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Abstract. We propose multi-bit versions of several single-bit cryptosys-
tems based on lattice problems, the error-free version of the Ajtai-Dwork
cryptosystem by Goldreich, Goldwasser, and Halevi [CRYPTO ’97], the
Regev cryptosystems [JACM 2004 and STOC 2005], and the Ajtai cryp-
tosystem [STOC 2005]. We develop a universal technique derived from a
general structure behind them for constructing their multi-bit versions
without increase in the size of ciphertexts. By evaluating the trade-off
between the decryption errors and the hardness of underlying lattice
problems, it is shown that our multi-bit versions encrypt O(log n)-bit
plaintexts into ciphertexts of the same length as the original ones with
reasonable sacrifices of the hardness of the underlying lattice problems.
Our technique also reveals an algebraic property, named pseudohomo-

morphism, of the lattice-based cryptosystems.

1 Introduction

Lattice-Based Cryptosystems. The lattice-based cryptosystems have been well-
studied since Ajtai’s seminal result [1] on a one-way function based on the worst-
case hardness of lattice problems, which initiated the cryptographic use of lat-
tice problems. Ajtai and Dwork first succeeded to construct public-key crypto-
systems [2] based on the unique shortest vector problem (uSVP). After their
results, a number of lattice-based cryptosystems have been proposed in the last
decade by using cryptographic advantages of lattice problems [3,4,5,6].

We can roughly classify the lattice-based cryptosystems into two types:
(A) those who are efficient on the size of their keys and ciphertexts and the
speed of encryption/decryption procedures, but have no security proofs based
on the hardness of well-known lattice problems, and (B) those who have security
proofs based on the lattice problems but are inefficient.

For example, the GGH cryptosystem [7], NTRU [8] and their improve-
ments [9,10,11] belong to the type A. These are efficient multi-bit cryptosys-
tems related to lattices, but it is unknown whether their security is based on
the hardness of well-known lattice problems. Actually, a few papers reported
security issues of cryptosystems in this type [12,13].

On the other hand, those in the type B have security proofs based on well-
known lattice problems such as uSVP, the shortest vector problem (SVP) and



the shortest linearly independent vectors problem (SIVP) [2,4,6]. In particular,
the security of these cryptosystems can be guaranteed by the worst-case hardness
of the lattice problems, i.e., breaking the cryptosystems on average is at least as
hard as solving the lattice problems in the worst case. This attractive property of
the average-case/worst-case connection has been also studied from a theoretical
point of view [1,14,15,16].

Aside from the interesting property, such cryptosystems generally have longer
keys and ciphertexts than those of the cryptosystems in the type A. To set
their size practically reasonable, their security parameters must be small, which
possibly makes the cryptosystems insecure in a practical sense [17]. Therefore,
it is important to improve their efficiency for secure lattice-based cryptosystems
in the type B.

In recent years, several researchers actually considered more efficient lattice-
based cryptosystems with security proofs. For example, Regev constructed an
efficient lattice-based cryptosystem with shorter keys [6]. The security is based
on the worst-case quantum hardness of certain approximation versions of SVP
and SIVP, that is, his cryptosystem is secure if we have no polynomial-time
quantum algorithm that solves the lattice problems in the worst case. Ajtai also
constructed an efficient lattice-based cryptosystem with shorter keys by using a
compact representation of special instances of uSVP [5], whose security is based
on a certain Diophantine approximation problem.

Our Contributions. We continue to study efficient lattice-based cryptosystems
with security proofs based on well-known lattice problems or other secure cryp-
tosystems. In particular, we focus on the size of plaintexts encrypted by the
cryptosystems in the type B. To the best of the authors’ knowledge, all those
in this type are single-bit cryptosystems. We therefore obtain more efficient
lattice-based cryptosystems with security proofs if we succeed to construct their
multi-bit versions without increase in the size of ciphertexts.

In this paper, we consider multi-bit versions of the improved Ajtai-Dwork
cryptosystem proposed by Goldreich, Goldwasser, and Halevi [3], the Regev
cryptosystems given in [4] and in [6], and the Ajtai cryptosystem [5]. We de-
velop a universal technique derived from a general structure behind them for
constructing their multi-bit versions without increase in the size of ciphertexts.

Our technique requires precise evaluation of trade-offs between decryption
errors and hardness of underlying lattice problems in the original lattice-based
cryptosystems. We firstly give precise evaluation for the trade-offs to apply our
technique to constructions of the multi-bit versions. This precise evaluation also
clarifies a quantitative relationship between the security levels and the decryption
errors in the lattice-based cryptosystems, which may be useful to improve the
cryptosystems beyond our results.

Due to this evaluation of the cryptosystems, it is shown that our multi-bit
versions encrypt O(log n)-bit plaintexts into ciphertexts of the same length as
the original ones with reasonable sacrifices of the hardness of the underlying
lattice problems.



Ajtai-Dwork Regev’04

cryptosystem ADGGH [3] mADGGH R04 [4] mR04

security O(n11)-uSVP O(n11+ε)-uSVP Õ(n1.5)-uSVP Õ(n1.5+ε)-uSVP
size of public key O(n5 log n) O(n5 log n) O(n4) O(n4)
size of private key O(n2) O(n2) O(n2) O(n2)
size of plaintext 1 O(log n) 1 O(log n)
size of ciphertext O(n2 log n) O(n2 log n) O(n2) O(n2)

rounding precision 2−n 2−n 2−8n
2

2−8n
2

Regev’05 Ajtai

cryptosystem R05 [6] mR05 A05 [5] mA05

security SVP
Õ(n1.5) SVP

Õ(n1.5+ε) DA′ A05

size of public key O(n2 log2 n) O(n2 log2 n) O(n2 log n) O(n2 log n)
size of private key O(n log n) O(n log n) O(n log n) O(n log n)
size of plaintext 1 O(log n) 1 O(log n)
size of ciphertext O(n log n) O(n log n) O(n log n) O(n log n)
rounding precision 2−n 2−n 1/n 1/n

Table 1. summary. (ε is any positive constant and Õ (f(n)) means
O (f(n) poly(log n)).)

The ciphertexts of our multi-bit version are distributed in the same ciphertext
space, theoretically represented with real numbers, as the original cryptosystem.
To represent the real numbers in their ciphertexts, we have to round their frac-
tional parts with certain precision. The size of ciphertexts then increases if we
process the numbers with high precision. We stress that our technique does not
need higher precision than that of the original cryptosystems, i.e., we take the
same precision in our multi-bit versions as that of the original ones.

See Table 1 for the cryptosystems studied in this paper. We call the crypto-
systems proposed in [3,4,6,5] ADGGH, R04, R05, and A05, respectively. We also
call the corresponding multi-bit versions mADGGH, mR04, mR05, and mA05.

The problems in the security fields are deeply related to lattice problems.
The shortest vector problem within approximation factor γ (SVPγ) is generally
considered as a hard problem for polynomial factor of γ, which is defined as
follows. Given a lattice L, the problem is to find a shortest non-zero vector
u ∈ L within approximation factor γ.

The unique shortest vector problem (uSVP) is also well known as a hard
lattice problem applicable to cryptographic constructions. We say the shortest
vector u of a lattice L is f -unique if for any non-zero vector v ∈ L which is not
parallel to u, f ‖u‖ ≤ ‖v‖. Given a lattice L whose shortest vector is f -unique,
the problem is to find a non-zero vector u ∈ L such that for any non-zero vector
v ∈ L which is not parallel to u, f ‖u‖ ≤ ‖v‖.

While the security of ADGGH, R04, and R05 is based on the above two lattice
problems, that of A05 is on a variant of Diophantine approximation problem
(DA′). See [5] for the definition of this problem.



We also focus on the algebraic property we call pseudohomomorphism of the
lattice-based cryptosystems. The homomorphism of ciphertexts is quite useful
for many cryptographic applications. (See, e.g., [18].) In fact, the single-bit cryp-
tosystems ADGGH, R04, R05 and A05 implicitly have a similar property to the
homomorphism. Let E(x1) and E(x2) be ciphertexts of x1 and x2 ∈ {0, 1}, re-
spectively. Then, E(x1)+E(x2) becomes a variant of E(x1⊕x2). More precisely,
E(x1)+E(x2) does not obey the distribution of the ciphertexts, but we can guar-
antee the same security level as that of the original cryptosystem and decrypt
E(x1) + E(x2) to x1 ⊕ x2 by the original private key with a small decryption
error. We refer to this property as the pseudohomomorphism. Goldwasser and
Kharchenko actually made use of a similar property to construct the plaintext
knowledge proof system for the Ajtai-Dwork cryptosystem [19].

Unfortunately, it is only over Z2 (and direct product groups of Z2 by con-
catenating the ciphertexts) that we can operate the addition of the plaintexts
in the single-bit cryptosystems. It is unlikely that we can naively simulate the
addition over large cyclic groups by concatenating ciphertexts in such single-bit
cryptosystems.

In this paper, we present the pseudohomomorphic property of mADGGH over
larger cyclic groups. The property of mR04, mR05, and (a slightly modified
version of) mA05 can be shown similarly, whose proof will be given in the full
paper. We believe that this property extends the possibility of the cryptographic
applications of the lattice-based cryptosystems.

Main Idea for Multi-Bit Constructions and Their Security. We can actually find
the following general structure behind the single-bit cryptosystems ADGGH, R04,
R05, and A05: Their ciphertexts of 0 are basically distributed according to a pe-
riodic Gaussian distribution and those of 1 are also distributed according to
another periodic Gaussian distribution whose peaks are shifted to the middle of
the period. We thus embed two periodic Gaussian distributions into the cipher-
text space such that their peaks appear alternatively and regularly. (See the left
side of Figure 1.)

Our technique is based on a generalization of this structure. More precisely,
we regularly embed multiple periodic Gaussian distributions into the ciphertext
space rather than only two ones. (See the right side of Figure 1.) Embedding
p periodic Gaussian distributions as shown in this figure, the ciphertexts for a
plaintext i ∈ {0, . . . , p− 1} are distributed according the i-th periodic Gaussian
distribution. This cyclic structure enables us not only to improve the efficiency
of the cryptosystems but also to guarantee their security.

If we embed too many periodic Gaussian distributions, the decryption er-
rors increase due to the overlaps of the distributions. We can then decrease the
decryption errors by reducing their variance. However, it is known that smaller
variance generally makes such cryptosystems less secure, as commented in [3].
We therefore have to evaluate the trade-offs in our multi-bit versions between
the decryption errors and their security, which depend on their own structures
of the cryptosystems.



Fig. 1. the embedding of periodic Gaussian distributions.

Once we evaluate their trade-offs, we can apply a general strategy based on
the cyclic structure to the security proofs. The security of the original crypto-
systems basically depends on the indistinguishability between a certain periodic
Gaussian distribution Φ and a uniform distribution U since it is shown in their
security proofs that we can construct an efficient algorithm for a certain hard lat-
tice problem by employing an efficient distinguisher between Φ and U . The goal
is thus to construct the distinguisher from an adversary against the multi-bit
version.

We first assume that there exists an efficient adversary for distinguishing
between two Gaussian distributions corresponding two kinds of ciphertexts in
our multi-bit version with its public key. By the hybrid argument, the adversary
can distinguish either between Φi and U or between Φj and U . We now suppose
that it can distinguish between Φi and U . Note that we can slide Φi to Φ0 cor-
responding to ciphertexts of 0 even if we do not know the private key by the
cyclic property of the ciphertexts. Thus, we obtain an efficient distinguisher be-
tween Φ0 and U . Φ0 is in fact a variance-reduced version of the periodic Gaussian
distribution Φ used in the original cryptosystem. We can guarantee the indis-
tinguishability between such a version Φ0 and U is based on the hardness of
another lattice problem slightly easier than the original one. We can therefore
guarantee the security of our multi-bit versions similarly to the original ones.

Encryption and Decryption in Multi-Bit Versions. We also exploit this cyclic
structure for the correctness of encryption and decryption procedures. In the
original cryptosystems except for R05, the private key is the period d of the
periodic Gaussian distribution, and the public key consists of the information
for generating the periodic Gaussian distribution corresponding to 0 and the
information for shifting the distribution to the other distribution corresponding
to 1. The latter information for the shift essentially is k(d/2) for a random odd
number k. Then, if we want to encrypt a plaintext 0, we generate the periodic
Gaussian distribution corresponding to 0. Also, if we want to encrypt 1, we



generate the distribution corresponding to 0 and then shift it using the latter
information.

The private and public keys in our multi-bit versions are slightly different
from those of the original ones. The major difference is the information for
shifting the distribution. If the size of the plaintext space is p, the information
for the shift is essentially k(d/p), where the number k must be a coprime to p for
unique decryption. We then interpret the number k as a generator of the group

of periodic Gaussian distributions. We adopt a prime as the size of the plaintext
space p for efficient public key generation in our constructions. The private key
also contains this number k other than the period d. Therefore, we can construct
correct encryption and decryption procedures using this information k.

In the cases of R05 and mR05, it is not necessary for keys to contain the in-
formation for the shift. We can actually obtain such information due to their own
structures even if it is not given from the public key. Thus, p is not necessarily
a prime in mR05.

Pseudohomomorphism in Multi-Bit Versions. The regular embedding of the pe-
riodic Gaussian distributions also gives our multi-bit cryptosystems the algebraic
property named pseudohomomorphism. Recall that a Gaussian distribution has
the following reproducing property: For two random variables X1 and X2 ac-
cording to N(m1, s

2
1) and N(m2, s

2
2), where N(m, s2) is a Gaussian distribution

with mean m and standard deviation s, the distribution of X1 + X2 is equal to
N(m1 +m2, s

2
1 +s2

2). This property implies that the sum of two ciphertexts (i.e.,
the sum of two periodic Gaussian distributions) becomes a variant of a cipher-
text (i.e., a periodic Gaussian distribution with larger variance). This sum can
be moreover decrypted into the sum of two plaintexts with the private key of the
multi-bit version, and has the indistinguishability based on the security of the
multi-bit version. By precise analysis of our multi-bit versions, we estimate the
upper bound of the number of the ciphertexts which can be summed without
the change of the security and the decryption errors.

Organization. The rest of this paper is organized as follows. We describe basic no-
tions and notations for lattice-based cryptosystems in Section 2. In Section 3, we
first review the improved Ajtai-Dwork cryptosystem ADGGH and then describe
the corresponding multi-bit version mADGGH in detail. We omit the description
of the other multi-bit versions mR04, mR05, and mA05 since the main idea of
their constructions are based on the same universal technique and the difference
among them is mainly the evaluation of the trade-offs in each of cryptosystems.
They will appear in the full paper. We also give concluding remarks in Section 4.

2 Basic Notions and Notations

The length of a vector x =
t
(x1, . . . , xn) ∈ R

n, denoted by ‖x‖, is (
∑n

i=1 x2
i )

1/2,
where tx is the transpose of x. The inner product of two vectors x =
t(x1, . . . , xn) ∈ R

n and y = t(y1, . . . , yn) ∈ R
n, denoted by 〈x, y〉, is

∑n
i=1 xiyi.



The security parameter n of lattice-based cryptosystems is given by dimen-
sion of a lattice in the lattice problems on which security of the cryptosystems
are based. Let ⌊x⌉ be the closest integer to x ∈ R (if there are two such inte-
gers, we choose the smaller.) and frc (x) = |x − ⌊x⌉| for x ∈ R, i.e., frc (x) is the
distance from x to the closest integer.

A function f(n) is called negligible for sufficiently large n if limn→∞ ncf(n) =
0 for any constant c > 0. We similarly call f(n) a non-negligible function if
there exists a constant c > 0 such that f(n) > n−c for sufficiently large n. We
call probability p exponentially close to 1 if p = 1 − 2−Ω(n). We represent a
real number by rounding its fractional part. If the fractional part of x ∈ R is
represented in m bits, the rounded number x̄ has the precision of 1/2m, i.e., we
have |x − x̄| ≤ 1/2m.

We say that an algorithm distinguishes between two distributions if the gap
between the acceptance probability for their samples is non-negligible.

Lattices. An n-dimensional lattice in R
n is the set L(b1, . . . , bn) = {

∑n
i=1 αibi :

αi ∈ Z} of all integral combinations of n linearly independent vectors b1, . . . , bn.
The sequence of vectors b1, . . . , bn is called a basis of the lattice L. For clarity
of notations, we represent a basis by the matrix B = (b1, . . . , bn) ∈ R

n×n. For
any basis B, we define the fundamental parallelepiped P(B) = {

∑n
i=1 αibi : 0 ≤

αi < 1}. The vector x ∈ R
n reduced modulo the parallelepiped P(B), denoted

by x mod P(B), is the unique vector y ∈ P(B) such that y − x ∈ L(B). The
dual lattice L∗ of a lattice L is the set L∗ = {x ∈ R

n : 〈x, y〉 ∈ Z for all y ∈ L}.
If L is generated by basis B, then (tB)−1 is a basis for the dual lattice, where
tB is the transpose of B.

For more details on lattices, see the textbook by Micciancio and Gold-
wasser [20].

3 A Multi-Bit Version of the Improved Ajtai-Dwork

Cryptosystem

On behalf of four cryptosystems ADGGH, R04, R05, and A05, we discuss the
improved Ajtai-Dwork cryptosystem ADGGH given by Goldreich, Goldwasser,
and Halevi [3] in detail and apply our technique to construction of its multi-bit
version mADGGH in this section.

3.1 The Improved Ajtai-Dwork Cryptosystem and Its Multi-Bit
Version

For understanding our construction intuitively, we first overview the protocol of
ADGGH. Let N = nn = 2n log n. We define an n-dimensional hypercube C and
an n-dimensional ball Br as C = {x ∈ R

n : 0 ≤ xi < N, i = 1, . . . , n} and
Br = {x ∈ R

n : ‖x‖ ≤ n−r/4} for any constant r ≥ 7, respectively. For u ∈ R
n

and an integer i we define a hyperplane Hi as Hi = {x ∈ R
n : 〈x, u〉 = i}.



Fig. 2. ciphertexts of 0 in ADGGH Fig. 3. ciphertexts of 1 in ADGGH

Roughly speaking, ADGGH encrypts 0 into a vector distributed closely around
hidden (n − 1)-dimensional parallel hyperplanes H0, H1, H2, . . . for a normal
vector u of H0, and encrypts 1 into a vector distributed closely around their
intermediate parallel hyperplanes H0 + u/(2 ‖u‖

2
), H1 + u/(2 ‖u‖

2
), . . . . (See

Figure 2 and Figure 3.) Then, the private key is the normal vector u. These
distributions of ciphertexts can be obtained from its public key, which consists
of vectors on the hidden hyperplanes and information i1 for shifting a vector
on the hyperplanes to another vector on the intermediate hyperplanes. If we
know the normal vector, we can reduce the n-dimensional distribution to on the
1-dimensional one along the normal vector. Then, we can easily find whether a
ciphertext distributed around the hidden hyperplanes or the intermediate ones.

We now describe the protocol of ADGGH as follows. Our description slightly
generalizes the original one by introducing a parameter r, which controls the
variance of the distributions since we need to estimate a trade-off between the
security and the size of plaintexts in our multi-bit version.

Preparation: All the participants agree with the security parameter n, the
variance-controlling parameter r, and the precision 2−n for rounding real
numbers.

Key Generation: We choose u uniformly at random from the n-dimensional
unit ball. Let m = n3. Repeating the following procedure m times, we sam-
ple m vectors v1, . . . , vm: (1) We choose ai from {x ∈ C : 〈x, u〉 ∈ Z}
uniformly at random, (2) choose b1, . . . , bn from Br uniformly at ran-
dom, (3) and output vi = ai +

∑n
j=1 bj as a sample. We then take the

minimum index i0 satisfying that the width of P(vi0+1, . . . , vi0+n) is at
least n−2N , where width of a parallelepiped P(x1, . . . xn) is defined as
mini=1,...,n Dist(xi, span(x1, . . . , xi−1, xi+1, . . . , xn)) for a distance function
Dist(·, ·) between a vector and an (n − 1)-dimensional hyperplane.
Now let wj = vi0+j for every j ∈ {1, . . . , n}, V = (v1, . . . , vm), and
W = (w1, . . . , wn). We also choose an index i1 uniformly at random from
{i : 〈ai, u〉 is odd}, where ai is the vector appeared in the sampling pro-
cedure for vi. Note that there are such indices i0 and i1 with probability
1 − o(1). If such indices do not exist, we perform this procedure again. To
guarantee the security, ‖u‖ should be in [1/2, 1). The probability of this



event is exponentially close to 1. If the condition is not satisfied, we sample
the vector u again. Then, the private key is u and the public key is (V, W, i1).

Encryption: Let S be a uniformly random subset of {1, 2, . . . , m}. We encrypt
a plaintext σ ∈ {0, 1} to x = σ

2 vi1 +
∑

i∈S vi mod P(W ).
Decryption: Let x ∈ P(W ) be a received ciphertext. We decrypt x to 0 if

frc (〈x, u〉) ≤ 1/4 and to 1 otherwise.

Carefully reading the results in [2,3], we obtain the following theorem on the
cryptosystem ADGGH.

Theorem 1 ([3]). The cryptosystem ADGGH encrypts a 1-bit plaintext into an

n⌈n(log n+1)⌉-bit ciphertext with no decryption errors. The security of ADGGH

is based on the worst case of O(nr+5)-uSVP for r ≥ 7. The size of the public key

is O(n5 log n) and the size of the private key is O(n2).

As commented in [21], we can actually improve the security of ADGGH by a
result in [21]. We will give the proof in the full paper.

Theorem 2. The security of ADGGH is based on the worst case of O(nr+4)-
uSVP for r ≥ 7.

We next describe the multi-bit version mADGGH of ADGGH. Let p be a prime
such that 2 ≤ p ≤ nr−7, where the parameter r controls a trade-off between the
size of the plaintext space and the hardness of underlying lattice problems. In
mADGGH, we can encrypt a plaintext of log p bits into a ciphertext of the same
size as ADGGH. The strategy of our construction basically follows the argument
in Section 1. Note that the parameter r is chosen to keep our version error-free.

Preparation: All the participants agree with the parameters n, r and the pre-
cision 2−n similarly to ADGGH, and additionally the size p of the plaintext
space.

Key Generation: The key generation procedure is almost the same as that of
ADGGH. We choose an index i′1 uniformly at random from {i : 〈ai, u〉 6≡
0 mod p} instead of i1 in the original key generation procedure. We set de-
cryption information k ≡ 〈ai′

1
, u〉 mod p. Note that there is such a k with

probability 1 − (1/p)m = 1 − o(1). Then, the private key is (u, k) and the
public key is (V, W, i′1).

Encryption: Let S be a uniformly random subset of {0, 1}m. We encrypt σ ∈
{0, . . . , p − 1} to x = σ

p vi′
1

+
∑

i∈S vi mod P(W ).

Decryption: We decrypt a received ciphertext x ∈ P(W ) to ⌊p 〈x, u〉⌉ k−1 mod
p, where k−1 is the inverse of k in Zp.

Before evaluating the performance of mADGGH precisely, we give the sum-
mary of the results as follows.

Theorem 3 (security and decryption errors). Let r ≥ 7 be any constant

and let p(n) be a prime such that 2 ≤ p(n) ≤ nr−7. The cryptosystem mADGGH

encrypts a ⌊log p(n)⌋-bit plaintext into an n⌈n(log n + 1)⌉-bit ciphertext without



the decryption errors. The security of mADGGH is based on the worst case of

O(nr+4)-uSVP. The size of the public key is the same as that of the original

one. The size of the private key is ⌈log p(n)⌉ plus that of the original one.

Theorem 4 (pseudohomomorphism). Let r ≥ 7 be any constant. Also, let p
be a prime and let κ be an integer such that κp ≤ nr−7. Let Em be the encryption

function of mADGGH. For any κ plaintexts σ1, . . . , σκ (0 ≤ σi ≤ p − 1), we can

decrypt the sum of κ ciphertexts
∑κ

i=1 Em(σi) mod P(W ) into
∑κ

i=1 σi mod p
without decryption error. Moreover, if there exist two sequences of plaintexts

(σ1, . . . , σκ) and (σ′
1, . . . , σ

′
κ), and a polynomial-time algorithm that distinguishes

between
∑κ

i=1 Em(σi) mod P(W ) and
∑κ

i=1 Em(σ′
i) mod P(W ) with its public

key, then there exists a polynomial-time algorithm that solves O(nr+4)-uSVP in

the worst case with non-negligible probability.

In what follows, we demonstrate the performance of mADGGH stated in the
above theorems.

3.2 Decryption Errors of mADGGH

We first evaluate the decryption error probability in mADGGH. The following
theorem can be proven by a similar argument to the analysis of [2,3]. Since we
generalize this theorem for analysis of the pseudohomomorphism in mADGGH

(Theorem 7), we here give a precise proof.

Theorem 5. The cryptosystem mADGGH makes no decryption errors.

Proof. Since the decryption error probability for any ciphertext can be estimated
by sliding the distribution to that of the ciphertext of 0, we first estimate the
decryption error probability for the ciphertext of 0.

Let H := {x ∈ R
n : 〈x, u〉 ∈ Z}. From the definition, Dist(vi, H) ≤

n · n−r/4 for 1 ≤ i ≤ m. Thus, we can obtain frc (〈vi, u〉) ≤ n1−r/4 and
frc

(〈
∑

i∈S vi, u
〉)

≤ n4−r/4. Next, we estimate an inner product between
∑

i∈S vi mod P(W ) and u. Let
∑

i∈S vi = r +
∑n

j=1 qjwj , where r ∈ P(W ).

Since ‖wj‖ ≥ n−2N and p ≤ nr−7, we have |qj | ≤ n5 and

frc (〈r, u〉) ≤ n · n5 ·
1

4
n1−r +

1

4
n4−r ≤

5

16
n7−r ≤

1

2p
.

Therefore, we decrypt a ciphertext of 0 into 0 without decryption errors.
Now let ρ be a ciphertext of σ. Let Z ± a := {x ∈ R : frc (x) ≤ a} for a ≥ 0

and Z + a ± b := {x ∈ R : frc (x − a) ≤ b} for a, b ≥ 0. By a property of the key
generation, we have

〈

vi′
1
/p, u

〉

∈ Z + k/p ± n1−r/4p and

〈ρ, u〉 ∈ Z +
k

p
σ ±

5

16
n7−r ±

1

4p
n1−rσ ±

1

4
n4−r ⊂ Z +

k

p
σ ±

3

8
n7−r.

Therefore, we obtain 〈ρ, u〉 ∈ Z + kσ/p ± 1/(2p) and decrypt ρ into σ without
decryption errors. ⊓⊔



3.3 Security of mADGGH

We next prove the security of mADGGH. Let UP(W ) be a uniform distribution on

P(W ). We denote the encryption function of ADGGH by E defined as a random
variable E(σ, (V, W, i1)) for a plaintext σ and a public key (V, W, i1). If the public
key is obvious, we abbreviate E(σ, (V, W, i1)) to E(σ). Similarly, the encryption
function Em is defined for mADGGH.

First, we show that the indistinguishability between two certain distribu-
tions is based on the worst-case hardness of uSVP. The following lemma can
be obtained by combining Theorem 2 and the results in [2] and [3] with our
generalization.

Lemma 1 ([2,3]). If there exists a polynomial-time distinguisher between

(E(0), (V, W, i1)) and (UP(W ), (V, W, i1)), there exists a polynomial-time algo-

rithm for the worst case of O(nr+4)-uSVP for r ≥ 7.

We next present the indistinguishability between the ciphertexts of 0 in
mADGGH and UP(W ).

Lemma 2. If there exists a polynomial-time algorithm D1 that distin-

guishes between (Em(0), (V, W, i′1)) and (UP(W ), (V, W, i′1)), there exists a

polynomial-time algorithm D2 that distinguishes between (E(0), (V, W, i1)) and

(UP(W ), (V, W, i1)).

Proof. We denote by ε(n) the non-negligible gap of the acceptance probability
of D1 between Em(0) and UP(W ) with its public key. We will construct the
distinguisher D2 from the given algorithm D1. To run D1 correctly, we first find
the index i′1 by estimating the gap of acceptance probability between Em(0)
and UP(W ) with the public key. If we can find i′1, we output the result of D1

using i′1 with the public key. Otherwise, we output a uniformly random bit.
For random inputs of ciphertexts and public keys, the above procedure can
distinguish between them.

We now describe the details of D2 as follows. We denote by x and (V, W, i1)
a ciphertext and a public key of ADGGH given as an input for D2, respectively.
Also, let p0 = Pr[D1(Em(0), (V, W, j)) = 1] and pU = Pr[D1(UP(W ), (V, W, j)) =
1], where the probability p0 is taken over the inner random bits of the encryption
procedure and pU is taken over UP(W ).

(D1) For every j ∈ {1, . . . , m}, we run D1(Em(0), (V, W, j)) and
D1(UP(W ), (V, W, j)) T = n/ε2 times. Let x0(j) and xU (j) be the number of
1 in the outputs of D1 for the ciphertexts of 0 and the uniform distribution
with the index j, respectively.

(D2) If there exists the index j′ such that |x0(j
′) − xU (j′)|/T > ε/2, we take

j′ as the component of the public key.

(D3) We output D1(x, (V, W, j′)) if we find j′. Otherwise, we output a uniformly
random bit.



Note that we have |p0 − x0(j
′)/T | ≤ ε/4 and |pU − xU (j′)/T | ≤ ε/4 with prob-

ability exponentially close to 1 by the Hoeffding bound [22]. Therefore, we suc-
ceed to choose the index j′ with which D1 can distinguish between the target
distributions with probability exponentially close to 1 if j′ exists. By the above
argument, D1 works correctly for a non-negligible fraction of all the inputs. ⊓⊔

The next lemma can be proven by the hybrid argument.

Lemma 3. If there exist σ1, σ2 ∈ {0, . . . , p−1} and a polynomial-time algorithm

D3 that distinguishes between (Em(σ1), (V, W, i′1)) and (Em(σ2), (V, W, i′1)),
there exists a polynomial-time algorithm D4 that distinguishes between

(Em(0), (V, W, i′1)) and (UP(W ), (V, W, i′1)).

Proof. By the hybrid argument, the distinguisher D3 can distinguish be-
tween Em(σ1) and UP(W ) or between Em(σ2) and UP(W ) with its pub-
lic key. Without loss of generality, we can assume that D3 can distin-
guish between Em(σ1) and UP(W ) with its public key. Note that we have
Em(σ1, (V, W, i′1)) = Em(0, (V, W, i′1)) + σ1

p vi′
1

mod P(W ) by the definition of

Em. Then, we can transform a given x from Em(0, (V, W, i′1)) to another sample
y from Em(σ1, (V, W, i′1)). We can therefore obtain the polynomial-time algo-
rithm D4 that distinguishes between (Em(0), (V, W, i′1)) and (UP(W ), (V, W, i′1)).

⊓⊔

By the above three lemmas, we obtain the security proof for our multi-bit
version mADGGH.

Theorem 6. If there exist plaintexts σ1, σ2 ∈ {0, . . . , p − 1} and a polynomial-

time algorithm that distinguishes between the ciphertexts of σ1 and σ2 of

mADGGH with its public key, there exists a polynomial-time algorithm for the

worst-case of O(nr+4)-uSVP for r ≥ 7.

3.4 Pseudohomomorphism of mADGGH

As stated in Theorem 4, mADGGH has the pseudohomomorphic property. To
demonstrate this property, we have to evaluate the decryption errors for sum of
ciphertexts and prove its security.

Decryption Errors for Sum of Ciphertexts. First, we evaluate the decryption
errors when we apply the decryption procedure to the sum of ciphertexts in
mADGGH. Recall that Z ± a := {x ∈ R : frc (x) ≤ a} for a ≥ 0 and Z + a ± b :=
{x ∈ R : frc (x − a) ≤ b} for a, b ≥ 0.

Theorem 7. Let r ≥ 7 be any constant. Also let p be a prime and κ be an integer

such that κp ≤ nr−7. For any κ plaintexts σ1, . . . , σκ (0 ≤ σi ≤ p − 1), we can

decrypt the sum of κ ciphertexts
∑κ

i=1 Em(σi) mod P(W ) into
∑κ

i=1 σi mod p
without the decryption errors.



Proof. We define ρ1, . . . , ρκ as ciphertexts of σ1, . . . , σκ, respectively. We will
show that we can decrypt ρ :=

∑κ
i=1 ρi mod P(W ) into

∑κ
i=1 σi mod p. From

the proof of Theorem 5, we have

〈ρi, u〉 ∈ Z +
k

p
σi ±

3

8
n7−r.

Hence, we obtain
〈

κ
∑

i=1

ρi, u

〉

∈ Z +
k

p

κ
∑

i=1

σi ±
3

8
κn7−r.

Combining with the fact ρi ∈ P(W ) and κp ≤ nr−7, we have

〈ρ, u〉 ∈ Z +
k

p

κ
∑

i=1

σi ±
3

8
κn7−r ±

1

4
κn2−r

⊂ Z +
k

p

κ
∑

i=1

σi ±
1

2
κn7−r

⊂ Z +
k

p

κ
∑

i=1

σi ±
1

2p
.

Therefore, we correctly decrypt ρ into
∑κ

i=1 σi mod p. ⊓⊔

Security for Sum of Ciphertexts. We can also give the security proof for the
sum of ciphertexts in mADGGH. The security proof obeys so general framework
that we can apply the same argument to the security of sum of ciphertexts in
the other multi-bit versions mR04, mR05, and mA05′. For convenience of the
other multi-bit versions, we here present an abstract security proof for sum of
ciphertexts. We denote the encryption function of our multi-bit cryptosystems
by Em, also regarded as a random variable Em(σ, pk) for a plaintext σ and a
public key pk. If the public key is obvious, we abbreviate Em(σ, pk) to Em(σ).
Let C be the ciphertext space and UC be the uniform distribution on C.

We first show that it is hard to distinguish between the sum of ciphertexts
and the uniform distribution if it is hard to distinguish between κ samples from
Em(0) and those from UC.

Lemma 4. If there exist two sequences of plaintexts (σ1, . . . , σκ) and

(σ′
1, . . . , σ

′
κ) and a polynomial-time algorithm D1 that distinguishes between

(
∑κ

i=1 Em(σi), pk) and (
∑κ

i=1 Em(σ′
i), pk), then there exists a polynomial-time

algorithm D2 that distinguishes between κ ciphertexts and its public key

(Em(0, pk), . . . , Em(0, pk), pk) and uniformly random κ ciphertexts and the pub-

lic key (UC , . . . , UC, pk).

Proof. By the hybrid argument, the distinguisher D1 can distinguish be-
tween

∑κ
i=1 Em(σi) and UC or between

∑κ
i=1 Em(σ′

i) and UC with its pub-
lic key. Without loss of generality, we can assume that D1 can distinguish



between (
∑κ

i=1 Em(σi), pk) and (UC , pk). By (σ1, . . . , σκ), we can transform
(Em(σ1), . . . , Em(σκ), pk) into (

∑κ
i=1 Em(σi), pk). This shows the polynomial-

time distinguisher D2. ⊓⊔

As already stated in Section 1 (and Lemma 2 in the case of ADGGH), the
original security proofs of ADGGH, R04, R05 and A05 show that we have effi-
cient algorithms for certain lattice problems if there is an efficient distinguisher
between Em(0) and UC with its public key. By the similar argument to that
in original proofs, we also have such algorithms from efficient distinguisher D2

between (Em(0), . . . , Em(0), pk) and (UC , . . . , UC, pk). Thus, we obtain from D2

in Lemma 4 a probabilistic polynomial-time algorithm A that solve the worst
case of O(nr+4)-uSVP in the case of mADGGH.

By combining the above discussion with Lemma 4, we guarantee the security
of the sum of ciphertexts in mADGGH.

Theorem 8. If there exist two sequences of plaintext (σ1, . . . , σκ) and

(σ′
1, . . . , σ

′
κ) and a polynomial-time algorithm D1 that distinguishes between

(
∑κ

i=1 Em(σi), pk) and (
∑κ

i=1 Em(σ′
i), pk), then there exists a probabilistic

polynomial-time algorithm A that solves the worst case of O(nr+4)-uSVP in

the case of mADGGH.

4 Concluding Remarks

We have developed a universal technique for constructing multi-bit versions of
lattice-based cryptosystems using periodic Gaussian distributions and revealed
their pseudohomomorphism. In particular, we have showed the details of the
multi-bit version of the improved Ajtai-Dwork cryptosystem in Section 3.

Although our technique achieved only logarithmic improvements on the
length of plaintexts, we also obtained precise evaluation of the trade-offs be-
tween decryption errors and the hardness of underlying lattice problems in the
single-bit cryptosystems. We believe that our evaluation is useful for further
improvements of such single-bit cryptosystems.

Another direction of research on lattice-based cryptosystems is to find in-
teresting cryptographic applications by their algebraic properties such as the
pseudohomomorphism. Number-theoretic cryptosystems can provide a number
of applications due to their algebraic structures, whereas lattice-based ones have
few applications currently. For demonstration of the cryptographic advantages
of lattice problems, it is important to develop the algebraic properties and their
applications such as [19].
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