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Abstract. In CRYPTO 2010, Wee proposed the notion of “extractable hash proof
systems” (XHPS), and its richer version, “all-but-one XHPS” (ABO-XHPS), and
showed that chosen ciphertext secure (CCA secure) key encapsulation mecha-
nisms (KEM) can be constructed from them. This elegantly explains several re-
cently proposed practical KEMs constructed based on the “all-but-one” simula-
tion paradigm in a unified framework. Somewhat frustratingly, however, there
still exist popular KEMs whose construction and security proofs are not captured
by this framework. In this paper, we revisit the framework of the ABO-XHPS-
based KEM. Firstly, we show that to prove CCA security of the ABO-XHPS-
based KEM, some requirements can be relaxed. This relaxation widens the ap-
plicability of the original framework, and explains why many known practical
KEMs can be proved CCA secure. Moreover, we introduce new properties for
ABO-XHPS, and show how one of the properties leads to KEMs that achieve
“constrained” CCA security, which is a useful security notion of KEMs for ob-
taining CCA secure public key encryption via hybrid encryption. Thirdly, we
investigate the relationships among computational properties that we introduce
in this paper, and derive a useful theorem that enables us to understand the struc-
ture of KEMs of a certain type in a modular manner. Finally, we show that the
ABO-XHPS-based KEM can be extended to efficient multi-recipient KEMs. Our
results significantly extend the framework for constructing a KEM from ABO-
XHPS, enables us to capture and explain more existing practical CCA secure
schemes (most notably those based on the decisional Diffie-Hellman assump-
tion) in the framework, and leads to a number of new instantiations of (single-
and multi-recipient) KEMs.

Keywords: key encapsulation mechanism, extractable hash proof system, chosen
ciphertext security, constrained chosen ciphertext security.

1 Introduction

Background and Motivation.Studies on constructing and understanding practical pub-
lic key encryption (PKE) schemes secure against chosen ciphertext attacks (CCA secu-
rity) [24, 9] are important research themes in the area of cryptography. Among several
approaches towards practicalCCA secure PKE schemes, the promising approach is to
construct a PKE scheme via the hybrid encryption methodologies using a key encap-
sulation mechanism (KEM) and a data encapsulation mechanism (DEM). Cramer and



Shoup [8] show that if we combine aCCA secure KEM and aCCA secure DEM, then
we obtain a hybrid PKE scheme which isCCA secure. Hofheinz and Kiltz [17] intro-
duce a security notion calledconstrained CCAsecurity (CCCA security), and show that
a CCA secure PKE scheme can be constructed by combining aCCCA secure KEM and
a DEM satisfying the security of (one-time) authenticated encryption [2]. These results
enable us to concentrate on studying practical constructions of (C)CCA secure KEMs,
for obtaining practical PKE schemes.

Seeing in a larger perspective, there are two general paradigms towardsCCA secure
PKE schemes: the first paradigm uses non-interactive proofs of “well-formedness” [10],
which includes the constructions with non-interactive zero-knowledge proofs [22, 9, 25]
that cover generic constructions from cryptographic primitives, and the constructions
with universal hash proof systems[7, 17] that cover practical and efficient schemes
based on specific intractability of decision problems.; The second paradigm uses the
so-called “all-but-one” simulation technique, (e.g. [3, 5, 19, 17, 23, 12, 18, 27]). In fact,
[9] can also be seen to be included in this paradigm. These two paradigms in fact cover
almost all known constructions ofCCA secure PKE schemes and KEMs. Our focus in
this paper is on KEMs constructed based on the second paradigm.

In CRYPTO’10, Wee [27] introduced the notion of “extractable hash proof sys-
tems” (XHPS) and its richer version “all-but-one XHPS” (ABO-XHPS), which are both
a special kind of non-interactive proof system for a family ofone-way relations(which
defines a hard search problem, such as the computational Diffie-Hellman problem), and
showed thatCCA secure KEMs can be constructed from them. This framework elegantly
explains the constructions and the security proofs of several (variants of) recently pro-
posed KEMs (e.g. [6, 18]) based on hardness of “search” problems (not only “decision”
problems), which are proved with the “all-but-one” simulation paradigm.

Somewhat frustratingly, however, there still exist several popular KEMs (e.g. [17,
6, 12]) whose construction and (C)CCA security are not explained by the framework
in [27], although those that cannot be explained by the framework in [27] are quite
similar to those that can be explained. The main motivation of this work is to extend the
framework of KEMs based on ABO-XHPS to capture a wider class of constructions and
security proofs ofCCA secure, and evenCCCA secure, KEMs, so that it works as a more
general framework capturing a wider class of constructions based on the “all-but-one”
simulation paradigm as we categorized above. Such general framework can be expected
to lead to deeper understanding of constructions and security proofs of KEMs and be
useful for future design of (C)CCA secure practical KEMs and PKE schemes, and higher
level primitives/protocols that use those as building blocks.

Our Contribution. In this paper, we revisit and extend the framework for constructing
a KEM based on ABO-XHPS in [27] in several different aspects:

Firstly, we show that to proveCCA security of the ABO-XHPS-based KEM, some
requirement of ABO-XHPS and its associated one-way relation family can be relaxed.
More specifically, the original definition of an ABO-XHPS in [27] requires some un-
necessarily strong “correctness” requirement and a underlying one-way relation family
with which the ABO-XHPS is associated needs to satisfy “gap”-type one-wayness,
which requires that one-wayness holds even in the presence of the decision oracle, and
thus is a stronger type of one-wayness. Instead, we show that as long as the ABO-



XHPS satisfies the property which we callcomputational soundness(CS security, for
short), the ABO-XHPS-based KEM can be shown to beCCA secure with a weaker cor-
rectness requirement for the underlying ABO-XHPS and a weaker (non-gap) one-way
relation. (The formal definitions of an ABO-XHPS and a family of one-way relations
are given in Section 3.) Due to these relaxations, we can treat a wider class of com-
putational assumptions, and the class ofCCA secure KEMs that can be captured by the
framework becomes significantly wider. Most notably, we can now treat the decisional
Diffie-Hellman (DDH) assumption as a one-way relation family, and thus several prac-
tical DDH-based KEMs (e.g. [6, 12]), which was not possible by the original framework
because of the requirement of the “gap”-type one-wayness.

Secondly, we propose another computational property of ABO-XHPS which we call
“pseudorandom extraction property” (PR- Ext security, for short), and show that if an
ABO-XHPS satisfies the property, then the ABO-XHPS-based KEM achievesCCCA se-
curity. This result enables us to explainCCCA security of the KEMs whose construction
and security proof can be understood in the “all-but-one” simulation paradigm. This en-
ables us to castCCCA secure KEMs proposed in [17] and in [13, Sect. 6] in our extended
framework.

Thirdly, we study the computational properties of ABO-XHPS themselves. Specif-
ically, we introduce yet another computational property which we callweak compu-
tational soundness(wCS security, for short), and show thatwCS security is implied by
bothCS security andPR- Ext security. Furthermore, we show how to combine aPR- Ext
secure ABO-XHPS and awCS secure ABO-XHPS to obtain aCS secure ABO-XHPS.
This “transformation,” together with the above mentioned results, enables us to under-
stand the constructions andCCA security of KEMs in a modular manner. For example,
this provides us with an alternative security proof of the Cash et al. KEM [6, Sect. 5.2],
without the “trapdoor test” theorem [6, Theorem 2] that was originally used to prove its
CCA security. Moreover, combined with the above mentioned results, this result enables
us to derive a number of new variants of KEMs [8, 19, 17, 6, 12] that can be shown to
beCCA secure under the DDH or the Hashed DH (HDH) assumption [11].

Finally, we show that the ABO-XHPS-based KEM can be extended to be a multi-
recipient KEM (MR-KEM) [26, 16]. Here, by MR-KEM we mean the one formalized
by Smart [26] in which all recipients recover a same session-key. (This differs from
multi-recipient PKE by Bellare et al. [1] in which each receiver may recover different
message.) From this result, we derive a number of new practical (C)CCA secure MR-
KEMs.

The results in this paper are summarized in Fig. 1. Our results enable us to capture
more existing practical CCA secure schemes than the original framework [27], derive
a number of new practical instantiations of (C)CCA secure (MR-)KEMs, and understand
the structures and security proofs of these schemes. (See Section 6 for more details.)
We believe that the framework of ABO-XHPS extended by our results widely captures
the constructions of KEMs based on the “all-but-one” simulation paradigm and leads to
deeper understanding of the constructions and security proofs of practical KEMs, and
is useful for future design of (C)CCA secure practical (MR-)KEMs.

Due to space limitations, the full proofs of the theorems in this paper will be given
in the full version. We instead give intuitive explanations for each theorem.
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Fig. 1.Summary of our results. Each box with label “X” denotes anX-secure primitive. The arrow
(X→ Y) indicates that anX-secure primitive can be used to construct aY-secure primitive.

Related Work.The relevant general framework of constructions of PKE schemes and
KEMs is be the framework usinguniversal hash proof systemsintroduced by Cramer
and Shoup [7]. This framework, as we mentioned above, can be seen as one of the gen-
eral paradigms using non-interactive proof of “well-formedness”, and captures a wide
class of practical constructions of PKE schemes and KEMs, such as Cramer-Shoup PKE
scheme [8]. Kurosawa and Desmedt [20] showed how to constructCCA secure KEM
directly from hash proof systems. The requirements in the original definition of a uni-
versal hash proof system in [7] (and in [20]) were all statistical (information-theoretic)
ones. Hofheinz and Kiltz [17] introduced computational relaxation for a universal hash
proof system, and showed that the KEM based on a hash proof system in [20] can be
shown to beCCCA secure if the underlying hash proof system satisfies some computa-
tional property.

Wee [28] recently proposed the notion ofthreshold extractable hash proof system,
which can be seen as a generalization of an ABO-XHPS, from “all-but-one” to “all-
but-t.” From it, he showed how to construct threshold signature schemes, threshold
encryption schemes, and broadcast encryption schemes.

2 Preliminaries

In this section, we review the basic notation and the definitions for a (multi-recipient)
KEM. Due to space limitation, the definitions for other basic primitives and computa-
tional intractability assumptions will be given in the full version.

Basic Notation. N denotes the set of all natural numbers, and ifn ∈ N then [n] =
{1, . . . , n}. “x← y” denotes thatx is chosen uniformly at random fromy if y is a finite
set, ory is assigned tox otherwise. IfS is a set, then “|S|” denotes its size. “PPTA”
denotes aprobabilistic polynomial time algorithm. Unless otherwise stated,k denotes
the security parameter. IfA is an algorithm andO is a function, then “AO” denotes that
A has oracle access toO. A functionf(k) : N→ [0, 1] is said to benegligibleif for all
positive polynomialsp(k) and all sufficiently largek ∈ N, we havef(k) < 1/p(k).

Multi-Recipient KEM.Here, we review the definition of a multi-recipient KEM (MR-
KEM). We use the definition formalized by Smart [26], where all recipients recover a
same session-key. A MR-KEMΓ consists of the following five PPTAs:



MSetup: The setup algorithm that takes1k as input, and outputs a set of public param-
eterspub. pub specifies the session-key spaceK.

MKG: The (user’s) key generation algorithm that takespub as input, and outputs a
public/secret key pair(pk, sk). Without loss of generality, we assume that the in-
formation onpub is contained inpk andsk, and we do not writepub for the inputs
of the following algorithms.

MEnc: The encapsulation algorithm that takes a set of public keyspk = (pk1, . . . , pkn)
as input, and outputs a ciphertextc and a session-keyK ∈ K.

MExt: The (deterministic) user’s ciphertext extraction algorithm that takes a useri’s
public keypki, and a ciphertextc (which is output fromMEnc) as input, and outputs
the useri’s ciphertextci.

MDec: The (deterministic) decapsulation algorithm that takes a useri’s secret keyski
and a useri’s ciphertextci as input, and outputs a session-keyK which could be a
special symbol⊥ meaning “invalid”.

We say that a MR-KEM satisfiescorrectness(resp.almost-correctness), if for all pub←
MSetup(1k) and all polynomialsn = n(k), the following probability is zero (resp. neg-
ligible).

Pr[ (pki, ski)← MKG(pub) for i ∈ [n]; (c,K)← MEnc(pk = (pk1, . . . , pkn)) :

MDec(ski,MExt(pki, c)) ̸= K for somei ∈ [n] ]

Security Notions.Here, we recall the definitions of indistinguishability against cho-
sen ciphertext attacks (CCA security) and against constrained chosen ciphertext attacks
(CCCA security) [17].

Let ATK ∈ {CCA, CCCA} andn ∈ N. For a MR-KEMΓ = (MSetup,MKG,MEnc,
MExt,MDec), we define the experimentExptATKΓ,A,n(k) that an adversaryA attacksΓ
under the attack typeATK as follows:

ExptATKΓ,A,n(k) : [ pub← MSetup(1k); (pki, ski)← MKG(pub) for i ∈ [n];

pk← (pk1, . . . , pkn); (c
∗,K∗

1 )← MEnc(pk); K∗
0 ← K; b← {0, 1};

b′ ← AO(pub,pk, c∗,K∗
b ); If b′ = b then return1 else return0 ],

where the oracleO is determined byATK in the following ways: IfATK = CCA, then
the oracleO is the decapsulation oracleO(·, ·) which takes a user index/ciphertext pair
(i, c) as input, and outputs the result of tMDec(ski,MExt(pki, c)). If ATK = CCCA then
the oracleO is theconstrained decapsulation (CDEC) oracleOcdec(·, ·, ·), which takes
a user indexi, a predicatepred : K → {0, 1}, and a ciphertextc as input, and outputs a
response that is calculated as follows:

Ocdec(i, pred, c) =

{
K If MDec(ski,MExt(pki, c)) = K ̸= ⊥ ∧ pred(K) = 1

⊥ Otherwise

Moreover, in both casesATK ∈ {CCA, CCCA}, A is not allowed to submit a query that
contains a user index/ciphertext pair(i, c) satisfyingMExt(pki, c) = MExt(pki, c

∗) to
the oracle.



LetA be an adversary that runs in aCCCA experiment and makes in totalq queries,
and let(ij , predj , cj) beA’s j-th CDEC query. “The running time ofA in the CCCA

experiment” is defined as the sum ofA’s running time and the total of the maximum
running time for evaluating eachpredj submitted byA. “The running time of theCCCA
experiment” is defined as the total running time ofExptCCCAΓ,A (k) minus “the running time
ofA in theCCCA experiment.” For aCCCA adversaryA and an experimentE (not neces-
sarilyExptCCCAΓ,A (k)) thatA runs in, we define the parameter called (plaintext)uncertainty
uncertA,E(k) by:

uncertA,E(k) =
1

q

∑
j∈[q]

Pr[E ;K ← K : predj(K) = 1].

Finally, we say that an adversaryA is avalid CCCA adversaryif (1) “the running time
ofA in theCCCA experiment” is polynomial ink, and (2)uncertA,E(k) is negligible for
all experimentsE whose running time is at most that of “the running time of theCCCA

experiment” thatA runs in.
For a KEMΓ , an adversaryA, ATK ∈ {CCA, CCCA}, andn ∈ N we defineATK

advantageAdvATKΓ,A,n(k) of A byAdvATKΓ,A,n(k) = |Pr[Expt
ATK
Γ,A,n(k) = 1]− 1/2|.

Definition 1. We say that a MR-KEMΓ is CCA secure ifAdvCCAΓ,A,n(k) is negligible for
any PPTAA and any polynomialn = n(k). Furthermore, we say that a MR-KEMΓ
is CCCA secure ifAdvCCCAΓ,A,n(k) is negligible for any validCCCA adversaryA and any
polynomialn = n(k).

Single-Recipient KEM.When we talk about ordinary “single-recipient” KEMs, we
need not consider the setup and user key generation algorithms separately. Therefore,
in order to clarify the difference between multi-recipient KEMs and ordinary KEMs,
we write the key generation, the encapsulation, and the decapsulation algorithms of a
single-recipient KEM byKG, Enc, andDec, respectively (without the prefix “M”). The
syntax and the security notions for single-recipient KEMs are defined similarly to those
of MR-KEMs.

3 Definitions for All-But-One Extractable Hash Proof Systems

In this section, we define an ABO-XHPS and one-way relations which are necessary
for ABO-XHPS, following the definitions in [27]. However, our definitions here are
slightly different from ones in [27], and we also highlight the difference.

3.1 One-Way Relation Families

A family of relations (relation family, for short)R (that supports a PRG) is associated
with the following three PPTAs (RSetup, RSamp, G):

RSetup: The setup algorithm that takes1k as input, and outputs a public/private pa-
rameter pair(pub, pri). pub contains the description of setsU , S,W, andK, from
which we can efficiently sample elements uniformly.pub also fixes one relation



Rpub overU × S. We require that: (1) for allu, there is at most ones such that
(u, s) ∈ Rpub (with overwhelming probability over the choice ofpub), and (2)
givenpri (corresponding topub) and(u, s) ∈ U ×S, whether(u, s) ∈ Rpub or not
is efficiently decidable. For notational convenience, we assume thatpub is provided
as input to the following algorithms, and do not write it explicitly.

RSamp: The sampling algorithm that (takespub as input, and) outputs a pair(u, s) ∈
Rpub so thatu is distributed uniformly overU . The randomness space ofRSamp
isW, and when we need to make the randomness used to sample(u, s) explicit,
we write this process as “(u, s)← RSamp(w)” (in this case,RSamp is treated as a
deterministic algorithm).

G: The (pseudorandom) generator that takes (pub and) an elements ∈ S as input, and
outputsK ∈ K.

Hereafter, we identify a relation familyR with the associated PPTAs(RSetup,RSamp,
G), and in particular, writeR = (RSetup,RSamp,G).

Definition 2. We say thatR = (RSetup,RSamp,G) is aone-way relation familyif the
advantageAdvPRGR,A(k) defined below is negligible for any PPTAA:

AdvPRGR,A(k) = |Pr[(pub, pri)← RSetup(1k); (u, s)← RSamp;

K∗
1 ← G(s);K∗

0 ← K; b← {0, 1}; b′ ← A(pub, u,K∗
b ) : b

′ = b]− 1

2
|.

Furthermore, we say thatR is a gap one-way relation familyif the advantage is negli-
gible for any PPTA adversary that is given access to the “relation” oracle which takes
(u, s) ∈ U × S as input and tells if(u, s) ∈ Rpub or not.

Difference from the Definition in [27].The original definition of one-way relation fam-
ilies in [27] is the “gap” version here. The definition of (non-gap-)one-way relation
family is clearly weaker, thus potentially easier to achieve and captures wider class of
relation families than the gap version. For example, the “gap” one-way relation of [27]
does not capture the HDH-based Diffie-Hellman relation family we introduce below.1

Concrete Example of One-Way Relation Families: Diffie-Hellman Relation.Let G
be a group of prime orderp and letH : G → K be a hash function. We say that
the hashed Diffie-Hellman (HDH) assumption holds in(G,H) if the distributions of
(g, ga, gb, H(gab)) and(g, ga, gb,K) are computationally indistinguishable, whereg ∈
G, a, b ∈ Zp, andK ∈ K are chosen randomly.2

The Diffie-Hellman relation family (that supports a PRGH) RDH, indexed by
pub = (g, gα) ∈ (G)2, is defined byRDH

(g,gα) = {(u, s) ∈ (G)2|s = uα}. The as-
sociated algorithms(RSetup,RSamp,G) are as follows:RSetup setsU = S = G and

1 We note that in [28], Wee introduced the definition of one-way relation families in the same
sense as the one defined here.

2 The DDH assumption is the special case of the HDH assumption in whichH is the identity
function. It is possible that the DDH assumption inG is false while the HDH assumption in
(G, H) holds for someH. For more details about the HDH assumption, see [11, 19, 6, 12] and
the full version of this paper.



W = Zp, picks random elementsg ∈ G andα ∈ Zp, and setspub = (g, h) = (g, gα)
andpri = α. RSamp(w) := (gw, hw). G(s) := H(s). It is straightforward to see that
RDH is a one-way relation family under the HDH assumption in(G, H).

3.2 All-But-One Extractable Hash Proof Systems

An ABO-XHPS is always associated with a relation family. Thus, for notational con-
venience, we denote by “XR” an ABO-XHPSX associated with a relation familyR.
(If R is clear from the context, we often omitR and just writeX .) Informally, an
ABO-XHPS is a special type of “designated-verifier non-interactive zero-knowledge
proof of knowledge,” and it has, as its internal structure, a family of “tag-based” hash
functionsHpk : T × U → {0, 1}∗ indexed by a public keypk (whereT is the tag
space) which represents the relation of an instanceu ∈ U and a (tag-based) “proof”
π = Hpk(tag, u) (with sometag ∈ T ). If π is in a valid form, we can “extract” the
answers to the instanceu satisfying(u, s) ∈ Rpub, using the secret key correspond-
ing to pk. It is possible thatH itself is not efficiently computable. Furthermore,X has
“simulation” algorithms for key generation, extraction, and generating a proof. The first
two algorithms work normally as above, except for one particular tagtag∗ (used for the
simulated key generation process) under which one can generate a valid proof without
a witness (hence the name “all-but-one”).

Formally, an ABO-XHPSX , associated with a relation familyR = (RSetup,

RSamp,G), consists of six PPTAs (XKG, Pub, Ext, X̂KG, P̂riv, Êxt) that satisfy the
following “functional requirements” (correctness) with overwhelming probability over
the choice of(pub, pri)← RSetup(1k):

Extraction Mode For all (pk, sk) ← XKG(pub, pri) and all tuples(tag, u, π): If π
= Hpk(tag, u) then(u,Ext(sk, tag, u, π)) ∈ Rpub, and if π ̸= Hpk(tag, u) then
Ext(sk, tag, u, π) = ⊥.

All-But-One Mode For all tag∗ and all(pk, ŝk)← X̂KG(pub, tag∗):
Private Evaluation undertag∗: For all (u, s) ∈ Rpub: P̂riv(ŝk, u) = Hpk(tag

∗, u).
Extraction: For all tag ̸= tag∗ and all(u, π): If π = Hpk(tag, u) then(u, s) ∈
Rpub, wheres = Êxt(ŝk, tag, u, π). (The case ofπ ̸= Hpk(tag, u) is unspecified.)

Public Evaluation For all pk (output from eitherXKG or X̂KG), tag, and(u, s) =
RSamp(w): Pub(pk, tag, w) = Hpk(tag, u).

Indistinguishability of Two Modes For all tag∗, the two distributions,
{(pk, sk) ← XKG(pub, pri) : pk} and{(pk, ŝk) ← X̂KG(pub, tag∗) : pk}, are
statistically indistinguishable.

In this paper, we also consider a slight relaxation of the extraction property of the
“all-but-one” mode. We say that an ABO-XHPS satisfiesalmost-correctnessif for all
(pub, pri) ← RSetup(1k), all (u, s) = RSamp(w), and all(tag, tag∗) such thattag ̸=
tag∗, the following probability is overwhelming:Pr[(pk, ŝk) ← X̂KG(pub, tag∗) :

Êxt(ŝk, tag, u,Hpk(tag, u)) = s].
We note that the indistinguishability of the two modes implies that the information

on a tagtag∗ is statistically hidden frompk output fromX̂KG(pub, tag∗).



Difference from the Definition in [27].Here, we explain the difference of our definition
of ABO-XHPS and the definition by Wee [27, Sect. 3.4]. Firstly,XKG algorithm in
[27] does not take the private parameterpri as input (while ours does). However, this
restriction is unnecessary for proving (C)CCA security of the ABO-XHPS-based KEM,
and thus we allowXKG to takepri as input.

Secondly, the correctness requirements ofExt andÊxt algorithms in [27] are defined
in an “if-and-only-if” style. More specifically, the correctness requirements ofExt and
Êxt algorithms in [27] are: (i) “π = Hpk(tag, u) ⇔ (u,Ext(sk, tag, u, π)) ∈ Rpub,”

and (ii) “π = Hpk(tag, u) ⇔ (u, Êxt(ŝk, tag, u, π)) ∈ Rpub.” Regarding (i), since the
definition of [27] does not specify what is output fromExt whenHpk(tag, u) ̸= π,
we require that it output⊥. We stress that this is without loss of generality because
given pri, it is possible to tell whether(u,Ext(sk, tag, u, π)) ∈ Rpub or not, andpri
can be contained insk in our definition. The main difference from the definition in this
paper and the one in [27] is regarding (ii), i.e. correctness ofÊxt algorithm. It is clear
that ours requires weaker correctness since we do not specify the behavior ofÊxt in
caseHpk(tag, u) ̸= π, while the definition in [27] does. As will be shown later, this
relaxation is the main reason that makes the framework of the ABO-XHPS-based KEM
much wider, and makes it possible to capture most known practicalCCA secure KEMs,
and evenCCCA secure schemes.

4 Computational Properties of ABO-XHPS

In this section, we introduce three computational properties of ABO-XHPS which are
all related to the behavior of the extraction algorithm for the all-but-one mode, i.e.Êxt,
and play important roles for proving (C)CCA security of the ABO-XHPS-based KEMs
in the next section. We also show the relationships among these properties.

4.1 Computational Soundness (CS)

“Computational soundness” (CS security) captures soundness of thêExt algorithm, and
roughly means that it is hard to find an “invalid proof”π from whichÊxt extracts some
value that is not⊥. This is, it is hard to find a tuple(tag, u, π) satisfyingtag ̸= tag∗,

Hpk(tag, u) ̸= π, and Êxt(ŝk, tag, u, π) ̸= ⊥, where(pk, sk) ← X̂KG(pub, tag∗).
Formally, consider the experimentExptCSX ,A(k) that an adversaryA = (A1,A2) runs in
as in Fig. 2 (top-left).

Definition 3. We say that an ABO-XHPSX satisfiescomputational soundness(CS se-
cure, for short), if the advantageAdvCSX ,A(k) = Pr[ExptCSX ,A(k) = 1] is negligible for
any PPTAA.

ConcreteCS Secure ABO-XHPS.The factoring-based ABO-XHPS [27, Sect. 4.2], the
(non-twin-)Diffie-Hellman-based one [27, Sect. 5.1] in case instantiated with bilinear
groups, and the twin Diffie-Hellman-based one [27, Sect. 5,2] shown by Wee, are in fact
all CS secure. ThêExt algorithm of these ABO-XHPS satisfy the “if-and-only-if”-style



ExptCSX ,A(k) :

(pub, pri)← RSetup(1k);
(tag∗, st)← A1(pub);

(pk, ŝk)← X̂KG(pub, tag∗);
AOCS

2 (pk, st);
If A2 submits to oracleOCS

at least one query
(tag′, u′, π′) such that
tag′ ̸= tag∗

∧ Hpk(tag
′, u′) ̸= π′

∧ Êxt(ŝk, tag′, u′, π′) ̸= ⊥
then return1 else return0

The oracle inExptCSX ,A(k):

OCS(tag, u, π) ={
Êxt(ŝk, tag, u, π) If tag ̸= tag∗

⊥ Otherwise

The oracle inExptPR- Ext
X ,A (k) andExptwCSX ,A(k):

OPR- Ext(tag, u, π) = OwCS(tag, u, π) ={
Êxt(ŝk, tag, u, π) If tag ̸= tag∗ ∧ Hpk(tag, u) = π

⊥ Otherwise

ExptPR- Ext
X ,A (k) :

(pub, pri)← RSetup(1k);
(tag∗, st)← A1(pub);

(pk, ŝk)← X̂KG(pub, tag∗);
(tag′, u′, π′, st′)← AOPR- Ext

2 (pk, st);
s′1 ← Êxt(ŝk, tag′, u′, π′);
s′0 ← S;
b← {0, 1};
b′ ← A3(s

′
b, st

′);
If b′ = b then return1 else return0

ExptwCSX ,A(k) :

(pub, pri)← RSetup(1k);
(tag∗, st)← A1(pub);

(pk, ŝk)← X̂KG(pub, tag∗);
(tag′, u′, π′, s′)← AOwCS

2 (pk, st);
If tag′ ̸= tag∗

∧ Hpk(tag
′, u′) ̸= π′

∧ s′ = Êxt(ŝk, tag′, u′, π′)

= Êxt(ŝk, tag′, u′,Hpk(tag
′, u′))

then return1 else return0

Fig. 2. TheCS experiment (top-left), thePR- Ext experiment (bottom-left), thewCS experiment
(bottom-right), and the definitions of the oracles (top-right).

correctness, and additionally have the property that invalid proofsπ ̸= Hpk(tag, u)
can be detected publicly or by using a secret key of the ABO-XHPS. Furthermore,
the recently proposed practicalCCA secure KEMs based on the HDH and the DBDH
assumptions can be understood asCS secure ABO-XHPS. These include (a simplified
version of) the KEM in [5], [6, Sect. 5.2], and [13, Sect. 4]. Concretely, here we show the
ABO-XHPSXCKS based on the KEM by Cash et al. [6, Sect. 5.2], which is associated
with the HDH-based Diffie-Hellman relation familyRDH, as in Fig. 3.XCKS can be
proved to beCS secure because the truth value of the validity check in theÊxt algorithm
of XCKS is the same as the truth value of the validity check in theExt algorithm with
overwhelming probability, due to the “trapdoor test” [6, Theorem 2]. In the full version,
we also show ABO-XHPS based on the KEMs in [5] and [13, Sect. 4].

4.2 Pseudorandom Extraction Property (PR- Ext)

The “pseudorandom extraction property” (PR- Ext security) guarantees that if thêExt
algorithm is given(tag, u, π) such thatHpk(tag, u) ̸= π and tag ̸= tag∗, then the

extracted values = Êxt(ŝk, tag, u, π) looks pseudorandom. In the context of the ABO-
XHPS-based KEMs (that will be shown later), this property means that whenc = (u, π)

is an inconsistent ciphertext, if we extracts from Êxt, then the seeds of the session-key



XKG(pub = (g, h), pri = α) :
x, y1, y2 ← Zp; X ← gx

Yi ← gyi for i ∈ [2]
pk ← (g, h,X, Y1, Y2)
sk ← (α, x, y1, y2)
Return(pk, sk)

X̂KG(pub = (g, h), tag∗) :

z′, z1, z2, z3 ← Zp; X ← gz
′
h−tag∗

Y1 ← gz1h−z2 ; Y2 ← gz3Y −tag∗

1

pk ← (g, h,X, Y1, Y2)

ŝk ← (z′, z1, z2, z3, tag
∗)

Return(pk, ŝk)

Pub(pk, tag, w) :
π1 ← (htagX)w; π2 ← (Y tag

1 Y2)
w

Returnπ ← (π1, π2)

P̂riv(ŝk, u) :

π1 ← uz′ ; π2 ← uz3

Returnπ ← (π1, π2)

Ext(sk, tag, u, π) :
If uα·tag+x = π1 anduy1·tag+y2 = π2

then returns← uα else return⊥

Êxt(ŝk, tag, u, π) :

s← (π1 · u−z′)
1

tag−tag∗ ; s′ ← (π2 · u−z3)
1

tag−tag∗

If sz2s′ = uz1 then returns else return⊥

Fig. 3. The CS secure ABO-XHPSXCKS. The internal hash function family is defined by
Hpk(tag, u) = ((htagX)w, (Y tag

1 Y2)
w) whereu = gw.

K = G(s) looks like a uniformly random value. This property is likecomputational
universal2 [17] for a “Cramer-Shoup” type HPS [7], and plays a key role for showing
CCCA security of the ABO-XHPS-based KEMs that will be given in the next section.
Formally, consider the experimentExptPR- Ext

X ,A (k) that an adversaryA = (A1,A2,A3)
runs in as in Fig. 2 (bottom-left). In the experiment, it is required that(tag′, u′, π′) in
A2’s output satisfytag′ ̸= tag∗ andHpk(tag

′, u′) ̸= π′.

Definition 4. We say that an ABO-XHPSX has thepseudorandom extractionproperty
(PR- Ext secure, for short), if the advantageAdvPR- Ext

X ,A (k) = |Pr[ExptPR- Ext
X ,A (k) =

1]− 1/2| is negligible for any PPTAA.

ConcretePR- Ext Secure ABO-XHPS.Here, we show a concrete ABO-XHPS based
on the KEM by Hofheinz and Kiltz [17] and the KEM by Hanaoka and Kurosawa [13,
Sect. 6], which are both associated with the HDH-based Diffie-Hellman relationRDH.
The ABO-XHPSXHoKi based on [17] and the ABO-XHPSXHaKu based on [13, Sect.
6] are constructed as in Fig. 4.XHoKi can be provedPR- Ext secure roughly because
the valuez2 generated in̂XKG is information-theoretically hidden frompk and values
s extracted from a “correct” proofπ = Hpk(tag, u) using Êxt, while it appears in a
values extracted from an “invalid proofπ satisfyingπ ̸= Hpk(tag, u) and makes the

extracted values look like a random value inG. The valueβ generated in̂XKG of
XHaKu plays a similar role. We also note thatXHaKu satisfies only almost-correctness,
as Êxt cannot extract a value whentag = β. However, it suffices for showingCCCA
security of the ABO-XHPS-based KEM shown in the next section.

4.3 Weak Computational Soundness (wCS)

“Weak computational soundness” (wCS security) guarantees that it is hard to find an
“invalid” proof π ̸= Hpk(tag, u) such that if we extract a values with Êxt from the in-
valid π, then the values is the same as the value that is extracted from a “correct” proof



XKG(pub = (g, h), pri = α) :
x1, x2 ← Zp

Xi ← gxi for i ∈ [2]
pk ← (g, h,X1, X2)
sk ← (α, x1, x2)
Return(pk, sk)

X̂KG(pub = (g, h), tag∗) :
z1, z2, z3 ← Zp

X1 ← gz1hz2 ; X2 ← gz3h−z2·tag∗

pk ← (g, h,X1, X2)

ŝk ← (z1, z2, z3, tag
∗)

Return(pk, ŝk)

Pub(pk, tag, w) : P̂riv(ŝk, u) :

π ← (X tag
1 X2)

w π ← uz1·tag∗+z3

Returnπ Returnπ
Ext(sk, tag, u, π) :
If ux1·tag+x2 = π then
returns← uα else return⊥

Êxt(ŝk, tag, u, π) :

s← (π · u−(z1·tag+z3))
1

z2(tag−tag∗)

Returns

XKG(pub = (g, h), pri = α) :
a0 ← α; A0 ← h; a1, a2 ← Zp

Ai ← gxi for i ∈ [2]; Let f(x) :=
∑2

i=0 aix
i

pk ← (g,A0, A1, A2); sk ← f(·)
Return(pk, sk)

X̂KG(pub = (g, h), tag∗) :
β, z1, z2 ← Zp; A0 ← h

Compute(∗) A1 = ga1 andA2 = ga2 s.t.
(f(0), f(tag∗), f(β)) = (α, z1, z2)

pk ← (g,A0, A1, A2); ŝk ← (β, z1, z2, tag
∗)

Return(pk, ŝk)

Pub(pk, tag, w) : P̂riv(ŝk, u) :

Returnπ ← (A0A
tag
1 Atag2

2 )w Returnπ ← uz1

Ext(sk, tag, u, π) :

If uf(tag) = π then
returns← uα else return⊥
Êxt(ŝk, tag, u, π) :
If tag = β then return⊥
Let f ′ be a degree-2 polynomial s.t.
(f ′(tag), f ′(tag∗), f ′(β)) = (logu π, z1, z2)

Compute(∗) and returns← uf ′(0)

Fig. 4. The PR- Ext secure ABO-XHPSXHoKi (left) andXHaKu (right). The internal hash func-
tion family of XHoKi is defined byHpk(tag, u) = (X tag

1 X2)
w, and that ofXHaKu is defined by

Hpk(tag, u) = (A0A
tag
1 Atag2

2 )w, whereu = gw. (∗) In XHaKu, The valuesA1 andA2 in X̂KG

and the valueuf ′(0) in Êxt can be computed by Lagrange interpolation in the exponent [13].

π′ = Hpk(tag, u). Formally, consider the experimentExptwCSX ,A(k) that an adversary
A = (A1,A2) runs in as in Fig. 2 (bottom-right).

Definition 5. We say that an ABO-XHPSX satisfiesweak computational soundness
(wCS secure, for short), if the advantageAdvwCSX ,A(k) = Pr[ExptwCSX ,A(k) = 1] is negligi-
ble for any PPTAA.

We show thatwCS security is indeed weaker than bothCS andPR- Ext security.

Theorem 1. LetR be a relation family and letX be an ABO-XHPS associated with
R. Assume thatR is a one-way relation family, andX is eitherCS secure orPR- Ext
secure. ThenX is wCS secure.

Intuition. If X is CS secure, then it is hard to find an invalid proofπ ̸= Hpk(tag, u)
from which we can extract some value that is not⊥, and thuswCS security is satisfied.
If X is PR- Ext secure, then an extracted values from an invalid proofπ ̸= Hpk(tag, u)

is pseudorandom, which will be different from the valuêExt(ŝk, tag, u,Hpk(tag, u))
with overwhelming probability, and thuswCS security is satisfied.

ConcretewCS Secure ABO-XHPS.By definition, any ABO-XHPS whosêExt algorithm
satisfies the “if-and-only-if”-style correctness of [27], is automaticallywCS secure (and



XKG(pub = (g, h), pri = α) :
x← Zp; X ← gx

Returnpk ← (g, h,X) andsk ← (α, x)

X̂KG(pub = (g, h), tag∗) :

z ← Zp; X ← gzh−tag∗

Returnpk ← (g, h,X) andŝk ← (z, tag∗)

Pub(pk, tag, w) :
Returnπ ← (htagX)w

P̂riv(ŝk, u) :
Returnπ ← uz

Ext(sk, tag, u, π) :
If uα·tag+x = π then
returns← uα else return⊥

Êxt(ŝk, tag, u, π) :

Returns← (π · u−z)
1

tag−tag∗

Fig. 5. The wCS secure ABO-XHPSXKiltz. The internal hash function family is defined by
Hpk(tag, u) = (htagX)w whereu = gw.

hence all XHPS shown in [27] iswCS secure). Here, we show another concrete ex-
ample of awCS secure ABO-XHPS, which is based on the KEM by Kiltz [19] and is
associated with the Diffie-Hellman relation familyRDH. (This is a variant of the (non-
twin-)Diffie-Hellman-based ABO-XHPS in [27, Sect. 5.1].) Specifically, the example
of the ABO-XHPS, which we callXKiltz, is as in Fig. 5.XKiltz can be shown to bewCS
secure because there is no tuple(tag, u, π, s) that satisfies the winning condition of an
adversaryA in thewCS experiment. Namely, iftag ̸= tag∗ andπ ̸= Hpk(tag, u), then

it is guaranteed that̂Ext(ŝk, tag, u, π) ̸= Êxt(ŝk, tag, u,Hpk(tag, u)).

4.4 CombiningPR- Ext and wCS to Obtain CS

Here, we propose a “transformation” for obtaining aCS secure ABO-XHPS fromPR- Ext
secure one andwCS secure one. LetR be a relation family, and fori ∈ [2], let Xi =

(XKGi,Pubi,Exti, X̂KGi, P̂rivi, Êxti) be an ABO-XHPS which is associated withR.
Furthermore, letH(i) be the internal hash function family ofXi. Then, usingX1 andX2

as building blocks, we construct another ABO-XHPSX ′ = (XKG′, Pub′, Ext′, X̂KG
′
,

P̂riv
′
, Êxt

′
), which is associated with the sameR, as in Fig. 6. LetPK = (pk1, pk2)

be a public key ofX ′. Then the internal hash function familyH′ of X ′ is defined by
H′

PK(tag, u) = (π1, π2) = (H
(1)
pk1

(tag, u),H
(2)
pk2

(tag, u)).
The following theorem holds.

Theorem 2. LetR be a relation family and letX1 andX2 be ABO-XHPS associated
withR. Assume thatR is a one-way relation family,X1 andX2 arePR- Ext secure and
wCS secure, respectively. Then the ABO-XHPSX ′ constructed as in Fig. 6 isCS secure.

Intuition. In order for an adversaryA against theCS security ofX ′ to win, it has to
make a query(tag, u, π = (π1, π2)) of either of the following types: (1)tag ̸= tag∗

∧ H
(1)
pk1

(tag, u) ̸= π1 ∧ Êxt1(ŝk1, tag, u, π1) = Êxt2(ŝk2, tag, u, π2) ̸= ⊥, or (2)

tag ̸= tag∗ ∧ H
(1)
pk1

(tag, u) = π1 ∧ H
(2)
pk2

(tag, u) ̸= π2 ∧ Êxt1(ŝk1, tag, u, π1) =

Êxt2(ŝk2, tag, u, π2) ̸= ⊥. However, a tuple of the first type is hard to find due to the
PR- Ext security ofX1, because if the query is of first type, then the extracted values1 =



XKG′(pub, pri) :
(pki, ski)← XKGi(pub, pri) for i ∈ [2]
PK ← (pk1, pk2); SK ← (sk1, sk2)
Return(PK,SK)

X̂KG
′
(pub, tag∗) :

(pki, ŝki)← X̂KGi(pub, tag
∗) for i ∈ [2]

PK ← (pk1, pk2); ŜK ← (ŝk1, ŝk2)

Return(PK, ŜK)

Pub′(PK, tag, w) :
πi ← Pubi(pki, tag, w) for i ∈ [2]
Returnπ ← (π1, π2)

P̂riv
′
(ŜK, u) :

πi ← P̂rivi(ŝki, u) for i ∈ [2]
Returnπ ← (π1, π2)

Ext′(SK, tag, u, π) :
si ← Exti(ski, tag, u, πi) for i ∈ [2]
If s1 = s2 ̸= ⊥ then returns1

else return⊥

Êxt
′
(ŜK, tag, u, π) :

si ← Êxti(ŝki, tag, u, πi) for i ∈ [2]
If s1 = s2 ̸= ⊥ then returns1

else return⊥

Fig. 6.The transformation for obtaining aCS secure ABO-XHPSX ′ from aPR- Ext secure ABO-
XHPSX1 and awCS secure ABO-XHPSX2.

Êxt1(ŝk1, tag, u, π1) is a pseudorandom and is different froms2 = Êxt2(ŝk2, tag, u, π2)
with overwhelming probability, regardless of the values2. Furthermore, a query of the
second type is also hard to find because such tuple can be directly used to break the
wCS security ofX2. More specifically, the conditionH(1)

pk1
(tag, u) = π1 guaranteess1

= Êxt1(ŝk1, tag, u, π1) = Êxt2(ŝk2, tag, u,H
(2)
pk2

(tag, u)) due to the correctness of the
all-but-one mode of ABO-XHPS. Therefore, the tuple(tag, u, π2, s1) with tag ̸= tag∗

andH(2)
pk2

(tag, u) ̸= π2 satisfies the winning condition of thewCS experiment.

5 KEMs Based on ABO-XHPS

In this section, we show our results regarding the KEMs based on ABO-XHPS. Specif-
ically, we show thatCCA security of the ABO-XHPS-based KEM can be shown without
using gap version of one-way relation families and the stronger correctness requirement
defined in [27], and instead a (non-gap) one-way relation family and our weaker cor-
rectness, together withCS security, suffices. Furthermore, we show that the KEM can be
shown to beCCCA secure if the ABO-XHPS satisfiesPR- Ext security. Finally, we show
that using the ABO-XHPS in a slightly different way, the ABO-XHPS-based KEM can
be extended to be a (C)CCA secure MR-KEM.

5.1 Single-Recipient KEM

LetR = (RSetup,RSamp,G) be a relation family,X = (XKG, Pub, Ext, X̂KG, P̂riv,
Êxt) be an ABO-XHPS associated withR, andTCR : U → T be a target collision
resistant hash function (TCRHF).3 Then we construct a KEMΓ1 = (KG,Enc,Dec)
based on the ABO-XHPSX as in Fig. 7 (left).

3 Roughly, an efficiently computable functionTCR is said to be a TCRHF if given a random
inputx, it is hard to find another inputx′ such thatTCR(x) = TCR(x′)∧x ̸= x′. The formal
definition can be found in the full version or in the papers [19, 17, 12, 18, 27].



KG(1k) :
(pub, pri)← RSetup(1k)
(pk, sk)← XKG(pub, pri)
Return(pk, sk)

Enc(pk) :
w ←W
(u, s)← RSamp(w)
tag← TCR(u)
π ← Pub(pk, tag, w)
c← (u, π); K ← G(s)
Return(c,K)

Dec(sk, c) :
(u, π)← c; tag← TCR(u)
s← Ext(sk, tag, u, π)
If s = ⊥ then return⊥
ReturnK ← G(s)

MSetup(1k) :
(pub, pri)← RSetup(1k)
Returnpub
MKG(pub) :
dummy← T
(pk, ŝk)← X̂KG(pub, dummy)

SK ← (ŝk, dummy)
Return(pk, SK)

MExt(pki, c) :
(u,π)← c; (π1, . . . , πn)← π
Returnci ← (u, πi)

MEnc(pk) :
(pk1, . . . , pkn)← pk
w ←W
(u, s)← RSamp(w)
tag← TCR(u)
πi ← Pub(pki, tag, w)

for i ∈ [n]
π ← (π1, . . . , πn)
c← (u,π); K ← G(s)
Return(c,K)

MDec(SKi, ci) :

(ŝki, dummyi)← SKi; (u, πi)← ci; tag← TCR(u)

If tag ̸= dummyi ands = Êxt(ŝki, tag, u, πi) ̸= ⊥
then returnK ← G(s) else return⊥

Fig. 7.The (single-recipient) KEMΓ1 (left) and the MR-KEMΓM (right).

CCA Security.Wee [27] showed the following.4

Theorem 3. ([27]) If R is a gap one-way relation family,XR is an ABO-XHPS, and
TCR is a TCRHF, then the KEMΓ1 is CCA secure.

We show that the same KEMΓ1 can be proved in the following way, without using
a “gap” one-way relation family.

Theorem 4. If R is a one-way relation family,XR is an ABO-XHPS which satisfiesCS
security, andTCR is a TCRHF, then the KEMΓ1 is CCA secure.

Intuition. To ensure that the real challenge keyK∗
1 = G(s∗) looks random for aCCA ad-

versaryA, we have to use pseudorandomness of the generatorG of the one-way relation
R. However, the reduction algorithmB, who attacks pseudorandomness ofG, needs to
simulate theCCA experiment forA without knowing the private parameterpri or the
randomnessw∗ used to sample(u∗, s∗) ∈ Rpub. B therefore simulates theCCA exper-

iment forA by using the all-but-one mode of the ABO-XHPSX . The P̂riv algorithm
enablesB to generate the challenge ciphertextc∗ = (u∗, π∗) correctly, usinĝsk output

from X̂KG(pub, tag∗) wheretag∗ = TCR(u∗). However, since we do not use “gap”
one-way relation family,B does not have access to the relation oracleRpub, and thus
cannot check inconsistency of a ciphertext by itself. Here,CS security ofX guarantees
that even ifA submits an invalid ciphertextc = (u, π) with Hpk(TCR(u), u) ̸= π, the

Êxt algorithm almost perfectly works like theExt algorithm in the real decapsulation
algorithm inDec of Γ1. In doing so, the TCRHFTCR enablesB to always useÊxt,

4 As we have mentioned, Wee’s definition of ABO-XHPS in [27] requires stronger correctness
for Êxt algorithm. However,CCA security of the ABO-XHPS-based KEM can be shown with-
out this requirement.



so that the problematic situation wheretag = TCR(u) = tag∗ never occurs. Then, in-
distinguishability of two modes guarantees thatA’s behavior cannot be non-negligibly
different between the case in which the experiment is simulated byB with the all-but-
one mode, and the case in whichA is in the originalCCA experiment.

CCCA Security.We show that the KEMΓ1 based on the ABO-XHPSX isCCCA secure,
whenX is PR- Ext secure.

Theorem 5. If R is a one-way relation family,XR is an ABO-XHPS which satisfies
PR- Ext security, andTCR is a TCRHF, then the KEMΓ1 is CCCA secure.

Intuition. The intuitive explanation on the proof of this theorem is very close to that of
Theorem 4. The difference is that we can no longer expect that theÊxt algorithm can be
used to reject an invalid ciphertextc = (u, π) with π ̸= Hpk(TCR(u), u), becauseX is
not guaranteed to beCS secure. However, recall thatPR- Ext security ofX guarantees
that an extracted values from an invalid input is a pseudorandom value inS, which in
turn guarantees thatK = G(s) ∈ K is also pseudorandom and thus unpredictable to the
adversaryA. Recall also that a validCCCA adversary has to control its “uncertainty” to
be negligible. These help thatA’s CDEC query with an invalid ciphertext is “implicitly”
rejected, and thus the main reduction algorithmB’s simulation of theCCCA experiment
for A are guaranteed to be almost perfect.

5.2 Multi-Recipient KEM

Here, we show how to construct a MR-KEM using ABO-XHPS. Using the same build-
ing blocks (R,X , andTCR) as inΓ1, we construct a MR-KEMΓM = (MSetup,MKG,
MEnc,MExt,MDec) as in Fig. 7 (right).

The main feature of the MR-KEMΓM is that we use the all-but-one mode of the
underlying ABO-XHPSX even for normal operations, namely, each user’s key is setup
with X̂KG using a “dummy tag”dummy. This is to setup users’ keys without using the
private parameterpri corresponding topub, which makes it possible to sharepub with
many users. SincêExt cannot extract a value when it is invoked with the tag that is
used to generatêsk, the decapsulation algorithmMDec rejects a useri’s ciphertextc =
(u, πi) satisfyingTCR(u) = dummy, even ifc is honestly generated by usingMEnc.
Therefore, our MR-KEMΓM does not have perfect correctness. However, it satisfies
almost-correctness: The information ondummy in a user’s secret key is information-
theoretically hidden from entities other than the user who holdsdummy. Therefore, it
is hard to find a ciphertextc = (u,π) that satisfiesTCR(u) = dummy, regardless of
the validity ofc.

Hiwatari et al. [16] proposed two MR-KEMs. Their first scheme, which isCCA

secure, is based on the KEM by [6, Sect. 5.2], while their second scheme, which is
CCCA secure, is based on the KEM by [13, Sect. 5]. Both of their schemes can be seen
as concrete instantiations of the MR-KEMΓM : Their first one is based on the ABO-
XHPSXCKS, while their second one is based on the ABO-XHPSXHaKu. From another
viewpoint, our MR-KEM based on ABO-XHPS is a generalization of Hiwatari et al.

Theorem 6. If R is a one-way relation,XR is an ABO-XHPS which satisfiesCS secu-
rity, andTCR is a TCRHF, then the MR-KEMΓM is CCA secure.



Theorem 7. If R is a one-way relation,XR is an ABO-XHPS which satisfiesPR- Ext
security, andTCR is a TCRHF, then the MR-KEMΓM is CCCA secure.

The proofs proceed similarly to those of Theorems 4 and 5. The difference is that here,
we start from the situation in which each user’s key is generated bŷXKG with dummy
tagdummy, while in the proofs of Theorems 4 and 5, we started from the situation in
which each user’s key is generated byXKG. We also have to deal with the difference
between multi-recipient (n users) and single-recipient environments, but this can be
essentially dealt with users’ key-wise hybrid argument.

6 Discussion

Capturing a Wider Class of Constructions and Security Proofs.We see that by our
results, the framework of KEMs based on ABO-XHPS captures most practical (C)CCA
secure KEMs. Concretely, many existingCCA secure KEMs can be seen as concrete
instantiations derived from our extended framework, which include KEMs by Boyen et
al. [5], Cash et al. [6, Sect. 5.2], and Hanaoka and Kurosawa [13, Sect. 4], and theCCCA

secure KEMs by Hofheinz and Kiltz [17] and Hanaoka and Kurosawa [13, Sect. 6].
Interestingly, the extraction mode of the ABO-XHPSXCKS based on the Cash et al.

KEM [6, Sect. 5.2] is exactly the same as that of theCS secure ABO-XHPS obtained
via the transformation (Theorem 2) using thePR- Ext secure ABO-XHPSXHoKi and
thewCS secure ABO-XHPSXKiltz. Therefore, Theorems 2 and 4 provide us with an
alternative proof ofCCA security of Cash et al. KEM, without using the trapdoor test
theorem [6, Theorem 2]. We see that this is a concrete evidence that our results are use-
ful for understanding constructions and security proofs of practicalCCA secure KEMs
in a modular manner.

As is the same with the original framework [27], our results also work fork-wise
product relation (i.e.k-independent copies of relation families). This extension is useful
to capture hardcore bit-based constructions of KEMs in the framework of ABO-XHPS.
However, the clear disadvantage of this approach is that the ciphertext size of the KEM
derived from the ABO-XHPS for thek-wise product relation becomes linear ink.

Strictly speaking, ours (and the original framework in [27]) still does not capture the
CCA secure KEMs whose session-key is derived using hardcore bits but whose cipher-
text size is constant (e.g. [13–15, 29]). Technically, the security proofs of these KEMs
require hybrid argument to replace the real session-key bit-by-bit to finally reach the
game in which the real session-key is truly random (and thus an adversary has zero
advantage), while the security proofs of the ABO-XHPS-based KEMs in our work and
in [27], do not allow this approach. Moreover, it seems to us that how to derive many
hardcore-bits in each scheme is quite dependent on the algebraic structure of the con-
structions. However, we note that at least the “basic structures” of the KEMs in [15,
29], which do not consider hardcore-bit-based session-key derivation but derive key by
considering “the corresponding (hashed version of) decisional problems, can be seen
as concrete instantiations from our extended framework. To extend the framework of
ABO-XHPS-based KEMs further to capture these constructions will be worth tackling.

New Instantiations of (MR-)KEMs.Due to Theorems 4, 5, 6, and 7, we can derive
a number of new (C)CCA secure (MR-)KEMs. Specifically, due to Theorem 2, we can



construct aCS secure ABO-XHPS from aPR- Ext secure ABO-XHPS and awCS secure
ABO-XHPS, or from twoPR- Ext secure ABO-XHPS via Theorem 1 (i.e. one of the
two ABO-XHPS is treated as awCS secure ABO-XHPS). Therefore, using the ABO-
XHPS we show in Section 4, we can derive a number of variants of KEMs [8, 6, 12]:
we can obtain aCS secure ABO-XHPS by the combination ofXHoKi andXKiltz (which
happens to be essentially identical toXCKS as mentioned above) and the combination of
XHaKu andXKiltz. We can also obtain a newCS ABO-XHPS by combiningXHoKi and
XHaKu, two independent instances ofXHoKi, and two independent instances ofXHaKu.
Then, from theseCS secure ABO-XHPS, we derive newCCA secure KEMs and MR-
KEMs, due to Theorems 4 and 6, respectively.

Furthermore, we can also obtain a number of practical MR-KEMs from existing
ABO-XHPS. For example, from theCS secure ABO-XHPS based on the KEM by
Boyen et al. [5] (which can be found the full version), we obtain aCCA secure MR-
KEM based on the DBDH assumption whose ciphertext size isn + 1 group elements
when sending ton recipients. This construction is the most efficientCCA secure MR-
KEM in terms of ciphertext size. Moreover, by using the factoring-based ABO-XHPS
shown in [27, Sect. 4.2] (which isCS secure), we obtain aCCA secure factoring-based
MR-KEM which is more efficient than the construction that naively concatenates the
ciphertexts from a single-recipient KEM by Hofheinz and Kiltz [18].

Finally, we stress that the advantages of our results are not only the efficiency of the
concretely derived (MR-)KEMs, but also the strengthening of the framework of [27],
which we believe is useful for future design of (C)CCA secure (MR-)KEMs.
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