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Abstract. We discuss how to recover RSA secret keys from noisy key
bits with erasures and errors. There are two known algorithms recover-
ing original secret keys from noisy keys. At Crypto 2009, Heninger and
Shacham proposed a method for the case where an erroneous version of
secret keys contains only erasures. Subsequently, Henecka et al. proposed
a method for an erroneous version containing only errors at Crypto 2010.
For physical attacks such as side-channel and cold boot attacks, we need
to study key recovery from a noisy secret key containing both erasures
and errors. In this paper, we propose a method to recover a secret key
from such an erroneous version and analyze the condition for error and
erasure rates so that our algorithm succeeds in finding the correct secret
key in polynomial time. We also evaluate a theoretical bound to recover
the secret key and discuss to what extent our algorithm achieves this
bound.
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1 Introduction

1.1 Background

RSA [12] is a widely used cryptosystem. In RSA a public modulus N is chosen
to be a product of two distinct primes p and q. The key-pair e, d ∈ Z satisfies
ed ≡ 1 (mod (p− 1)(q − 1)). The encryption keys are (N, e) and the decryption
keys are (N, d). The PKCS#1 standard [10] specifies that the RSA secret key
includes the following information: (p, q, d, dp, dq, q

−1 mod p) in addition to d,
which allows a fast decryption process using the Chinese Remainder Theorem.

Secret keys must be kept secret. Nevertheless, some fractional amounts of
the secret information can be leaked by physical attacks such as side-channel
and cold boot attacks [4]. If the amount of leaked bits for secret keys is quite
small, it is impossible to recover the secret keys from the leaked information.
Conversely, it might be possible to recover them by using their redundancy if a
certain amount of bits are leaked. Note that all bits are not necessarily leaked.



For example, Coppersmith [2] showed that RSA can be broken if the upper half
of the secret key p is revealed. Herrmann and May [7] showed that RSA can
be broken (in exponential time) if at least 70% of the bits for a prime factor
p of N are leaked. Their methods are based on the lattice reduction technique.
Note that the Herrmann-May method does not require that the leaked bits are
consecutive.

At Crypto 2009, Heninger and Shacham [6] proposed an algorithm that effi-
ciently recovers secret keys (p, q, d, dp, dq) given a random fraction of their bits.
Concretely, they showed that if at least 27% of the secret key bits are leaked at
random, the full secret keys can be recovered. Conversely, we can say that even
if 73% of original secret bits are erased, the key recovery succeeds.

As opposed to the Heninger-Shacham algorithm correcting erasures, Henecka
et al. [5] proposed an algorithm correcting error bits of secret keys at Crypto
2010. They showed that the secret key (p, q, d, dp, dq) can be fully recovered if
the error probability is less than 0.237. They also showed the bound for the error
probability is given by 0.084 if the involved secret key is (p, q).

Independently of our work, Paterson et al. proposed an algorithm correcting
error bits which asymmetrically occurs at Asiacrypt 2012 [9]. Their algorithm
works in a true cold boot setting. They took a coding theoretic approach for
designing a new algorithm and analyzing its performance.

1.2 Motivation: Attack Scenario

All existing works concerning key recovery from noisy secret keys have discussed
the erasure-only (error-free) case or error-only (erasure-free) case. This paper
deals with the key recovery for a noisy secret key with both erasures and errors.
We call the erroneous version of the secret key with both erasures and errors
noisy secret keys. We denote the correct secret key by sk, and the noisy secret
key corresponding to sk by sk. Before discussing the details, we address the
motivations of this study.
Cold Boot Attack Scenario: Under the cold boot attack scenario [4], (the
degraded version of) secret keys are observed with (almost) unidirectional bit
flipping. Assume that the flip of each bit occurs as completely unidirectional. For
simplicity, we assume that only the bit flipping of 1 → 0 occurs. If the observed
bit is 1, the corresponding bit of the correct secret key is definitely 1. In contract,
if the observed bit is 0, we cannot determine whether the corresponding bit is
0 or 1. Therefore, the observed bit 0 can be considered erasure. Heninger and
Shacham [6] proposed an efficient algorithm that recovers the secret key from
the degraded version of the secret key with erasure. However, as Heninger and
Shacham [6] pointed out, the bit flip with an opposite direction occurs with small
but non-zero probability. If the observed bit sequence contains errors, Heninger-
Shacham’s algorithm can never recover the correct secret key. This algorithm is
then no longer applicable for the noisy secret key containing both erasures and
errors.
Side-channel Attack Scenario: Henecka et al. [5] proposed an efficient al-
gorithm given a noisy secret key only with errors. The noisy keys are often



provided through a side-channel attack. Under some attack situations, each bit
is provided with additional information: so-called reliability. Consider the follow-
ing situation: some bits of secret keys are 0 (or 1) with very high reliability and
others are 0 (or 1) with not so high reliability. One reasonable strategy is to set
a bit value as the observed bit if its reliability is sufficiently high. How should
we set a bit value with low reliability? We have two potential strategies. The
first is to set a bit value as the observed bit, which will cause a high number of
bit errors. The second strategy is to regard the bit as an erasure bit, which will
involve the observed secret key with (fewer) errors and erasures. So then which
of strategies is good for attackers? As Henecka et al. pointed out, the correction
of errors seems to be a much more difficult problem than the correction prob-
lem. We therefore expect that the second strategy leads to a better algorithm.
However, their algorithm is not applicable to a noisy secret key containing both
erasures and errors.

For both cases, studies for the key recovery for noisy secret keys with both
errors and erasures are important to maximize and evaluate the potential threat
of physical attacks and to consider the possible countermeasures against them.

1.3 Our Contributions

This paper discusses secret key recovery from noisy secret key sequences with
both errors and erasures. First, we present a polynomial time algorithm for
recovering secret keys and show an explicit success condition for recovering the
keys. We denote the erasure probability by δ and error probability by ε. We
also denote by m the number of involved secret keys. For example, m = 5 if
sk = (p, q, d, dp, dq) is involved. Our algorithm can asymptotically recover secret
keys in polynomial time with high probability provided that

1 − δ − 2ε ≥
√

2(1 − δ) ln 2
m

,

where we denote the natural logarithm of n to the base e by lnn. In special case,
our algorithm also includes previous methods. In fact, our algorithm achieves
the upper bound of Heninger-Shacham [6] and that of Henecka et al. [5] for
the error-free case (ε = 0) and erasure-free case (δ = 0), respectively. We ran
experiments to verify our analysis. We achieved to the error rates of up to 0.6
and the erasure rate ε = 0.01 for 1024-bit RSA with high success probability.

Second, we derive a theoretical bound for recovering the secret keys from the
noisy secret keys. We first introduce a natural abstract algorithm (meta-algorithm)
and derive a condition for δ and ε such that it needs exponential time for recov-
ering keys. The binary Entropy function H(x) [3] is defined by by −x log x −
(1 − x) log(1 − x), where log n is the binary logarithm of n to the base 2. Then,
we prove that we cannot recover the secret keys in polynomial time under our
meta-algorithm if it holds that

(1 − δ)
(

1 − H

(
ε

1 − δ

))
<

1
m

.



Finally, we discuss the relation between the condition where our algorithm
can recover secret keys and the theoretical bound. We first see that there exists
a small gap between the success condition and the theoretical bound. Then, we
show that the proposed algorithm achieves the second order expansion of the
theoretical bound.

2 Preliminaries

This section presents an overview of methods using binary trees to recover the
secret key of the RSA cryptosystem [12]. In particular, we briefly explain two
known methods: Heninger-Shacham method [6] and the method of Henecka et
al. (abbreviated to HMM method) [5].

We use similar notations as [5]. For an n-bit sequence x = (xn−1, . . . , x0) ∈
{0, 1}n, we denote the i-th bit of x by x[i] = xi, where x[0] is the least significant
bit of x. Let τ(M) denote the largest exponent such that 2τ(M)|M . As well as
[5], Hoeffding’s bound [8] is the main tool in our analysis.

Theorem 1 (Hoeffding’s Bound). Let X1, . . . , Xk be a sequence of indepen-
dent Bernoulli trials with identical success probability Pr[Xi = 1] = p for all i.
Define X :=

∑k
i=1 Xi. Then, for every 0 < γ < 1 we have Pr[X ≥ k(p + γ)] ≤

exp(−2kγ2) and Pr[X ≤ k(p − γ)] ≤ exp(−2kγ2).

2.1 Noise Models

We formalize (three) noise models discussed in this paper. Let ε and δ be real
numbers satisfying 0 ≤ ε < 1/2, 0 ≤ δ < 1 and 0 ≤ ε + δ < 1. In our noise
models, each bit in a secret bit sequence is either erased with probability δ or
flipped with probability ε, or remains unchanged with probability 1−δ−ε. Then,
only the transformed sequence is observed. Nevertheless, the original sequence is
not directly obtained. We refer to this noise model as the Binary Erasure-Error
model (BEE model). The error-free model, that is ε = 0 (but, δ > 0), is referred
to as the Binary Erasure model (BE model) and erasure-free model, that is δ = 0
(but, ε > 0), is referred to as the Binary Symmetric model (BS model).

Our target in this paper is to recover the original secret key from the observed
noisy sequence. We can say that Heninger and Shacham [6] have studied key
recovery from the noisy keys in the BE model and Henecka et al. [5] have studied
it in the BS model.

2.2 Recovering RSA Secret Key by Using Binary Trees

First, we review the key setting of the RSA cryptosystem [12], especially of
the PKCS #1 standard [10]. The public key is (N, e) and the secret key is
sk = (p, q, d, dp, dq, q

−1 mod p). As in the previous works, we also ignore the last
component q−1 mod p in the secret key. The public and secret keys have the
following relations:

N = pq, ed ≡ 1 (mod (p−1)(q−1)), edp ≡ 1 (mod p−1), edq ≡ 1 (mod q−1).



From the key setting, there exist some integers k, kp, kq such that

N = pq, ed = 1 + k(p − 1)(q − 1), edp = 1 + kp(p − 1), edq = 1 + kq(q − 1). (1)

Suppose that we know the exact values of k, kp, and kq. There exist five un-
knowns (p, q, d, dp, dq) in Eq. (1). Then, if we know just one of the exact values
of unknowns, we can easily obtain the others.

The small public exponent e is usually used in practical applications [13], so
we suppose that e is small enough such that e = 216 + 1 in the same manner as
[5, 6]. We need to find k, kp, and kq for small e. See the full version for how to
compute k, kp and kq in our method.

In the Heninger-Shacham method [6], HMM method [5] and our new method,
a secret key sk is recovered by using a binary-tree-based technique. Here we
explain how to recover secret keys, taking sk = (p, q, d, dp, dq) as an example.

First we mention generating the tree. Since p and q are n/2 bit prime numbers
and half of the most significant bit (MSB) of d is efficiently computable in the
Heninger-Shacham or HMM methods [5, 6], there exist at most 2n/2 candidates
for each secret key in {p, q, d, dp, dq}.

Heninger and Shacham [6] define the i-th bit slice for each bit index i and
we denote by

slice(i) := (p[i], q[i], d[i + τ(k)], dp[i + τ(kp)], dq[i + τ(kq)]).

Assume that we have computed a partial solution sk′ = (p′, q′, d′, d′p, d
′
q) up to

slice(i − 1). Heninger and Shacham [6] applied Hensel’s lemma to Eq. (1) and
presented the following equations

p[i] + q[i] = (N − p′q′)[i] mod 2, (2)
d[i + τ(k)] + p[i] + q[i] = (k(N + 1) + 1 − k(p′ + q′) − ed′)[i + τ(k)] mod 2,

(3)

dp[i + τ(kp)] + p[i] = (kp(p′ − 1) + 1 − ed′p)[i + τ(kp)] mod 2, (4)

dq[i + τ(kq)] + q[i] = ((kq(q′ − 1) + 1 − ed′q)[i + τ(kq)] mod 2. (5)

We can easily see that p[i], q[i], d[i+ τ(k)], dp[i+ τ(kp)], and dq[i+ τ(kq)] are not
independent and the degree of freedom is 1. Therefore, each Hensel lift yields
exactly two candidate solutions. Then, the number of all candidates is given by
2n/2. The root node is given by slice(0) = (1, 1, d[τ(k)], dp[τ(kp)], dq[τ(kq)]).

Next we explain a pruning step, in which we count the number of matching
bits between a bit sequence given by a node sequence and the corresponding bit
sequence of a noisy secret key. We then discard or leave each node according to
given criteria.

Section 2.3 briefly overviews the Heninger-Shacham method, which is for the
case of an erroneous version sk with an erasure rate δ of sk. And in section 2.4
we mention the HMM method for an erroneous version sk with error rate ε.



2.3 Heninger-Shacham Method [6]

In the Heninger-Shacham method, a binary tree is constructed by iterating an
expansion phase and a pruning phase. At the pruning step, we compare a bit
sequence given by one node with the corresponding bit sequence given by sk.
Then we discard a node containing a bit not matching with the corresponding
bit of sk, skipping the bit corresponding to an erasure bit of sk.

In the Heninger-Shacham method, discarded nodes are exactly wrong nodes,
so the node corresponding to the correct solution consistently remains. Therefore,
the success probability of the Heninger-Shacham method is 1. The computational
cost of Heninger-Shacham method is evaluated with the number of remaining
nodes of the binary tree, and depends on erasure rate δ. Therefore, Heninger
and Shacham estimated the upper bound of δ such that the expected number of
remaining nodes yielded from one wrong node is less than 1 under the following
assumption:

Assumption 1 The bit slice corresponding to a wrong node consists of random
bits.

This assumption is also used in the analysis of [5] and our new method.
Heninger and Shacham showed that their method recovers the secret keys

provided that δ ≤ 0.73 if the noisy secret key is of the form (p, q, d, dp, dq),
namely m = 5. If we use the noisy secret information (p, q), the secret key (p, q)
can be obtained provided that δ ≤ 0.43. For general m of the involved secret
information, the secret key can be recovered provided that δ ≤ 2

m−1
m −1. We can

see that the right-hand side of the above inequality is approximated by 1− 2 ln 2
m

for large m.
The Heninger-Shacham algorithm requires that the non-erasure bit is correct.

However, this requirement is too idealistic in the physical attacks such as a cold
boot attack, as described in Section 1.2. If the observed secret key contains an
error, the Heninger-Shacham algorithm never finds the correct secret keys. We
provide a simple example. Assuming that ε = 0.001, we can regard the error rate
as extremely small. Nevertheless, the number of errors in secret keys is expected
to be 512 × 5 × 0.001 = 2.56(> 2). Due to there being only two errors, the
Heninger-Shacham algorithm does not work.

2.4 Henecka-May-Meurer Method [5]

We briefly explain the HMM method. For an erroneous version sk with error rate
ε, if we discard every node having a bit not matching the corresponding bit in sk,
sk is never recovered since the leaf node corresponding to the correct solution
does not remain. Therefore, the binary tree is separated into partial trees whose
depth is t, and then the pruning step is performed for each partial tree. Actually,
mt bits of the node sequence from the root node of the partial tree to the leaf
node of the partial tree are compared with the corresponding bit of sk. If the
number of matches is less than C ∈ [0,mt], the leaf node is discarded. Since the
remaining nodes of the binary tree decrease if the threshold value C increases, the



computational cost decreases and the success probability decreases. Especially
the pruning step is not practically performed when C = 0, and we never obtain
sk when C = mt. Henecka et al. considered the two following restrictions, which
help to decide how to choose parameters (t, C). Note that E[X] is the mean of
a random variable X.

Restriction 1 Let Zb,i be the number of bad candidates generated from one bad
partial solution at the i-th pruning step. Then, we choose parameters (t, C) so
that E[Zb,i] ≤ 1/2 holds.

Restriction 2 For each pruning step, we choose parameters (t, C) so that the
probability that the correct node is discarded is less than 1/n.

The HMM method recovers the secret keys (p, q, d, dp, dq) if the error rate ε of
the noisy keys is not larger than 0.237. If we use the noisy secret information or
(p, q), the secret key (p, q) can be obtained, provided that ε ≤ 0.084. For general
m of the involved secret information, the secret key can be recovered provided
that ε ≤ 1/2 −

√
ln 2/2m.

2.5 Naive Method Based on HMM Method

As mentioned, our main purpose is to recover secret keys from the noisy keys
with both erasures and errors (that is, obtained through the BEE model). The
following naive algorithm, which is not described in the literature, is sufficient
for merely achieving this purpose.

Naive Method
Input: Public key (N, e), observed secret key sk, erasure probability δ and error

probability ε
Output: Correct secret key sk
Step 1: Transform sk to sk

′
by substituting random bits into erasure positions

of sk.
Step 2: Perform the HMM method with the sequence sk

′
and the error prob-

ability ε + δ
2 as inputs.

We evaluate the success condition of the algorithm. Each erasure bit will
change a correct bit with probability 1/2 and a wrong bit with 1/2. The secret
key sequence transformed in Step 1 can be considered a sequence with erasure
probability 0 and error probability ε + δ

2 . By applying the success condition for
the BS model, we have the following condition for the naive method:

ε + δ/2 ≤ 1/2 −
√

ln 2/(2m). (6)

Although the algorithm does work for the noisy secret key for the BEE model,
the above algorithm is not better than expected. There are some drawbacks to
the naive method. Assuming that ε = 0, the condition is described as δ ≤
1 −

√
2 ln 2/m. This condition is clearly worse than that of Heninger-Shacham:



δ ≤ 1 − 2 ln 2
m . Next, we discuss the case where the error probability ε is very

small but not zero, which is a natural situation in the cold boot attack scenario.
For example, we assume that m = 5, δ = 0.6 and ε = 0.001. Considering that
the Heninger-Shacham algorithm works well if δ = 0.73 and ε = 0, it is natural
that we expect that the key recovery succeeds if δ = 0.6, ε = 0.001. However,
the condition that δ = 0.6 and ε = 0.001 does not satisfy Eq. (6), and the naive
method then cannot recover the secret key if δ = 0.6 and ε = 0.001. Our main
goal in this paper is to propose a method that works in that case.

3 Recovering Secret Key from Noisy Secret Keys in BEE
Model

Let sk be an erroneous version of a secret key sk with erasure rate δ and error
rate ε. The main purpose of our algorithm is to recover the original secret key
from the observed sk with the help of redundancy. We propose an algorithm to
recover sk from sk by using the binary-tree-based technique as in the Heninger-
Shacham method [6] and HMM method [5]. Our algorithm is a combination of
the two methods.

In our algorithm, the binary tree is separated into partial trees, and the prun-
ing step is executed for every partial tree with threshold values as with the HMM
method. Analysis of our algorithms then requires Assumption 1, Restrictions 1
and 2 in the same manner as with the HMM method.

Lesson Learned from Failure of Naive Method In the naive method
described in section 2.5, we transform the erasure bit to the error bit with prob-
ability 1/2. This worsens the success condition. Any erasure bit should then be
handled as erasure not error.

3.1 Our Proposed Method

In the HMM method [5], the noisy secret key sequence sk is divided in an mt-
bit subsequence to construct a partial tree, where t is a fixed integer. On the
other hand, in our new method we divide the sequence in a T -bit subsequence
skipping erasure bits in sk. We show a small example for m = 3 and T = 4.
First, we explain how to divide bits for the i-th pruning step. Let E be the
error symbol in sk. Suppose that we have divided bits until the bit ps in the
s-th node [ps, qs, E] at the (i − 1)-th pruning step, and the following nodes are
given: [ps, qs, E], [ps+1, E, ds+1], [ps+2, qs+2, ds+2]. Then, since the i-th pruning
step will be performed for T bits skipping bits corresponding to E in sk, we
check the bits corresponding to qs, ps+1, ds+1, ps+2. Here we denote by ti the
length of a node sequence that is newly generated for the i-th pruning step, and
denote by ∆i the number of E in sk at the i-th pruning step. In the example,
ti = 2 and ∆i = 2. Since the condition T ≥ m practically holds, we have that

ti = d(T + ∆i)/me or d(T + ∆i)/me − 1. (7)



In the HMM method, only one threshold value C is used. In contrast, we use
threshold values C1, . . . , C` when sk is separated into ` intervals. Theorem 2 in
Section 3.2 provides how to set each Ci. Note that unknown values of k, kp and
kq are efficiently computable from sk. We show the details of how to compute
them in the full version.

New method
Input: Public key (N, e), noisy secret key sk, error probability ε and erasure

probability δ
Output: Correct secret key sk.
Step 1: Compute k, kp, kq and slice(0).
Step 2: Compute (T,C1, . . . , C`).
Step 3: From i = 1 to `, perform the following computation. Set t0 = 0:

Compute ti slices: slice(1+
∑i−1

j=0 tj), slice(2+
∑i−1

j=0 tj), . . . , slice(
∑i

j=0 tj)
and generate a partial tree whose depth is ti +1. For T bits skipping erasure
bits sk, count the number of matches of bits in partial solutions with the
corresponding bits in sk. If it is not less than Ci, then set i = i + 1 and go
to the generating of a partial tree step. Otherwise, discard the node.

Step4: For each remaining leaf node, check whether the nodes are indeed the
valid secret key with the help of public information.

Remark 1. Suppose that ε = 0. Our method for T = C = 1 is equivalent
to the Heninger-Shacham method [6]. Suppose that δ = 0. Our method with
(T,C, C, . . . , C) is equivalent to the HMM method [5] with (T/m,C). Our method
includes both of the two methods.

3.2 Analysis of Our Proposed Method

This section provides the analysis of our proposed method. The proofs of theorem
and corollary in this section are given in Appendix A.

Theorem 2. Suppose that Assumption 1 holds. Let (N, e) be an RSA public key
with n-bit N and fixed e. We choose

T =
⌈

lnn

2ε′2

⌉
, γi =

√
ti + 1

T

ln 2
2

, Ci = T

(
1
2

+ γi

)
, (8)

where ti and ∆i are defined in section 3.1. Furthermore, let sk = (sk1, . . . , skm)
be an RSA secret key with noise rate ε such that

1
2

+ γi ≤ 1 − (T + ∆i)ε
T

− ε′ (9)

for every i. Then, Restrictions 1 and 2 hold for every fixed ε′ > 0. Our method
also corrects sk in expected time O(n2+2( ln 2

2mε′2
+ ∆

m
ln 2
ln n )) with success probability

at least 1 −
(

(1−δ)mε′2

ln n + 1
n

)
, where ∆ = max{∆i} and δmn/2 =

∑
∆i.

By Theorem 2, we have the corollary.



Corollary 1 Suppose that Assumption 1 holds and that the number of erasure
bits is ∆ for each block. We choose

T =
⌈

lnn

2ε′2

⌉
, t =

T + ∆

m
, γ =

√(
1 +

1
t

)
ln 2
2m

, C = T

(
1
2

+ γ

)
.

If δ and ε satisfy

ε +
δ

2
≤ 1

2
−

√(
1 +

1
t

)
(1 − δ) ln 2

2m
− (1 − δ)ε′, (10)

then our method satisfies Restrictions 1 and 2 for every fixed ε′ > 0. It also
corrects sk in expected time O(n2+2( ln 2

2mε′2
+δt ln 2

ln n )) with success probability at least
1 −

(
(1−δ)mε′2

ln n + 1
n

)
.

Remark 2. For sufficiently large n, t goes to infinity and thus γ converges to√
ln 2
2m . This implies that our algorithm asymptotically works if

ε +
δ

2
≤ 1

2
−

√
(1 − δ) ln 2

2m
− ε′ (11)

and succeeds with a probability close to 1. Hereafter, we ignore the term “−ε′”
for simplicity.

If the erasure rate δ is 0, then the new method is equivalent to the HMM
method [5] by Corollary 1. Therefore, the new method naturally combines the
results of the Heninger-Shacham and HMM methods. The upper bound of the
new method coincides with that of Heninger-Shacham for ε = 0 and that of
the HMM method for δ = 0. Finally, we confirm that our algorithm works
well for δ = 0.6, ε = 0.001. Remember that our algorithm works provided that
ε + δ/2 ≤ 1/2− 0.263

√
1 − δ. The left-hand side is given by 0.301 and the right-

hand side is given by 0.334; the left-hand side is less than the right-hand side.
Our algorithm works in that case.

4 Implementation and Experiments

We implemented our algorithm in the Risa/Asir [11] computer algebra system
and used the program on an Intel Xeon X5570 at 2.93 GHz with 72 GB memory
of DDR3 at 1333 MHz. In our experiments for 1024-bit RSA, we prepared 100
different tuples of secret keys sk, e.g. sk = (p, q, d, dp, dq). For a fixed ε and δ, we
generated one erroneous version sk for each of sk. For a given T , the threshold
value Ci is determined by using Eq. (8).

Table 1 shows the experimental results for the case of sk = (p, q, d, dp, dq),
ε = 0.01, and T = 40. Note that the erasure rate δ was selected to be smaller than
the theoretical bound 0.684 estimated by Eq. (11). Similarly, but for T = 75, we



Table 1. Experiments for sk = (p, q, d, dp, dq), n = 1024, ε = 0.01, and T = 40

δ 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

success rate 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.91 0.42 0.02
average time (s) 0.45 0.57 0.83 0.98 0.99 1.41 1.75 1.91 2.05 2.24 2.07 1.56 0.97 0.59

Table 2. Experiments for sk = (p, q), n = 1024, ε = 0.01, and T = 75

δ 0 0.05 0.10 0.15 0.20 0.25

success rate 1.00 1.00 0.97 0.91 0.42 0.04
average time (s) 14.06 5.86 3.26 1.07 0.25 0.08

also conducted the experiments for the case of sk = (p, q) and the results are
given in Table 2.

For fixed n, ε, and T , if an erasure rate δ becomes large, then the average of
depth ti becomes large with the increase in δ by Eq. (7). The average of threshold
values Ci also increase because of the process of determining Ci, namely, Eq. (8).
We determine these Ci’s to satisfy Restriction 1 for the fixed T , so the success
rate of our algorithm becomes small as Tables 1 and 2 show. If we use T = 80
instead of T = 40 for the case of Table 1, the success rate for δ = 0.65 increases
to 0.21 from 0.02 and the average time becomes 40.14 seconds.

5 Theoretical Bound

This section derives a theoretical upper bound for key recovery from noisy secret
keys with errors and erasures in polynomial time.

First, we define the Hamming distance between two l-bit sequences; the sym-
bol of one sequence (Sequence 1) is {0, 1} and that of the other sequence (Se-
quence 2) is {0, 1, E}, where E is an erasure symbol. We denote the number of
positions at which the corresponding symbols are different by h. We also de-
note the number of symbols E in Sequence 2 by a. We define the Hamming
distance b between two sequences by b := h − a. We also have the equivalent
definition of Hamming distance as follows. First, remove the bit of the position
at which the symbol in Sequence 2 is E in Sequence 1 and remove the symbol
E in Sequence 2. We define the Hamming distance between Sequences 1 and 2
by the ordinary Hamming weight between resulting sequences. For example, the
Hamming weight between 1111 and 1E01 is 1.

We recall some known facts about the binary Entropy function. Remember
that the binary Entropy function H(x) is defined by H(x) = −x log x − (1 −
x) log(1 − x). It is well known that the following inequalities hold between the
number of combinations and the binary Entropy [3].

Lemma 1. For any positive integer n and w(≤ n), it holds that

1√
8w(1 − w/n)

2nH(w/n) ≤
w∑

i=0

(
n

i

)
≤ 2nH(w/n). (12)



It is known that H(x) can be represented by the following sum of an infinite
series:

H(x) = 1 − 1
ln 2

∞∑
u=1

1
2u(2u − 1)

(2x − 1)2u. (13)

5.1 Maximal-likelihood-based Approach

We consider the following meta-algorithm.

Meta-Algorithm for Recovering Keys
Input: Public key (N, e) and noisy secret key sk, (ε, δ)
Output: Correct secret key sk
Step 1: Expansion Phase (Virtually) generate a candidate set C by using the

public information and Eqs. (2)–(5). Note that the number of elements of C
is given by 2n/2−1.

Step 2: Pruning Phase Discard the candidate that is not consistent with sk.
We denote the obtained set by C∗.

Step 3: Finalization Phase Test whether each candidate solution in C∗ is in-
deed the correct sk with the help of public information

The design of Step 2 is crucial for our algorithm. It is important to adequately
determine criteria in Step 2 so that the correct solution c is not discarded dur-
ing Step 2 in C∗ and |C∗| is as small as possible. We discuss concrete criteria
for discarding a candidate solution in Step 2. In order to do so, we adopt the
maximal-likelihood-based approach.

Our analysis relies on a similar heuristic assumption as that in [5] and [6].

Assumption 2 Every candidate solution in C is a bit-wise sum of n/2 − 1
randomly chosen bit and the correct sequence c.

We denote a candidate solution by c ∈ C. We discuss the conditional prob-
ability that we observed sk under the condition that c is the correct solution.
We denote the conditional probability by Pr(sk; c) and we refer to Pr(sk; c) as
likelihood. In the maximal likelihood-based-approach, we decide that candidate
that maximizes Pr(sk; c) is the correct solution.

This probability is simply evaluated as follows:

Pr(sk; c) = δaεb(1 − ε − δ)mn/2−a−b = (δ/(1 − ε − δ))aεb(1 − ε − δ)mn/2−b,

where a is the number of erasure symbols in sk and b is the Hamming distance
between sk and c.

Since a does not depend on the choice of c, it is sufficient to find b that max-
imizes the likelihood. If b is smaller, the likelihood is obviously bigger. Then,
it is sufficient to find the solution c with the smallest Hamming distance to
sk for finding the solution that maximizes the likelihood. The Hamming dis-
tance bc between the correct solution and sk is bc ≈ mnε

2 with high probability.



Meanwhile, the Hamming distance bw between the wrong solution and sk is
bw ≈ m× n

2 × 1−δ
2 (> mnε

2 ) with high probability. Then, it is sufficient to find the
solution whose Hamming distance is mnε/2 in order to find the solution with
maximal likelihood.

Remark 3. The computation of our proposed algorithm described in section 3
corresponds to finding the solution whose Hamming distance is less than m ×
n
2 × (1− δ)× ( 1

2 − γ) for small positive γ. This implies that the correct solution
is not discarded and falls within C∗ with high probability. However, the size of
C∗ increases.

Remark 4. It is obviously impossible to execute Step 2 if the computational time
is limited to a polynomial of n. In practice, we need to divide the candidate se-
quence into several sub-sequences and execute the expansion and pruning phase
as in our proposed algorithm in section 3.

5.2 Deriving Theoretical Upper Bound

We derive the condition such that the meta-algorithm can never recover the
secret key in polynomial time. This can be done by counting up the candidate
solution that is not discarded during Step 2 and deriving the condition of (ε, δ)
when the number of candidate solutions exceeds the polynomial of n.

We note that the candidate solution c is consistent with the observed solution
sk in Step 2 of the meta-algorithm if the following criteria hold.
CRITERIA The Hamming distance between c and sk is less than mnε/2.

Note that the expected bit length of the sequences removing erasures is given
by mn(1 − δ)/2. The probability Pr that one candidate c is consistent with sk
is evaluated by

Pr =
∑mnε/2

i=0

(
mn(1−δ)/2

i

)
2mn(1−δ)/2

. (14)

From Lemma 1, Eq. (14) is lower bounded by

Pr ≥ 2−mn(1−δ)(1−H(ε/(1−δ)))/2. (15)

We define C(ε, δ) by C(ε, δ) := (1 − δ)(1 − H(ε/(1 − δ))). Then, the probability
is larger than 2−mnC(ε,δ)/2. Since the number of candidate solutions is 2n/2, the
expected number of candidate solutions consistent with the observed sequence
sk is lower bounded by 2n/22−mnC(ε,δ)/2 = 2n(1−mC(ε,δ))/2.

Suppose that ε and δ satisfy the condition: C(ε, δ) < 1/m. This implies that
1 − mC(ε, δ) > 0. Then, the expected number of candidate solutions consistent
with sk is an exponential function of n. Step 3 then requires the exponential
testing of whether the candidate is indeed the secret key. Hence, the total com-
putational time of the whole algorithm is actually exponential.

Conversely, suppose that C(ε, δ) ≥ 1/m. Then, the number of candidate so-
lutions is at most a polynomial of n and the total computational time dominates
Step2. This means that it depends on C(ε, δ) and 1/m whether there exists an al-
gorithm that recovers in polynomial time of n. We show an information-theoretic
view of our theoretical bound in the full version.



5.3 Discussion

Fig.1 shows achievable regions for the naive method and our proposed method
in addition to the theoretical bound with m = 5. Note that all the values that lie
below the respective line concerning the naive method and proposed method are
vulnerable to each of the attacks and all the values that lie above the line about
theoretical limitation are not solvable in polynomial time. We can see that the
bound for our method nearly achieves the theoretical bound, but there is still a
small gap.

Fig. 1. Upper bounds of naive method and new method, and theoretical limitation

Table 3 shows the success conditions for three noise models; the upper is the
bound the best-known algorithm achieves and the lower is the theoretical bound.

Table 3. Success Conditions of Heninger-Shacham, HMM, and our Proposed Methods

model BE model（ε = 0） BS model (δ = 0) BEE model

best known algorithm Heninger-Shacham [6] HMM [5] Proposed Method in Sec. 3

2 algorithm δ ≤ 0.43 ε ≤ 0.084 ε + δ/2 ≤ 1
2
− 0.416

√
1 − δ

2 theoretical bound δ ≤ 0.5 ε ≤ 0.110 (ε, δ) s.t. C(ε, δ) ≥ 1/2

5 algorithm δ ≤ 0.73 ε ≤ 0.237 ε + δ/2 ≤ 1
2
− 0.263

√
1 − δ

5 theoretical bound δ ≤ 0.8 ε ≤ 0.243 (ε, δ) s.t. C(ε, δ) ≥ 1/5

m algorithm δ ≤ 1 − 2 ln 2
m

ε ≤ 1
2
−

q

ln 2
2m

ε + δ
2
≤ 1

2
−

q

(1−δ) ln 2
2m

m theoretical bound δ ≤ 1 − 1
m

ε s. t. H(ε) ≤ 1 − 1
m

(ε, δ) s.t. C(ε, δ) ≥ 1/m



5.4 Our Algorithm Achieves Second-order Expansion of Theoretical
Bound

We present a strong bridge between the theoretical bound and achieved regions.
We define the whole parameter space I by I := {(ε, δ)|0 ≤ ε < 1/2, 0 ≤ δ < 1}
and define H by

H :=
{

(ε, δ)|0 ≤ ε < 1/2, 0 ≤ δ < 1, (1 − δ)
(

1 − H

(
ε

1 − δ

))
≥ 1

m

}
.

The discussion in Section 5.3 shows that we cannot recover the secret keys in
polynomial time if (ε, δ) ∈ I/H. This argument suggests that we have a chance
to recover the secret key in polynomial time if (ε, δ) ∈ H. However, it does not
guarantee that we can recover the secret keys if (ε, δ) ∈ H. As shown in Fig. 1,
there exists a small gap between our theoretical bound and the achieved regions.
We give a strong relation between the two regions.

From Eq. (13), C(ε, δ) < 1/m can be represented as follows:

∞∑
u=1

(1 − δ)
2u(2u − 1)

(
1 − δ − 2ε

1 − δ

)2u

≤ ln 2
m

, (16)

which is a representation not explicitly used by the binary Entropy H(·). Con-
sider the condition truncated by u = k and denote the condition by Hk

Hk :=

{
(ε, δ)|0 ≤ ε < 1/2, 0 ≤ δ < 1,

k∑
u=1

(1 − δ)
2u(2u − 1)

(
1 − δ − 2ε

1 − δ

)2u

≤ ln 2
m

}
.

Obviously, it holds that Hi ⊆ Hj if i ≤ j for any i, j ∈ Z and it holds that
limk→∞ Hk = H.

We focus on the region H1. By simplifying the condition corresponding to
H1, we have the equivalent condition:

1 − δ − 2ε ≥
√

2(1 − δ) ln 2/m.

This is equivalent to the condition obtained in section 3: Eq. (11) if we neglect
the small term ε. This implies that our proposed algorithm can recover the secret
key in polynomial time if (ε, δ) ∈ H1.
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A Proofs of Theorem 2 and Corollary 1

A.1 Proofs of Theorem 2

First, we discuss how to determine the threshold value Ci satisfying Restriction 1
for a fixed T . Note that ti and ∆i are uniquely determined if T is fixed once.

In one i-th partial tree of the binary tree, there are 2ti candidates. Thus we
defines 2ti variables Zj

b,i for j = 1, . . . , 2ti as

Zj
b,i =

{
1 (j-th bad candidate passes)
0 (otherwise.)

Then, the number of bad candidates Zb,i given in Restriction 1 is described as
Zb,i =

∑2ti

j=1 Zj
b,i. Since all Zj

b,i are identically distributed, there exists an integer
j such that E[Zb,i] = 2tiE[Zj

b,i].
Here we consider the number Xb,i of matching bits between sk and one

bad candidate at the i-th pruning step skipping bits corresponding to erasure



positions of sk. Since T bits of a bad candidate are compared with the corre-
sponding bits of sk, we have that Xb,i ∼ Bin(T, 1/2) by Assumption 1. The
condition Zj

b,i = 1 is equivalent to that Xb,i ≥ Ci, and thus E[Zj
b,i] = Pr[Zj

b,i =
1] = Pr[Xb,i ≥ Ci]. Supposing that

Ci = T

(
1
2

+ γi

)
, (17)

we have Pr[Xb,i ≥ Ci] ≤ exp(−2Tγ2
i ) from Theorem 1. Therefore, we obtain

that E[Zb,i]/2ti = E[Zj
b,i] ≤ exp(−2Tγ2

i ). By setting

γi =

√
ti + 1

T

ln 2
2

, (18)

we have exp(−2Tγ2
i ) = 2−(ti+1). Restriction 1 holds since E[Zb,i] ≤ 2ti exp(−2Tγ2

i ) =
1/2.

Let Yi be the number of all bad candidates passing the i-th pruning step.
Then, we have the following lemma.

Lemma 2. Suppose that γi and Ci satisfy Eqs. (17) and (18) for a fixed T .
Then, it holds that E[Yi] < 2max{tj}i

j=1+1.

Proof. At the i-th pruning step, let Zg,i be the number of bad candidates gener-
ated from the correct solution, and Zb,i the number of bad candidates generated
from one bad partial solution. Then, the following holds:

E[Y1] = E[Zg,1], E[Yi] = E[Zg,i] + E[Zb,i]E[Yi−1]. (19)

Since the number of candidates is 2ti , we have E[Zg,i] ≤ 2ti . For a given T ,
namely a fixed ti, we determine γi and Ci so that Restriction 1 holds. From
(19), we have

E[Yi] < 2ti +
E[Yi−1]

2
< 2max{tj}i

j=1
1 − (1/2)i

1 − 1/2
< 2max{tj}i

j=1+1.

Then, we have the lemma. 2

Next we discuss T such that Restriction 2 holds. Let Xc,i be the number
of matching bits between sk and the correct solution at the i-th pruning step
without the bits corresponding to erasure positions of sk. Since we see total
(T + ∆i) bits and the T bits of them correspond to the non-erasure position of
sk, the probability that a bit of a correct solution matches the corresponding
bit of sk is (T − (T + ∆i)ε)/T = 1 − (T + ∆i)ε/T . Therefore, since Xc,i ∼
Bin(T, 1 − (T+∆i)ε

T ), we suppose that

1
2

+ γi ≤ 1 − (T + ∆i)ε
T

− ε′,

for any i. From Theorem 1, we have that

Pr[Xc,i < Ci] ≤ Pr
[
Xc,i < T

(
1 − (T + ∆i)ε

T
− ε′

)]
≤ exp(−2Tε′2).



Since we consider T such that Restriction 2 holds, exp(−2Tε′2) ≤ 1/n. Therefore,
we have T ≥ lnn/2ε′2, and so we set T = dln n/(2ε′2)e.

By considering the above discussion, we have Theorem 2. The proof of The-
orem 2 is given in detail below.

Proof. First we show that the total expected computational cost of the new
method is O(n2+2( ln 2

2mε′2
+ ∆

m
ln 2
ln n )). One node is computable in time O(n), so the

partial tree is generated in time O(n2ti) since there are
∑ti−1

j=0 2j(< 2ti) nodes.
The pruning step can be performed in time O(ti) for each of 2ti candidates,
and thus the total time complexity for pruning is O(ti2ti). Therefore, the time
complexity for one partial tree is O((n + ti)2ti) = O(n2ti). For a given T , we
suppose that the erroneous version sk is separated into ` parts. By Eq. (7), ti
is bounded by t∗i = dT+∆i

m e. Let t∗ be the maximum integer of t∗1, . . . , t
∗
` . By

Lemma 2, the upper bound for the expected total number E[Y ] of partial trees
is given by E[Y ] < 1 +

∑`−1
j=1 E[Yj ] < `2t∗+1 ≤ n2t∗+1 = O(n2t∗). Let ∆ be the

∆i corresponding to t∗. Then, the total expected computational cost is

O(n2t∗ · n2t∗) = O(n2n2t∗ ln 2
ln n ) = O(n2n2 T+∆

m
ln 2
ln n ) = O(n2+2( ln 2

2mε′2
+ ∆

m
ln 2
ln n )).

Next we discuss the success probability of the new method. Note that Ci, γi

and T are determined so that Restriction 2 holds. Hence the success probability
is given by

∏̀
i=1

(1 − Pr[Xc < Ci]) ≥
(

1 − 1
n

)`

≥ 1 − `

n
≥ 1 −

(
(1 − δ)mε′2

lnn
+

1
n

)

since ` ≤
n
2 (1−δ)m

T + 1. 2

A.2 Proofs of Corollary 1

To give the proof of Corollary 1, we begin with the discussion of Eq. (9) in
the analysis of our method. For simplicity, we consider only the case where all
δi’s are the same4, for example, δi = δ. Suppose that sk is separated into `
fractions. Then, each part consists of mn/2` bits. By letting t = n/2`, we have
∆ = δtm and T = tm − ∆ = (1 − δ)tm, so we can describe γi in Theorem 2 as√

t+1
(1−δ)tm

ln 2
2 . Hence, in this case, the upper bound (9) implies that

ε +
δ

2
≤ 1

2
−

√(
1 +

1
t

)
(1 − δ) ln 2

2m
− (1 − δ)ε′.

4 For a large enough T , it holds with high probability. More precisely, all of δi takes
the value close to δT/(1 − δ) with overwhelming probability, which can be proved
by the similar analysis of [6].


