniform
distribution. The only case in which this may not be obvious is when H1-coini =
H2-coink = 1 and H3-coinijk = 0. In this case, unless A has made a previous
H3 query on (IDi, mj′ , wk′ ) 6= (IDi, mj , wk) for which H1-coini = H2-coink′ = 1
and H3-coinij′k′ = 0 (in which case B aborts), B sets H3(IDi, mj, wk) to be
−b′i0/b′i1(modq) (rather than choosing the H3 output uniformly randomly).

However, the value of−b′i0/b′i1( mod q) is itself uniformly random. More specif-
ically, given A’s view up until the H3 query on (IDi, mj , wk) – namely, the sets
E , S, and {Hi} – we have that

Pr[H3(IDi, mj , wk) = c | E ,S,H1,H2,H3, E1,1,0] = 1/q

for every c ∈ Z/qZ, as long as B does not abort. Most surprisingly, the value
H3(IDi, mj , wk) = −b′i0/b′i1(modq) is independent of an H1 query response on
IDi even though H1(IDi, j) = bijP +b′ijP

′, since, given H1(IDi, 0) = bi0P +b′i0P
′,

the pairs (bi0, b
′
i0) with b′i0 = logP ′(H1(IDi, 0)) − bi0 logP ′(P ) are equally likely.

It should be clear that the value of H3(IDi, mj , wk) is also independent of H1

queries on identities other than IDi, all extraction query responses (since they
are completely dependent on H1 query responses), all H2 queries, all H3 queries
on tuples other than (IDi, mj, wk) (again, assuming B does not abort), and all
signature queries on tuples other than (IDi, mj , wk).

To complete the proof, we need to bound from below the probability that B
aborts. The details are provided in the full version [GR06].

7 Summary and Open Problems

We presented an IBAS scheme which allows distinct signers to sign distinct doc-
uments in such a way that the total information needed to verify the signatures
is about as close as possible to the information-theoretic minimum. The aggre-
gate signature can be generated in a completely decentralized fashion, without
requiring a complicated setup procedure. Our scheme was quite efficient - requir-
ing only 4 elliptic curve scalar multiplications and 2 point additions for signature
generation; 2 extra point additions for aggregation; and 3 pairing computations
(independent of the number of signers), 1 point multiplication, 2n−1 point addi-
tions, and n scalar multiplication (where n is the number of signatures that are
aggregated) for verification. Verification in our scheme is much faster than the
BGLS aggregate signature scheme [BGLS03] which requires O(n) pairing compu-
tations. Further, our scheme allows aggregation even if the signers have different



PKGs. Finally, our scheme is provably secure in the random oracle model under
Computational Diffie-Hellman against an adversary who could choose both its
target identities and messages adaptively.

It may be possible to construct practical IBAS schemes using different ap-
proaches and assumptions – e.g., based on strong RSA – but, again, aggregating
individual signer randomness is a problem. With strong RSA, one might even
consider a deterministic scheme, roughly as follows. The PKG publishes a mod-
ulus N , a base a ∈ Z∗

N , and hash functions H1 : {0, 1}∗ → {0, 1}d (e.g., d = 160)
and H2 : {0, 1}∗ → P (where P is a suitable set of prime numbers). To a user
with identity IDi who wants to generate up to t signatures, the PKG gives the

value a1/Pi(modN), where Pi =
∏k∈[1,d]

j∈[1,t] H2(IDi, j, k). To sign m for its j-th

signature, the user computes a1/Pi,j,m(modN) for

Pi,j,m =

k∈[1,d]
∏

H2(IDi, j, k)H1(IDi,j,m)k ,

where H1(IDi, j, m)k is the k-th bit of H1(IDi, j, m). With this approach the “de-
accumulation” that a user performs is computationally-intensive if t is reasonably
large. One could amortize the expense of de-accumulation by using tree-traversal
(pebbling-type) techniques – e.g., as described in [Szy04] – but this restricts the
users to using the j-values in order, which makes it less likely that distinct users
will use the same j, which increases the amount of verification information.
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