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Abstract. In Crypto 1997, Goldreich, Goldwasser and Halevi (GGH)
proposed a lattice analogue of McEliece public key cryptosystem, which
security is related to the hardness of approximating the closest vector
problem (CVP) in a lattice. Furthermore, they also described how to
use the same principle of their encryption scheme to provide a signa-
ture scheme. Practically, this cryptosystem uses the euclidean norm, l2-
norm, which has been used in many algorithms based on lattice theory.
Nonetheless, many drawbacks have been studied and these could lead to
cryptanalysis of the scheme. In this paper, we present a novel method
of reducing a vector under the l∞-norm and propose a digital signature
scheme based on it. Our scheme takes advantage of the l∞-norm to in-
crease the resistance of the GGH scheme and to decrease the signature
length. Furthermore, after some other improvements, we obtain a very
efficient signature scheme, that trades the security level, speed and space.

1 Introduction

After the seminal work by Ajtai and Dwork [3] and the first lattice-based cryp-
tosystem from Goldreich, Goldwasser and Halevi [21], many cryptosystems based
on lattice theory have been proposed. These systems use the Shortest Vector
Problem (SVP) or the Closest Vector Problem (CVP) as their underlying hard
problem to construct the trapdoor functions. For a recent survey on the SVP-
based cryptosystem, we refer the readers to [47].

In Crypto 1997, Goldreich, Goldwasser and Halevi (GGH) proposed a cryp-
tosystem based on the lattice theory [21], which is a lattice analogue of the
McEliece cryptosystem [37]. The security of GGH is related to the hardness of
approximating the CVP in a lattice. Furthermore, they also noted that using
the underlying principle of their encryption scheme, a signature scheme can be
constructed. Nonetheless, the resulting signature scheme did not attract much
interest in the research community until a relatively efficient signature scheme
called the NTRUSign was proposed [28]. The GGH signature system can be
described using three algorithms:
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Setup: Compute a “good basis” and a “bad basis” of a lattice L. L(G) =
L(B). Provide B as public and keep G secret.
Sign: Use the good basis to have an efficient approximation of the closest
vector of a vector. The initial vector is the message and the approximation is
the signature. GGH uses the first Babai’s method [6] to approximate CVP:
s =

⌈
mG−1

⌋
G where dxc represent the closest integer of x if x is a real and

the vector [dx0c, dx1c, . . . , dxn−1c] if x is a vector of Rn.

Verify: Check if the approximation is in the lattice of basis L(B): ∃x
?
∈

Zn, s = xB. The vector-signature should be also a good approximation of
the vector-message.

The important points for the security and efficiency of this cryptosystem are
defined as follows.

i) It is easy to compute a “bad basis” from a “good basis”, but it is difficult
to compute a “good basis” from a “bad basis”.

ii) It is easy to compute a good approximation of CVP with a “good basis”
but difficult to do so with a “bad basis”.

iii) It is easy to check the inclusion of a vector in a lattice even with a “bad
basis”.

In 1999, Nguyen [41] proposed the first attack against the GGH cryptosys-
tem. This attack is based on the utilization by GGH of a non singular matrix
with a small norm for a good basis to use Babai’s method. Due to this attack,
the utilization of GGH requires a lattice with big dimension (> 500), to ensure
its security. Nonetheless, the computation of the Babai’s approximation becomes
very expensive. In 2001, Micciancio [38] proposed some major improvements of
the speed and the security of GGH. In this scheme, the public key uses the Her-
mite Normal Form (HNF) basis for the “bad basis”. The HNF basis is better to
answer the inclusion question and it also seems to be more difficult to transform
to a “good basis” compared to another basis. For the signature scheme, Miccian-
cio used the reduced-vector instead of a closest vector. The reduced vector is in
fact the difference between a vector and its closest vector. Using this method,
the length of the signature is shorter. In 2002, Gentry and Szydlo [19] found a
problem in GGH signature scheme which seems to be not zero-knowledge. Szydlo
gave an algorithm [53] to elaborate this problem further. This method uses sev-
eral vector-signatures given by the Babai’s method to attack GGH. However,
this method seems to be not very efficient. In 2003, NTRUSign [28] was created
based on a very similar method to GGH but with most improvements on the
utilization of NTRU basis [29] for the “good basis”. Those basis seem to be more
resistant against the previously known attacks. Nevertheless, in 2006, Nguyen
and Regev [42] proposed a general attack against both GGH signature scheme
and NTRUSign. This clever attack used the large CVP approximations naturally
given by the signature of messages to design the fundamental parallelepiped of
the “good basis”.

Our Results
In this paper, we intend to use the l∞-norm instead of the l2-norm to construct
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a digital signature scheme which is similar to GGH signature scheme. By using
the l∞-norm, we aim to increase the security of the resulting cryptosystems,
together with its efficiency in terms of signature length and time computation.

Paper Organization
This paper is organized as follows. We start the paper by providing some prelim-
inary work and knowledge on lattice theory for cryptography. Then, we proceed
with the eigenvalue theory and other useful definitions used throughout this pa-
per. Then, we present the main part of the work, which is the reduction vector
in l∞-norm and the related theorems, followed by a signature scheme and its
further improvements. Finally, we conclude the paper by comparing our scheme
with the GGH signature scheme.

2 Lattice Theory for Cryptography

In this section, we will review some basic concepts of the lattice theory, and
in particular addressing the NP-hardness of the trapdoor problems used. For a
more complex account, we refer the readers to [45].

The lattice theory, also known as the geometry of numbers, has been intro-
duced by Minkowski in 1896 [40]. The complete discussion on the basic of lattice
theory can be found from [11,36,15].

Definition 1 (Lattice). A lattice L is a discrete sub-group of Rn, or equiv-
alently the set of all the integral combinations of d ≤ n linearly independent
vectors over R.

L = Z b1 + · · ·+ Z bd, bi ∈ Rn.

B = (b1, ..., bd) is called a basis of L, d, the dimension of L.

Definition 2 (Full-rank Lattice). Let L ⊂ Rn be a lattice. If its dimension d
is equal to n then the lattice L is called full-rank.

Definition 3 (Fundamental Parallelepiped). Let be B = (b1, ..., bn) a basis
of a full-rank lattice L ⊂ Rn then the set

H =

{
n∑

i=1

xibi, (x1, . . . , xn) ∈ [0, 1[n
}

is called a fundamental parallelepiped.

The volume of a fundamental parallelepiped is invariant regardless of the chosen
basis. This invariant is called the determinant of L and can be computed as
detL = |det B|.

Remark 1. There also exists a definition of the determinant for a non full-rank
lattice. However, in this paper, we only focus on the basic of lattice theory that is
required throughout the paper. Since we only deal with full-rank integer lattice,
consequently with a basis B ∈ Zn,n, therefore we simplify the definition as above.
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For a given lattice L, there exists an infinity of basis. However, the Hermite
Normal Form basis (Definition 4) is unique [13].

Definition 4 (HNF). Let L be a full-rank lattice and H a basis of L. H is a
Hermite Normal Form basis of L if and only if

∀i, j, Hi,j

= 0 if i < j
≥ 0 if i ≥ j
< Hj,j if i > j

The HNF basis can be computed from a given basis in a polynomial time [32].
For efficient solutions, we refer the readers to [39].

Remark 2. The HNF basis is a “good basis” for solving the problem of inclusion
of a vector in a lattice [13]. As it was successfully used by [38], we will also
incorporate it in this paper with some further improvements.

Many algorithmic problems of the lattice theory are built upon two other
problems which are clearly more difficult, namely the Shortest Vector Problem
(SVP) and the Closest Vector Problem (CVP).

Definition 5 (SVP). Let B be a given basis of a lattice L. The Shortest Vector
Problem is to find a vector u 6= 0 such that ∀v ∈ L, ‖u‖ ≤ ‖v‖ for a given norm
‖.‖.

Definition 6 (CVP). Let B be a given basis of a lattice L and w a vector. The
Closest Vector Problem is to find a vector u such that ∀v ∈ L, ‖w−u‖ ≤ ‖w−v‖
for a given norm ‖.‖.

CVP is NP-hard for all norms lp (Definition 7) including l∞-norm [9].

Definition 7 (lp-norm). Let w be a vector of Rn. The lp-norm is the function

‖.‖p such that ‖w‖p =
(∑n−1

i=0 |wi|p
)1/p

.

The l2-norm is also known as the euclidean norm. The l∞-norm, also known as
the infinity norm, is computed as ‖w‖∞ = max {|wi|, 0 ≤ i < n}.

The l2 and l∞ norms have been studied and used in the lattice theory. The
NP-hardness of the two problems for these two norms has been proven. In 1981,
Emde Boas proved the NP-hardness of CV P∞, SV P∞ and CV P2 in [9]. Sub-
sequently, in 1998, Ajtai proved the NP-hardness of SV P2 in [2]. Consequently,
there exists only some exponential algorithms to completely solve those prob-
lems. We summarize this result in the table 1.
However, some approximation versions of these two problems exist in the liter-
ature.

Definition 8 (AppSVP, resp. AppCVP). Let B be a given basis of a lattice
L, w a vector and a real γ ≥ 1. The AppSVP, resp. AppCVP, is to find a vector
u such that ∀v ∈ L, ‖u‖ ≤ γ‖v‖, resp. ‖w−u‖ ≤ γ‖w− v‖ for a given norm ‖.‖.
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Deteministic Probabilistic

SVP d
d
2e [31,26,24] (2 + 1

ε
)d [4,8]

CVP d
d
2 [31,26,24] (2 + 1

ε
)d [5,8]

Table 1. Exponential algorithms for SVP and CVP.

The NP-hardness of these two approximation problems has also been well stud-
ied (for more detail, see [10] or more recently [46]). Table 2 summarizes some
main results on the NP-hardness of these two approximation problems for the
euclidean and the infinity norms for the approximation factor γ in function of
the dimension d of the studied lattice.

Euclidean Norm Infinity Norm

Problems AppSV P2 AppCV P2 AppSV P∞ AppCV P∞

NP-hard 2log1−ε d [25] 2log1−ε d [17] d1/ log log d [16] d1/ log log d [16]

not NP-hard 1
p

d/ log d [20]
p

d/ log d [20] d/ log d [20] d/ log d [20]

Table 2. The approximation factor γ for the NP-hardness of AppSVP and
AppCVP with l2 and l∞ norms.

[22] proved that SVP is not harder than CVP.

Remark 3. Table 2 seems to show that the approximation problems seem to
be more difficult for the l∞-norm compared to the l2-norm. This impression is
supported by a recent paper by Khot [33] which presented a result that proved
that SVP will be more and more difficult in lp if p grows. A more recent paper of
Regev and Rosen [48] proved that a lot of classic problems, including SVP and
CVP, are easier under the l2-norm than under every other lp-norm, including
l∞-norm.

Remark 3 is supported by the fact that most of the polynomial and efficient
algorithm to approximate SVP and CVP are for the l2-norm.

– For SVP, in 1982 Lenstra, Lenstra and Lovasz [35] proposed a powerful poly-
nomial algorithm, known as the LLL algorithm, to efficiently approximate
SVP and more generally the length of the basis itself. This algorithm ap-
proximate SVP for the l2-norm within an approximation factor γ = 2(d−1)/2

in theory but seems to be much more efficient in practice [44]. In addition,
a lot of improvements have been proposed on LLL to obtain a better ap-
proximation factor and/or a better time complexity. For the recent result on
LLL, refer to [43,52]. Combining this approach with the BKZ method [49,50],
which can be seen as a generalization of LLL, is a very powerful way to attack
a cryptosystem based or linked to SV P2.

1 unless the polynomial hierarchy collapses
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– For CVP, in 1986 Babai [6] proposed two polynomial methods. Those algo-
rithms approximate CVP for the l2-norm within a factor γ = 1+2d(9/2)d/2

and γ = 2d/2, respectively. Babai’s algorithms use an LLL-reduced basis.
Consequently all the variants of LLL, including BKZ utilization [51] proposed
by Schnorr, are naturally the improvement of Babai’s methods. Moreover,
there exists an heuristic way to directly approximate CVP using an approx-
imate algorithm for SVP [41]. See [1] for a general survey of AppCVP.

All the existing algorithms have been created for the euclidean norm. Nev-
ertheless, the l2-norm algorithm can be used to approximate SVP and CVP for
the l∞-norm using the equivalence of norms, ∀v ∈ Rn, ‖v‖∞ ≤ ‖v‖2 ≤ n1/2‖v‖∞
[23].

The final approximation for l∞ will be clearly worst than for l2 and this
method cannot be used to solve exactly the SVP and CVP under l∞.

Remark 4. In this paper, we aim to construct a lattice-based cryptosystem which
is more resistant than the existing ones in the literature using the l∞-norm. A
recent work by Chen and Meng [12] clearly went this way. They proved the NP-
hardness of the closest vector problem with preprocessing over l∞-norm. Regev
and Rosen [48] gave the factor of log d1/2−ε for the NP-hardness of CVP with
preprocessing under lp-norm, 2 ≤ p ≤ ∞.

3 Matrix Norm, Eigenvalues, Spectral Radius and
Condition Number

In this section, we briefly review some definitions of the eigenvalue theory that
will be required throughout this paper. Most of the following definitions and
properties can been found in [14,55,30]. In the following definitions, let n ∈ N.

Definition 9 (Matrix Norm). Let A be a square matrix in Cn,n. A matrix
norm denoted as ‖A‖ is said to be consistent to a vector norm ‖.‖, if we have
‖A‖ = sup {‖xA‖, x ∈ Cn, ‖x‖ = 1}.

The matrix norm ‖.‖p, consistent to the vector norm defined in Definition 7, can
be easily computed for p = 1, 2,∞. For other values of p, see [27] for estimating
methods of ‖.‖p.

Definition 10 (Polytope Norm). We denote ‖.‖P as the matrix norm con-
sistent to the vector norm ‖.‖P defined as ∀v ∈ Cn, ‖v‖P = ‖vP−1‖∞ where
P is a non singular matrix.

To compute the polytope norm ‖.‖P of a matrix, we have ∀A ∈ Cn,n, ‖A‖P =
‖PAP−1‖∞.

Definition 11 (Eigenvalue). Let A be a square matrix in Cn,n, a complex
number λ is called a eigenvalue of A if there exists a column-vector h 6= 0 such
that Ah = λh. The column-vector h is called an eigenvector of A.
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If h is an eigenvector then for any real number α 6= 0, αh is also an eigenvector.
A matrix composed by n eigenvectors of n eigenvalues is an eigenmatrix. There
is an infinity of eigenmatrix. We specially focus on the eigenmatrix H which
minimizes the condition number (Definition 12) of the infinity norm.

Definition 12 (Condition Number). Let ‖.‖ be a matrix norm and A a
non singular matrix. The condition number of A, denoted as κ(A), is such that
κ(A) = ‖A‖‖A−1‖.

In this paper, κ(A) use the l∞-norm: κ(A) = ‖A‖∞‖A−1‖∞.

Definition 13 (Spectral Radius). Let A be a square matrix in Cn,n. We
denote ρ(A) as the spectral radius of A defined as the maximum of the absolute
value of the eigenvalues of A: ρ(A) = max {|λ|, Ax = xλ}.

Theorem 1. For any matrix norm ‖.‖, ∀A ∈ Cn,n, ρ(A) ≤ ‖A‖.

In fact, the spectral radius can be seen as the lower bound of all the matrix norm
of a matrix: ρ(A) = inf {‖A‖}.
The spectral radius has some useful properties as follows.

Theorem 2. For any matrix norm ‖.‖ and any square matrix A , limk→∞ ‖Ak‖ =
ρ(A)k.

Using this property, we can obtain the following property.

Theorem 3. Let A ∈ Cn,n be a square matrix, the series I +A+A2 +A3 + . . .
converge to 1

1−A if and only if ρ(A) < 1 where ρ(A) is the spectral radius of A.

See [55] for the proofs of Theorems 1, 2 and 3.
The last property of the spectral radius that will be used in this paper is provided
in the Theorem 4.

Theorem 4. For any square matrix A and any real number ε > 0, there exists
a polytope norm ‖.‖P such that ‖A‖P ≤ ρ(A) + ε.

The proof of Theorem 4 is given in [30] by providing a way to compute the matrix
P . In fact, there exists an infinity of such matrix P connected by a multiplication
by a non singular diagonal matrix. If the eigenvalues are distinct, we can use an
eigenmatrix for P . Here, we focus on the matrix P that minimizes κ(P ).

4 Vector Reduction in l∞-norm

In this section, we propose a new method of vector reduction using a modifi-
cation of the Babai’s method. This new algorithm uses another definition of a
“good basis” to obtain an approximation of CV P∞. To approximate the clos-
est vector w of a vector v, Babai used the approximation given by the equation
u =

⌈
vG−1

⌋
G. As explained previously, this approximation has two major prob-

lems when it is used in cryptography, namely an expensive computation and a
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mark of the “good basis” on the approximate vector. To solve these two problems,
we propose a new approximation of the vector v. This approximation is inspired
by the work of Bajard, Imbert and Plantard [7] which proposed a method to re-
duce some number representation for modular arithmetic. The method used in
this paper can be seen as a generalization of their technique. An important point
is the conservation of the efficiency which is main feature in modular arithmetic
operations.

Our focus is on the reduced vector, v mod L, and not on the closest vector.
We note that these two problems are completely equivalent. The reduced vector
w is equal to the difference between a vector v and its closest vector u. So to
reduce a vector, the Babai method becomes w = v−

⌈
vG−1

⌋
G. We decompose G

into two matrices: G = D−M . We will see that the choice of D and M determine
if G is a “good basis” or not. We use this decomposition to approximate v.

w = v −
⌈
v(D −M)−1

⌋
G.

We assume that D is non singular, so we are able to compute D−1.

w = v −
⌈
v((1−MD−1)D)−1

⌋
G

w = v −
⌈
vD−1(1−MD−1)−1

⌋
G.

We modify the Babai’s approximation to a new approximation.

w′ = v −
⌈
vD−1

⌋ ⌈
(1−MD−1)−1

⌋
G.

Let’s analyze more precisely the second part of this approximation. If we have
the spectral radius ρ(MD−1) < 1, we can use the Theorem 3 to obtain⌈

(1−MD−1)−1
⌋

=
⌈
1 + MD−1 + (MD−1)2 + (MD−1)3 + . . .

⌋
Since ρ(MD−1) < 1, this series on the right term converges. Here, we make a
very quick approximation of

⌈
(1−MD−1)−1

⌋
to 1. At the end of this analysis,

we propose a new approximation w of the closest vector of v.

w = v −
⌈
vD−1

⌋
(D −M).

We will consider this approximation to be precise enough if ρ(MD−1) < 1.
Hence, we propose a new definition of a “good basis” as follows.

Definition 14 (Good Basis). Let D,M be two square matrices and L be the
lattice which has D −M for the basis. D −M is called a “good basis” of L if
ρ(MD−1) < 1.

Now, we can propose an algorithm to reduce a vector v with a “good basis”.
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Algorithm 1: Vector Reduction
Input : A vector v ∈ Zn.
Data : A non-singular diagonal matrix D ∈ Zn,n and a square matrix

M ∈ Zn,n. A lattice L of basis D −M .
Output: A vector w ∈ Zn such that w ≡ v (mod L) and ‖w‖D < 1.
begin

w ← v;
repeat

q ←
⌈
wD−1

⌋
;

w ← w − q(D −M);
until ‖w‖D < 1;

end

Algorithm 1 has a loop and hence, it repeats its approximation several times.
This is different from the Babai’s algorithm which does not have any loop. In our
case, the loop is required to replace the approximation of

⌈
(1−MD−1)−1

⌋
by

1. The loop corresponds to the different power of MD−1 that we have omitted.

Remark 5. The Algorithm 1 returns a vector with ‖w‖D = ‖wD−1‖∞ < 1, which
is the reason why we consider it like an approximation of CV P∞. However, it
is only true when D = βId that we have a classic definition of l∞ reduction.
The important point is that the coefficients |wi| < Di,i do not depend on any
average or any direct influence from the other coefficients of w. This property
comes from the polytope norm which includes the l∞-norm. That is the intrinsic
difference between the l∞-norm, a polytope norm, and the l2-norm, a ellipsoidal
norm.

It is trivial to prove that Algorithm 1 is exact.

a) w = w − q(D −M) with q ∈ Zn. The loop does not change the congruence
of w mod L. So at the end, w ≡ v mod L holds.

b) If Algorithm 1 ends then ‖w‖D < 1.

However, condition for Algorithm 1 termination has to be defined. There
exists a very similar problem of successive approximation convergence in the
literature. To compute a vector x with xA = y for some problematic matrix
A, a complete theory has been developed with some equivalent decomposition,
A = D−M where A is called M-matrix. Some equivalent result for convergence,
ρ(MD−1) < 1 has been found. See [54,34] for more detail on this theory.

However, even if this theory is very similar, it does not solve the question of
Algorithm 1 termination. Therefore, we propose Theorem 5 which is inspired by
such a theory to answer this question.

Theorem 5. Let n ∈ N, D,M ∈ Zn,n be two square matrices with D non
singular and diagonal. The successive approximation wi of a vector w given by
w0 = w and wi = wi−1 −

⌈
wi−1D

−1
⌋
(D −M) for i > 0.

i) For any lp-norm with ‖MD−1‖p < 1, we have limi→∞ ‖wi‖D ≤ ‖1−MD−1‖p

1−‖MD−1‖p

n1/p

2 .
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ii) For any polytope norm with ‖MD−1‖P < 1, we have limi→∞ ‖wi‖D ≤
‖1−MD−1‖P

1−‖MD−1‖P

κ(P )
2 .

iii) For any non singular eigenmatrix P of MD−1, we have limi→∞ ‖wi‖D ≤
ρ(1−MD−1)
1−ρ(MD−1)

κ(P )
2 .

Proof. First, we decompose the successive approximation

wi = wi−1 −
⌈
wi−1D

−1
⌋
(D −M)

wi = wi−1 − (wi−1D
−1 + εi)(D −M) where εi ∈ [−1/2, 1/2]n

wi = wi−1 − wi−1 + wi−1D
−1M − εi(D −M)

wi = wi−1D
−1M − εi(D −M)

We want to evaluate wiD
−1 = wi−1D

−1MD−1 − εi(1 −MD−1). Now, for
any norm ‖.‖, we have

‖wiD
−1‖ = ‖wi−1D

−1MD−1 − εi(1−MD−1)‖
‖wiD

−1‖ ≤ ‖wi−1D
−1‖‖MD−1‖+ ‖εi‖‖(1−MD−1)‖

Let be ∆ the max of ‖εi‖, we obtain ‖wiD
−1‖ = ‖wi−1D

−1‖‖MD−1‖ +
∆‖(1−MD−1)‖. So, if ‖MD−1‖ < 1 this sequence converge to limi←∞ ‖wiD

−1‖ ≤
∆‖(1−MD−1)‖

∑∞
i=0 ‖MD−1‖. Because we have ‖MD−1‖ < 1, we obtain

lim
i←∞

‖wiD
−1‖ ≤ ∆

‖(1−MD−1)‖
1− ‖MD−1‖

.

To finish this proof, we have to adapt this result to different norm.

i) If ‖.‖ is a lp-norm, we obtain limi←∞ ‖wiD
−1‖p ≤ ∆

‖(1−MD−1)‖p

1−‖MD−1‖p
.

We can evaluate ∆ = n1/p

2 .

lim
i←∞

‖wiD
−1‖p ≤

‖(1−MD−1)‖p
1− ‖MD−1‖p

n1/p

2

We know also that for any vector v, ‖v‖∞ ≤ ‖v‖p.

lim
i←∞

‖wiD
−1‖∞ ≤

‖(1−MD−1)‖p
1− ‖MD−1‖p

n1/p

2

With the definition of the ‖.‖D norm, we obtain

lim
i←∞

‖wi‖D ≤
‖(1−MD−1)‖p
1− ‖MD−1‖p

n1/p

2

ii) If ‖.‖ is a polytope norm ‖.‖P , we obtain limi←∞ ‖wiD
−1‖P ≤ ∆‖(1−MD−1)‖P

1−‖MD−1‖P
.

We can evaluate ∆ = 1
2‖P

−1‖∞.

lim
i←∞

‖wiD
−1‖P ≤

‖(1−MD−1)‖P
1− ‖MD−1‖P

‖P−1‖∞
2



A Digital Signature Scheme based on CV P∞ 11

By definition, we have ‖wD−1‖P = ‖wD−1P−1‖∞. To evaluate ‖w‖D, we
have ‖w‖D = ‖wD−1‖∞ = ‖wD−1P−1P‖∞ ≤ ‖wD−1P−1‖∞‖P‖∞.
Now, we can evaluate the limit of ‖wi‖D.

limi←∞ ‖wi‖D ≤ ‖(1−MD−1)‖P

1−‖MD−1‖P

‖P−1‖∞
2 ‖P‖∞

limi←∞ ‖wi‖D ≤ ‖(1−MD−1)‖P

1−‖MD−1‖P

κ(P )
2

iii) If ‖.‖ is a polytope norm ‖.‖P where P is an non singular eigenmatrix of
MD−1, we obtain the same result with ‖MD−1‖P = ρ(MD−1). We have
also ‖1 −MD−1‖P = ρ(1 −MD−1) because an eigenmatrix of A is also a
eigenmatrix of any polynomial composition of A.

lim
i←∞

‖wi‖D ≤
ρ(1−MD−1)
1− ρ(MD−1)

κ(P )
2

�

We note that this proof is very similar and inspired by some proofs found in [34]
to solve close problem of successive approximation convergence.

Remark 6. Theorem 5 clearly provides some conditions to terminate Algorithm 1.
These three conditions are complementary.

i) The lp-norm can be used to have a fast approximation. See [27] for some
methods to compute lp norm for a matrix if p is not simple p = 1, 2,∞.

ii) The polytope norm provides a way to be closer to ‖MD−1‖P ∼ ρ(MD−1)
which is the lower bound. But its computation can be long to minimize
κ(P ).

iii) The non singular eigenmatrix are the best evaluation but it requires us to
have distinct eigenvalues, which we do not always have.

In fact, after several practical tests and theoretical analysis, we are able to make
a conjecture.

Conjecture 1. Let n ∈ N, D,M ∈ Zn,n be two square matrices with D non
singular and diagonal. The successive approximation wi of a vector w given by
w0 = w and wi = wi−1−

⌊
wi−1D

−1
⌋
(D−M) for i > 0 converge if ρ(MD−1) < 1

2 .

This conjecture will be used for the practical implementation of Algorithm 1.
For the rest of this paper, sometimes we refer to ρ(MD−1) only with ρ, when
the context is clear.

5 Signature Scheme

In this section, we describe our new signature scheme, which comprises of the
three algorithms: Setup, Sign and Verify.
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Setup

a) Choose an integer n.
b) Compute a randomly integer matrix M ∈ {−1, 0, 1}n,n.
c) Compute D = b2ρ(M) + 1cId.
d) Compute the Hermite Normal Form H of the basis D −M .
e) The public key is (D,H), and the secret key is M .

Sign To sign a message m ∈ {0, 1}∗, one does the following.

a) Compute the vector v = h(m) ∈ Zn where h is a hash function such that

h : m → v
: {0, 1}∗ → {x ∈ Zn, ‖x‖D2 < 1}

b) Using Algorithm 1, compute w, which is a reduced vector of v.
c) The signature on m is w.

Remark 7. The three choices of M ∈ {−1, 0, 1}n,n, ρ < 1/2 and ‖x‖D2 < 1
are arbitrary and they can be changed. However these choices seem to be
practically reasonable.

Verify To verify a message-signature pair, (m,w), one does the following.

a) Check if ‖w‖D < 1.
b) Compute the vector h(m) ∈ Zn.
c) Check if the vector h(m)− w is in the lattice of basis H.

6 Improvements

In this section, we present some improvements to our scheme to make it practical.
These improvements provide some choices to the main algorithm, in order to
optimize it during the implementation of the algorithm.

6.1 Signature

The main part of the signing algorithm is in the reduction part as defined in
(Algorithm 1). The fact that D is a diagonal matrix will simplify a lot of com-
putations of wD−1. This computation corresponds to the computation of the
quotient of wi

Di,i
. In fact the reduction algorithm needs the rest of this division

as well. Based on this observation, we can rewrite Algorithm 1 as shown in
Algorithm 2.
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Algorithm 2: Sign
Input : A vector v ∈ Zn

Data : Two square matrices D,M
Output: A vector w ∈ Zn

begin
w ← v;
i← 0;
repeat

k ← 0;
q ←

⌊
wi

Di,i

⌋
;

wi ← wi − qDi,i;
for j = 0 to n− 1 do

wi+j mod n ← wi+j mod n + q ×Mi,j ;
if |wi+j mod n| < Di+j mod n,i+j mod n then k = k + 1;

end
i← i + 1 mod n;

until k = n;
end

Remark 8. Algorithm 2 could be completely optimized by the utilization of D =
βId with β be a power of two. This choice transforms the division corresponding
to the two first lines of the loop to a shift operation. Hence, the reduction of a
vector can be summarized to shift and addition operations, assuming that the
matrix has low coefficients.

6.2 Verification

The main part of the verification algorithm is the time to verify the inclusion
of w in the lattice L. As we described in Remark 2, the utilization of the HNF
accelerates this computation and it was successfully used in [38]. If we choose to
keep only some special lattices, then we can also do some further improvements.

Definition 15. Let be H the HNF basis of a full-rank lattice L, we will called
H optimal if ∀i > 1 Hi,i = 1.

With an optimal HNF basis H, a vector w is in the lattice of basis H if and only
if

∑n−1
i=1 wi ×Hi,0 ≡ w0 (mod H0,0).

With this setting, we can propose a very simple algorithm to verify the sig-
nature as follows.
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Algorithm 3: Verify
Data : Two square matrices D,H
Input : Two vectors v, w ∈ Zn

Output: A boolean
begin

for i = 0 to n− 1 do if |wi| ≥ Di,i then return False;
s← 0;
for i = 1 to n− 1 do s← s + (vi − wi)×Hi,0;
if s = v0 − w0 mod H0,0 then return True else return False

end

Remark 9. Optimal HNF simplifies the verification method and also minimizes
the size of the public key. We note that in this case, we only need to send the
first column of the matrix H. Consequently, we will use the optimal HNF for a
“bad basis”.

7 Comparison with GGH Signature Scheme

The advantage that our system has compared to the GGH signature scheme is
the use of the l∞-norm, which will make the scheme more resistant and difficult
to attack. Furthermore, a shorter signature length and an efficient computation
to compute with Algorithm 1 can be achieved with the help of fast arithmetic
operations. The details of these advantages are provided in this section.

7.1 Resistance

An approximation of CV P∞ also provides an approximation of CV P2 by the
equivalence of norm. Theoretically, the complexity of our cryptosystem cannot
be less than the initial GGH signature scheme and Micciancio’s improvements.
However, parameter choices are essential to achieve a practical high resistance
scheme.

The best basic way to attack our scheme is by finding M using D on L(H):
D ≡ M (mod L(H)). In other words, ∀i, (0, . . . , 0, Di,i, 0, . . . , 0) ≡ (Mi,1,
. . . , Mi,n) (mod L(H)). The attacker has to find some very good approxima-
tions (most of the time the exact result) of the CVP for the l∞-norm. This
attack seems to be the easiest way compared to solving CV P∞ for a given
vector-message. If the attacker can solve CV P∞ for every vector of D, he can
use Algorithm 1 to create a false signature. Therefore, we consider an attack to
be successful if the attacker can find a matrix M ′ such that D ≡M ′ (mod L(H))
with ρ(M ′D−1) < 1 and not only if M ′ = M .

As remarked in Remark 3 the l∞-norm seems to be more resistant. A powerful
advantage of its system clearly comes from the intrinsic difference between the l2
and the l∞ norms. Effectively, the utilization of approximation algorithms for the
l2-norm to solve approximation problem for l∞-norm will be worst. Moreover,
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some special matrices M could be used to take advantage of the intrinsic differ-
ence between those two norms to make those algorithms completely inefficient:
the row vector Mi of M are such that ‖Mi‖∞ < Di,i. If we take ‖Mi‖2 > Di,i

or at least ‖Mi‖2 ∼ Di,i, it will raise some problems to use l2 algorithm.
A brute force attack to find a row vector of M , where Mi,j ∈ {−1, 0, 1},

is O(3n). This brute force attack is faster than solving exactly a CV P using
Kannan’s method [31], which has the complexity of nO(n). Note that these two
possible attacks are in the exponential order. When n is chosen to be large, then
these techniques cannot be employed. Therefore, in order to attack it, only an
approximation of CV P that can be computed, rather than solving it. Although
the approximation of CV P is polynomial, the attack is a heuristic attack and
therefore there is no assurance that the result is precise enough.

A theoretical timing attack is also possible as the time of the signature de-
pends on the message-vector. However, such an attack seems very unlikely: to
obtain information on the form of message vector if its reduction took 4 or 5
loops instead of 6 seems very hard. There exists a simple way to completely
prevent this hypothetical attack. A simple improvement of Algorithm 2 is the
utilization of a random initialization of i: i← rand(0 . . . n−1) instead of a classic
i← 0. Besides the fact that there is no real reason to begin with 0, this improve-
ment will provide two advantages. Firstly, temporary approximation vectors are
not the same between two reductions of the same vector: that will change the
number of loops to reduce to the same vector. This property gives an advantage
against side-channel attacks, like timing attack. The most important advantage
is that this method grows the length of the set of vectors of {v, ‖v‖D} that
can be returned. This property provides a strong resistance against the attack
described in [42].

Another remark is on the fact that D is public. However, GGH basis where
taken as

√
nId−M with Mi,j ∈ [−4, 4]. So D can be easily guessed as well for

GGH and attacks on GGH do not use this fact.
To finalize the comments on the security, we need to comment our scheme

against the most successful attack against GGH signature scheme and NTRUSign.
In 2006, Nguyen and Regev [42] proposed a clever way to design the fundamental
parallelepiped using some signature-message which represent a CVP approxima-
tion. We also note that this attack will be ineffective against our system. All the
signature-message are in {xD, x ∈] − 1, 1[n}. Finding the design of this volume
is not particularly useful since D is already given as a public parameter. In Fig-
ure 1, we present an example of some signature-message on R2 after reduction
with Babai’s method or with our method. Even if the dimension 2 is far away
of cryptographic dimension, we can still see the mark used by [42]. In fact, we
see that the vectors of the basis can be designed after enough Babai reductions,
but that we can only design D after reduction by Algorithm 2.

7.2 Speed

For an optimized version of the signature scheme (Algorithm 2), Algorithm 1
uses only shift and addition operations. However, we need to know the average
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Fig. 1. Signature-message on R2 for Babai’s reduction and our reduction.

number of loops to reduce a signature vector. Even if the proof of Theorem 5 gives
us a bound on the worst case, the average case seems to be difficult to evaluate.
In Figure 2, we present an average number of iterations from Algorithm 2. On
every dimension n ∈ [50, 350], we have compute a 100 random couples D,M
following the methods used in the Setup algorithm: M ∈ {−1, 0, 1}n,n and D =
b2ρ(M) + 1cId. With each of this basis D −M , we have reduced 100 random
message vector chosen in [0, b2ρ(M) + 1c2[n . Figure 2 shows the average of the
number of loops required to reduce a message vector to a signature vector.

 1.5

 2
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 3

 3.5

 4
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 5

 5.5

 6

 6.5

 7

 50  100  150  200  250  300  350

Fig. 2. Average number of loops used to reduce a message vector to a signature
vector.
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From Figure 2, one can conclude that on average, the number of loops re-
quired for signing is between 5 and 7 to achieve a good security level, which is
approximately began from 200. Furthermore, Figure 2 also shows that the aver-
age number of loops are logarithmic on n, O(log n). We note that our reduction
is applicable only for some special lattices. Nevertheless, the resulting efficiency
obtained from these lattices are very interesting to develop efficient and fast digi-
tal signature schemes. As explained earlier, a loop can be minimized to only shift
and addition operations. It provides us with a very competitive way to reduce
a vector when the first Babai’s reduction uses two matrix multiplications. The
first matrix multiplication in Babai’s reduction is the most expensive operation,
since it requires a high precision on a floating point matrix multiplication. In
contrast to Babai’s method, our method can be used in a huge dimension that
will provide higher level of security without any time constraint.

7.3 Space

In this section, we provide some evaluation on the signature space. l∞-norm is
naturally the norm used to evaluate the space complexity of a signature. The fact
that Algorithm 1 deals directly with this norm makes an important difference
with Babai’s method.

Figure 3 shows result of test on the l∞-norm of reduce vector. We present
three curves corresponding to three parameters. For every dimension n (n ∈
[50, 350]), we compute on 100 random matrices chosen in M ∈ {−1, 0, 1}n,n,

i) the average spectral radius of M ,
ii) the average ‖D‖∞ that we can pick to have ρ(MD−1) < 1

2 . This result
correspond also on the max l∞-norm of any vector reduced by our method,

iii) the average max l∞-norm of any vector reduced by Babai’s method with
the same basis D −M .

Figure 3 has been obtained from the same data set used to generate Figure 2.
The important point of this result is that we can observe that the l∞ norm

of a reduced vector with this type of basis is in O(n) after Babai’s reduction and
in O(

√
n) after our reduction. This difference clearly comes from the difference

between l2 and l∞-norm.
To obtain a theoretical limit of this result, we use the result of German [18]

which evaluates the limit when the dimension n grow of the spectral radius of a
random matrix A ∈ Cn,n as ρ(A) = ω

√
n with ω2 = 1

n2

∑i,j<n
i,j=0 A2

i,j .

This limit provides a good approximation of the spectral radius of a random
matrix. Using this limit, we obtain the following result for a random matrix M

taken in {−1, 0, 1}n,n an average approximation about ρ(M) ∼
√

2n
3 . Finally,

if we want ρ(MD−1) < 1
2 we need ‖D‖∞ ∼ 2

√
2n
3 ∼ 1.63

√
n = O(

√
n). The

theoretical approximation of ρ(M) and ‖D‖∞ obtained using German’s theorem
is very close to our own practical test given in Figure 3.
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Fig. 3. Average l∞-norm of signature-vector using different reduction method.

8 Conclusion and Open Problems

In this paper, we presented a new method of vector reduction under the l∞-
norm. Then, we constructed a signature scheme based on this norm. The result-
ing scheme seems very interesting, in terms of security, length and speed. We
conclude this paper by providing two open research problems. Firstly, how to
prove Conjecture 1 of ρ < 1

2 and secondly, how to derive a formula to compute
the average number of iterations in Algorithm 1 which is logarithmic in n as the
test has demonstrated.
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