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Abstract. Fully homomorphic encryption (FHE) is a form of public-
key encryption that enables arbitrary computation over encrypted data.
The past few years have seen several realizations of FHE under differ-
ent assumptions, and FHE has been used as a building block in many
cryptographic applications.

Adaptive security for public-key encryption schemes is an important se-
curity notion proposed by Canetti et al. It is intended to ensure security
when encryption is used within an interactive protocol and parties may
be adaptively corrupted by an adversary during the course of the protocol
execution. Due to the extensive applications of FHE to protocol design,
it is natural to understand whether adaptively secure FHE is achievable.

In this paper we show two contrasting results in this direction. First, we
show that adaptive security is impossible for FHE satisfying the (stan-
dard) compactness requirement. On the other hand, we show a construc-
tion of adaptively secure FHE that is not compact, but that does achieve
circuit privacy.

1 Introduction

1.1 Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) [18, 11] is a form of public-key encryption
that enables a third party (who does not know the associated secret key) to
perform computations over encrypted data. That is, given a public key pk and
a ciphertext c = Encpk(m) that is the encryption of some (unknown) plaintext
message m, anyone can compute a ciphertext c′ whose decryption is f(m) for any
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desired function f . The actual definition is even more general (see Section 2.1):
given pk and ciphertexts

c1 = Encpk(m1), . . . , c` = Encpk(m`),

it is possible to compute an encryption of f(m1, . . . ,m`).
FHE has several applications. As one example, FHE can be used to construct

simple protocols for secure computation. We restrict ourselves to the two-party
setting with honest-but-curious parties. (In this setting two parties with inputs x
and y, respectively, wish to compute a function f(x, y) over their inputs without
revealing to each other anything more than the result; in the honest-but-curious
setting, the parties are again assumed to follow the protocol though privacy of
their inputs must still be maintained.) Here, a party with input x can generate a
public/private key pair (pk, sk) for an FHE scheme and send pk,Encpk(x) to the
other party. This second party can then compute an encryption of the desired
result f(x, y) and send the resulting ciphertext back to the first party. The first
party can then decrypt this ciphertext to recover f(x, y).

FHE with the functionality described above can be realized trivially by the
construction in which we define f,Encpk(m1), . . . ,Encpk(m`) to be a valid en-
cryption of f(m1, . . . ,m`). This notion, however, does not suffice for most ap-
plications of FHE; in particular, it does not suffice for the application described
above. Thus, some “non-triviality” requirement must be added to the defini-
tion of FHE in order to make the notion meaningful. Various requirements can
be considered, and we consider two here: (1) compactness, which requires that
ciphertexts have bounded length, and (2) circuit privacy, which informally re-
quires that the encryption of f(m1, . . . ,m`) should not reveal f . Note that the
trivial scheme described earlier does not satisfy either of these conditions.

1.2 Adaptive Security

In a separate line of work, Canetti et al. [6] proposed the notion of adaptive
security for (standard) public-key encryption schemes. Their motivation was to
guarantee security when encryption schemes are used to encrypt messages sent
during an interactive protocol, and parties running the protocol can be adap-
tively corrupted during the course of the protocol execution [4]. (The adaptive-
corruption model stands in contrast to the static-corruption model where the
attacker is assumed to corrupt parties only before the protocol begins.)

The primary challenge with regard to adaptively secure encryption is that
the protocol simulator (used to prove security of the protocol) must simulate
the ciphertexts being sent by the various parties without knowing the underlying
plaintext. At some later point in time, the adversary may request to corrupt a
party and the simulator must then simulate for the adversary any secret keys
held by that party. (If secure erasure is not assumed, the simulator will also have
to simulate for the adversary any random coins used by the sender. This only
makes the problem harder.) These secret keys must be such that they correctly
decrypt any ciphertexts previously sent to that party. Most natural public-key
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encryption schemes will not be suitable here, in particular because a given public
key typically has a unique secret key associated with it, which implies that any
(correctly generated) ciphertext can be “opened” later to at most one plaintext.

Canetti et al. [6] show how to construct adaptively secure encryption schemes
from general assumptions. Subsequent research [3, 10, 14, 15, 7, 9] has shown more
efficient constructions based on specific number-theoretic assumptions, or satis-
fying weaker (but still meaningful) notions of adaptive security.

1.3 Adaptively Secure FHE?

Because of the applications of FHE to protocol design, it is natural to ask
whether adaptive security can be realized for FHE. We focus on receiver corrup-
tion; equivalently, we assume secure erasure and so senders can erase the random
coins they use immediately before sending a ciphertext. (But the receiver cannot
erase its secret key until it receives and decrypts the ciphertext.)

We show two results in this regard. First, we show unconditionally that adap-
tive security is impossible for FHE schemes satisfying compactness.1 On the
other hand, we show that adaptive security is possible for FHE schemes sat-
isfying circuit privacy. Our results are interesting in their own right, but also
show a separation between two notions of non-triviality (namely, compactness
and circuit privacy) that have been considered in the literature.

2 Definitions

Throughout, we let k denote the security parameter.

2.1 Fully Homomorphic Encryption

We begin by formally defining the notion of fully homomorphic encryption.

Definition 1 (Fully homomorphic encryption). Fix a function ` = `(k).
An `-homomorphic encryption scheme HE for a class of circuits {Ck}k∈N consists
of four polynomial-time algorithms Gen, Enc, Dec, and Eval such that

– Gen, the key-generation algorithm, is a randomized algorithm that takes the
security parameter 1k as input and outputs a public key pk and secret key sk.

– Enc, the encryption algorithm, is a randomized algorithm that takes a public
key pk and a message m ∈ {0, 1} as input, and outputs a ciphertext c.

– Dec, the decryption algorithm, is a deterministic algorithm that takes the
secret key sk and a ciphertext c as input, and outputs a message m ∈ {0, 1}.

1 The impossibility result of Nielsen [17] does not apply to our setting, since we are
willing to place an a priori upper bound on the length of plaintext(s) that are
encrypted under a single public key. This makes sense when encryption is used
to encrypt messages sent within an interactive protocol, where the length of the
messages to be encrypted is bounded in advance (and a fresh public key can be
generated for each independent protocol execution).
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– Eval, the homomorphic evaluation algorithm, takes as input a public key pk,
a circuit C ∈ Ck, and ciphertexts2 c1, · · · , c`(k); it outputs a ciphertext c∗.

The following properties are required to hold:

1. For any k, any (pk, sk) output by Gen(1k), and any m ∈ {0, 1} we have
m = Decsk(Encpk(m)).

2. For any k, any (pk, sk) output by Gen(1k), any m1, . . . ,m`(k) ∈ {0, 1}, and
any C ∈ Ck, we have

C(m1, . . . ,m`) = Decsk(Evalpk(C,Encpk(m1), . . . ,Encpk(m`)))

We use the standard notion of security against chosen-plaintext attacks. (Al-
though stronger notions of security could be considered, the question of adaptive
security is tangential to these considerations.)

Definition 2. A homomorphic encryption scheme HE is CPA-secure if for any
polynomial-time adversary A the following is negligible in k:

|Pr[A(pk ,Encpk(0)) = 1]− Pr[A(pk ,Encpk(1)) = 1]|,

where (pk , sk)← Gen(1k).

As noted earlier, Definitions 1 and 2 are not enough to capture a meaningful
notion of fully homomorphic encryption because they can be satisfied by a “triv-
ial” construction starting from any CPA-secure (standard) public-key encryption
scheme Π = (Gen,Enc′,Dec′) by defining Enc, Eval, and Dec as follows:

– Encpk(m) = (0,Enc′pk(m)).

– Evalpk(C, c1, . . . , c`) outputs (1, C, c1, . . . , c`).

– Decsk(c) does as follows: if c = (0, c′), then output Dec′sk(c′) (i.e., decrypt
as in Π). If c = (1, C, c1, . . . , c`), then output

C(Dec′sk(c1), . . . ,Dec′sk(c`))

(i.e., decrypt and then apply C to the results).

There are various ways one could imagine ruling out trivial schemes like the
above. The first approach (following previous work in the literature) is to require
that ciphertexts cannot grow arbitrarily large; this is known as compactness.

Definition 3 (Compactness). An `-homomorphic encryption scheme HE for
a class of circuits {Ck}k∈N is compact if there exists a polynomial α = α(k) such
that ciphertexts output by Eval have length at most α. (For this to be non-trivial
it should be the case that, for all k, we have α(k) ≤ |C| for some C ∈ Ck.)

2 We assume for simplicity that all circuits in Ck take exactly ` = `(k) input bits.
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We say an `-homomorphic encryption scheme is `-fully homomorphic if it is
homomorphic for all boolean circuits, CPA-secure, and compact.

An alternate non-triviality condition that has been considered is to require
that the output of Evalpk(C, c1, . . . , c`) reveal nothing about C, even to the holder
of the secret key sk. This notion is called circuit privacy. There are different
ways of formalizing such a notion. The definition we use is weaker than the one
introduced by Gentry [12], but similar to the notion considered in [13]. We also
note that we allow (an upper bound on) the size of C to be revealed.

Definition 4 (Circuit privacy). An `-homomorphic encryption scheme HE
for a class of circuits {Ck}k∈N is circuit private if there exists an efficient sim-
ulator S such that for every (pk, sk) generated by Gen, every C ∈ Ck, and
every m1, . . . ,m`, the following two distributions are computationally indistin-
guishable (even given pk, sk, C,m1, . . . ,m`):{

∀i : ci ← Encpk(mi) :
(
Evalpk(C, c1, · · · , c`), c1, . . . , c`

)}
{
∀i : ci ← Encpk(mi) : S(1k, pk, |C|, C(m1, . . . ,m`), c1, · · · , c`)

}
.

2.2 Adaptively Secure Fully Homomorphic Encryption

We consider here a security notion for FHE that captures adaptive corruption of
the receiver. (Alternately, we assume secure erasure and thus the sender can erase
the randomness it uses for encryption immediately after encryption is complete.)
Here, a simulator is required to commit to (a bounded number of) simulated
ciphertexts c1, . . . , c`; the adversary then outputs messages m1, . . . ,m` ∈ {0, 1},
and the simulator must give the adversary a (single) secret key sk that “explains”
(i.e., decrypts) each ciphertext ci as mi.

Definition 5 (Adaptively secure FHE). An `-homomorphic encryption scheme
HE = (Gen,Enc,Dec,Eval) is adaptively secure if there exists a non-uniform,
polynomial-time algorithm S = (S1,S2) such that for all non-uniform, polynomial-
time algorithms A = (A1,A2) we have

|Pr[IdealA,S(k) = 1]− Pr[RealA(k) = 1]| ≤ negl(k)

where:

IdealA,S(k)

(pk , c1, . . . , c`, s)← S1(1k);
(m1, . . . ,m`, τ)← A1(1k, pk);
sk ← S2(s,m1, . . . ,m`);
b← A2(τ, pk , c1, . . . , c`, sk);
return b.

RealA(k)

(pk , sk)← Gen(1k);
(m1, . . . ,m`, τ)← A1(1k, pk);
c1 ← Encpk (m1); . . . ;
c` ← Encpk (m`);

b← A2(τ, pk , c1, . . . , c`, sk);
return b.

ut
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3 Impossibility Result

In this section, we show that adaptively secure `-fully homomorphic encryption is
impossible. We first give some intuition. Say adaptively secure FHE were possible,
so there is a simulator as in Definition 5. This gives an alternate way of computing
any function f , described by a circuit Cf : {0, 1}` → {0, 1}, as follows:

1. Run S1 to obtain pk, c1, . . . , c`, and state s.
2. Compute c′ ← Evalpk(Cf , c1, . . . , c`).
3. Given input x ∈ {0, 1}`, run S2(s, x1, . . . , x`) to obtain a secret key sk.
4. Compute Decsk(c′) to obtain f(x).

Note that steps 1 and 2 can be computed in advance of receiving the input x.
Thus, we can hard-code s, c′, and randomness (if any) for S2 into a circuit
that, upon receiving input x = (x1, . . . , x`), computes sk = S2(s, x) and then
outputs Decsk(c′). Adaptive security implies that this output must be correct
for most inputs x. (More precisely, it guarantees that there exist values of s, c′,
and randomness for S2 for which the circuit is correct for most inputs x.) But
because Dec and S2 are algorithms of some fixed complexity, and c′ is of some
bounded size (here is where we use the compactness property), we have some
polynomial upper-bound t on the size of the circuit that we get above. Taking f
to be a function that cannot be approximated by circuits of size t, but that can be
computed by a circuit of some polynomial size T � t, we obtain a contradiction.

Theorem 1. Let ` = ω(log k). Then, adaptively secure fully `-homomorphic
encryption does not exist.

Proof. Assume, toward a contradiction, that such a scheme HE = (Gen,Enc,
Dec,Eval) exists. This implies the existence of a non-uniform family of circuits
S = (S1,S2) satisfying Definition 5. Let t(k) denote an upper bound on the size
of the circuit for S2 plus the size of a circuit computing Dec for any ciphertext
c′ output by Eval. Using compactness (which says that the size of any such c′

is bounded by some fixed polynomial) and the fact that Dec runs in polynomial
time, we see that t(k) = poly(k).

Let {fk : {0, 1}`(k) → {0, 1}}k be a function family that can be computed by
polynomial-size circuits. Fix some particular k in the discussion that follows, and
let Cf be the circuit computing f = fk. Define a circuit C∗s,c′,ω as follows. First,

compute (pk, c1, . . . , c`, s) ← S1(1k). Then compute c′ ← Evalpk(Cf , c1, . . . , c`).
Choose random coins ω for S2, and define C∗s,c′,ω as:

– On input x ∈ {0, 1}`, run S2(s, x1, . . . , x`) (using random coins ω) to ob-
tain sk. Then output Decsk(c′).

We stress that s, c′, and ω are hard-coded into the above circuit. Thus, the size
of C∗s,c′,ω is at most t(k).

A circuit C : {0, 1}` → {0, 1} is an ε-approximation of f if

Prx←{0,1}` [C(x) = f(x)] ≥ ε.

The theorem follows from the next two lemmas.
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Lemma 1. There exist s, c′, ω such that the circuit C∗s,c′,ω constructed above is
a 3/4-approximation of f .

Proof. Consider the following non-uniform, polynomial-size adversary
A = (A1,A2): adversary A1, on input pk, outputs random x1, . . . , x` ∈ {0, 1}.
On input c1, . . . , c` and sk, adversary A2 computes c′ ← Evalpk(Cf , c1, . . . , c`)
followed by y = Decsk(c′). (Non-uniformity is used to hard-wire into A2 a de-
scription of the circuit Cf .) Finally, A2 outputs 1 if and only if y = f(x1, . . . , x`).

Correctness of the FHE scheme implies that in RealA(k) the adversary always
outputs 1. Adaptive security thus implies that the adversary outputs 1 with all
but negligible probability in IdealA(k). But this means that

Prx,s,c′,ω[C∗s,c′,ω(x) 6= f(x)] < negl(k),

where x ∈ {0, 1}` is chosen uniformly and s, c′, ω are generated as in the con-
struction of C∗s,c′,ω described earlier. But then there exist s, c′, ω for which

Prx[C∗s,c′,ω(x) 6= f(x)] < negl(k),

where the probability is now only over the uniform choice of x ∈ {0, 1}`. This
circuit C∗s,c′,ω is thus a 3/4-approximation of f .

The contradiction is given by the fact that there exist functions f that can
be computed by circuits of polynomial size T but cannot be 3/4-approximated
by circuits of size t.

Lemma 2. For any t(k) = poly(k) and `(k) = ω(log k), there exists a function
family {fk : {0, 1}`(k) → {0, 1}}k that can be computed by circuits of polynomial
size T (k) but cannot be 3/4-approximated by any circuit of size t(k).

Proof. A proof follows via suitable modification of the proof of the standard
hierarchy theorem for non-uniform computation [1]. Pick a random function f ,
and consider the probability that a fixed circuit C correctly computes f on at
least 3/4 of its inputs. Using Chernoff bounds, we can show that this probability

is at most e−2
`/16. Since there are at most 22S logS+5S circuits of size S, we have

that if S = 2`/2/16 (and hence 2S logS + 5S < 2`/16) there exists a function
that is hard to 3/4-approximate for all circuits of size S.

Any function g : {0, 1}n → {0, 1} is computable by a circuit of size 2n10n.
Let k be such that ` > 2.2 log t(k) (here we use the fact that ` = ω(log k)). If we
set n = 2.2 log t(k) and let f : {0, 1}` → {0, 1} be the function that applies g to
the first n bits of its input, then f can be computed by a circuit of size O(t(k)3),
but cannot be 3/4-approximated by circuits of size t(k).

This concludes the proof of the theorem.

We note that our impossibility result also holds for a weaker definition of
adaptive security where the adversary has to output the messages (whose en-
cryptions the simulator has to explain) before getting the public key.
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4 Feasibility Result

In this section, we show that adaptive security is possible for circuit-private fully
homomorphic encryption. The main idea is to modify the constructions in [12,
13, 2] to use adaptively secure building blocks. Specifically, our construction is
based on (i) a two-move semi-honest oblivious transfer (OT) protocol with re-
ceiver adaptive security, (ii) a projective garbling scheme leaking only the circuit
size [19, 5], and (iii) multiple-message, receiver-non-committing public-key en-
cryption (which is a stronger version of single-message receiver non-committing
encryption introduced in [14]).

We recall the high-level idea of [12, 13, 2], and explain how to upgrade the
building blocks to achieve our goal. The idea is to use the key generation algo-
rithm of a public-key encryption scheme to generate the public and secret keys.
To perform encryption, encode the input to be sent and in addition, encrypt
the randomness used for encoding. The evaluation algorithm forwards the en-
cryption of the randomness in addition to an encoded value of the result of the
evaluation of the circuit on the input sent. For decryption, using the secret key,
we can decrypt to get the randomness used. This randomness can then be used
to recover the result. This idea can be constructed using a regular public key
encryption scheme, oblivious transfer protocol and Yao’s garbling technique [19].

To achieve adaptive security, we need to upgrade the building blocks to adap-
tively secure ones. A semi-honest two-move OT protocol will suffice in the above
construction, but to achieve adaptive security of the circuit-private homomor-
phic encryption we need semi-honest two-move OT but with adaptive receiver
security. The semi-honest OT protocol in [8] is sufficient for our goal. We also
need to replace the regular public key encryption with a multi-message receiver
non-commiting encryption (a formal definition can be found below), a strength-
ened version of receiver non-committing encryption introduced in [14].

Before describing our construction, we recall the definitions of garbling
schemes, semi-honest OT with adaptive receiver security, and then define the
multi-message receiver non-committing encryption. Then, we present our con-
struction of a circuit-private homomorphic scheme which achieves correctness,
adaptive security, and circuit privacy, but not compactness.

4.1 Building Blocks

Garbling Schemes. Here, we define garbling schemes and introduce the secu-
rity notion we consider for such schemes in this work. Our notation follows the
recent work by Bellare, Hoang, and Rogaway [5].

A garbling scheme is a five-tuple of algorithms G = (Gb,En,De,Ev, ev). A
string f , the original function, describes the function ev(f, .) : {0, 1}` → {0, 1}n
that we want to garble. On input f and a security parameter k, the probabilistic
algorithm Gb returns a triple of strings (F, e, d)← Gb(1k, f). String e describes
an encoding function, En(e, .), that maps an initial input m ∈ {0, 1}` to a garbled
input X = En(e,m). String F describes a garbled function ev(F, .), that maps



Title Suppressed Due to Excessive Length 9

each garbled input X to a garbled output Y = ev(F,X). String d describes
a decoding function, De(d, .), that maps a garbled output Y to a final output
y = De(d, Y ).

We consider only projective garbling schemes in this work. A projective gar-
bling scheme as described in [5] is one where e encodes a list of tokens, one pair for
each bit in m ∈ {0, 1}`. Encoding function En(e, .) uses the bits of m = m1 · · ·m`

to select from e = X0
1 , X

1
1 , · · · , X0

` , X
1
` the subvector X = (Xm1

1 , · · · , Xm`
` ). A

garbling scheme G = (Gb,En,De,Ev, ev) is projective if for all f,m,m′ ∈ {0, 1}`,
k ∈ N, and i ∈ [`], when (F, e, d) ∈ [Gb(1k, f)], X = En(e,m) and X ′ = En(e,m′),
then X = (X1 · · ·X`) and X ′ = (X ′1 · · ·X ′`) are ` vectors, |Xi| = |X ′i|, and
Xi = X ′i if m and m′ have the same ith bit.

For the privacy notion considered, we allow that certain information about
the function f can be revealed and this is captured by the side information
function Φ(f). Specifically, for this work, the side information function is the
size of the circuit.

For the security notion, we describe only the simulation-based notion of pri-
vacy in [5]. We present the definition of the simulation-based security notion of
privacy of a garbling scheme.

Definition 6. Consider the following game PrvSimG,Φ,S associated with a gar-
bling scheme G, side information function Φ(f) and a simulator S. The adver-
sary A is run on input 1k and makes exactly one Garble query. The Garble
procedure is described as follows.

Garble(f,m)

b← {0, 1}
if m /∈ {0, 1}` return ⊥
if b = 1 then (F, e, d)← Gb(1k, f); X ← En(e,m)
else y ← ev(f,m); (F,X, d)← S(1k, y, Φ(f))
return (F,X, d)

The adversary after getting the answer to the query must output a bit b′. The
adversary’s advantage is given by:

AdvΦ,SG (A, k) =

∣∣∣∣Pr [b′ = b]− 1

2

∣∣∣∣
The protocol G is secure over Φ if for every polynomial-time adversary A there
is a polynomial-time simulator S such that AdvΦ,SG (A, k) is negligible.

Semi-Honest OT with adaptive receiver security. 1-out-of-2 Oblivious
Transfer (OT) allows a receiver to obtain exactly one of two messages from a
sender where the receiver remains oblivious to the other message, and the sender
is oblivious to which value was received. Please refer to Figure 1 for 2-move OT.
We next define secure 2-move OT scheme with adaptive receiver security.

Definition 7. A k-bit 2-move oblivious-transfer scheme OT = (OT1,OT2,OT3)
is secure with adaptive receiver security if the following properties hold:
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Sender(x0, x1 ∈ {0, 1}k) Receiver(m ∈ {0, 1})

(msg, w)← OT1(m)

� msg

(m̂sg, ζ)← OT2(x0, x1,msg)

m̂sg -
xm ← OT3(w, m̂sg)
output xm

Fig. 1. A 2-move OT protocol.

Correctness. For all m ∈ {0, 1}, and x0, x1 ∈ {0, 1}k:

Pr

[
(msg, w)← OT1(m);
m̂sg← OT2(x0, x1,msg)

: xm = OT3(w, m̂sg)

]
≥ 1− negl(k)

Adaptive Receiver Security. There exists a non-uniform, polynomial-time
algorithm Srecv = (Srecv1 ,Srecv2 ) such that for all non-uniform, polynomial-
time algorithms A = (A1,A2):

|Pr[IdealA,Srecv(k) = 1]− Pr[RealA(k) = 1]| ≤ negl(k)

where:
IdealA,Srecv(k)

(m, τ)← A1(1k);
(msg, s)← Srecv1 (1k);
w ← Srecv2 (s,m);
b← A2(τ, w,msg);
return b

RealA(k)

(m, τ)← A1(1k);
(msg, w)← OT1(m);
b← A2(τ, w,msg);
return b

Sender Security. There exists a non-uniform, polynomial-time algorithm Ssend
such that for all non-uniform, polynomial-time algorithms A = (A1,A2):

|Pr[IdealA,Ssend(k) = 1]− Pr[RealA(k) = 1]| ≤ negl(k)

where:

IdealA,Ssend(k)

(x0, x1,m, τ)← A1(1k);
(msg, w)← OT1(m);
m̂sg← Ssend(1k,msg, xm,m);
b← A2(τ,msg, w, m̂sg);
return b

RealA(k)

(x0, x1,m, τ)← A1(1k);
(msg, w)← OT1(m);
m̂sg← OT2(x0, x1,msg);
b← A2(τ,msg, w, m̂sg);
return b

The construction from [8] satisfies the above properties.

Multi-message, receiver non-committing, public-key encryption. Re-
ceiver non-committing encryption (RNCE) was introduced in [14] and further
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studied in [7]. Here, we strengthen their notion to deal with multiple messages
with an a priori bound α = poly(k) on the number of messages; we call this
α-message RNCE, and formally define it below.

– The randomized key-generation algorithm gen takes as input the security
parameter and outputs a key-pair. This is denoted by: (pk, sk) ← gen(1k).
The public key pk defines the message space M.

– The randomized encryption algorithm enc takes a public key pk and a mes-
sage m ∈M. It returns a ciphertext c← encpk(m).

– The decryption algorithm dec takes as input a secret key sk and a ciphertext
c, and returns a message m← decsk(c), where m ∈M∪⊥.

– The randomized key-faking algorithm g̃en takes as input the security param-
eter and outputs a public key as well as some auxiliary information. This is
denoted by: (pk, z)← g̃en(1k).

– The fake encryption algorithm ẽnc takes as input a tuple (pk, z) as output by
g̃en, and outputs a tuple of fake ciphertexts and some auxiliary information:
(c1, . . . , cα, z

′)← ẽnc(pk, z).
– The reveal algorithm r̃ev takes as input a tuple (c1, . . . , cα, z

′) as output by
ẽnc, and a tuple of messages m1, . . . ,mα ∈ M. It outputs a fake secret key
sk← r̃ev(z′, c1, . . . , cα,m1, . . . ,mα). (Intuitively, sk is a valid-looking secret
key for which ci decrypts to mi for all i ∈ [α].)

Definition 8. (gen, enc, dec) is a secure receiver non-committing encryption
scheme for bounded α = poly(k), if there exist non-uniform, polynomial-time
algorithms S = (g̃en, ẽnc, r̃ev) such that for all non-uniform, polynomial-time
algorithms A = (A1,A2) we have

|Pr[IdealA,S(k) = 1]− Pr[RealA(k) = 1]| ≤ negl(k)

where:

IdealA,S(k)

(pk, z)← g̃en(1k);
(m1, . . . ,mα, τ)← A1(1k,pk);
(c1, . . . , cα, z

′)← ẽnc(pk, z);
sk← r̃ev(z′, c1, . . . , cα,m1, . . . ,mα);
b← A2(τ,pk, sk, c1, . . . , cα);
return b.

RealA(k)

(pk, sk)← gen(1k);
(m1, . . . ,mα, τ)← A1(1k,pk);
c1 ← encpk(m1); . . . ;
cα ← encpk(mα);

b← A2(τ,pk, sk, c1, . . . , cα);
return b.

Following [14], we present a construction of a multiple-message, receiver non-
committing scheme based on the DDH assumption. As in [14], we can only
directly encrypt logarithmic-length messages since computation of a discrete
logarithm is required by the receiver. In our case, however, we can then encrypt
messages of length k by breaking the message into logarithmic-length blocks,
encrypting block-by-block, and adjusting the parameter α accordingly.

– The randomized key-generation algorithm: (pk, sk)← gen(1k):
Generate a group G of prime order q with generators g0, g1, . . . , gα. Out-
put the group parameters (G, q, g0, g1, . . . , gα). Choose x0, . . . , xα ← Zq and
output the public key pk =

∏α
i=0 g

xi
i and secret key sk = (x0, . . . , xα).
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– The randomized encryption algorithm c← encpk(m):
View m as an element of Zq. Choose r ∈ Zq at random and output the
ciphertext (gr0, . . . , g

r
α, P

r · gm0 ).
– The decryption algorithm m← decsk(c):

Parse c = (A0, . . . , Aα, B), and compute C = B/
∏
iA

xi
i . Set m = logg0 C.

(We assume m is small enough so that this computation can be done effi-
ciently.)

– The randomized key-faking algorithm (pk, z)← g̃en(1k):
Generate a group G of prime order q with generators g0, g1, . . . , gα where
gi = g0

σi and σi is known. Output the group parameters (G, q, g0, g1, . . . , gα).
Choose x0, . . . , xα ← Zq and output the public key pk =

∏α
i=0 g

xi
i .

– The fake encryption algorithm ẽnc:
For i ∈ {1, . . . , α}, choose ri,0, . . . , ri,α, r

′
i ← Zq, and output the ciphertext

(g
ri,0
0 , . . . , g

ri,α
α , g

r′i
0 ).

– The reveal algorithm sk← r̃ev(z′, c1, . . . , cα,m1, . . . ,mα):
Output x′0, . . . , x

′
α satisfying

x0 − x′0 +
α∑
i=1

(xi − x′i)σi = 0

∀j ∈ {1, . . . , α} : mj + x′0rj,0 +

α∑
i=1

x′irj,iσi = r′j .

Note that this is a system of α+ 1 equations in α+ 1 unknowns, and has a
solution with all but negligible probability.

4.2 Adaptively Secure Circuit-Private `-Homomorphic Encryption

Our construction of a circuit-private `-homomorphic encryption scheme HE =
(Gen,Enc,Dec,Eval). is based on (i) a projective garbling scheme (Gb, En, De,
Ev, ev) leaking only the circuit size [19, 16, 5], (ii) a receiver adaptively secure
semi-honest OT protocol (OT1,OT2,OT3), and (iii) an `-message receiver non-
committing public-key encryption scheme (gen, enc, dec).

– The key-generation algorithm (pk , sk)← Gen(1k):
Compute (pk, sk)← gen(1k), and set pk := pk and sk := sk.

– The encryption algorithm c← Encpk (m):
Upon input m ∈ {0, 1}, compute (msg, w) ← OT1(m). Compute e ←
encpk(w) and output c := (msg, e).

– The decryption algorithm m← Decsk (c):
• If c = (msg, e), compute w ← decsk(e). Then run OT1 with inputs 0

and 1, and randomness w, and output m for which (msg, w)← OT1(m).
• If c = (Ĉ, d, ĉ1, . . . , ĉ`) then for all i ∈ [`], further parse ĉi into (m̂sgi, ei),

compute wi ← decsk(ei), and compute Xmi
i ← OT3(wi, m̂sgi). This

gives the garbled input X = (Xm1
1 , . . . , Xm`

` ). Output De(d,Ev(Ĉ,X))
as message m.
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– The evaluation algorithm c∗ ← Eval(pk , C, c1, . . . , c`):
• Let Gb(1k, C) → (Ĉ, e, d). Parse the encoding function represented by

string e as (X0
1 , X

1
1 , . . . , X

0
` , X

1
` ).

• Parse ci into (msgi, ei) for i ∈ [`]. Compute m̂sgi ← OT2(X0
i , X

1
i ,msgi),

and set ĉi := (m̂sgi, ei), for all i ∈ [`].
• Finally, set c∗ := (Ĉ, d, ĉ1, . . . , ĉ`).

Theorem 2. Construction HE presented above is an adaptively secure circuit-
private `-homomorphic encryption.

Proof. We show below that the construction HE is a secure `-homomorphic
encryption that satisfies correctness, circuit privacy, and adaptive security.

Correctness. It is easy to verify the correctness. To compute Decsk (c) for
c = Encpk (m) where c = (msg, e), we first compute w′ ← decsk(e). Then run
OT1 twice with both inputs 0 and 1, and randomness w′. Output m′ where
(msg, w′) ← OT1(m). Given the fact that (gen, enc, dec) is correct, it holds
that w = decsk(encpk(w)), i.e., w = w′; furthermore, given the fact that the OT
scheme is correct, it holds that (msg, w) = OT1(m), i.e., m = m′. Therefore, we
have Decsk (c) = m for c = Encpk (m).

To compute Decsk (c) for c = Eval(pk , C, c1, . . . , c`) where c = (Ĉ, d, ĉ1, . . . , ĉ`),
parse ĉi as ĉi = (m̂sgi, ei) for all i ∈ [`]. We first compute w′i ← decsk(ei),

X̂i ← OT3(w′i, m̂sgi). Then we use the input key strings X = (X̂1, . . . , X̂`) to

evaluate the garbled circuit Ĉ as Ev(Ĉ,X) and obtain C(m̂1, . . . , m̂`). Given
the fact that (gen, enc, dec) is correct, we have wi = w′i; furthermore, given the

fact that the OT is correct, X̂i = Xmi
i ; also, given the fact that the garbling

scheme is correct, we have C(m1, . . . ,m`) = De(d,Ev(Ĉ,X)). Therefore, we have
Decsk (c) = m for c = Eval(pk , C, c1, . . . , c`) and m = C(m1, . . . ,m`).

Circuit privacy. The property of circuit privacy follows from the security of
the garbling scheme and the sender security of the OT. By the security of the
garbling scheme, we have that there exists a simulator SG on input the security
parameter, output of the function and the side information function Φ outputs
(F,X, d) except with negligible probability. As mentioned before, Φ(C) = |C| in
our construction.

Let us construct a simulator S as follows:

– Upon receiving (1k, pk , |C|, C(m1, . . . ,m`), c1, . . . , c`) where ci = Encpk (mi)
for i ∈ [`], the simulator S runs the simulator SG of the garbling scheme to
obtain
(F,X, d)← SG(1k, C(m1, . . . ,m`), |C|).

– Set Ĉ = F . Parse X as (X̂1, . . . , X̂`).
– To compute the ciphertext ĉi, parse ci into (msgi, ei) as in the construction.

Then compute m̂sgi ← Ssend(1k,msgi, X̂i) using the OT-simulator Ssend for
sender security, and set ĉi := (m̂sgi, ei), for all i ∈ [`].
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– Finally, set c∗ := (Ĉ, d, ĉ1, . . . , ĉ`).

Next, we develop a sequence of hybrids to show that Definition 4 is satisfied.

Hybrid H0: As in the real scheme, we run the evaluation algorithm Eval to
compute c∗, i.e, c∗ ← Eval(pk , C, c1, . . . , c`) where c∗ = (Ĉ, d, ĉ1, . . . , ĉ`).
Concretely, we use the projective garbling scheme, on input C, compute
(Ĉ, e, d) ← Gb(1k, C); then we parse the encoding function represented by
string e as (X0

1 , X
1
1 , . . . , X

0
` , X

1
` ), and parse ci into (msgi, ei) for i ∈ [`]; after

that, we compute m̂sgi ← OT2(X0
i , X

1
i ,msgi), and set ĉi := (m̂sgi, ei), for

all i ∈ [`]; finally, set c∗ := (Ĉ, d, ĉ1, . . . , ĉ`). The adversary A is given c∗ as
well as the input m, circuit C and the secret key sk.

Hybrid H1,j: For j ∈ [0 . . . `], the hybrid H1,j is the same as the Hybrid H0

except the following:
For all i ∈ [j], parse ci into (msgi, ei). Compute m̂sgi ← Ssend(1k,msgi, X

mi
i ),

using the OT simulator for sender security and set ĉi := (m̂sgi, ei).
We argue that for j ∈ [1, . . . , `], the hybrids H1,j and H1,j+1 are computa-
tionally indistinguishable under the assumption that the OT satisfies sender
security. If there is an adversary A who can distinguish between the two
hybrids with non-negligible probability, then we can construct an adversary
B who breaks the sender security of the OT as follows.
The adversary B acts as follows:
– run (pk , sk) ← Gen(1k), i.e., run (pk, sk) ← gen(1k) and set pk := pk,

sk := sk.
– Choose m = (m1, . . . ,m`). For all i ∈ [`], compute ci ← Encpk (mi),

i.e., compute (msgi, wi) ← OT1(mi), and ei ← encpk(wi). Set ci :=
(msgi, ei);

– Using the projective garbling scheme on a circuit C, let (Ĉ, e, d) ←
Gb(1k, C). Parse the encoding function represented by string e as
(X0

1 , X
1
1 , . . . , X

0
` , X

1
` );

– for all i ∈ [j − 1], parse ci into (msgi, ei). Then compute m̂sgi ←
Ssend(1k,msgi, X

mi
i );

– for i = j, output (mi, X
0
i , X

1
i ). Parse ci into (msgi, ei) and obtain m̂sgi,

where it is either generated by Ssend, i.e., m̂sgi ← Ssend(1k,msgi, X
mi
i ),

or by the OT scheme honestly, i.e., m̂sgi ← OT2(X0
i , X

1
i ,msgi);

– for all i ∈ [j + 1, `], parse ci into (msgi, ei). Then compute m̂sgi ←
OT2(X0

i , X
1
i ,msgi);

– for all i ∈ [`], set ĉi := (m̂sgi, ei);
– Return (m, sk , pk , C, Ĉ, d, ĉ1, . . . , ĉ`) to the internally simulated A.

When i = j, if m̂sgi obtained by B is generated by Ssend, then A interacts
with Hybrid H1,j . Otherwise, if m̂sgi is generated by the OT scheme hon-
estly, then A interacts with Hybrid H1,j−1. Based on the assumption that
A can distinguish between the two hybrids with non-negligible probability,
we can conclude that B can distinguish Ideal from Real as in Definition 7
for sender security. This contradicts our assumption that the OT is sender-
secure. Therefore, Hybrid H1,j−1 and Hybrid H1,j are indistinguishable.
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Note that H0 is identical to H1,0. Since Hybrids H1,j−1 and H1,j are indistin-
guishable as argued above, we also have that Hybrid H0 is computationally
indistinguishable from Hybrid H1,`.

Hybrid H2: This is the same as Hybrid H1,` except the following: Run the sim-
ulator SG for the projective garbling scheme to obtain the garbled circuit, in-
put and the decoding function, i.e., (F,X, d)← SG(1k, C(m1, . . . ,m`), |C|).
Parse X as (X̂1, . . . , X̂`), and set Ĉ = F . We note that this is exactly the
output produced by the simulator S for circuit privacy.

The hybrids H1,` and H2 are indistinguishable under the assumption that
G is a secure garbling scheme. If there is an adversary A who can distin-
guish between the two hybrids with non-negligible probability, then we can
construct an adversary B who breaks the security of the garbling scheme as
defined in Definition 6.

Consider an adversary B who acts as follows:

– run (pk , sk)← Gen(1k);

– Choose m = (m1, . . . ,m`). For all i ∈ [`], compute ci ← Encpk (mi);

– Choose a circuit C. Make a Garble query on (C,m) to obtain the
challenge (F,X, d). Set Ĉ = F .

– Parse X as (X̂1, . . . , X̂`). For all i ∈ [`], parse ci into (msgi, ei), and
compute m̂sgi ← Ssend(1k,msgi, X̂i); Set ĉi = (m̂sgi, ei);

– Return (m, sk , pk , C, Ĉ, d, ĉ1, . . . , ĉ`) to the internally simulated A.

When B’s challenge (F,X, d) is generated honestly, then the internally sim-
ulated A interacts with H1,`. On the other hand, when B’s challenge is
generated by SG , the simulated A interacts with H2. Based on the assump-
tion that A can distinguish between the two hybrids with non-negligible
probability, we can conclude that B can gain a non-negligible advantage
as in Definition 6. However, this is a contradiction to our assumption that
G is a secure garbling scheme. Therefore, Hybrid H1,` and Hybrid H2 are
indistinguishable.

Thus, we have that the hybrids H0 and H2 are indistinguishable which im-
plies that the scheme satisfies the circuit privacy requirement as defined in Def-
inition 4.

Adaptive security. Next we give the proof idea for proving the adaptive
security as defined in Definition 5. We construct the simulator S = (S1,S2) as
follows. The simulator is based on the algorithms (g̃en, ẽnc, r̃ev) of the `-RNCE
scheme, and the simulator (Srecv1 ,Srecv2 ) of the OT scheme.

– (pk , c1, . . . , c`, s)← S1(1k):

Compute (pk, z) ← g̃en(1k), and set pk := pk. Compute (e1, . . . , e`, z
′) ←

ẽnc(pk, z).

For all i ∈ [`], compute (msgi, γi)← Srecv1 (1k), and set ci := (msgi, ei).

Store all information into state s.
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– sk ← S2(s,m1, . . . ,m`):
Upon obtaining (m1, . . . ,m`), recover {γi}i∈[`] from the state s.
For all i ∈ [`], compute wi ← Srecv2 (msgi, γi,mi).
Compute sk← r̃ev(z′, {ei, wi}i∈[`]), and set sk := sk.

Next, we develop a sequence of hybrids to show that the real experiment
defined in Definition 5 is indistinguishable from the ideal experiment.

Hybrid H0: This is the real experiment.
Compute (pk, sk) ← gen(1k) and set pk := pk, sk := sk. The adversary A
outputs (m1, . . . ,m`) after seeing the public key pk. Then for all i ∈ [`], do
the following: compute (msgi, wi) ← OT1(mi), ei ← encpk(wi). Set ci :=
(msgi, ei). Return (pk , c1, . . . , c`, sk) to the adversary.

Hybrid H1,j: Let j ∈ [0, . . . , `]. The hybrid is the same as the Hybrid H0 except
the following:
For all i ∈ [j], compute (msgi, γi) ← Srecv1 (1k). Then, compute wi ←
Srecv2 (msgi, γi,mi).
We argue that for j ∈ [1, . . . , `], the hybrids H1,j−1 and H1,j are com-
putationally indistinguishable under the assumption that the OT satisfies
adaptive receiver security. Assume there is an adversary A who can distin-
guish between the two hybrids. For all Srecv, we next show how to construct
B to distinguish between the Real experiment and the Ideal experiment as in
Definition 7.
B internally simulates A and receives (m1, . . . ,m`) from it. Then B carries
out the following:
– run (pk, sk)← gen(1k), and set pk := pk, sk := sk;
– for all i ∈ [j− 1], use the OT simulator to obtain (msgi, γi)← Srecv1 (1k)

and wi ← Srecv2 (msgi, γi,mi). Compute ei ← encpk(wi);
– for i = j, obtain the pair (msgi, wi), where the pair is generated by

either Srecv = (Srecv1 ,Srecv2 ), i.e., (msgi, γi) ← Srecv1 (1k) and wi ←
Srecv2 (msgi, γi,mi), or generated by the OT scheme honestly, i.e.,
(msgi, wi)← OT1(mi);

– for all i ∈ [j+1, `], compute (msgi, wi)← OT1(mi) and ei ← encpk(wi).
– for all i ∈ [`], set ci := (msgi, ei);
– Return (pk , c1, . . . , c`, sk) to the internally simulated A.

Note that when i = j, if the pair (msgi, wi) that B obtains are generated by
Srecv = (Srecv1 ,Srecv2 ), then A interacts with Hybrid H1,j , while if the pair
(msgi, wi) that B obtains are generated by the OT scheme honestly, A inter-
acts with Hybrid H1,j−1. Based on the assumption that A can distinguish
between the two hybrids with non-negligible probability, we can conclude
that B can distinguish Ideal from Real as in Definition 7 for defining adap-
tive receiver security. This leads to a contradiction to our assumption that
the OT has adaptive receiver security. Therefore, Hybrid H1,j−1 and Hybrid
H1,j are indistinguishable.
Note that H0 is identical to H1,0. Since Hybrid H1,j−1 and Hybrid H1,j are
indistinguishable, as argued above, we also have that H0 is computationally
indistinguishable from H1,`.
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Hybrid H2: The hybrid is the same as Hybrid H1,` except the following:
Compute (pk, z) ← g̃en(1k), and set pk := pk. Compute (e1, . . . , e`, z

′) ←
ẽnc(pk, z). Compute sk ← r̃ev(z′, {ei, wi}i∈[`]), and set sk := sk. We note
that this is exactly the ideal experiment.
We argue that H1,` and H2 are computationally indistinguishable based on
the security of the `-RNCE scheme. Assume there is an adversary A who
can distinguish between the two hybrids. We next show how to construct an
adversary B that can break the security of the `-RNCE scheme.
B receives pk, and internally runs A. Upon receiving (m1, . . . ,m`) from A,
B computes (msgi, wi) ← OT1(mi) for all i ∈ [`] and outputs (w1, . . . , w`)
to its challenger. Upon receiving from its challenger (e1, . . . , e`, sk), B sets
ci := (msgi, ei) for all i ∈ [`]. B returns (pk , c1, . . . , c`, sk) to A and returns
A’s output as its own output.
When B’s received tuple (pk, e1, . . . , e`, sk) is generated by (gen, enc, dec)
honestly, then the internally simulated A interacts with H1,`. On the other
hand, when B’s received tuple is generated by (g̃en, ẽnc, r̃ev), i.e, (pk, z)←
g̃en(1k), (e1, . . . , e`, z

′) ← ẽnc(pk, z), and sk ← r̃ev(z′, {ei, wi}i∈[`]), A in-
teracts with H2. Based on the assumption that A can distinguish between
the two hybrids with non-negligible probability, we can conclude that B can
distinguish Ideal from Real as in Definition 8. This contradicts the security of
the `-RNCE scheme. Therefore, Hybrids H1,` and H2 are indistinguishable.

Based on the above argument we have H0 and H1,` are indistinguishable, and
H1,` and H2 are indistinguishable. Therefore H0 and H2 are indistinguishable.
Note that Hybrid H2 is exactly the ideal experiment, and H0 is the real experi-
ment. We now have that the ideal and the real experiments are indistinguishable.
This implies that the scheme satisfies adaptive security.
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