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Abstract. Key-insulated cryptography is a crucial technique for pro-
tecting private keys. To strengthen the security of key-insulated proto-
cols, Hanaoka, Hanaoka and Imai recently introduced the idea of parallel
key-insulated encryption (PKIE) where distinct physically-secure devices
(called helpers) are independently used in key updates. Their motivation
was to reduce the risk of exposure for helpers by decreasing the frequency
of their connections to insecure environments. Hanaoka et al. showed
that it was non-trivial to achieve a PKIE scheme fitting their model and
proposed a construction based on the Boneh-Franklin identity-based en-
cryption (IBE) scheme. The security of their system was only analyzed
in the idealized random oracle model. In this paper, we provide a fairly
efficient scheme which is secure in the standard model (i.e. without ran-
dom oracles). To do so, we first show the existence of a relation between
PKIE and the notion of aggregate signatures (AS) suggested by Boneh et
al. We then describe our random oracle-free construction using bilinear
maps. Thus, our contributions are both on the concrete side, namely the
first realization of parallel key-insulated encryption without the random
oracle idealization, and on the conceptual side revealing the relationships
between two seemingly unrelated primitives.
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1 Introduction

Nowadays, protecting cryptographic keys is an issue of huge importance. Hazards
of key exposure are indeed ever-increasing due the growing use of mobile devices
allowing remote unprotected access. This problem has been major concern to
the research community for a decade. It is certainly a more serious threat for
security customers than algorithms attempting to solve number theoretic prob-
lems by brute force.

To mitigate its potential damages, key-evolving protocols were studied in
various flavors: forward-security [1, 3, 14], intrusion-resilience [27, 19] and key-
insulation [20, 21]. The latter paradigm was introduced in 2002 by Dodis, Katz,
Xu and Yung [20]. It was motivated by the upcoming setting of “Ubiquitous
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Computing” where each user will possess more than one computer (e.g. a com-
puter at the office and a mobile phone which is also a computer) where not
all computers have the same availability and/or security. The general idea of
key-insulated security was to store long-term keys in a physically-secure but
computationally-limited device called base or helper. Short-term secret keys are
kept by users on a powerful but insecure device where cryptographic computa-
tions take place. Short term secrets are then refreshed at discrete time periods
via interaction between the user and the base while the public key remains un-
changed throughout the lifetime of the system. For a total of N time periods,
such a mechanism is said to be (t, N)-key-insulated if a compromise of up to t
periods leaves the remaining N − t time periods unharmed. A scheme is addi-
tionally said strongly key-insulated when adversaries corrupting the base remain
unable to perform private key operations on behalf of the user.

An increased tolerance against key exposures is thus allowed by frequent up-
dates of private keys. This unfortunately implies frequent connections between
the helper device and the network and thereby an increased risk of helper key ex-
posure. A theft of the helper’s base key is quite damaging as it typically requires
to restart the system with a new public key. It even jeopardizes strongly key-
insulated protocols where the additional exposure of a single time period at the
user definitely crashes the system. This recently motivated Hanaoka, Hanaoka
and Imai [26] to make a significant step forward and introduce the concept of
parallel key-insulated encryption (PKIE for short) where distinct independent
helpers are alternatively used in key update operations. As argued in [26], the
involvement of two helpers may simultaneously increase the security of helpers
and users by allowing for frequent updates without incurring a higher risk of
helper exposure. In [26], Hanaoka et al. provided a PKIE constuction which will
be referred to as the HHI scheme in this paper. It was obtained from the Boneh-
Franklin identity-based encryption (IBE) scheme [8] and provably fits properly
defined security requirements in the random oracle model [4]. However, a proof
in the random oracle model can only serve as a heuristic argument as it is known
(see e.g. [13]) not to imply the security in the real world.

It is natural to wonder if secure PKIE schemes exist in the standard model
and if they can be generically built from IBE. Indeed, equivalence relations
are known [5, 20] between (N − 1, N)-key-insulated systems and identity-based
schemes [36], hierarchical extensions of which [24, 6, 7] also allowed for the design
of other key-evolving protocols [29, 14, 19, 16, 38, 7].

To answer those questions, we first point out an intuitive relation between
PKIE and IBE systems that involve a signature scheme supporting aggregation
as in the aggregate signing (AS) protocol put forth by Boneh et al. [9]. We then
describe a PKIE scheme which, although non-generic, is demonstrably secure
in the sense of [26] without resorting to the random oracle methodology. Our
construction uses a selective-ID secure IBE due to Boneh and Boyen [6] as a
building block. It is fairly efficient and enjoys a security resting on the (by now
well-studied) Decisional Bilinear Diffie-Hellman assumption.

In the upcoming sections, we first recall functional definitions and security



notions for PKIE schemes. Section 3 discusses necessary conditions for building
such a primitive from identity-based protocols. Our system and its security are
respectively analyzed in sections 4 and 5. Section 6 then explains how to further
secure our protocol against chosen-ciphertext attacks.

2 Preliminaries

2.1 Model and Security Notions

A PKIE scheme over N stages consists of the following five algorithms.

Key generation: takes a security parameter λ and returns helpers’ private
keys mst1, mst2, a user’s private key usk0 and a public key pk.

Helper-Update: takes as input helper j’s private key mstj and a period num-
ber i to return an update key hski if i = j mod 2 and ⊥ otherwise.

User-Update: is given user’s private key uski−1 for period i−1, an update key
hski and computes the private key uski for period i.

Encrypt: is given a message m, a public key pk and a period number i ∈
{1, . . . , N} and returns a ciphertext σ.

Decrypt: given a ciphertext σ, a period number i and the matching private key
uski, returns either a plaintext m or ⊥.

The usual completeness requirement imposes Decrypt(pk, uski, σ) = m when-
ever σ = Encrypt(m, i, pk) for any i ∈ {1, . . . , N}.

In the basic (i.e. non-strong) key-insulation security, if no helper is com-
promised, the exposure of any short-term secret leaves other periods safe as in
[20, 21]. Besides, if a single helper is broken into while some stage i is exposed,
only one other stage adjacent to i is also exposed (recall that even strongly
key-insulated traditional schemes collapse in this scenario).

Definition 1. A PKIE scheme is (t, ε)-secure against chosen-ciphertext attacks
if no adversary has better advantage than ε in the following game within running
time t.
1. The challenger C runs the key generation algorithm, hands pk to the adver-

sary A and keeps mst0, mst1 and uks0 to itself.
2. A adaptively issues queries which are either:

- Exposure queries 〈j, class〉: if class = “user”, C runs helper and user
update algorithms to generate uskj and send it to A. If class = “helper”,
A obtains mstj.

- Decryption queries 〈j, σ〉: C responds by generating uskj (via calls to
update algorithms) to decrypt σ and pass the result to A.

3. At some point, A comes up with messages M0,M1 and a period number
j? ∈ {1, . . . , N}. She obtains a challenge σ? = Encrypt(Mb? , j?, pk) for a
random bit b? R← {0, 1} selected by C.

4. A issues new queries as in stage 2. She finally outputs b ∈ {0, 1} and wins
if b = b? provided

- 〈j?, σ?〉 does not appear in the list of decryption queries,



- 〈j?, “user”〉 is not in the list of exposure queries,
- 〈j? − 1, “user”〉 and 〈2 − (j? mod 2), “helper”〉 do not simultaneously

appear in the list of exposure queries and neither does the pair 〈j? +
1, “user”〉, 〈(j? mod 2) + 1, “helper”〉,

- 〈1, “helper”〉 and 〈2, “helper”〉 were not both queried.

As usual, A’s advantage is measured by AdvPKIE(A) = |Pr[b = b?]− 1/2|.
This definition considers two kinds of adversaries: Type I attackers do not corrupt
helpers during the game. In contrast, Type II adversaries corrupt exactly one
helper without requesting a private key that would trivially expose the target
period j?. For example, if j? is odd, A may not obtain uskj?−1 if she ever learns
mst1 as the latter is involved in all updates from even to odd time periods.
Besides, she is disallowed to query uskj?+1 if she also receives mst2 since uskj?

could be trivially retrieved from uskj?+1 and the helper’s key that allowed the
update from period j? to j? + 1.

According to [20, 21], a parallel key-insulated scheme is said strongly key-
insulated if breaking into all helpers does not help the adversary as long as she
does not also obtain any user secret for any period. Unlike [26], we follow [20,
21] and address this problem in a separate game where A is provided with both
base keys and may not request uski for any i.

2.2 Bilinear Maps and Related Problems

Groups (G, GT ) of prime order p are called bilinear map groups if there is a
mapping e : G×G→ GT with the following properties:

1. bilinearity: e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G and a, b ∈ Z;
2. efficient computability for any input pair;
3. non-degeneracy: e(g, h) 6= 1GT

whenever g, h 6= 1G.

We require the intractability of these problems in bilinear map groups.

Definition 2. Let (G, GT ) be bilinear map groups of order p and g ∈ G.

1. the Bilinear Diffie-Hellman Problem (BDH) [28, 8] is to compute e(g, g)abc ∈
GT given (ga, gb, gc);

2. the Decision Bilinear Diffie-Hellman Problem (DBDH) is to distin-
guish the distributions (ga, gb, gc, e(g, g)abc) and (ga, gb, gc, e(g, g)z). A dis-
tinguisher B (t, ε)-solves it if it runs in time at most t and∣∣Pr[B(ga, gb, gc, e(g, g)abc) = 1|a, b, c R← Z∗

p]

− Pr[B(ga, gb, gc, e(g, g)z) = 1|a, b, c, z R← Z∗
p]

∣∣ ≥ ε.

3 On Obtaining PKIE from IBE

The HHI scheme [26] (recalled in appendix A) uses the Boneh-Franklin IBE [8] as
a building block. It is pointed out in [26] that constructing parallel key-insulated



schemes from identity-based ones is non-trivial. For instance, one cannot settle
for simply combining two IBE schemes by letting two Private Key Generators
(PKGs) alternatively act as helpers for even and odd time periods. This naive
approach indeed leaves half of the stages exposed after the compromise of only
one helper. Another idea that falls short is to doubly encrypt (using the tech-
niques of [22]) messages for period i under identities i and i− 1 and let private
key uski consist of IBE private keys for identities i and i− 1. Unfortunately, the
key uski? may be exposed by merely corrupting periods i? − 1 and i? + 1.

Nevertheless, the HHI construction stems from a careful double application
of the Boneh-Franklin IBE. Although it was not explicitly mentioned in [26], the
key idea is to let a private key for period i be an aggregation of identity-based
private keys for periods i and i− 1. We recall that identity-based cryptosystems
traditionally involve private keys that are authorities’ signatures on identities. As
noted in [9], the signature algorithm [11] that derives private keys from identifiers
in [8] is compatible with a signature aggregation. This means that n signatures
generated by distinct signers on possibly distinct messages may be merged into a
single signature in such a way that verifiers can still ensure that all signers each
signed their original message. In [26], a private key for period i is the aggregation
of both helpers’ signatures on messages i and i− 1. The security in the sense of
definition 1 relies on the intractability of extracting individual signatures from
an aggregate of even only two signatures. In Boneh et al.’s scheme [9], this prob-
lem was shown equivalent to the Diffie-Hellman problem in [17].

An intuitive connection thus turns out to exist between parallel key-insulated
cryptosystems and identity-based encryption schemes extracting private keys
using a signature scheme supporting aggregation. The infeasibility of extract-
ing individual signatures from a 2-aggregate appears as a necessary condition
for the underlying AS to provide a secure PKIE system. In the next section,
we take advantage of this connection to devise a PKIE in the standard model.
Our construction uses the selective-ID secure3 [14] scheme of Boneh-Boyen [6]
as a starting point. As previously mentioned by Canetti, Halevi and Katz [14],
selective-ID secure schemes are sufficient as building blocks for key-evolving pro-
tocols. Indeed, in security proofs, simulators have to guess in advance which time
period will be the prey of attacks. This degrades security bounds by a factor that
remains acceptable for any realistic number of time periods (such as N ≤ 230).
We emphasize that constructing a PKIE scheme using Waters’s fully secure IBE
[37] would be overkill and would not yield a tighter reduction here4.

In the selective-ID secure IBE of [6], private keys are computed using a sig-
nature scheme which bears similarities with Waters’s signature [37] but is only
selective-message secure against chosen-message attacks. Unlike a recent variant
[33] where signatures are sequentially computed, it only supports a limited ag-
gregation as the size of an aggregate remains linear in the number of signers (as

3 i.e. secure in a model where attackers are required to announce the identity they
intend to attack ahead of time, even before seeing the system parameters.

4 Indeed, the condition for the simulator of [37] not to abort in the challenge phase
would have to be satisfied for both “identities” i and i− 1.



in a similar method suggested in [34]). However, this scheme is sufficient for the
pursued goal here as, in our construction, private keys are aggregates of only 2
individual signatures.

4 A Scheme with Chosen-Plaintext Security

As in [26], private keys stored by users at period i are 2-aggregate signatures
computed by helpers on “messages” i and i− 1.

Key generation: given a security parameter λ ∈ N, this algorithm

1. chooses bilinear map groups (G, GT ) of order p > 2λ, a generator g ∈ G,
a collision-resistant hash function H : N → Z∗

p and a pseudorandom
function f : {0, 1}1+log2 p × N→ Z∗

p,
2. picks α1, α2

R← Z∗
p and computes g1 = gα1 , g2 = gα2 ,

3. selects elements h, g′1, g
′
2

R← G and defines functions F1, F2 : N → G as
F1(i) = gIi

1 g′1 and F2(i) = gIi
2 g′2 where Ii = H(i) ∈ Z∗

p,
4. initializes the user’s private key to

usk0 =
(
hα1+α2F1(−1)r−1F2(0)r0 , gr0 , gr−1

)
where r−1 = f(sd1,−1) and r0 = f(sd2, 0) are respectively derived from
randomly chosen seeds sd1, sd2 ∈ {0, 1}1+log2 p,

6. Helpers’ private keys are set to mst1 = sd1 and mst2 = sd2 and the public
key is

pk := {p, G, GT , e, g, g1, g2, h, g′1, g
′
2,H, f}.

Elements α1, α2 are erased.
Helper-Update: given mstj = sdj and a period number i ∈ {1, 2, . . . , N},

helper j ∈ {1, 2}
1. returns ⊥ if i 6= j mod 2,
2. computes ri−2 = f(sdj , i− 2), ri = f(sdj , i)
3. outputs an update key hski =

(
Fj(i)ri/Fj(i− 2)ri−2 , gri−ri−2

)
User-Update: given uski−1, hski and i,

1. parse hski into (hi, h
′
i) and uski−1 into (ui−1,0, ui−1,1, ui−1,2),

2. set uski = (ui−1,0 · hi, ui−1,2 · h′i, ui−1,1),
3. return uski, discard uski−1 and hski.

At time period i, user’s private key is always set to

uski =
(
hα1+α2Fj(i)riFj−1(i− 1)ri−1 , gri , gri−1

)
,

with j = 2− (i mod 2) and for uniformly distributed exponents
ri = f(sdj , i), ri−1 = f(sdj−1, i− 1) ∈ Z∗

p determined by helpers.
Encrypt: given pk, i ∈ N, a message m ∈ GT is encrypted into

σ =
(
m · e(h, g1g2)s, gs, Fj(i)s, Fj−1(i− 1)s

)
where s R← Z∗

p is randomly chosen and j = 2− (i mod 2).



Decrypt: given σ = (A,B, C, D) and uski = (ui,0, ui,1, ui,2), compute

m = A · e(C, ui,1) · e(D,ui,2)
e(B, ui,0)

The completeness is checked by noting that uski = (ui,0, ui,1, ui,2) satisfies

e(ui,0, g) = e(h, g1g2) · e (Fj(i), ui,1) · e (Fj−1(i− 1), ui,2)

and raising both members of this equality to the power s.
The function f plays the crucial role of a “memory function” seeded by sdj

for j = 2 − (i mod 2) and allowing helpers to remember the exponent ri−2 of
their latest update. Those exponents must be unpredictable without the seed
sdj as an adversary obtaining uski−1 could trivially compute a private key for
period i without knowing hski if she could find out ri−2.

5 Security

Theorem 1. If no algorithm (t, ε)-breaks the Decision Bilinear Diffie-Hellman
assumption, the scheme is (t′, 4Nε)-secure against chosen-plaintext attacks for
t′ < t−O(Nτexp) where N is the number of time periods and τexp stands for the
cost of an exponentiation in G.

Proof. We construct an algorithm B that solves the DBDH problem in (G, GT )
using an adversary A against the IND-CPA security of our scheme. The input
of B is a tuple (ga, gb, gc, T ) ∈ G3 × GT and it aims at deciding whether T =
e(g, g)abc thanks to its interaction with A. As explained in section 2.1, two kinds
of adversaries are distinguished:

Type I adversaries: do not corrupt helpers during the game.
Type II adversaries: corrupt exactly one helper without exposing a private

key that would trivially compromise the attacked period i?.

At the outset of the simulation, B tosses a coin COIN R← {0, 1} to guess which
kind of attackA will produce. If COIN = 0, it expects to face a Type I adversary.
If COIN = 1, it forecasts a Type II behaviour from A. Our simulator B also
chooses an index ` R← {1, . . . , N} as a guess for the time period to be attacked
by A. W.l.o.g., we shall assume that ` is odd as the case of an even ` can be
handled in a completely similar manner. In all cases, B generates the public
key as follows. It selects γ R← Z∗

p, and defines g1 = ga, g2 = gγ
1 = (ga)γ and

h = gb. It also computes I` = H(`) and I`−1 = H(`− 1) and sets g′1 = g−I`
1 gt1 ,

g′2 = g
−I`−1
2 gt2 for randomly chosen t1, t2

R← Z∗
p and thereby implicitly defines

functions
F1(i) = gIi−I`

1 gt1 , F2(i) = g
Ii−I`−1
2 gt2 .

A is initialized on input of (g, g1, g2, h, g′1, g
′
2) and issues exposure queries that

are handled differently when COIN = 0 and COIN = 1. Informally, B uses



the fact that A has no information on exponents ri (i ∈ {1, . . . , N}) unless she
breaks into helper j = 2− (i mod 2). When dealing with exposure queries, these
exponents may be freely chosen for both even and odd stages when facing Type
I attacks. In Type II attacks, they are constrained for either odd or even stages
and B has to guess in advance the parity of constrained indexes.

• COIN = 0: B aborts if A issues a query 〈i, class〉 with class = “helper”
or with i = `. Otherwise, it can answer the query as private keys uski are
computable for i 6= `. To do so, B selects r0

R← Z∗
p. For i = 1, 2, . . . , (`− 1)/2, it

picks r2i−1, r2i
R← Z∗

p and computes

usk2i =
(
h
− (1+γ)t1

I2i−1−I` F1(2i− 1)r2i−1F2(2i)r2i , h
− 1+γ

I2i−1−I` gr2i−1 , gr2i

)
, (1)

usk2i−1 =
(
h
− (1+γ)t1

I2i−1−I` F1(2i− 1)r2i−1F2(2i− 2)r2i−2 , gr2i−2 , h
− 1+γ

I2i−1−I` gr2i

)
(2)

where I2i−1 = H(2i − 1). We observe that usk1, . . . , usk`−1 have the correct
shape. If we define r̃2i−1 = r2i−1 − b(1 + γ)/(I2i−1 − I`), we have

h
− (1+γ)t1

I2i−1−I` F1(2i− 1)r2i−1 = h
− (1+γ)t1

I2i−1−I`

(
g

I2i−1−I`

1 gt1
)r̃2i−1+

b(1+γ)
I2i−1−I` (3)

= g1
b(1+γ)(gI2i−1−I`

1 gt1)r̃2i−1 (4)

= g(aγ+a)bF1(2i− 1)r̃2i−1 (5)
= hα1+α2F1(2i− 1)r̃2i−1 (6)

and h
− 1+γ

I2i−1−I` gr2i−1 = g
− b(1+γ)

I2i−1−I` gr2i−1 = gr̃2i−1 for i = 1, . . . , (`− 1)/2.
Next, B repeats a similar procedure to generate usk`+1, . . . , uskN . It picks

r`
R← Z∗

p. For i = (`− 1)/2 + 1, . . . , N/2 (we assume that N is even), it chooses
r2i, r2i+1

R← Z∗
p and computes

usk2i =
(
h
− (1+γ−1)t2

I2i−I`−1 F2(2i)r2iF1(2i− 1)r2i−1 , h
− 1+γ−1

I2i−I`−1 gr2i , gr2i−1

)
, (7)

usk2i+1 =
(
h
− (1+γ−1)t2

I2i−I`−1 F2(2i)r2iF1(2i + 1)r2i+1 , gr2i+1 , h
− 1+γ−1

I2i−I`−1 gr2i

)
(8)

where I2i = H(2i). We check that usk`+1, . . . , uskN are correct keys as, if we
define r̃2i = r2i − b(1 + γ−1)/(I2i − I`−1) for i = (`− 1)/2 + 1, . . . , N/2,

h
− (1+γ−1)t2

I2i−I`−1 F2(2i)r2i = h
− (1+γ−1)t2

I2i−I`−1
(
g

I2i−I`−1
2 gt2

)r̃2i+
b(1+γ−1)
I2i−I`−1 (9)

= g2
b(1+γ−1)(gI2i−I`−1

2 gt2)r̃2i (10)

= g(aγ+a)bF2(2i)r̃2i = hα1+α2F2(2i)r̃2i (11)

and h
− 1+γ−1

I2i−I`−1 gr2i = g
− b(1+γ−1)

I2i−I`−1 gr2i = gr̃2i .

• COIN = 1: B expects A to corrupt either mst1 = sd1 or mst2 = sd2. It picks
random values b R← {1, 2} and sdb

R← {0, 1}1+log2 p and bets on an exposure
query involving mstb = sdb. As ` is odd, if A indeed attacks stage `, she is



restricted not to request usk`−1 (resp. usk`+1) if b = 1 (resp. b = 2). When A
issues a query 〈i, class〉, B returns sdb if class = “helper” and i = b. It aborts
if class = “helper” with i = b (where b = 2 if b = 1 and vice versa). When
class = “user”, it also aborts if i = `, if i = `− 1 while b = 1 and if i = ` + 1
while b = 2. Otherwise, two cases are distinguished:

b = 1: we have i 6= `− 1, `. For all i = 1, . . . , N/2, exponents r2i−1 are imposed
by the relation r2i−1 = f(sd1, 2i− 1) but exponents r2i can be freely chosen.
For i = 0, . . . , (` + 1)/2 − 2, (` + 1)/2, . . . , N/2, B chooses r2i

R← Z∗
p and

generates usk2i, usk2i+1 following equations (7)-(11). Therefore, it obtains all
private keys but usk`−1, usk` (though usk0 and uskN+1 are never requested
by the adversary, they are computable). Those private keys have the correct
shape for uniformly distributed (unknown) elements r̃2i ∈ Z∗

p.
b = 2: B has to compute private keys uski with i 6= `, ` + 1 as A is assumed

not to request usk`+1. This time, exponents of even time periods have to
comply with the constraint r2i = f(sd2, 2i) for all i but exponents r2i−1 are
free. For i = 1, . . . , (` − 1)/2, (` − 1)/2 + 2, . . . , N/2, B chooses r2i−1

R← Z∗
p

and computes usk2i, usk2i−1 according to equations (1)-(6) and thereby ob-
tains well-formed usk1, . . . , usk`−1, usk`+2, . . . , uskN for random (unknown)
implicitly defined r̃2i−1.

Challenge: when A decides that phase 1 is over, she comes up with messages
M0,M1 and a target time period i?, B halts and reports “failure” if i? 6= `.
Otherwise, it flips a fair coin b? R← {0, 1} a returns the challenge

σ? =
(
Mb? · T 1+γ , gc, (gc)t1 , (gc)t2

)
.

Since F1(`) = gt1 and F2(` − 1) = gt2 , σ? has the same distribution as the
output of the encryption algorithm if T = e(g, g)abc. In contrast, if T is random
in GT , σ? is independent of b? and A cannot guess b? with a higher probability
than 1/2. Hence, B deduces that T = e(g, g)abc if A’s final output equals b?.
Otherwise, it bets that T ∈R GT .

When assessing B’s success probability, we note that it may fail to provide
A with a consistent view because of the following events:

E1 : a key exposure is made for period `
E2 : a helper key exposure occurs and COIN = 0
E3 : helper b’s private key is exposed while COIN = 1
E4 : a key exposure on usk`−1 occurs while b = 1 and COIN = 1
E5 : a key exposure on usk`+1 occurs while b = 2 and COIN = 1

We also consider the following events:

H0 : B correctly guesses i? = `
H1 : B successfully foresees the kind of attack produced by A
H2 : B luckily predicts which helper’s key is exposed when COIN = 1

Clearly Pr[H0] = 1/N and Pr[H1] = 1/2. Also, we have H0 ⇒ ¬E1, H1 ⇒ ¬E2,
H2 ⇒ ¬E3 and H2 ∧H0 ⇒ ¬E4 ∧ ¬E5. The conjunction of events H0, H1 and
H2 is readily seen to occur with probability greater than 1/4N and it suffices to
prevent a failure of the simulation. ut



6 Chosen-Ciphertext Security

Chosen-ciphertext security in the standard model can be achieved using ideas
from [15, 10] but it is more directly obtained following the techniques of Boyen,
Mei and Waters [12] which require to turn our scheme into a key-encapsulation
mechanism (KEM) [35].

A KEM [35] is a public key algorithm that, instead of encrypting messages as
a regular public key cryptosystem, takes only a public key as input and returns
pairs (K, σ) made of a randomly distributed key K and an encapsulation σ of it.
The reverse operation is achieved by a decapsulation algorithm which, on input
of a private key and an encapsulation σ, either outputs a key K or a rejection
message ⊥. It is well-known [35] that a KEM immediately provides a public key
encryption scheme when combined with a suitable symmetric cryptosystem.

The methods of [12] involve a piece of ciphertext acting as a checksum treated
as part of an identity-based system by the simulator handling decryption queries.

In order to optimize the decapsulation algorithm, we use a trick suggested in
[30, 32] to minimize the number of pairing calculations and render the consistency
checking implicit in the computation of the key.

Key generation: is unchanged except that it additionally chooses a function
H ′ : G→ Zp which is either a collision-resistant hash function or a suitable
injective encoding (see [12] for details on how to define such an encoding).
The algorithm also picks another element g′ R← G to define the “checksum
function” F3 : Zp → G : x→ F3(x) = (g1g2)xg′.

pk := {p, G, GT , e, g, g1, g2, h, g′1, g
′
2, g

′,H, H ′, f}.
Helper-Update and User-Update do not change. At period i, user’s private

key is still
uski =

(
hα1+α2Fj(i)riFj−1(i− 1)ri−1 , gri , gri−1

)
,

with j = 2− (i mod 2) and ri = f(sdj , i), ri−1 = f(sdj−1, i− 1) ∈ Z∗
p.

Encapsulate: given i and pk, let j = 2− (i mod 2), pick s R← Z∗
p and compute

A = gs, ω = H ′(gs) ∈ Zp. Set B = Fj(i)s, C = Fj−1(i−1)s and D = F3(ω)s

to get
σ = (A,B,C, D) =

(
gs, Fj(i)s, Fj−1(i− 1)s, F3(ω)s

)
which encapsulates the key K = e(h, g1g2)s.

Decapsulate: given σ = (A,B,C, D) and uski = (ui,0, ui,1, ui,2), the receiver
sets ω = H ′(A) ∈ Zp, picks z1, z2, z3

R← Z∗
p and computes

K =
e
(
A, ui,0 Fj(i)z1Fj−1(i− 1)z2F3(ω)z3

)
e(B, ui,1 gz1) · e(C, ui,2 gz2) · e(D, gz3)

(12)

To explain the decapsulation mechanism, we note that any properly formed
encapsulation satisfies the (publicly verifiable) conditions

τ1 =
e(A,Fj(i))

e(B, g)
= 1, τ2 =

e(A,Fj−1(i− 1))
e(C, g)

= 1, τ3 =
e(A,F3(ω))

e(D, g)
= 1GT

.



The naive approach is to return K = e(A, ui,0)/(e(B, ui,1) · e(C, ui,2)) if they
hold and ⊥ (or a random K R← GT from the key space) otherwise. This approach
is perfectly equivalent to choose z1, z2, z3

R← Z∗
p and return

K = τz1
1 · τ

z2
2 · τ

z3
3 ·

e(A, ui,0)
e(B, ui,1) · e(C, ui,2)

which is the actual decapsulated key if the encapsulation was correct and a ran-
dom key otherwise. This alternative decapsulation mechanism is easily seen to
be exactly the one suggested by relation (12).

Overall, the cost of the decapsulation operation amounts to a product of
four pairings (which is much faster to compute than a naive evaluation of four
pairings as discussed in [25]) plus a few exponentiations in G.

In appendix B, we formally define the KEM counterpart of parallel key-
insulated security. We then prove theorem 2 which claims the chosen-ciphertext
security of our key-insulated KEM under the Decision BDH assumption.

Borrowing ideas from [31], we can construct a CCA-secure KEM with as
short ciphertexts and almost as efficient decryption as in section 4. As in [31],
this is obtained at the expense of longer private keys and a security resting on
a slightly stronger assumption.

We also mention that a regular CCA-secure PKIE scheme can be directly
achieved (without using the KEM-DEM framework) by implementing the check-
sum function F3 using Waters’s “hashing” technique [37], much in the fashion of
the cryptosystem described in section 3 of [12]. It unfortunately entails a much
longer public key and a looser reduction.

7 Strong Key-Insulation

The scheme inherently provides strong key-insulation thanks to the erasure of
discrete logarithms α1, α2 of g1, g2 after generation of the initial key usk0. Indeed,
base keys sd1, sd2 (that uniquely determine r1, . . . , rN ) are useless to adversaries
as long as they do not additionally obtain any local secret uski for any period.

To formally prove this fact (in a distinct game from the one of definition 1),
we proceed as in the proof of theorem 1 with the sole difference that no key
exposure query has to be tackled with. Hence, it does not matter if A knows
exponents ri.

8 Key-Insulated Encryption with Auxiliary Helper

In [2], Anh et al. generalized the notion of PKIE into a new primitive called
key-insulated public key encryption with auxiliary helper. Such a scheme also in-
volves two independent helpers but one of them is auxiliary and used in updates
much less frequently (say every ` time periods) than the main helper. In prac-
tice, the latter can be a laptop performing updates every day while the auxiliary
helper (e.g. a smart card) can be kept in a much safer location most of the time
in order to decrease the chance of compromise of both helpers.



This results in noticeable enhancements since, when the main helper is com-
promised, another exposure at the user only harms ` time periods: the next
update carried out by the auxiliary helper restores the security. Furthermore,
simultaneous break-ins at the user and the auxiliary helper compromise at most
two adjacent periods as long as the main helper is not also exposed.

In [2], the HHI system [26] was extended into a key-insulated scheme with
auxiliary helper (implicitly using aggregate signatures). Our constructions can be
similarly extended to fit security definitions of [2] without using random oracles.

9 Conclusion

We pinpointed connections between the concept of parallel key-insulated en-
cryption and certain identity-based cryptosystems using signatures supporting
aggregation. This observation allowed for the design of a secure system in the
standard model.

This motivates the open problem (with or without random oracles) of in-
creasing the number of helpers without paying an important loss of efficiency.
Our scheme and the one of [26] can both be extended to involve more than two
helpers but this entails a significant computational penalty.
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A The HHI Construction

The original PKIE system proposed by Hanaoka, Hanaoka and Imai [26] is re-
called below. In some sense, it can be thought of as a double application of a
key-insulated scheme obtained from the Boneh-Franklin IBE [8] using two dis-
tinct Private Key Generators (PKGs) as helpers. To ensure the security in the
sense of definition 1, a private key for period i consists of an aggregation of
private keys for identities i and i− 1.

Key generation: given a security paramter λ ∈ N, this algorithm
1. chooses bilinear map groups (G, GT ) of order p > 2λ, a generator g ∈ G,

hash functions H : {0, 1}∗ → G, G : GT → {0, 1}n (modeled as random
oracles in the security analysis),

2. picks α1, α2
R← Z∗

p and computes g1 = gα1 , g2 = gα2 ,
3. computes u−1 = H(−1), u0 = H(0),
4. computes d−1 = uα1

−1, d0 = uα2
0 ,

5. initializes the user’s private key to usk0 = d−1d0 ∈ G,
6. Helpers’ private keys are set to mst1 = α1 and mst2 = α2 while the

public key is pk := {p, G, GT , e, g, g1, g2,H, G}.
Helper-Update: given mstj = αj and a period number i ∈ {1, 2, . . . , N},

helper j ∈ {1, 2}
1. returns ⊥ if i 6= j mod 2,
2. computes di−2 = H(i− 2)αj , di = H(i)αj ,
3. outputs an update key hski = di/di−2 ∈ G

User-Update: given uski−1, hski and i,
1. set uski = uski−1 · hski ∈ G,
3. return uski and discard uski−1, hski.

At time period i, user’s private key is always set to

uski = didi−1 = H(i)αj H(i− 1)αj−1 ∈ G

with j = 2− (i mod 2).



Encrypt: given pk, i ∈ N, a message m ∈ {0, 1}n is encrypted into

σ =
(
gs,m⊕G(W )

)
for a random s R← Z∗

p and W =
(
e(gj ,H(i)) · e(gj−1,H(i − 1))

)s with j =
2− (i mod 2).

Decrypt: given σ = (A,B) and uski, compute
m = B ⊕G(e(A, uski))

The above version of the scheme is only secure against chosen-plaintext attacks.
The authors of [26] obtain the CCA-security in the random oracle model through
the Fujisaki-Okamoto conversion [23].

B Security Proof for the Parallel Key-Insulated KEM

Chosen-ciphertext security is defined as follows for parallel key-insulated KEMs.

Definition 3. A parallel key-insulated KEM is secure against chosen-ciphertext
attacks if no PPT adversary has non-negligible advantage in the following game:

1. The challenger C runs the key generation algorithm, gives pk to the adversary
A and keeps mst0, mst1 and uks0 to itself.

2. A adaptively issues a series of queries which are either:
- Key Exposure queries as in definition 1
- Decapsulation queries 〈j, σ〉: C responds by generating uskj to run the

decapsulation algorithm on σ and pass the result to A.
3. When A is ready to be challenged, she chooses period number j? ∈ {1, . . . , N}.

The challenger C runs algorithm Encapsulate(j?, pk) to produce a ran-
dom key K† along with its encapsulation σ?. At this point, C tosses a coin
b? R← {0, 1}. If b? = 1, C defines K? = K†. Otherwise, it sets K? R← K as
a randomly chosen element from the key space K. The pair (K?, σ?) is sent
as a challenge to A.

4. A issues new queries as in stage 2.
5. She eventually outputs b ∈ {0, 1} and wins if b = b? provided similar restric-

tions to those of definition 1 are respected.

As shown in [18], a chosen-ciphertext secure KEM immediately gives rise to
an IND-CCA2 public key cryptosystem when combined with a suitable sym-
metric encryption scheme. Although the present setting slightly differs from the
traditional public key setting, it is straightforward to extend the proof of theo-
rem 5 in [18] to our context.

The next theorem now states the security of our parallel key-insulated KEM
in the sense of definition 3 and under the DBDH assumption.

Theorem 2. If no algorithm (t, ε)-breaks the DBDH assumption, our parallel
key-insulated KEM is (t′, 4N(1−qd/p)ε)-secure against chosen-ciphertext attacks
for t′ < t−O(Nτexp + qdτp) where N is the number of time periods, qd denotes
the number of decapsulation queries and τexp, τp respectively stand for the time
complexity of an exponentiation in G and a pairing evaluation.



Proof. We outline an algorithm B receiving as input a tuple (ga, gb, gc, T ) ran-
domly sampled from either Dbdh = {(ga, gb, gc, e(g, g)abc)|a, b, c R← Z∗

p} or Drand =
{(ga, gb, gc, e(g, g)z)|a, b, c, z R← Z∗

p} and uses the adversary A to tell which dis-
tribution it was taken from.

The simulator B generates public key components h, g1, g2, g
′
1, g

′
2 as in the

proof of theorem 1. Namely, it sets h = gb, g1 = ga, g2 = gγ
1 for some ran-

domly chosen γ R← Z∗
p while g′1 and g′2 are chosen to properly handle key

exposure queries as in the proof of theorem 1. In addition, B publishes the
description of a collision-resistant hash function H : N → Z∗

p and some injec-
tive encoding function H ′ : G → Zp (we refer to [12] for details on how to
obtain such an encoding). Next, B computes ω? = H ′(gc) ∈ Zp and defines
the group element g′ = (g1g2)−ω?

gt3 for a random t3
R← Z∗

p. The function F3

is implicitly defined as F3(x) = (g1g2)x−ω?

gt3 . The adversary is started with
{p, G, GT , g, g1, g2, h, g′1, g

′
2, g

′,H, H ′} as input. She then issues a series of key
exposure queries which are handled exactly as in the proof of theorem 1. Other
queries are treated as follows.

Decapsulation queries: when A issues a pair 〈i, σ〉 containing a ciphertext
σ = (A,B,C, D) and a period i, B computes ω = H ′(A) ∈ Zp. If ω = ω?,
it aborts. Assuming that H ′ is injective, this implies that A = gc. Since
the DBDH instance was randomly distributed, such a situation only hap-
pens with probability qd/p throughout all queries. If ω 6= ω?, B determines
whether σ is valid by checking if

e(A,Fj(i))
e(B, g)

=
e(A,Fj−1(i− 1))

e(C, g)
=

e(A,F3(ω))
e(D, g)

= 1GT
.

If the above checking fails, B returns a random element K R← GT from the
key space. Otherwise, it knows that

σ = (A,B,C, D) = (gs, Fj(i)s, Fj−1(i− 1)s, F3(ω)s) ,

where D = (g1g2)s(ω−ω∗)gst3 , for some unknown s ∈ Z∗
p. Algorithm B then

computes gs
1g

s
2 =

(
D/At3

)1/ω−ω∗ which yields the key K = e(h, g1g2)s.

Challenge: when A produces her challenge request, the returned ciphertext is

σ? =
(
gc, (gc)t1 , (gc)t2 , (gc)t3

)
while the challenge key is K? = T 1+γ . As F1(`) = gt1 , F2(` − 1) = gt2 (we
still assume that ` is odd) and F3(ω?) = gt3 , σ? is a valid encapsulation of
K? if T = e(g, g)abc. If T is random in GT , so is K? and the result follows.

ut


