
Length Based Attack and Braid Groups:

Cryptanalysis of Anshel-Anshel-Goldfeld Key

Exchange Protocol

Alex D. Myasnikov and Alexander Ushakov

Department of Mathematical Sciences, Stevens Institute of Technology,
Hoboken, New Jersey, USA, 07030,
[amyasnik,aushakov]@stevens.edu

Abstract. The length based attack on Anshel-Anshel-Goldfeld commu-
tator key-exchange protocol [1] was initially proposed by Hughes and
Tannenbaum in [9]. Several attempts have been made to implement the
attack [6], but none of them had produced results convincing enough
to believe that attack works. In this paper we show that accurately de-
signed length based attack can successfully break a random instance of
the simultaneous conjugacy search problem for certain parameter values
and argue that the public/private information chosen uniformly random
leads to weak keys.

1 Introduction

Braid group cryptography has attracted a lot of attention recently due to several
suggested key exchange protocols (see [1], [10]) using braid groups as a platform.
We refer to [2], [5] for more information on braid groups.

In this paper we discuss the so-called Length Based Attack on the Anshel-
Anshel-Goldfeld key exchange protocol [1] (subsequently called the AAG proto-
col). The Length Based Attack, LBA for short, was first introduced by Hughes
and Tannenbaum in [9], however no actual experiments were performed and the
real threat of the attack has not been evaluated. Since then there were several
implementations of LBA published [6] but none of them produced a convinc-
ing evidence that LBA, indeed, breaks AAG. Finally, the authors of [6] make
conclusion that AAG protocol is invulnerable to LBA.

We need to mention here that successful attacks on AAG were proposed in
[7, 11, 14]. It is common believe now that AAG with original parameters is not
secure. However, the scalability of the attacks has not been completely realized.
This leads to speculations that AAG protocol may still be secure with a different
set of parameters such as longer private keys, for example.

In the paper we analyze the reasons behind the failure of the previous im-
plementations of LBA. We show that for slightly increased values of parameters
LBA can be modified so it breaks AAG protocol with a very high rate of suc-
cess. We also present an evidence that the keys generated uniformly randomly
are not secure and suggest that a more cautious approach in selecting private

information is necessary for AAG protocol to be immune to the length based
attack.

Here we start out by giving a brief description of the Anshel-Anshel-Goldfeld
key exchange protocol [1] (subsequently called the AAG protocol). Let Bn be
the group of braids on n strands and Xn = {x1, . . . , xn−1} the set of standard
generators. Thus,

Bn = 〈x1, . . . , xn−1; xixi+1xi = xi+1xixi+1, xixj = xjxi for |i − j| > 1〉.

Let N1, N2 ∈ N, 1 ≤ L1 ≤ L2, and L ∈ N be preset parameters. The AAG
protocol [1] is the following sequence of steps:

(1) Alice randomly generates an N1-tuple of braid words a = (a1, . . . aN1
), each

of length between L1 and L2, such that each generator of Bn non-trivially occurs
in a. The tuple a is called Alice’s public set.

(2) Bob randomly generates an N2-tuple of braid words b = (b1, . . . bN2
), each

of length between L1 and L2, such that each generator of Bn is non-trivially
involved in b. The tuple b is called Bob’s public set.

(3) Alice randomly generates a product A = aε1
s1

. . . aεL
sL

, where 0 < si < N1 and
εi = ±1 (for each 1 ≤ i ≤ L). The word A is called Alice’s private key.

(4) Bob randomly generates a product B = bδ1

t1
. . . bδL

tL
, where 0 < ti < N1 and

δi = ±1 (for each 1 ≤ i ≤ L). The word B is called Bob’s private key.

(5) Alice computes b′i = D(A−1biA) (1 ≤ i ≤ N2) and transmits them to Bob.
Here D(w) denotes Dehornoy handle free form of a braid word w (see [4] for the
definition of Dehornoy form of a braid).

(6) Bob computes a′
i = D(B−1aiB) (1 ≤ i ≤ N1) and transmits them to Alice.

(7) Alice computes KA = A−1a′ε1
s1

. . . a′εL
sL

. It is straightforward to see that KA =
A−1B−1AB in the group Bn.

(8) Bob computes KB = b′−δL

tL
. . . b′−δ1

t1
B. Again, it is easy to see that KB =

A−1B−1AB in the group Bn.

Thus, Alice and Bob obtain the same element K = KA = KB = A−1B−1AB of
the group Bn. This K is now their shared secret key.

In the steps (5) and (6) of the protocol the so-called Dehronoy form is used
do diffuse the public commutators. It is out of scope of this paper to define
the Dehornoy form in detail. Informally, the Dehornoy form is a reduced braid
word obtained as a result of a particular rewriting procedure. It is believed that
Dehornoy forms are linearly computable and it is computationally infeasible to
reconstruct the original braid from its Dehornoy form. For more details on the
definition and the procedure to compute the Dehornoy form we refer to [4].

Note that for an intruder to get the shared secret key K, it is sufficient to
find:

– an element A′ ∈ 〈a1, . . . , aN1
〉 such that b

′
= A′−1bA′ in Bn;

– an element B′ ∈ 〈b1, . . . , nN2
〉 such that a′ = B′−1aB′ in Bn.

Such elements A′ and B′ successfully substitute Alice’s and Bob’s private keys A
and B, in particular, [A, B] = [A′, B′]. For more information see [16]. Finding an
element A′ (and B′) is an instance of the subgroup-restricted simultaneous conju-
gacy search problem (abbreviated SR-SCSP) which is a variation of simultaneous
conjugacy search problem (SCSP) where it is required to find any conjugator for
two conjugated tuples.

Therefore, we say that the security of AAG protocol is partially based (but
not equivalent) on the assumption that SR-SCSP is hard. Below we describe
several types of attacks on variations of simultaneous conjugacy problem.

A. There is only one attack aiming to break SR-SCSP directly – the length-
based attack (initially proposed in [9]). It is a heuristic descend method for
solving SR-SCSP. We discuss it at length in Section 2.

B. All other attacks are aiming at SCSP:
1) Summit Set Attack [11]. This method starts by reducing conjugates to

the minimal level with respect to the canonical length (called the summit
set) and then performs the exhaustive search in that level.

2) Hofheinz-Stainwandt Attack [7] which has the same first step as in the
summit set attack and then uses a heuristic to obtain a solution in the
minimal level.

3) Linear Attack which uses presentations of braids by matrices, e.g., Burau
or Kramer presentations (see [8]). This attack produces a conjugator in
a matrix form and further lifting to braids is required.

A different type of heuristic attacks which is called the subgroup attack was
presented in [14]. It does not solve any variation of the conjugacy problem.
Instead it reduces the original problem to the one with shorter generators sim-
plifying the conjugacy problem. In particular, using the subgroup attack it was
shown that for parameters originally proposed by Anshel-Anshel-Goldfeld

– SCSP and SR-SCSP are equivalent for majority of random public sets;
– the majority of random public sets define the same subgroup which coincides

with the whole group;

which justifies the success of attacks B.1), B.2), and B.3) which perform well,
although with different success rates, on the original parameters suggested in
[1]:

n = 80, N1 = N2 = 20, L1 = 5, L2 = 8, L = 100

It is well accepted now that these values of parameters do not provide good level
of security. In this paper we increase values of parameters L1 and L2 to

n = 80, N1 = N2 = 20, L1 = 20, 30, 40, L2 = L1 + 3, L = 50.

and show that accurately designed LBA can crack a random instance of the
SR-SCSP generated using these values of parameters. Notice that we increase

lengths of generators of the public sets but decrease lengths of decompositions
of the private keys to keep the size of private keys A and B within practical
bounds. To be more precise we got the following results in our experiments:

L1, L2 10,13 20,23 30,33 40,43
Success rate 00% 51% 97% 96%

See Table 1 for more details.
The rest of the paper is organized as follows. In Section 2 we describe the

idea of the length based attack and its variations. We give examples of poten-
tially hard instances and explain what prevents LBA from being successful. We
conclude Section 2 by showing that it is unlikely that a private key taken at ran-
dom will be hard to break when values of L1 and L2 are sufficiently large. We
argue that a naive approach of increasing the size of the key will not guarantee
increase in the security of the protocol. In Section 3 we describe our version of
the generalized length based attack for breaking AAG and present experimental
results.

All the algorithms described in this paper are available at [3].

Acknowledgments. We are grateful to the Algebraic Cryptography Center at
Stevens Institute of Technology for support of our research. Also, we would like
to thank anonymous reviewers for their valuable comments and suggestions on
the paper.

2 The Length Based Attack

The length based attack is a heuristic procedure for finding the Alice’s (sym-
metrically Bob’s) private key A (B). Following the notation of Section 1 let

a = {a1, . . . , aN1
}, b = {b1, . . . , bN2

}, A = aε1
s1

. . . aεL
sL

, and b
′

= {b′1, . . . , b
′
N2

},
where b′i = D(A−1biA). Essentially each b′i is a result of a sequence of conjuga-
tions of bi by the factors of A:

bi

↓
a−ε1

s1
bi aε1

s1

↓
a−ε2

s2
a−ε1

s1
bi aε1

s1
aε2

s2

↓
. . .
↓

b′i = a−εL
sL

. . . a−ε2
s2

a−ε1
s1

bi aε1
s1

aε2
s2

. . . aεL
sL

(1)

A conjugating sequence is the same for each bi and is defined by the private key
A. The main goal of the attack is to reverse the sequence (1) and going back
from the bottom to the top recover each conjugating factor. If successful the
procedure will result in the actual conjugator as a product of elements from a.

2.1 LBA as a minimization problem

To achieve the goal outlined above we need some efficiently computable function
whose values would guide us on the way from the bottom to the top of (1). The
most natural idea is to find a function l such that

for the majority of elements a, b ∈ Bn l(a−1ba) > l(b). (2)

If such function exists then LBA can be set as a minimization problem and
solved using some heuristic optimization methods.

The choice of the function l is crucial for the success of the attack. In the
original paper [9] it was proposed to use a length function. There are several
length functions available for braids. In [9] the authors do not specify the function
explicitly, although their arguments are based on the work of Vershik et al. [17]
where the length defined as the geodesic length, i.e. the length of the shortest
path in the corresponding Cayley graph of a group.

Unfortunately there are no practically useful length functions are known
in braid groups which satisfy the criteria (2). The geodesic length of a braid
denoted by | · | seems to be the best candidate. However, there is no known
efficient algorithm for computing | · |. Moreover, it was shown in [15] that the set
of geodesic braids in B∞ is co-NP complete.

Some of length functions such as the canonical length of the Garside normal
form | · |∆ and the canonical length of the Birman-Ko-Lee normal form | · |δ are
efficiently computable but very crude, in a sense that many braids consisting of
many crossings have very small lengths. For instance, permutation braids contain
up to 1/2n(n− 1) crossings but have canonical length | · |∆ equal 1.

In this paper we use the method to approximate geodesic length proposed in
[14]. It does not guarantee the optimal result, although a series of experiments
show that for braids used in AAG the results of the approximation satisfy the
desired property given by the relation (2). From now on we denote by |·| the result
of the approximation function. The experiments suggest that our approximation
function | · | satisfies |a−1ba| > |b| for almost all a and b. Moreover, as the
length of a and b grows we have 2|a| + |b| − |a−1ba| significantly smaller than
2|a| which means that |a−1ba| > |b| and the difference is large. Figure 1 shows
the distribution of 2|a|+ |b| − |a−1ba| in B80 for |b| = 400, |a| = 5, 10, 20, 30, 40.
In particular, for |a| = 5 we see that in 90% of the cases cancellation in |a−1ba|
is limited by 4 symbols which means that in 90% of the cases conjugation by
the element of length 5 increases the length by at least 6. The small fraction
of elements which do not satisfy |a−1ba| > 2|a| + |b| (negative values in the
distribution) are caused by the errors of the approximation.

2.2 Variations of LBA

In this section we discuss several heuristic approaches to be used with the length
function | · |. All the algorithms in this section have the following input/output:

• Input: Tuples a = (a1, . . . , aN1
), b = (b1, . . . , bN2

), and b
′

= (b′1, . . . , b
′
N2

)

such that b and b
′
are conjugate by an element from 〈a1, . . . , aN1

〉.

−5 0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|a|=5
|a|=10
|a|=20
|a|=30
|a|=40

Fig. 1. Distribution of 2|a| + |b| − |a−1ba| in B80 for |b| = 400, |a| = 5, 10, 20, 30, 40.

• Output: An element x ∈ 〈a1, . . . , aN1
〉 such that b

x
= b

′

or FAIL if algo-
rithm is unable to find such x.

For an arbitrary tuple of braids c = (c1, . . . , ck) denote by |c| its total length
∑k

i=1
|ci|. Algorithm 1 (LBA with backtracking) enumerates all possible sequences

of conjugations decreasing the length of a tuple. We maintain set S which con-
tains tuples in work.

Algorithm 1 (LBA with backtracking)

A. Initialize a set S = {(b
′
, e)}, where e is the identity of Bn.

B. If S = ∅ then output FAIL.
C. Choose a pair (c, x) ∈ S with a minimal |c|. Remove (c, x) from S.
D. For each i = 1, . . . , N1, ε = ±1 compute δi,ε = |c| − |caε

i |.
E. If δi,ε > 0 then add (caε

i , xaε
i) into S.

F. If caε
i = a them output xaε

i .
G. Otherwise goto B.

Algorithm 2 (best descend LBA) is a version of a length based attack where
on each step we choose conjugator which gives the maximal decrease among
all currently available tuples. It is weaker than Algorithm 1 but works well for
certain parameter values as our experiments show. It has the same steps as
Algorithm 1, except that on step E we add only the tuple corresponding to the
maximal positive δi,ε to the set S. Thus at each time the set S contains at most
1 pair and no backtracking.

Algorithm 2 (Best Descend)

E. Choose the greatest positive δi,ε > 0 (if exists) and add (caε
i , xaε

i) into S.

The next version of the length based attack is so called generalized LBA. This
is an LBA with backtracking in which we extend the set of elements in Bob’s
(respectively Alice’s) public sets. It was conjectured in [9] that generalized length
based attack can break the multiple conjugacy search problem for any parameter
values. We need to mention here that one has to be cautious about the choice
of the new elements as the complexity of each iteration of LBA depends on the
number of elements in the public set ā.

Algorithm 3 (Generalized LBA)

A. Extend ā with products aε1

i1
. . . a

εj

ij
where j is limited by some constant.

B. Run Algorithms 1 or 2 with the obtained tuple ā and tuples b̄, b̄′.

Algorithms 1-3 always halt because only tuples of total lengths smaller than
the lengths of the public sets are considered. Note that all of the algorithms
above are heuristic in their nature and may halt without producing the solution.

2.3 Peaks

In this section we define the notion of a peak and show that condition (2) on the
length function in the platform group Bn is not enough for the success of LBA.
We give examples of instances of AAG invulnerable to the length based attacks
2 and 1.

Example 1. (Hard instance) Consider B80 and two braids

a1 = x−1
39 x12x7x

−1
3 x−1

1 x70x25x
−1
24

and
a2 = x42x

−1
56 x8x

−1
18 x19x73x

−1
33 x−1

22

which we think of as elements from Alice’s public set. It is easy to check that

a−1

1 a−1

2 a1 = x−1

7 · a−1

2 · x7 = x−1

7 x22x33x
−1

73 x−1

19 x18x
−1

8 x56x
−1

42 x7

and
a−1

1 a−1

2 a1a2 = x7x
−1

8 .

Hence |a1| = 8, |a−1

1 a−1

2 | = 16 , |a−1

1 a−1

2 a1| = 10, and |a−1

1 a−1

2 a1a2| = 2. Now
let b = (b1, . . . , bN) be a random tuple of braids thought of as Bob’s public set.
As we saw, for the majority of braids conjugation increases the length by almost
twice the length of a conjugator. Hence, for generic tuple b the following length
growth would be expected:

b
↓

|a−ε1
s1

b aε1
s1
| ≈ |b| + 8N

↓
|a−ε2

s2
a−ε1

s1
b aε1

s1
aε2

s2
| ≈ |b| + 16N

↓
|a−ε3

s3
a−ε2

s2
a−ε1

s1
b aε1

s1
aε2

s2
aε3

s3
| ≈ |b| + 10N

↓
|a−ε4

s4
a−ε3

s3
a−ε2

s2
a−ε1

s1
b aε1

s1
aε2

s2
aε3

s3
aε4

s4
| ≈ |b| + 2N

(3)

1 2 3 4

5

10

15

1 2 3 4

5

10

15

1) 2)

a1
-1

a2
-1

a1

a2 a1
-1

a2
-1

a1

Fig. 2. 1) Commutator-type 4-peak [a1, a2] from Example 1. 2) Conjugator-type 2-peak
as in Example 1 for a−1

1
a−1

2
a1.

Clearly, the length based attacks 2 and 1 fail for such element A because to
guess the first correct conjugator it is required to increase the length of the
tuple substantially (from |b| + 2N to |b| + 10N).

The reason for the attack failure in the previous example is that Alice’s
private key [a1, a2] forms a peak (commutator-type peak):

Definition 1. (Peak) Let G = 〈X ; R〉, lG a length function on G, and H =
〈w1, . . . , wk〉. We say that a word w = wi1 . . . win

is an n-peak in H relative to
lG if there is no 1 ≤ j ≤ n − 1 such that

lG(wi1 . . . win
) ≥ lG(wi1 . . . wij

).

We say that w = wi1 . . . win
is m-hard if there exist s ∈ {1, . . . , n} such that for

each j = 1, . . . , k

lG(wi1 . . . wis+k−1
) ≥ lG(wi1 . . . wis+k−j

)

and m is maximal with such property.

Note that according to the definition of m-hardness each product wi1 . . . win

is at least 1-hard. To see the hardness of the word w = wi1 . . . win
∈ H (given

as a product of generators of H) it is often convenient to depict the function
k → lG(wi1 . . . wik

) for k = 0, . . . , n. See Figure 2 for the words from Example
1. The graphs explain the choice of term peak. On the other hand given w ∈ H
we do not know any way to compute its hardness other than to compute the
decomposition of w in a product of generators, which is a very hard problem for
some subgroups of a braid group.

After making lots of experiments we strongly believe that the computational
hardness of SR-SCSP in braid groups is not an intrinsic property of conjugation,
but comes from the structure of the corresponding subgroup. To defend against
LBA it is necessary to choose a public set and m-hard private keys, where m
is large compared to N1, N2. One can generate such keys using the Mihailova
construction [12].

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|a|=5
|a|=10
|a|=20
|a|=30
|a|=40

Fig. 3. Distribution of the number of peaks in private keys.

However, generating keys that are immune just to LBA is not sufficient for
the security of the protocol. A generating procedure which provides keys secure
against all known attacks is a difficult task and is a current research objective.

2.4 Peaks in randomly chosen private keys

Even though it is not hard to construct instances invulnerable to LBA, such
instances are quite rare and it is very unlikely to generate one uniformly for
certain parameter values. Figure 3 shows the distribution of the number of peaks
in private keys for B80 and L1 = 5, 10, 20, 30, 40, L2 = L1 + 3. Figure 4 shows
the distribution of the maximal size of peaks in private keys for B80 and L1 =
5, 10, 20, 30, 40, L2 = L1 + 3. The distributions shown in Figures 3 and 4 are
obtained experimentally using the approximation of the geodesic length.

According to Figures 3 and 4 the greater the length of the generators the
shorter and rarer the peaks are. Intuitively, we can distinguish 3 types of distri-
bution of peaks depending on the parameter L1 (for B80):

1) Short generators (L1 ∈ [5, 20]). A random private key contains several peaks,
one or two of which are relatively long. The probability of a success of Al-
gorithm 1 in this case is very low. To make Algorithm 3 work it requires
extending the basis with a lot of elements, which suggests using subgroup
attack. Note that this case is in the ballpark of the parameters suggested in
[1]. LBA fails in this case.

2) Long generators (L1 > 40). With probability 90% random private key con-
tains no peaks. The LBA is expected to work smoothly.

3) Middle sized generators (L1 ∈ [20, 40]). A random private key with probabil-
ity 90% contains at most two short peaks. Experiments showed that almost
all peaks are conjugator-type peaks aε

ia
δ
ja

−ε
i (for some indices i, j and powers

ε, δ = ±1). Also there are a few commutator-type peaks aε
i a

δ
ja

−ε
i a−δ

j .

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|a|=5
|a|=10
|a|=20
|a|=30
|a|=40

Fig. 4. Distribution of the size of maximal peaks in private keys.

In other ranks experiments show similar behavior with different interval values
of L1.

3 The Attack

Based on our observations from Section 2.4 on the structure of peaks we in-
troduce a modification of the generalized length based attack which breaks the
instances of AAG with middle to high lengths of generators.

The main idea behind the generalized LBA is to add elements from the
corresponding subgroup to “cut” the peaks inside the private key as in the
following example. Consider Alice’s public tuple (a1, a2) from Example 1 and
choose her private key to be a−1

1 a−1

2 a1. Extending (a1, a2) with the product
a−1
2 a1 cuts the peak in Figure 2.(2) making the descend possible. Obviously any

peak in the private key A can be cut by extending the tuple ā with all the
products of the length up to the length of the decomposition L. However, this
is equivalent to breaking the system by the brute force approach. The number
of such products depends exponentially on the product length L with respect
to the rank of braid group. With the parameters considered in this paper the
number of all such products is of order 2050. Our goal is to introduce a relatively
small set of short products which will eliminate most of the frequently occurring
peaks.

As we discussed in Section 2.4 most of the peaks in a randomly generated
word are of lengths 2 and 3, and most of them are of conjugator-type. Indeed,
the expected number of conjugators E[CL], given that the factors are sampled
uniformly and independently, is estimated about 1/2N2(L − 2). For values L =
50 and N2 = 20 we have E[C50] ≈ 1.2, i.e. a conjugator is expected to occur at

least once. It is also easy to see that the probability of a long peak to occur in
a uniform random word is very small.

Hence, it is a natural idea to extend ā with all conjugators and commutators
of its elements (observe that this quadratically increases the size of the tuple).
In general the decision of extending the input tuple with a set of products is
based on the balancing of the tradeoff between the frequency of occurrences
of corresponding peaks and the increase of complexity on each iteration. In our
implementation we choose to add only conjugators as they seem to be inevitable,
whereas commutators as well as other types of longer peaks are very rare in the
key generated uniformly randomly.

3.1 Most significant generator heuristic

Adding all products of subgroup generators up to a certain length increases the
size of a generating set by a polynomial with respect to the subgroup rank (N1

or N2). Although theoretically feasible, this introduces practical problems even
in the case of small ranks. The following experimental observation can be used
as a heuristic which helps to reduce the number of operations on each iteration.

Let δk,εk
be the maximal length reduction obtained during an iteration I (see

step D of Algorithm 1):

δk,εk
= max{δi,ε | i = 1, . . . , N1}.

The corresponding generator aεk

k is called the most significant generator of the
iteration I. According to our experiments, the most significant generators almost
always are either the correct generators, or are contained in corresponding peaks.
The simple heuristic suggests to vary the tuple ā on each iteration and extend
it with elements which are the products containing the current most significant
generator. In this case the number of operations performed during one iteration
is still linear with respect to the subgroup rank N1.

3.2 Algorithms

Based on the heuristics given above we introduce two new attacks on AAG pro-
tocol. Both procedures have the same input and output as described in Section
2.2.

The first attack is a relatively straightforward implementation of the gener-
alized length based attack where the set of generators ā is extended by adding
all conjugations of the original generators.

Algorithm 4 (Generalized LBA with conjugation)

A. Extend ā with all conjugators: ā = ā ∪ {xixjx
−1

i | xi, xj ∈ ā±1, i 6= j}.
B. Run Algorithm 1 with the obtained tuple.

The second attack uses the dynamic extension set based on the products
containing the most significant generator. These products include conjugators
and products of two generators from ā. It is possible that none of the generators
ai cause length reduction on the step D of the LBA procedure 1. In such situation
we introduce all conjugators and two generator products, hoping to either cut a
peak or reduce the length function approximation error.

Algorithm 5 (LBA with dynamic set)

A. Initialize a set S = {(b
′

, e)}, where e is the identity of Bn.
B. If S = ∅ then output FAIL.
C. Choose a pair (c, x) ∈ S with a minimal |c|. Remove (c, x) from S.
D. For each i = 1, . . . , N1, ε = ±1 compute δi,ε = |c| − |caε

i |.
E. If ∀i δi,ε ≤ 0 then define āext = ā ∪ {xixjx

−1

i , xixj , x
2
i | xi, xj ∈ ā±1, i 6= j}

F. Else define āext = ā ∪ {xjxmx−1

j , xmxj , xjxm, x2
m | xj ∈ ā±1, m 6= j}, where

xm s.t. δm = max{δi,ε | i = 1, . . . , N1}.
G. For all w ∈ āext compute δw = |c̄| − |c̄w|, if δw > 0 add (c̄, xw) to S.
H. If cw = b them output xw.
I. Otherwise goto B.

3.3 Experiments

We performed a series of experiments to test the heuristic approaches described
in the previous sections. The following parameters were chosen: Bn = B80,
N1 = N2 = 20, L = 50 and parameters L1, L2 were varied to demonstrate the
better success rate of the length based attack for instances with longer subgroup
generators. There were 100 problems generated for each set of parameters.

L1, L2 10,13 20,23 30,33 40,43

Algorithm 2 00 05 45 60

Algorithm 4 00 51 80 64

Algorithm 5 00 30 97 96

Table 1. Success rate of the length based attack (%).

The attack was considered unsuccessful if an algorithm stopped and produced
FAIL or it has not terminated after 24 hours of execution. Experiments were
performed on Dual 1 GHz Pentium III processors with 2GB of RAM.

The percentages of successful attacks are given in Table 1. According to the
experiments Algorithms 4 and 5 almost never produce FAIL indicating that the
success rate could be improved by using more powerful computing or extending
the termination time.

As expected, none of the attacks were successful on instances with short
generators. However, keys obtained from long generators in many cases can be

reconstructed successfully even using the naive best descend procedure (see Al-
gorithm 2). The heuristics described in Section 3.1 seem to work well in cutting
peaks contained in uniformly randomly generated keys, showing over 50% suc-
cess rate even for instances with middle length generators.

References

1. I. Anshel, M. Anshel, D. Goldfeld, An algebraic method for public-key cryp-

tography, Math. Res. Lett. 6 (1999), 287–291.

2. J. S. Birman, Braids, links and mapping class groups, Ann. Math. Studies
82, Princeton Univ. Press, 1974.

3. CRyptography And Groups (CRAG), C++ and Python Library for
computations in groups and group based cryptography, available at
http://www.acc.stevens.edu/downloads.php.

4. P.Dehornoy, A fast method for comparing braids, Advances in math. 125,
(1997), 200-235.

5. D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson,
W. P. Thurston, Word processing in groups. Jones and Bartlett Publishers,
Boston, MA, 1992.

6. D. Garber, S. Kaplan, M. Teicher, B. Tsaban, U. Vishne, ”Length-based con-
jugacy search in the Braid group”, http://arxiv.org/abs/math.GR/0209267.

7. D. Hofheinz, R. Steinwandt. A Practical Attack on Some Braid Group Based

Cryptographic Primitives. In Public Key Cryptography, 6th International
Workshop on Practice and Theory in Public Key Cryptography, PKC 2003
Proceedings, Y.G. Desmedt, ed., vol. 2567 of Lecture Notes in Computer
Science, pp. 187-198, Springer, 2002.

8. J. Hughes, ”A Linear Algebraic Attack on the AAFG1 Braid Group Cryp-
tosystem”, ACISP 2002, Lecture Notes in Computer Science, vol. 2384,
(2002), 176–189.

9. J. Hughes, A. Tannenbaum, Length-based attacks for certain group based

encryption rewriting systems. In: Workshop SECI02 Securitè de la Commu-
nication sur Intenet, September 2002, Tunis, Tunisia.

10. K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. Kang, C. Park, New public-

key cryptosystem using braid groups. In: Advances in cryptology – CRYPTO
2000 (Santa Barbara, CA), 166–183 (Lecture Notes Comp. Sc., vol. 1880)
Berlin Heidelberg New York Tokyo: Springer 2000.

11. S. J. Lee, E. Lee, Potential Weaknesses of the Commutator Key Agreement

protocol Based on Braid Groups. In: Advances in cryptology – Eurocrypt
2002, 14-28 (Lecture Notes Comp. Sc., vol. 2332) Berlin Heidelberg New
York Tokyo: Springer 2002.

12. K. A. Mihailova, ”The occurrence problem for free products of groups”,
Math USSR-Sbornik 70, (1966), 241-251.

13. A. G. Myasnikov, V. Shpilrain, A. Ushakov. A practical attack on some

braid group based cryptographic protocols. In CRYPTO 2005, Lecture Notes
Comp. Sc. 3621 (2005), 86-96.

14. A. G. Myasnikov, V. Shpilrain, A. Ushakov. Random subgroups of braid

groups: an approach to cryptanalysis of a braid group based cryptographic

protocol. In PKC 2006, Lecture Notes Comp. Sc. 3958 (2006), 302-314.

15. M. Paterson, A. Razborov, The set of minimal braids in co-NP-complete J.
Algorithms, 12 (1991), 393-408.

16. V. Shpilrain and A. Ushakov, The conjugacy search problem in public key

cryptography: unnecessary and insufficient, Applicable Algebra in Engineer-
ing, Communication and Computing, to appear.
http://eprint.iacr.org/2004/321/

17. A. Vershik, S. Nechaev, R. Bikbov. Statistical properties of braid groups

in locally free approximation. In Communications in Mathematical Physics,
vol. 212, 2000, pp. 469–501.

