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Abstract. There is an inherent difficulty in building 3-move ID schemes
based on combinatorial problems without much algebraic structure. A
consequence of this, is that most standard ID schemes today are based
on the hardness of number theory problems. Not having schemes based
on alternate assumptions is a cause for concern since improved num-
ber theoretic algorithms or the realization of quantum computing would
make the known schemes insecure. In this work, we examine the possi-
bility of creating identification protocols based on the hardness of lattice
problems. We construct a 3-move identification scheme whose security is
based on the worst-case hardness of the shortest vector problem in all
lattices, and also present a more efficient version based on the hardness
of the same problem in ideal lattices.

1 Introduction

Public key identification (ID) protocols allow a party holding a secret key to
prove its identity to any other entity holding the corresponding public key. The
minimum security of such protocols should be that a passive observer who sees
the interaction should not then be able to perform his own interaction and suc-
cessfully impersonate the prover. In a more realistic model, the adversary should
first be allowed to interact with the prover in a “dishonest” way in hopes of ex-
tracting some information, and then try to impersonate the prover. Identification
schemes resistant to such impersonation attempts are said to be secure in the
active attack model [7], and this is currently the de facto security notion.

Since Fiat and Shamir’s seminal paper [9], there have been many proposals
for constructing secure ID protocols. With a few notable exceptions, most of
these protocols (e.g. [11, 26, 21, 29, 23, 10]) are based on problems from number
theory, and as such, they require fairly costly multiplication and exponentiation
operations. Another potential problem is that the security of these protocols
is based on problems that are easy if (when) practical quantum computers be-
come reality [28]. Thus it is prudent to have viable alternative schemes based on
different hardness assumptions.
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The identification protocols not based on number theory problems (e.g. [27,
30]) are generally combinatorial in nature. Because of this lack of algebraic struc-
ture, these combinatorial schemes all seem to have an inherent shortcoming in
that they require a lot more rounds of communication than their algebraic coun-
terparts. This problem arises because the proof of security is established by show-
ing that the schemes are zero-knowledge proofs of knowledge. It is shown that
the prover (or adversary) who successfully proves his identity, actually “knows”
the secret (as defined in [7]), yet the protocol is zero-knowledge, and as such,
the prover doesn’t reveal anything about his secret key. The problem is that in
order for the protocol to have negligible soundness error, it must be repeated a
polynomial number of times. But zero-knowledge is not preserved under parallel-
repetition, and so the protocol has to be run sequentially in order for it to
maintain the claimed security.

In recent years, lattices have emerged as a possible alternative to number
theory. Cryptography based on lattices was pioneered by Ajtai [1], who showed
a fascinating connection between solving random instances of a certain problem
and solving all instances of certain lattice problems. This opened up a way to
base cryptographic functions on the hardness of worst-case problems. Since then,
there has been a lot of work on improving the average case/worst-case reduction
[19], building cryptographic primitives [3, 24, 25], and using similar techniques
to build more efficient cryptographic primitives [17, 22, 15, 16] based on similar
worst-case assumptions. Additionally, there are currently no efficient quantum
algorithms for solving lattice problems.

1.1 This work

In this work, we present an ID scheme whose security is based on the worst-case
hardness of lattice problems. In addition, we present a more efficient version
of the scheme that is based on the hardness of problems on ideal lattices (see
section 2.5). We prove security by showing that an adversary who successfully
attacks our scheme can be used to solve random instances of problems defined
in [19] and [17], which were proven to be as hard as lattice problems in the worst
case. Thus, in this work, we do not deal with average-case/worst-case reductions
directly.

We believe that the technical details of our ID protocol may also be of in-
dependent interest. While our scheme has the structure of a standard 3-move
commit-challenge-response protocol, for security reasons, an honest prover some-
times “refuses” to respond to the verifier’s challenge. It can be shown that if the
prover always responds to the verifier, then his secret key is leaked to even a pas-
sive observer. On the other hand, by strategically refusing to reply, each round
of the protocol can be shown to be witness-indistinguishable. And since witness-
indistinguishability is preserved under parallel-composition, all the rounds can
be performed in parallel.



1.2 Related work

The one place in the literature that mentions constructions of lattice-based
identification schemes is the work of Micciancio and Vadhan [20] on statisti-
cal zero knowledge relating to lattice problems. In this work, the authors show
an efficient-prover SZK proof system for certain lattice problems and mention
that one can convert the proof system into an identification scheme. The conver-
sion is non-trivial (due to the problem of zero-knowledge not being closed under
parallel-composition), and many details remain to be filled in.

2 Preliminaries

2.1 Notation

We will represent vectors by bold letters. By x
$← X, we mean that x is cho-

sen uniformly at random from the set X. The notation Õ(nk) is equivalent to
O(nk logc n) for some constant c.

2.2 Statistical distance

Informally, statistical distance is a measure of how far apart two distributions
are. Formally, if X and Y are random variables over a countable set A, then the
statistical distance between X and Y, denoted ∆(X, Y ), is defined as

∆(X, Y ) =
1
2

∑
a∈A

|Pr[X = a]− Pr[Y = a]|

From the definition, it’s easy to see that

∆(X, Z) ≤ ∆(X, Y ) + ∆(Y, Z)

2.3 Identification schemes

An identification scheme consists of a key-generation algorithm and a description
of an interactive protocol between a prover, possessing the secret key, and verifier
possessing the corresponding public key. In general, it is required that the verifier
accepts the interaction with a prover who behaves honestly with probability one.
In this work, though, we need to relax this definition, and only require that the
verifier accepts an honest prover with probability negligibly close to one (i.e
1− 2−ω(log n)).

The standard active attack model against identification schemes proceeds in
two phases [7]. In the first phase, the adversary interacts with the prover in an
effort to obtain some information. In the second stage, the adversary plays the
role of the prover and tries to make a verifier accept the interaction. We remark
that in the second stage, the adversary no longer has access to the honest prover.
We will say that the adversary has advantage adv, if the verifier accepts the
interaction with the adversary with probability adv (where the probability is
over the randomness of the prover, verifier, and the adversary).



2.4 Witness indistinguishability

The concept of witness indistinguishability was introduced by Feige and Shamir
in [8]. For a string x and relation R, a witness set WR(x) consists of all strings
w such that R(w, x) = 1. For example, x could be a boolean formula and the
relation R could be defined as R(x,w) = 1 iff w is an assignment that makes
x evaluate to 1. Then the set WR(x) is the set of all assignments that make x
evaluate to 1. In our case, the witness will correspond to the secret key and the
string x is the public key.

Let P and V be two randomized interactive Turing machines and (P,V)
be a protocol between P and V. We denote by VP(x,w)(x, y) the output of V
after participating in the protocol (P,V). We say that (P,V) is statistically
witness-indistinguishable if for all V ′, all large enough x, any y, and any two
w,w′ ∈WR(x),

∆
(
V ′P(x,w)(x, y),V ′P(x,w′)(x, y)

)
< 2−ω(log |x|).

In other words, every cheating verifier V ′ with any auxiliary input y, cannot
distinguish whether the witness that P is using in the protocol is w or w′. An
important feature of witness indistinguishability is that it is closed under parallel
composition.

2.5 Lattices

General Lattices. An integer lattice L of dimension n is simply an additive
subgroup of Zn. A fundamental set of parameters associated with a lattice L is
the set of successive minima λi(L) for 1 ≤ i ≤ n. For every i, λi(L) is defined
as the minimal radius of a sphere centered at the origin that contains i linearly
independent lattice vectors. For example, λ1(L) corresponds to the length of
the shortest vector in L, and finding a vector of length λ1(L) is known as the
Shortest Vector Problem (SVP). Likewise, the problem of finding n independent
vectors all of length at most λn(L) is known as the Shortest Independent Vector
Problem (SIVP). Approximation versions of SVP and SIVP are defined in the
natural way. That is, an approximate solution to SVP within some factor γ is a
vector in the lattice that is of length at most γλ1(L). Similarly, an approximate
solution to SIVP within a factor γ is a set of n linearly independent lattice
vectors each having length at most γλn(L)

The shortest vector problem was shown to be NP-hard by Ajtai [2] and NP-
hard to approximate to within any constant factor by Khot [13]. The best known
algorithm to find the exact shortest vector, or even some polynomial in n factor
approximation of it, takes time 2O(n) [4, 14]. As far as SIVP is concerned, it is
known that this problem is NP-hard to approximate for any constant factor [6],
and finding the exact solution takes time approximately n! [18] (although finding
a (1 + ε) approximation takes time 2O(n) for any constant ε [5]).

The aspect that makes lattices interesting in cryptography is that one can
build collision-resistant hash function families that are as hard to break on the



average, as solving approximate SIVP in the worst case. This work began with
the seminal paper by Ajtai [1], and the currently tightest reduction is due to
Micciancio and Regev [19]. Below, we restate the main result of [19] in a way
that will be convenient for our proof. 1

Definition 1. (The small integer solution SIS(A) problem) Given a matrix A ∈
Zn×m

p , find two distinct vectors z,z′ ∈ Zm such that Az mod p = Az′ mod p
and ‖z‖, ‖z′‖ ≤ 10m1.5.

Theorem 2. [19, Theorem 5.9] For integer m = d4n log ne and some integer
p = Θ̃(n3), if there exists a polynomial-time algorithm that solves SIS(A) for
uniformly random A ∈ Zn×m

p , then the SIVP problem can be approximated in
polynomial time to within a factor of Õ(n2) in every n-dimensional lattice.

Ideal Lattices. Ideal lattices were first studied in the context of cryptography
by Lyubashevsky and Micciancio in [15]. Such lattices are a special class of
general lattices and a generalization of cyclic lattices [17]. Their usefulness is
attributed to the fact that very efficient and practical collision-resistant hash
functions can be built based on the hardness of finding an approximate shortest
vector in such lattices. Roughly speaking, ideal lattices are lattices corresponding
to ideals in rings of the form Z[x]/〈f〉 for some irreducible polynomial f of degree
n. For simplicity we will only concentrate on rings of the form Z[x]/〈xn + 1〉,
as they have proved to be the most useful for practical applications [16]. An n-
dimensional ideal lattice in the ring Z[x]/〈xn +1〉 is a lattice with the additional
restriction that for every vector (a1, . . . , an−1, an) in the lattice, the rotated
vector with the first coordinate negated (−an, a1, . . . , an−1) must also be in
the lattice. It was shown in [15] that efficient collision resistant hash functions
could be built based on the hardness of finding the shortest vector in ideal
lattices. The average-case hard problem in [15] is essentially the SIS problem
in Definition 1, with the one difference being (and this is what gives the hash
function its efficiency) that the matrix A ∈ Zn×m

p is no longer chosen from
the entire domain Zn×m

p . Instead, it is chosen as follows: first pick any vector
a1 ∈ Zn

p and make it the first column of A. The next n−1 columns of A consist
of consecutive rotations (while always negating the coordinate that gets rotated
to the beginning of the vector) of a1. For column n + 1, we choose another
random vector a2 and then fill the next n − 1 columns with its rotations. We
continue repeating this process until all m columns are filled (we assume that m
is a multiple of n). We will call this domain of all such matrices ROT(n, m, p),
and selecting a random A ∈ ROT(n, m, p) corresponds to performing the above
procedure while choosing a1,a2, . . . am/n randomly from Zn

p .
Notice that because of the repetition, it is not necessary to store all m

columns of matrices chosen from ROT(n, m, p). Another extremely important

1 We point out that the below result is weaker than what was proved in [19]. Unfor-
tunately, in this paper we cannot construct an identification scheme with security
based on the strongest results from [19].



feature is that multiplying such matrices by any vector in Zm
p requires only

Õ(m log n) time rather than Õ(mn). This is because the multiplication can be
done using the Fast Fourier Transform (see [17, 15] for details).

We will now state a convenient form of the main result of [15] 2.

Theorem 3. [15, Theorem 2] For integer m = d4n log ne and some integer
p = Θ̃(n3), if there exists a polynomial-time algorithm that solves SIS(A) for
uniformly random A ∈ ROT(n, m, p), then SIVP (and also SVP3) can be approx-
imated in polynomial time to within a factor of Õ(n2) in every n-dimensional
lattice corresponding to an ideal in Z[x]/〈xn + 1〉.

2.6 Leftover Hash Lemma

In this section, we review the leftover hash lemma [12]. This lemma will be
crucial in proving the witness-indistinguishability property of our protocol.

Lemma 4. (Leftover Hash Lemma) Let X and Y be two finite sets and U
be the uniform distribution over Y . If H is a universal family of hash functions4

from X to Y , then for all but a 2
log |Y |−log |X|

4 fraction of the possible hi ∈ H,
∆(hi(x), U) ≤ 2

log |Y |−log |X|
4 where x is chosen uniformly at random from X.

The following lemma is a straightforward consequence of the leftover hash
lemma.

Lemma 5. Let X be some subset of Zm
p . Then for all but a 2

n log p−log |X|
4 fraction

of all A ∈ Zn×m
p , we have

∆(Ax mod p, u) ≤ 2
n log p−log |X|

4 ,

where x is a random variable distributed uniformly in X and u is a random
variable distributed uniformly in Zn

p .

Proof. We consider a family of hash functions H consisting of functions hA

indexed by A ∈ Zn×m
p , where hA(x) is defined as Ax mod p. The domain of

these functions is any subset of Zm
p and the range is Zn

p . To apply the Leftover
Hash Lemma, we need to show that H is a universal family of hash functions.
In other words, for any distinct x,x′ ∈ X, we need to show that for a randomly
chosen A ∈ Zn×m

p ,

Pr[hA(x) = hA(x′)] =
1

2n log p
.

2 As for general lattices, the below result is weaker than what was proved in [15].
3 This is because lattices of this form have the property that λ1(L) = . . . = λn(L).
4 Recall that a hash function family H : X → Y is called universal if for every two

distinct elements x, x′ ∈ X, we have Pr
h

$←H
[h(x) = h(x′)] = 1/|Y |.



In other words, we need to show that for a randomly chosen A ∈ Zn×m
p ,

1
2n log p

= Pr[Ax mod p = Ax′ mod p]

= Pr[A(x− x′) mod p = 0] = Pr[Ay mod p = 0]

where y is some non-zero vector. Without loss of generality, assume that the
last coefficient of y is non-zero, and let y′ be the first m − 1 coefficients of y.
Similarly, let a be the last column of A and let A′ be the first m − 1 columns
of A. Then,

Pr[Ay mod p = 0] = Pr[A′y′ + aym mod p = 0]

= Pr[a ≡ y−1
m (−A′y′)(mod p)] =

1
2n log p

Since p is prime and ym is non-zero, the multiplicative inverse of ym modulo p
exists. And since a is chosen uniformly at random from Zn

p , the probability that
it is equal to any specific value is 1

2n log p . And now that we have shown that H
is a family of universal hash functions, the claim of the lemma follows from the
Leftover Hash Lemma. ut

The below corollary is obtained by applying Lemma 5 twice, and using the
triangular inequality property of statistical distance.

Corollary 6. Let X and Y be any two subsets of Zm
p . Then for all but a

2
n log p−log |X|

4 + 2
n log p−log |Y |

4 fraction of all A ∈ Zn×m
p , we have

∆(Ax mod p, Ay mod p) ≤ 2
n log p−log |X|

4 + 2
n log p−log |Y |

4 ,

where x is a random variable distributed uniformly in X and y is a random
variable distributed uniformly in Y .

3 The Identification Scheme

We will first describe one round of our identification scheme (Figure 1). The
prover picks a secret key w̃ ∈ {0, 1}m, and publishes the public keys A

$← Zn×m
p

and w ← Aw̃ mod p, where m = d4n log ne and p is some integer of order
Θ̃(n3).5 We note that the matrix A may either be created by the prover or be
created by a trusted third party. In fact, all users may share the same matrix
A. In the first step of the protocol, the prover picks a uniformly random vector
ỹ from the set of vectors {0, 1, . . . , 5m− 1}m, and sends y ← Aỹ mod p to the
verifier. The verifier then sends a challenge c ← {0, 1}. If c = 0, the prover
simply sends z ← ỹ as the response. If, on the other hand, c = 1, the prover
first checks whether the quantity w̃ + ỹ is in the set SAFE={1, 2, . . . , 5m−1}m.
5 For the reader’s convenience, we will make the convention of putting tildes over the

variables which are kept “secret” by the prover (e.g. w̃, ỹ).



Prover Verifier

Private key: w̃
$← {0, 1}m

Public key: A
$← Zn×m

p ,
w ← Aw̃ mod p

ỹ
$← {0, 1, . . . , 5m− 1}m

y ← Aỹ mod p
y -

c
$← {0, 1}

c�
if c = 1 and ỹ + w̃ /∈ SAFE

z ←⊥
else

z ← ỹ + cw
z -

if ‖z‖ ≤ 5m1.5 and Az mod p = cw + y
d← 1

else
d← 0

Fig. 1. One round of our identification scheme. The parameters are p = Õ(n3),
m = d4n log ne, and the set SAFE is defined as {1, . . . , 5m− 1}m.

If it is, then the prover sends z ← w̃ + ỹ, and if it is not, then the prover sends
z ←⊥ which signifies that he refuses to answer. If the prover sends ⊥, then the
verifier obviously rejects the interaction. Otherwise, the verifier checks whether
‖z‖ ≤ 5m1.5 and Az mod p = cw + y. The verifier accepts if and only if those
two conditions are satisfied.

Some comments are in order about the somewhat unusual way in which the
prover picks his response z when the challenge is c = 1. Notice that if the prover
always sends z ← w̃ + ỹ for c = 1, then even a passive observer can deduce
the secret w̃ after he sees enough rounds. This is because if any coordinate of
z is ever 0, the observer knows that the corresponding bit of w̃ must also be 0.
Similarly, if any coordinate of z is 5m, then the corresponding bit of w̃ must be
1. One might think that a way to resolve this problem would be to choose ỹ in a
way such that seeing w̃ + ỹ will not give anything away about w̃. The problem
with this approach is that when the verifier sends c = 0, the prover will have
to reveal ỹ, and the distribution of the ỹ’s may actually end up revealing the
secret w̃. (Consider the näıve idea of never setting any coordinates of ỹ to 0 if
the corresponding bits of w̃ are 0. Then the fact that some coordinates of ỹ are
never 0 will give away the fact that those bits of w̃ were themselves 0’s.) At the
present, the only way that we know of to “fix” this, is to make the integers m of



order nω(1). This way, with high probability, the coefficients of ỹ will never be 0
or 5m− 1, and so w̃ will potentially be safe. Unfortunately, setting m to such a
large number significantly weakens the result of the security proof.

A consequence of the prover sometimes refusing to answer is that the verifier
may end up rejecting an honest prover. So it is important that the honest prover
is not rejected too often in each round. This way, if the protocol is repeated
enough times, the prover will answer correctly enough times so that the verifier
will be able to distinguish between an honest prover and an impersonator.

We will now outline the rest of this section. We first show that an honest
prover will able to get the verifier to accept with a “high enough” probabil-
ity (Lemma 7). We then show that every round of the protocol is statistically
witness-indistinguishable (Theorem 9). Since witness indistinguishability is pre-
served under parallel composition, we can repeat the protocol in Figure 1 many
times in parallel. The result of this is the identification protocol in Figure 2. In
Theorem 13, we show that this protocol is secure in the active attack model by
showing that an adversary who successfully attacks the protocol can be used to
solve the SIS problem from Definition 1, which by Theorem 2 implies being able
to solve the approximate Shortest Independent Vector Problem in every lattice.

Lemma 7. For m ≥ 10, the probability that the verifier will accept (i.e. set
d = 1) an interaction with an honest prover during a round is at least .81.

Proof. Notice that if c = 0, then the verifier will always accept because the
prover will always send z = ỹ and thus Az ≡ Aỹ ≡ y(mod p). Similarly, if
c = 1 and w̃+ ỹ ∈ SAFE, then the verifier will always accept because the prover
sends z = w̃ + ỹ and so Az ≡ A(w̃ + ỹ) ≡ w + y(mod p). Thus the probability
that the verifier accepts is at least the probability that w̃ + ỹ ∈ SAFE.

Pr[d = 1] ≥ Pr[w̃ + ỹ ∈ SAFE] =
(

1− 1
5m

)m

≥ .81 for m ≥ 10 (1)

The equality is true because for every i, only one of 5m possibilities for the
coefficient ỹi of ỹ will lead to w̃ + ỹ to be not in the set SAFE. That is, if
w̃i = 0, then ỹi can be anything except 0, and if w̃i = 1, then ỹi can be anything
except 5m− 1. ut

Before showing that every round of the protocol is witness-indistinguishable,
we need to show that with extremely high probability over the choices of the
public key, there does indeed exist more than one possible secret key.

Lemma 8. For any matrix A ∈ Zn×m
p and a randomly chosen w̃

$← {0, 1}m,
the probability that there exists another w̃′ ∈ {0, 1}m \ w̃ such that Aw̃ mod p =
Aw̃′ mod p is at least 1− 2n log p−m.

Proof. The result of Aw̃ mod p falls into Zn
p , and thus there can be at most

|Zn
p | = 2n log p elements w̃ ∈ {0, 1}m such that Aw̃ mod p leads to a unique

element in Zn
p . Thus the probability that a randomly chosen w̃ ∈ {0, 1}m collides

with some other w̃′ ∈ {0, 1}m is at least 1− 2n log p−m. ut



We now move to showing witness indistinguishability. The proof will roughly
proceed as follows. First, we observe that when the challenge is c = 0, the
protocol is trivially witness indistinguishable because the secret key is completely
uninvolved in the response. So we concentrate on the case where c = 1. In that
case, two things can happen. In one case, w̃ + ỹ will be in the set SAFE and
the prover sends z ← w̃ + ỹ. In this case, we will show that the protocol is
perfectly witness-indistinguishable. In the case that w̃ + ỹ is not in SAFE and
the prover sends z ←⊥, we will show that the protocol is statistically witness
indistinguishable.

The below theorem actually proves witness indistinguishability of the proto-
col for all but a 2−Ω(n log2 n) fraction of A ∈ Zn×m

p . Since the matrix A is chosen
at random, there is only a 2−Ω(n log2 n) chance that it is one of the “bad” A’s
that doesn’t result in the protocol being witness indistinguishable.

Theorem 9. For all but a 2−Ω(n log2 n) fraction of A ∈ Zn×m
p , the following

holds true. For any two vectors w̃, w̃′ ∈ {0, 1}m where Aw̃ mod p = Aw̃′ mod
p = w, any cheating verifier V, and auxiliary input string r,

∆
(
VP(A,w̃)(A,w, r),VP(A,w̃′)(A,w, r)

)
≤ 2−Ω(n log2 n).

Since the protocol is clearly witness indistinguishable when the verifier sends
c = 0, we will assume that c = 1. We will show that

∆
(
VP(A,w̃)(A,w, r),VP(A,w̃′)(A,w, r)

)
≤ 2−n log2 n

by showing that the distribution of the messages that the prover sends to the
verifier is almost independent of whether the witness is w̃ or w̃′.

The messages that the prover sends to the verifier consist of the elements
y and z. For convenience, in the case that the witness is w̃, we will use the
variables y,z and when the witness is w̃′, we will use the variables y′,z′.

∆
(
VP(A,w̃)(A,w, r),VP(A,w̃′)(A,w, r)

)
(2)

≤ 1
2

∑
(α,β)

|Pr[(y,z) = (α,β)]− Pr[(y′,z′) = (α,β)]| (3)

=
1
2

∑
(α,β 6=⊥)

|Pr[(y,z) = (α,β)]− Pr[(y′,z′) = (α,β)]| (4)

+
1
2

∑
(α,β=⊥)

|Pr[(y,z) = (α,⊥)]− Pr[(y′,z′) = (α,⊥)]| (5)

In the above equations, the sums are over all α ∈ {0, 1, . . . , 5m − 1}m and
β ∈ {1, 2, . . . , 5m− 1}m ∪ {⊥}.

We will finish the proof of the theorem by showing that (4) is 0 for all matrices
A ∈ Zn×m

p (Lemma 10), and (5) is negligibly small for all but a 2−Ω(n log2 n)

fraction of A ∈ Zn×m
p (Lemma 11).



Lemma 10.

1
2

∑
(α,β 6=⊥)

|Pr[(y,z) = (α,β)]− Pr[(y′,z′) = (α,β)]| = 0

Proof. We will show that for every α and β 6=⊥,

Pr[(y,z) = (α,β)] = Pr[(y′,z′) = (α,β)]. (6)

We rewrite Pr[(y,z) = (α,β)] as

Pr[(y,z) = (α,β)] = Pr[Aỹ mod p = α ∧ ỹ + w̃ = β]
= Pr[Aỹ mod p = α|ỹ + w̃ = β]Pr[ỹ + w̃ = β]

And similarly,

Pr[(y′,z′) = (α,β)] = Pr[Aỹ′ mod p = α|ỹ′ + w̃′ = β]Pr[ỹ′ + w̃′ = β].

Notice that the probability Pr[Aỹ mod p = α|ỹ+w̃ = β] is being conditioned on
ỹ, which is the only random variable in the expression, and thus the probability
evaluates to either 1 or 0. It is 1 whenever A(β − w̃) mod p = α and it is
0 otherwise. Similarly, Pr[Aỹ′ mod p = α|ỹ′ + w̃′ = β] = 1 whenever A(β −
w̃′) mod p = α and 0 otherwise. The important thing is that A(β−w̃) mod p =
A(β − w̃′) mod p (because Aw̃ mod p = Aw̃′ mod p) and thus

Pr[Aỹ mod p = α|ỹ + w̃ = β] = Pr[Aỹ′ mod p = α|ỹ′ + w̃′ = β].

So all that remains to show to prove the equality in equation (6) is to show that

Pr[ỹ + w̃ = β] = Pr[ỹ′ + w̃′ = β].

This is done by observing that since β 6=⊥, it must be in the set SAFE, which
means that all coefficients of β are between 1 and 5m − 1. And since the coef-
ficients of w̃ are all 0 or 1, the coefficients of β − w̃ are between 0 and 5m− 1,
which is exactly the range that ỹ is chosen uniformly from. Thus,

Pr[ỹ + w̃ = β] = Pr[ỹ = β − w̃] = 1/(5m)m

for all values of β and any secret key w̃. And by the same reasoning, we have
Pr[ỹ′ = β − w̃′] = 1/(5m)m. ut

Lemma 11. For all but a 2−Ω(n log2 n) fraction of possible A ∈ Zn×m
p ,

1
2

∑
(α,β=⊥)

|Pr[(y,z) = (α,⊥)]− Pr[(y′,z′) = (α,⊥)]| ≤ 2−Ω(n log2 n)

Proof. Define the set Sw̃ = {ỹ ∈ {0, . . . , 5m − 1}m such that ỹ + w̃ /∈ SAFE}.
The two important characteristics of the sets Sw̃ and Sw̃′ , for any two secret



keys w̃ and w̃′, is that their sizes are equivalent and “large enough”. Both of
these are implicit from equation (1) in Lemma 7. More precisely,

|Sw̃| = |Sw̃′ | = (5m)m − (5m)m

(
1− 1

5m

)m

(7)

≥ (5m)m − (5m)m

(
1
e

)1/5

≥ (5m)m

6
(8)

We now proceed with the proof of the lemma.

1
2

∑
(α,β=⊥)

|Pr[(y,z) = (α,⊥)]− Pr[(y′,z′) = (α,⊥)]| (9)

=
1
2

∑
α

|Pr[Aỹ mod p = α ∧ ỹ ∈ Sw̃] (10)

− Pr[Aỹ′ mod p = α ∧ ỹ′ ∈ Sw̃′ ]| (11)

=
1
2

∑
α

|Pr[Aỹ mod p = α|ỹ ∈ Sw̃]Pr[ỹ ∈ Sw̃] (12)

− Pr[Aỹ′ mod p = α|ỹ′ ∈ Sw̃′ ]Pr[ỹ′ ∈ Sw̃′ ]| (13)

≤ 1
2

∑
α

|Pr[Aỹ mod p = α|ỹ ∈ Sw̃]− Pr[Aỹ′ mod p = α|ỹ′ ∈ Sw̃′ ]| (14)

=
1
2

∑
α

∣∣∣Pr
ỹ

$←Sw̃

[Aỹ mod p = α]− Pr
ỹ′ $←Sw̃′

[Aỹ′ mod p = α]
∣∣∣ (15)

The inequality in equation (14) is true because |Sw̃| = |Sw̃′ |, and so Pr[ỹ ∈
Sw̃] = Pr[ỹ′ ∈ Sw̃′ ] < 1. We now notice that equation (15) is the statistical
distance between the distributions Aỹ mod p and Aỹ′ mod p where ỹ and ỹ′

are chosen uniformly from the sets Sw̃ and Sw̃′ respectively. Using the fact that
|Sw̃| = |Sw̃′ | = Ω(m log m) = Ω(n log2 n) and p = Õ(n3), we apply Corollary 6
to obtain the claim of the lemma. ut

Having shown that one round of the protocol is witness indistinguishable,
we move on to building the full identification scheme (see Figure 2). As we al-
luded to earlier, the scheme will not have perfect completeness since an honest
prover will sometimes have to refuse to answer and thus get rejected by the ver-
ifier. Nevertheless, by having enough rounds, an adversary will reject an honest
adversary with negligible probability.

Lemma 12. The identification protocol in Figure 2 has completeness error less
than 2−t/14.

Proof. By Lemma 7, we know that the honest prover will respond correctly
to challenge ci with probability at least .81. Since the prover is honest, the
probabilities of success are independent for all the challenges, and so using the
Chernoff bound, we obtain:

Pr[REJECT] = Pr[sum < .65t] = Pr[sum < (.81− .16)t] ≤ e−2t(.162) < 2−t/14



Prover Verifier

Private key: w̃
$← {0, 1}m

Public key: A
$← Zn×m

p

w ← Aw̃ mod p

for i = 1 to t

ỹi
$← {0, 1, . . . , 5m− 1}m

yi ← Aỹi mod p
y1, . . . , yt-

for i = 1 to t

ci
$← {0, 1}

c1, . . . , ct�
for i = 1 to t

if ci = 1 and ỹi + w̃i /∈ SAFE
zi ←⊥

else
zi ← ỹi + cwi

z1, . . . , zt-
for i = 1 to t

if (‖zi‖ ≤ 5m1.5 and
Azi mod p = ciw + yi)
di ← 1

else
di ← 0

sum = d1 + . . . + dt

if sum ≥ 0.65t then ACCEPT
else REJECT

Fig. 2. The identification scheme. The parameters are p = Õ(n3), m = d4n log ne,
t = ω(log n), and the set SAFE is defined as {1, . . . , 5m− 1}m.

ut

Thus setting t = ω(log n) results in the protocol having negligible complete-
ness error.

We now move to proving the security of the ID scheme. We will show that an
adversary who successfully attacks the protocol can be used to successfully solve
the SIS problem for random A. By Theorem 2, this implies that this adversary
can be used to approximate the length of the Shortest Vector to within a factor
of Õ(n2) in every lattice.

Theorem 13. If there exists a polynomial-time adversary who can break the ID
protocol in Figure 2 with probability adv in the active attack model, then there
exists a polynomial-time algorithm that solves the SIS(A) problem with success



probability Ω
(
(adv)2 − 2 · 2−t/18

)
when A is chosen uniformly at random from

Zn×m
p .

Proof. We explain how to build an algorithm that solves the SIS(A) problem
using an adversary attacking the identification scheme. Given a random matrix
A

$← Zn×m
p , we create a random secret key w̃

$← {0, 1}m, and output A and
w ← Aw̃ mod p as the public key of the identification scheme. Since we know the
secret key, we can perfectly simulate the identification scheme with an adversary
who is acting as the verifier. If the adversary wishes to interact with more than
one prover, we can easily accommodate him by creating more secret keys w̃i and
public keys wi ← Aw̃i mod p and perfectly simulate those interactions as well.

After the adversary finishes his interaction with the prover(s), it’s now his
turn to perform an impersonation of the prover whose public key is (A,w). We
will use this impersonation to extract a solution to the SIS(A) problem. In the
first step of the protocol, the adversary sends us t vectors y1, . . . ,yt. We reply
by sending t random challenges c1, . . . , ct. The adversary replies with vectors
z1, . . . ,zt. We then rewind the adversary, and send another set of independently
random challenges c′1, . . . , c

′
t and receive responses z′1, . . . ,z

′
t. We then find an i

such that ci 6= c′i, Azi mod p = ciw + yi, and Az′i mod p = c′iw + yi (the fact
that such an i exists will be shown later). Without loss of generality, suppose
that ci = 1 and c′i = 0. We thus obtain that

A(zi − z′i) mod p = w = Aw̃ mod p. (16)

Since our identification scheme is witness-indistinguishable, and there is at least
one other w̃′ ∈ {0, 1}m such that Aw̃ mod p = Aw̃′ mod p (Lemma 8), the
probability that zi − z′i = w̃ is at most 1/2. Also, ‖zi − z′i‖ ≤ ‖zi‖ + ‖z′i‖ ≤
10m1.5. Thus, with probability at least 1/2, the values zi − z′i and w̃ are a
solution to the SIS(A) problem.

What we now need to show that with high probability, there indeed will
exist an i such that ci 6= c′i, Azi mod p = ciw + yi, and Az′i mod p = c′iw + yi.
We will call this condition (?). We will say that a pair of challenge sequences
c1, . . . , ct and c′1, . . . , c

′
t is good if

∑
i |ci − c′i| > .35t (they differ on more than

.35t coordinates). Notice that if the adversary succeeds in impersonating on both
sequences of a good pair, then by the pigeonhole principle, (?) will be satisfied6.
By the Chernoff bound, the probability that a random pair of sequences is not
good is

Pr

[
t∑

i=1

|ci − c′i| < .36t

]
≤ e−2t(.142) < 2−t/18

The adversary succeeds on a random challenge sequence with probability
adv, and thus succeeds on a pair of independently random sequences with prob-
ability (adv)2. Since we just showed that at most a 2−t/18 fraction of all pairs
is not good, we know that the adversary must be able to answer correctly on a
6 Recall that an adversary is allowed to answer incorrectly up to .35t times and still

be accepted, and this is why having just one i for which ci 6= c′i is not enough



randomly chosen good pair of sequences with probability at least (adv)2−2−t/18.
Multiplying this by the probability that the pair of sequences we randomly chose
is good, we get

Pr[(?)] >
(
(adv)2 − 2−t/18

) (
1− 2−t/18

)
> (adv)2 − 2 · 2−t/18

ut

4 Ideal Lattices

In this section, we discuss how the identification scheme can be sped up by
almost a factor n if we base its security on the hardness of finding the shortest
vector in ideal lattices. The main savings in efficiency, and the only difference in
the protocol, is that the matrix A ∈ Zn×m

p will no longer be chosen at random
from Zn×m

p , but instead from ROT(n, m, p). Everything else in the identification
scheme in Figure 2 remains exactly the same. Notice that the most expensive
operation in the protocol is the multiplication Aỹ mod p for the prover and
Az mod p for the verifier, which involves O(mn) multiplications of integers of
bit length log p = O(log n). But it’s possible to exploit the algebraic structure
of A ∈ ROT(n, m, p), and perform that same matrix-vector multiplication by
using the Fast Fourier Transform, and thus require only O(m log n) operations.
The proof of security for the new protocol is extremely similar to the one already
provided for general lattices. Thus, rather than providing complete proofs, we
briefly sketch the necessary modifications.

It is still be true that each round of the protocol remains witness indistin-
guishable, and the proof of witness indistinguishability is almost the same. The
only difference is that we have to be careful to make sure that Corollary 6 re-
mains valid when the matrix A is chosen from ROT(n, m, p) rather than from all
of Zn×m

p . A condition that is sufficient for this is that we choose the parameter p
in a way that makes the ring Zp[x]/〈xn +1〉 a field (i.e. every element in the ring
should have an inverse). We point out that it’s also possible to prove witness-
indistinguishability when Zp[x]/〈xn +1〉 is not a field, but then we can no longer
use the leftover hash lemma, and we would instead need to use a lemma very
similar to Micciancio’s regularity lemma [17, Theorem 4.2].

5 Attacks

We have shown that our identification schemes are provably secure in an
asymptotic sense, but as we’ll show in this section, they unfortunately cannot
yet be put into practice because they are insecure for parameters that one might
conceivably use in applications. The core issue behind our schemes’ vulnerabili-
ties is that lattice-reduction algorithms seem to work better in practice than in
theory. See Algorithm 1 for the description of the attack.

Notice that the vectors zi will always have coordinates in the range between
−5m and 5m, and so ‖zi‖ ≤ 5m1.5. Also notice that the adversary has no need



Algorithm 1
(
Attack on ID scheme given public keys A ∈ Zn×m

p ,w ∈ Zn
p

)
1: Find w̃′ ∈ {−5m, . . . ,−1, 0, 1, . . . , 5m− 1}m such that Aw̃′ mod p = w
2: for i = 1 to t (performed concurrently for all i) do
3: Pick random ỹ′i ∈ {0, 1}m. Set yi ← Aỹ′i mod p
4: Send yi to the Verifier
5: Receive ci ∈ {0, 1} from the Verifier
6: Set zi ← cw̃′i + ỹ′i
7: Send zi to the Verifier
8: end for

to hide his “secret key” and so he never has to respond with ⊥, and thus the
verifier will always accept this interaction. The hard part is performing step 1
of the above attack. In fact, performing this step is as hard as approximating
the shortest vector in all lattices to within a factor of Õ(n1.5). As n grows large,
this is believed to be a hard problem, but for small parameters, it is feasible to
solve and we will explain this next.

The problem of finding the w̃′ in step 1 is the problem of finding a vector
x with small coefficients such that Ax mod p = y where A is random matrix
in Zn×m

p (or in ROT(n, m, p)) and y is a random vector in Zn
p . We want to

phrase this problem as a lattice reduction, and so we first construct the matrix
A′ = [A|y] and consider the problem of finding a vector x′ ∈ Zm+1 such that
A′x′ mod p = 0. Notice that if we are able to find such an x′ all of whose
coefficients are small and the last coefficient is −1, then we are able to find an x
that solves the original problem. Also notice that all the x′ ∈ Zm+1 that satisfy
A′x′ mod p = 0 form an additive subgroup of Zm+1, and thus an integer lattice
of dimension m+1. So what we need to do is first construct a basis of this lattice
and then find a vector in it with coordinates between −5m and 5m − 1 (and
have the last coordinate be −1).

Constructing a basis for this lattice can be done in polynomial time by view-
ing A′ as a linear function mapping Zm+1 to Zn

p and computing the basis for its
kernel. This basis is exactly the basis of the lattice we referred to above. It’s not
hard to see that by the pigeonhole principle the lattice has a vector all of whose
coefficients are either −1, 0, or 1, and so finding a vector that has coefficients be-
tween −5m and 5m−1 roughly equates to finding a short vector within a factor
of m of the shortest one. This becomes a hard problem as m gets large, but for
small and medium-sized m that could potentially be used in practice (around
1000), lattice reduction algorithms can find such vectors fairly efficiently. And
finding such a vector whose last coordinate is −1 is heuristically feasible.

6 Conclusions and Open Problems

We have presented a framework for constructing identification schemes that are
secure in the active attack model based on the worst-case hardness of lattice
problems. A lot of open questions remain, though. The most significant of these



is whether the ideas presented in this paper can be used for the construction of
an identification protocol that can be instantiated with practical-sized parame-
ters. Recent results that provide practical instantiations [16] of collision resistant
lattice-based hash functions based on theoretical ideas in [22, 15] makes us op-
timistic that with some new ideas the same could be done for the identification
schemes presented here.

A possible approach would be to see whether it is somehow plausible to pick
the values ỹ from a smaller set. Notice that the set that ỹ’s got picked from was
designed so that for a random ỹ, the value of ỹ+w̃ could be safely revealed with
a high enough probability. Since the size of this set played a critical role in the
attack, reducing it would make the attack more difficult to mount. Another open
problem is to somehow modify the ID scheme so that it has perfect completeness.
Having perfect completeness would allow us to reduce the number of rounds t
in the protocol.
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