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Abstract. In CRYPTO 2010, Wee proposed the notion of “extractable hash proof
systems” (XHPS), and its richer version, “all-but-one XHPS” (ABO-XHPS), and
showed that chosen ciphertext secure (CCA secure) key encapsulation mecha-
nisms (KEM) can be constructed from them. This elegantly explains several re-
cently proposed practical KEMs constructed based on the “all-but-one” simula-
tion paradigm in a unified framework. Somewhat frustratingly, however, there
still exist popular KEMs whose construction and security proofs are not captured
by this framework. In this paper, we revisit the framework of the ABO-XHPS-
based KEM. Firstly, we show that to prove CCA security of the ABO-XHPS-
based KEM, some requirements can be relaxed. This relaxation widens the ap-
plicability of the original framework, and explains why many known practical
KEMs can be proved CCA secure. Moreover, we introduce new properties for
ABO-XHPS, and show how one of the properties leads to KEMs that achieve
“constrained” CCA security, which is a useful security notion of KEMs for ob-
taining CCA secure public key encryption via hybrid encryption. Thirdly, we
investigate the relationships among computational properties that we introduce
in this paper, and derive a useful theorem that enables us to understand the struc-
ture of KEMs of a certain type in a modular manner. Finally, we show that the
ABO-XHPS-based KEM can be extended to efficient multi-recipient KEMs. Our
results significantly extend the framework for constructing a KEM from ABO-
XHPS, enables us to capture and explain more existing practical CCA secure
schemes (most notably those based on the decisional Diffie-Hellman assump-
tion) in the framework, and leads to a number of new instantiations of (single-
and multi-recipient) KEMs.

Keywords: key encapsulation mechanism, extractable hash proof system, chosen
ciphertext security, constrained chosen ciphertext security.

1 Introduction

Background and MotivationStudies on constructing and understanding practical pub-
lic key encryption (PKE) schemes secure against chosen ciphertext attaakseCu-

rity) [24, 9] are important research themes in the area of cryptography. Among several
approaches towards practicatA secure PKE schemes, the promising approach is to
construct a PKE scheme via the hybrid encryption methodologies using a key encap-
sulation mechanism (KEM) and a data encapsulation mechanism (DEM). Cramer and



Shoup [8] show that if we combine@CA secure KEM and &CA secure DEM, then
we obtain a hybrid PKE scheme whichdsA secure. Hofheinz and Kiltz [17] intro-
duce a security notion callembnstrained CCAsecurity CCCA security), and show that
a CCA secure PKE scheme can be constructed by combiniteca secure KEM and
a DEM satisfying the security of (one-time) authenticated encryption [2]. These results
enable us to concentrate on studying practical construction®)@f4 secure KEMs,
for obtaining practical PKE schemes.

Seeing in a larger perspective, there are two general paradigms toiardecure
PKE schemes: the first paradigm uses non-interactive proofs of “well-formedness” [10],
which includes the constructions with non-interactive zero-knowledge proofs [22, 9, 25]
that cover generic constructions from cryptographic primitives, and the constructions
with universal hash proof systeniig, 17] that cover practical and efficient schemes
based on specific intractability of decision problems.; The second paradigm uses the
so-called “all-but-one” simulation technique, (e.g. [3,5,19, 17,23, 12, 18, 27]). In fact,
[9] can also be seen to be included in this paradigm. These two paradigms in fact cover
almost all known constructions @A secure PKE schemes and KEMs. Our focus in
this paper is on KEMs constructed based on the second paradigm.

In CRYPTO’10, Wee [27] introduced the notion oéxtractable hash proof sys-
tems$ (XHPS) and its richer versiondll-but-one XHPS(ABO-XHPS), which are both
a special kind of non-interactive proof system for a familypoé-way relationgwhich
defines a hard search problem, such as the computational Diffie-Hellman problem), and
showed thatCA secure KEMs can be constructed from them. This framework elegantly
explains the constructions and the security proofs of several (variants of) recently pro-
posed KEMs (e.g. [6, 18]) based on hardness of “search” problems (not only “decision”
problems), which are proved with the “all-but-one” simulation paradigm.

Somewhat frustratingly, however, there still exist several popular KEMs (e.g. [17,
6, 12]) whose construction an@)CCA security are not explained by the framework
in [27], although those that cannot be explained by the framework in [27] are quite
similar to those that can be explained. The main motivation of this work is to extend the
framework of KEMs based on ABO-XHPS to capture a wider class of constructions and
security proofs of£CA secure, and evelCCA secure, KEMSs, so that it works as a more
general framework capturing a wider class of constructions based on the “all-but-one”
simulation paradigm as we categorized above. Such general framework can be expected
to lead to deeper understanding of constructions and security proofs of KEMs and be
useful for future design offjCCA secure practical KEMs and PKE schemes, and higher
level primitives/protocols that use those as building blocks.

Our Contribution. In this paper, we revisit and extend the framework for constructing
a KEM based on ABO-XHPS in [27] in several different aspects:

Firstly, we show that to provecCA security of the ABO-XHPS-based KEM, some
requirement of ABO-XHPS and its associated one-way relation family can be relaxed.
More specifically, the original definition of an ABO-XHPS in [27] requires some un-
necessarily strong “correctness” requirement and a underlying one-way relation family
with which the ABO-XHPS is associated needs to satigfgd’-type one-wayness,
which requires that one-wayness holds even in the presence of the decision oracle, and
thus is a stronger type of one-wayness. Instead, we show that as long as the ABO-



XHPS satisfies the property which we catimputational soundnegss security, for
short), the ABO-XHPS-based KEM can be shown tabe secure with a weaker cor-
rectness requirement for the underlying ABO-XHPS and a weaker (non-gap) one-way
relation. (The formal definitions of an ABO-XHPS and a family of one-way relations
are given in Section 3.) Due to these relaxations, we can treat a wider class of com-
putational assumptions, and the clas€@f secure KEMs that can be captured by the
framework becomes significantly wider. Most notably, we can now treat the decisional
Diffie-Hellman (DDH) assumption as a one-way relation family, and thus several prac-
tical DDH-based KEMs (e.qg. [6, 12]), which was not possible by the original framework
because of the requirement of the “gap”-type one-wayness.

Secondly, we propose another computational property of ABO-XHPS which we call
“pseudorandom extraction prop€tt{PR- Ext security, for short), and show that if an
ABO-XHPS satisfies the property, then the ABO-XHPS-based KEM achig@sse-
curity. This result enables us to expl&@acCA security of the KEMs whose construction
and security proof can be understood in the “all-but-one” simulation paradigm. This en-
ables us to castcCA secure KEMs proposed in [17] and in [13, Sect. 6] in our extended
framework.

Thirdly, we study the computational properties of ABO-XHPS themselves. Specif-
ically, we introduce yet another computational property which we wathk compu-
tational soundnesgiCs security, for short), and show tha€s security is implied by
bothCs security and®R- Ext security. Furthermore, we show how to combirRRaExt
secure ABO-XHPS and &CS secure ABO-XHPS to obtain @ secure ABO-XHPS.

This “transformation,” together with the above mentioned results, enables us to under-
stand the constructions ag@A security of KEMs in a modular manner. For example,
this provides us with an alternative security proof of the Cash et al. KEM [6, Sect. 5.2],
without the “trapdoor test” theorem [6, Theorem 2] that was originally used to prove its
CCA security. Moreover, combined with the above mentioned results, this result enables
us to derive a number of new variants of KEMs [8, 19,17, 6, 12] that can be shown to
beccaA secure under the DDH or the Hashed DH (HDH) assumption [11].

Finally, we show that the ABO-XHPS-based KEM can be extended to be a multi-
recipient KEM (MR-KEM) [26, 16]. Here, by MR-KEM we mean the one formalized
by Smart [26] in which all recipients recover a same session-key. (This differs from
multi-recipient PKE by Bellare et al. [1] in which each receiver may recover different
message.) From this result, we derive a number of new practyetq secure MR-
KEMs.

The results in this paper are summarized in Fig. 1. Our results enable us to capture
more existing practical CCA secure schemes than the original framework [27], derive
a number of new practical instantiations 0J¢CA secure (MR-)KEMSs, and understand
the structures and security proofs of these schemes. (See Section 6 for more details.)
We believe that the framework of ABO-XHPS extended by our results widely captures
the constructions of KEMs based on the “all-but-one” simulation paradigm and leads to
deeper understanding of the constructions and security proofs of practical KEMs, and
is useful for future design of§CCA secure practical (MR-)KEMSs.

Due to space limitations, the full proofs of the theorems in this paper will be given
in the full version. We instead give intuitive explanations for each theorem.
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Fig. 1. Summary of our results. Each box with lab#f ‘tlenotes arx-secure primitive. The arrow
(X — Y) indicates that al-secure primitive can be used to construgtsecure primitive.

Related Work.The relevant general framework of constructions of PKE schemes and
KEMs is be the framework usingniversal hash proof systenrgroduced by Cramer

and Shoup [7]. This framework, as we mentioned above, can be seen as one of the gen-
eral paradigms using non-interactive proof of “well-formedness”, and captures a wide
class of practical constructions of PKE schemes and KEMs, such as Cramer-Shoup PKE
scheme [8]. Kurosawa and Desmedt [20] showed how to constfiicsecure KEM
directly from hash proof systems. The requirements in the original definition of a uni-
versal hash proof system in [7] (and in [20]) were all statistical (information-theoretic)
ones. Hofheinz and Kiltz [17] introduced computational relaxation for a universal hash
proof system, and showed that the KEM based on a hash proof system in [20] can be
shown to beCCCA secure if the underlying hash proof system satisfies some computa-
tional property.

Wee [28] recently proposed the notiontbfeshold extractable hash proof system
which can be seen as a generalization of an ABO-XHPS, from “all-but-one” to “all-
but+.” From it, he showed how to construct threshold signature schemes, threshold
encryption schemes, and broadcast encryption schemes.

2 Preliminaries

In this section, we review the basic notation and the definitions for a (multi-recipient)
KEM. Due to space limitation, the definitions for other basic primitives and computa-
tional intractability assumptions will be given in the full version.

Basic Notation. N denotes the set of all natural numbers, and i€ N then[n] =
{1,...,n}.“z < y" denotes that is chosen uniformly at random frognif y is a finite
set, ory is assigned ta: otherwise. IfS is a set, then[S|” denotes its size. “PPTA’
denotes grobabilistic polynomial time algorithmJnless otherwise stated,denotes
the security parameter. M is an algorithm and is a function, then A°” denotes that
A has oracle access €. A function f (k) : N — [0, 1] is said to benegligibleif for all
positive polynomialg(k) and all sufficiently largé: € N, we havef (k) < 1/p(k).

Multi-Recipient KEM. Here, we review the definition of a multi-recipient KEM (MR-
KEM). We use the definition formalized by Smart [26], where all recipients recover a
same session-key. A MR-KEN! consists of the following five PPTAS:



MSetup: The setup algorithm that také§ as input, and outputs a set of public param-
eterspub. pub specifies the session-key spdce

MKG: The (user’s) key generation algorithm that tales as input, and outputs a
public/secret key paitpk, sk). Without loss of generality, we assume that the in-
formation onpub is contained irpk andsk, and we do not writeub for the inputs
of the following algorithms.

MEnc: The encapsulation algorithm that takes a set of public &ys- (pk1, ..., pky)
as input, and outputs a ciphertexand a session-kei € K.

MExt: The (deterministic) user's ciphertext extraction algorithm that takes ailsser
public keypk;, and a ciphertext (which is output fromMEnc) as input, and outputs
the user’s ciphertexic;.

MDec: The (deterministic) decapsulation algorithm that takes adseecret kewk;
and a usei’s ciphertextc; as input, and outputs a session-Keywhich could be a
special symbolL. meaning “invalid”.

We say that a MR-KEM satisfieprrectnesgresp.almost-correctnegdsif for all pub «+
MSetup(1*) and all polynomials: = n(k), the following probability is zero (resp. neg-
ligible).

Pr[ (pki, sk;) < MKG(pub) for i € [n]; (¢, K) < MEnc(pk = (pk1,...,pkn)) :
MDec(sk;, MExt(pk;, c¢)) # K for somei € [n] ]

Security Notions.Here, we recall the definitions of indistinguishability against cho-
sen ciphertext attack€¢A security) and against constrained chosen ciphertext attacks
(CccA security) [17].

Let ATK € {CCA,CCCA} andn € N. For a MR-KEMI" = (MSetup, MKG, MEnc,
MExt, MDec), we define the experimeiixpt}™™, , (k) that an adversaryl attacksI”

under the attack typ&TK as follows:

Exptyig (k) : [ pub « MSetup(1%); (pks, sk;) < MKG(pub) for i € [n];
pk « (pki,...,pkn); (¢*, K7) < MEnc(pk); K < K; b+ {0,1};
v < A°(pub, pk,c*, K;); If b’ = bthen returnl else returrd |,

where the oracl® is determined bWTK in the following ways: IfATK = CCA, then
the oracle? is the decapsulation oract(-, -) which takes a user index/ciphertext pair
(i, ¢) as input, and outputs the result 84Dec(sk;, MExt(pk;, ¢)). If ATK = CCCA then
the oracle? is theconstrained decapsulation (CDEC) orad®...(+, -, -), which takes

a user index, a predicatered : K — {0, 1}, and a ciphertext as input, and outputs a
response that is calculated as follows:

K If MDec(sk;, MExt(pk;,c)) = K # L Apred(K) =1

Ocdec(ia pred’ C) = {J_ Otherwise

Moreover, in both caseSTK € {CCA,CCCA}, A is not allowed to submit a query that
contains a user index/ciphertext péirc) satisfyingMExt(pk;, ¢c) = MExt(pk;, c*) to
the oracle.



Let A be an adversary that runs ircaCA experiment and makes in totahueries,
and let(i;, pred;, c;) be A’'s j-th CDEC query. The running time of4 in the CCCA
experimeritis defined as the sum ofl’s running time and the total of the maximum
running time for evaluating eagired ; submitted byA. “The running time of thecca
experimeritis defined as the total running time B&pt7. 4 (k) minus “the running time
of A in theCCCA experiment.” For &CCA adversary4 and an experimerdt (not neces-
sarily Expt‘}f‘;{‘(k)) thatA runs in, we define the parameter called (plaintergertainty

uncert 4 ¢ (k) by:

uncert 4 ¢ (k) = 1 Z Pr[&; K « K : pred;(K) = 1].
J€ld]

Finally, we say that an adversaryis avalid CCCA adversaryif (1) “the running time
of A in theCCCA experiment” is polynomial ik, and (2)uncert 4 ¢ (k) is negligible for
all experiments whose running time is at most that of “the running time of tieea
experiment” that4 runs in.

For a KEM I', an adversaryd, ATK € {CCA,CCCA}, andn € N we defineATK
advantagedvy 'y ,, (k) of A by AdviTs . (k) = | Pr[Expt)iy . (k) = 1] — 1/2].

Definition 1. We say that a MR-KEN is CCA secure ifAdv7y (k) is negligible for
any PPTAA and any polynomiah = n(k). Furthermore, we say that a MR-KEN
is CCCA secure ifAdeF‘?%n(k) is negligible for any validcCCA adversary.A and any
polynomialn = n(k).

Single-Recipient KEM.When we talk about ordinary “single-recipient” KEMs, we
need not consider the setup and user key generation algorithms separately. Therefore,
in order to clarify the difference between multi-recipient KEMs and ordinary KEMs,

we write the key generation, the encapsulation, and the decapsulation algorithms of a
single-recipient KEM byKG, Enc, andDec, respectively (without the prefixvi”). The

syntax and the security notions for single-recipient KEMs are defined similarly to those
of MR-KEMs.

3 Definitions for All-But-One Extractable Hash Proof Systems

In this section, we define an ABO-XHPS and one-way relations which are necessary
for ABO-XHPS, following the definitions in [27]. However, our definitions here are
slightly different from ones in [27], and we also highlight the difference.

3.1 One-Way Relation Families

A family of relations (relation family, for shortR (that supports a PRG) is associated
with the following three PPTASRSetup, RSamp, G):

RSetup: The setup algorithm that také$ as input, and outputs a public/private pa-
rameter pail(pub, pri). pub contains the description of sei§ S, W, andK, from
which we can efficiently sample elements uniformpyb also fixes one relation



Roub OVErid x S. We require that: (1) for all:, there is at most one such that
(u,s) € Rpup (With overwhelming probability over the choice pfib), and (2)
givenpri (corresponding tpub) and(u, s) € U x S, whether(u, s) € Rpup OF NOt
is efficiently decidable. For notational convenience, we assumedhas provided
as input to the following algorithms, and do not write it explicitly.

RSamp: The sampling algorithm that (takesab as input, and) outputs a pdit, s) €
Roub SO thatu is distributed uniformly ovet/. The randomness space REamp
is W, and when we need to make the randomness used to sampleexplicit,
we write this process agtl, s) < RSamp(w)” (in this case RSamp is treated as a
deterministic algorithm).

G: The (pseudorandom) generator that takes @nd) an element € S as input, and
outputsK € K.

Hereafter, we identify a relation familig with the associated PPTABSetup, RSamp,
G), and in particular, writeR = (RSetup, RSamp, G).

Definition 2. We say thaR = (RSetup, RSamp, G) is aone-way relation familyf the
PRG

advantageAdvy 4 (k) defined below is negligible for any PPTA

AdVizS, (k) = | Pr[(pub, pri) RSetup(1%); (u, s) < RSamp;
1
Ky + G(s); K§ + K;0+ {0,1};0" < A(pub,u, K};) : b’ =] — §|

Furthermore, we say th&R is agap one-way relation familif the advantage is negli-
gible for any PPTA adversary that is given access to the “relation” oracle which takes
(u,s) € U x S as input and tells ifu, s) € Rpup O NOL.

Difference from the Definition in [27]The original definition of one-way relation fam-
ilies in [27] is the “gap” version here. The definition of (non-gap-)one-way relation
family is clearly weaker, thus potentially easier to achieve and captures wider class of
relation families than the gap version. For example, the “gap” one-way relation of [27]
does not capture the HDH-based Diffie-Hellman relation family we introduce below.

Concrete Example of One-Way Relation Families: Diffie-Hellman Relatibet G
be a group of prime ordey and letH : G — K be a hash function. We say that
the hashed Diffie-Hellman (HDH) assumption holds(@&, H) if the distributions of
(g,9% g°, H(g%%)) and(g, g%, ¢*, K ) are computationally indistinguishable, where
G, a,b € Z,, andK € K are chosen randomfy.

The Diffie-Hellman relation family (that supports a PRG) RPH, indexed by
pub = (g,9%) € (G)?, is defined byRP" .\ = {(u,5) € (G)’|s = u®}. The as-
sociated algorithmgRSetup, RSamp, G) are as followsRSetup sets/ = S = G and

1 We note that in [28], Wee introduced the definition of one-way relation families in the same
sense as the one defined here.

2 The DDH assumption is the special case of the HDH assumption in whighthe identity
function. It is possible that the DDH assumptionGnis false while the HDH assumption in
(G, H) holds for somé{. For more details about the HDH assumption, see [11, 19, 6, 12] and
the full version of this paper.



W = Z,, picks random elemenise G anda € Z,, and setpub = (g, h) = (g,9%)
andpri = a. RSamp(w) := (g%, h"). G(s) := H(s). It is straightforward to see that
RPH is a one-way relation family under the HDH assumptioriGh H ).

3.2 All-But-One Extractable Hash Proof Systems

An ABO-XHPS is always associated with a relation family. Thus, for notational con-
venience, we denote by¥®” an ABO-XHPS X associated with a relation famifi.
(If R is clear from the context, we often onmR and just writeX'.) Informally, an
ABO-XHPS is a special type of “designated-verifier non-interactive zero-knowledge
proof of knowledge,” and it has, as its internal structure, a family of “tag-based” hash
functionsH,; : T x U — {0,1}* indexed by a public kepk (whereT is the tag
space) which represents the relation of an instanee ¢/ and a (tag-based) “proof”
m = Hpi(tag, u) (with sometag € 7). If = is in a valid form, we can “extract” the
answers to the instance: satisfying(u, s) € Rpub, Using the secret key correspond-
ing to pk. It is possible thaH itself is not efficiently computable. Furthermor¥,has
“simulation” algorithms for key generation, extraction, and generating a proof. The first
two algorithms work normally as above, except for one particulatdgtj (used for the
simulated key generation process) under which one can generate a valid proof without
a witness (hence the name “all-but-one”).

Formally, an ABO-XHPSX, associated with a rel relation famm (RSetup,

RSamp, G), consists of six PPTASXKG, Pub, Ext, XKG Priv, Ext) that satisfy the
following “functional requirements” (correctness) with overwhelming probability over
the choice of pub, pri) < RSetup(1*):

Extraction Mode For all (pk, sk) < XKG(pub, pri) and all tuples(tag, u,7): If =
= H,(tag, u) then(u, Ext(sk,tag,u,m)) € Rpu, and ifr # H,y(tag, u) then
Ext(sk,tag,u,m) = L.

All-But-One Mode For alltag* and all(pk, sk) < XKG(pub, tag*):

Private Evaluation undetag*: For all (u, s) € Rpub' Igr'T/(gE u) = Hpy(tag*, u).
Extraction For all Il'tag ; # tag* and all (u,7): If 7 = Hp,(tag,u) then(u,s) €
Rpub, Wheres = Ext(sk tag, u, ). (The case ofr Hpk(tag, w) Is unspecified.)

Public Evaluation For all pk (output from eitherXKG or XKG), tag, and (u,s) =
RSamp(w): Pub(pk, tag, w) = H,x(tag, u).

Indistinguishability of Two Modes For alltag*, the two distributions,

{(pk, sk) <+ XKG(pub, pri) : pk} and{(pk, sk) « XKG(pub, tag*) : pk}, are
statistically indistinguishable.

In this paper, we also consider a slight relaxation of the extraction property of the
“all-but-one” mode. We say that an ABO-XHPS satisfaisost-correctness for all
(pub, pri) < RSetup(1*), all (u, s) = RSamp(w), and aII(tag7tag*) such thatag #

tag* the following probability is overwhelmingPr|[(pk, sk) — f@(pub,tag*) :

Ext(sk; tag, u, Hpp (tag, u)) = sl.
We note that the indistinguishability of the two modes implies that the information

on a tagtag* is statistically hidden fronpk output from)TK\G(pub, tag*).



Difference from the Definition in [27]Here, we explain the difference of our definition
of ABO-XHPS and the definition by Wee [27, Sect. 3.4]. FirskG algorithm in
[27] does not take the private parameperas input (while ours does). However, this
restriction is unnecessary for proving) (CA security of the ABO-XHPS-based KEM,
and thus we allowXKG to takepri as input.

Secondly, the correctness requirementEnfandE/ﬁ algorithms in [27] are defined
in an “if-and-only-if” style. More specifically, the correctness requirementsxofand
Ext algorithms in [27] are: (i) # = H,(tag, u) < (u, Ext(sk, tag, u, 7)) € Rouw.”
and (i) “m = Hy(tag,u) < (u, E/;t(EE, tag,u,m)) € Rpuw.” Regarding (i), since the
definition of [27] does not specify what is output froxt whenH,;(tag,u) # ,
we require that it outputl . We stress that this is without loss of generality because
given pri, it is possible to tell whethefu, Ext(sk, tag, u, 7)) € Rpup OF NOt, andpri
can be contained isk in our definition. The main difference from the definition in this
paper and the one in [27] is regarding (ii), i.e. correctnessxofalgorithm. It is clear
that ours requires weaker correctness since we do not specify the behaiar iof
caseH,(tag, u) # m, while the definition in [27] does. As will be shown later, this
relaxation is the main reason that makes the framework of the ABO-XHPS-based KEM
much wider, and makes it possible to capture most known practidasecure KEMs,
and evercCCA secure schemes.

4 Computational Properties of ABO-XHPS

In this section, we introduce three computational properties of ABO-XHPS which are
all related to the behavior of the extraction algorithm for the all-but-one modéﬁte.

and play important roles for provin@)CCA security of the ABO-XHPS-based KEMs

in the next section. We also show the relationships among these properties.

4.1 Computational Soundnessas)

“Computational soundne&sgCs security) captures soundness of e algorithm, and
roughly means that it is hard to find an “invalid procf'from which Ext extracts some
value that is notL. This is, it is hard to find a tupl&ag, u, ) satisfyingtag # tag*,
Hpk(tag,u) # w, and E/;t(gl;, tag,u,m) # L, where(pk, sk) « )TK\G(pub,tag*).
Formally, consider the experimelﬁipt‘fYS"A(k) that an adversarl = (A4, .A2) runsin
as in Fig. 2 (top-left).

Definition 3. We say that an ABO-XHPS8 satisfiescomputational soundne$ss se-
cure, for shor}, if the advantagedvy 4 (k) = Pr[Expty 4 (k) = 1] is negligible for
any PPTAA.

ConcreteCS Secure ABO-XHPSThe factoring-based ABO-XHPS [27, Sect. 4.2], the
(non-twin-)Diffie-Hellman-based one [27, Sect. 5.1] in case instantiated with bilinear
groups, and the twin Diffie-Hellman-based one [27, Sect. 5,2] shown by Wee, are in fact
all cs secure. Théxt algorithm of these ABO-XHPS satisfy the “if-and-only-if"-style



Expt$ 4 (k) :
(pub, pri) < RSetup(1*); | The oracle IrExpt$ 4 (k):
(tag*/,\st) <_/~Ai(PUb); Ocs(tag,u, m) =
(P(l;v sk) <= XKG(pub, tag"*); E/x\t(az, tag,u,m) |If tag # tag*
A3 (pk, st); 1 Otherwise
If A2 submits to oracl®cs
at(ltia;}i,rji%u:gh that The oracle irExpt5 7 (k) andExpt’ 4 (k):
tag # tag* Opp.- Ext(tag,u ) = Oucs(tag, u, ) =
A Hypi(tag/ u') # o’ Ext(sk tag,u,m) |If tag # tag™ A Hpr(tag,u) =7
A Ext(sk, tag/ v/, 7') # L {L Otherwise
then returnl else returrd
Expthy 5 (k) : Expts 4 (k) :
(pub, pri) <— RSetup(1¥); (pub, pri) < RSetup(1%);
(tag™,st) < Al(pub) (tag” st) — Al(pub)
(pk, sk) +— XKG(pub tag”); (pk, sk) — XKG(pub tag®);
(tag',u', 7', st') .AO"R = (pk,st); | (tag’,u',7',s") « AO“’CS (pk, st);
st E/;t(;;, tag', v, 7'); If tag’ # tag”
56— S; A Hpk(tag/ u') # '
b+« {0,1}; NS = Ext(sk: tag',u', ")
b As(sp,st'); = Ext(sk tag’,u', Hp(tag’, u))
If ¥ = b then returnl else returrd then returnl else returro

Fig. 2. The CS experiment (top-left), th@R- Ext experiment (bottom-left), theCS experiment
(bottom-right), and the definitions of the oracles (top-right).

correctness, and additionally have the property that invalid preofs H,(tag, u)

can be detected publicly or by using a secret key of the ABO-XHPS. Furthermore,
the recently proposed practicatA secure KEMs based on the HDH and the DBDH
assumptions can be understoodcasecure ABO-XHPS. These include (a simplified
version of) the KEMin [5], [6, Sect. 5.2], and [13, Sect. 4]. Concretely, here we show the
ABO-XHPS X«s based on the KEM by Cash et al. [6, Sect. 5.2], which is associated
with the HDH-based Diffie-Hellman relation famitig®", as in Fig. 3.Xs can be
proved to bes secure because the truth value of the validity check irfﬁnalgorithm

of Xes is the same as the truth value of the validity check inEke algorithm with
overwhelming probability, due to the “trapdoor test” [6, Theorem 2]. In the full version,
we also show ABO-XHPS based on the KEMs in [5] and [13, Sect. 4].

4.2 Pseudorandom Extraction Property PR- Ext)

The “pseudorandom extraction propettyPR- Ext security) guarantees that if thext
algorithm is given(tag, v, ) such thatH,;(tag,u) # m andtag # tag*, then the

extracted value = E/;t(sk, tag, u, ) looks pseudorandom. In the context of the ABO-
XHPS-based KEMs (that will be shown later), this property means that whe(u, 7)

is an inconsistent ciphertext, if we extradrom Ext, then the seed of the session-key



XKG(pub = (g, h),pri = @) : XKG(pub = (g, h),tag™) :

T, Y1, Y2 ZP’ X gz Z,7Z17Z27Z3 <~ ZP! X gZ/hitag*
Y; «+ g¥i fori € [2] Y1 < gt h™%2; Yo + g*3 Yl_tag*
pk%(g7h7X7Y13Y2) pk(—(g7h,X7Y17Y'2)

sk (047$7y17y2)

sk 2, 21,22, 23,tag"
Return(pk, sk) (2,21, 22,23, tag”)

Return(pk, EE)

Pub(pk, tag, w) : Priv(sk,u) :

T (X)" e (VY |y mg e
Returnt ¢ (w1, m2) Returnm < (1, m2)
Ext(sk, tag, u, ) : Ext(sk,tag, u, ) :

If u(:utag-‘rm =m anduyl“ag+y2 =m2| 5 (71_1 ~u72,)tag71ta?* : s (7T2 X uiz?’);tagflta?*
(e
then returns < u® else returnl | |f 525/ — =1 then returns else returnl.

Fig.3. The ¢S secure ABO-XHPSXxs. The internal hash function family is defined by
Hox(tag, u) = (W8 X)™, (Y,*8Y2)™) whereu = g¥.

K = G(s) looks like a uniformly random value. This property is likemputational
universaj [17] for a “Cramer-Shoup” type HPS [7], and plays a key role for showing
CCCA security of the ABO-XHPS-based KEMs that will be given in the next section.
Formally, consider the experimeBkpt’y i*° (k) that an adversaryl = (A;, A;, As3)
runs in as in Fig. 2 (bottom-left). In the experiment, it is required thag’, v/, 7') in
Ag’s output satisfytag’ # tag™ andH, (tag’, ') # 7'

Definition 4. We say that an ABO-XHPS has thepseudorandom extractigamoperty
(PR- Ext secure, for shojt if the advantageAdvy (k) = |Pr[Expty (k) =

1] — 1/2| is negligible for any PPTA4.

ConcretePR- Ext Secure ABO-XHPSHere, we show a concrete ABO-XHPS based
on the KEM by Hofheinz and Kiltz [17] and the KEM by Hanaoka and Kurosawa [13,
Sect. 6], which are both associated with the HDH-based Diffie-Hellman ref®fth
The ABO-XHPSX}x; based on [17] and the ABO-XHP®;.x, based on [13, Sect.
6] are constructed as in Fig. 44.x; can be provedR- Ext secure roughly because
the valuez, generated iKKG is information-theoretically hidden fropk and values

s extracted from a “correct” proof = H,(tag,u) using Ext, while it appears in a
value s extracted from an “invalid proof satisfyingr # H,(tag, «) and makes the
extracted values look like a random value iiz. The valueg generated ifXKG of
Xuaxu Plays a similar role. We also note thal.x, satisfies only almost-correctness,
asExt cannot extract a value wheng = 3. However, it suffices for showingCCA
security of the ABO-XHPS-based KEM shown in the next section.

4.3 Weak Computational SoundnessuCS)

“Weak computational soundnégsiCS security) guarantees that it is hard to find an
“invalid” proof = # H,(tag, v) such that if we extract a valuewith Ext from the in-
valid 7, then the value is the same as the value that is extracted from a “correct” proof



XKG(pub = (g, h),pri = a) : XKG(pub = (g, h),pri = «) :
1, T2 < Zp ap < a; Ao < hjar,a2 < 7Zp
X, g% fori € [2] A; « g®ifori € [2]; Let f(z) := 37, aix’
pk(—(g,h,Xl,Xz) pk(— (g,Ao,AhAQ);Sl{!(—f(')
sk« (a,z1,x2) Return(pk, sk)
Return(pk;, sk) XKG(pub = (g, h),tag") :
XKG(pub = (g, h), tag") : B, 21,22 < Ly, Ao < h
z1, 22,23 < Lp Computé®) A; = ¢t andAy = ¢g*2 sit.
X1+ g7 h™2; Xo g7 h 72t (f(0), f(tag"), £(B)) = (e 21, 22)
ZBE A (97 h, X1, XQ) pk (g, Ao, A1, Az); EE — ([‘3, 21, 22, tag*)
sk « (21, zz,\zg,tag*) Return(pk, EE)
Return(pk;, sk) Pub(pk, tag, w) : Priv(sk,u) :
Pub(pk, tag, w) : |Priv(sk,u) : Returnz + (Ao A8 AP )| Returnr « u*
T4 (XTEXR)Y | m ot Ext(sk,tag,u, ) :
Return Returnm If «/ (28 — 1 then
Ext(sk, tag, u, ) : returns < u® else returnL
If w1 26722 = 7 then Ext(sk, tag, u, ) :
returns < u® else returnL If tag = £ then returnL
Ext(sk, tag, u,m) : . Let f’ be a degre@-polynomial s.t.
S (7T . uf(z1<tag+z3))m (fl(tag)v fl(tag*)v f/(ﬁ)) = (IOgu T, 21, 22)
Returns Computé® and returns « u/

Fig. 4. The PR- Ext secure ABO-XHPSY.: (left) and Xux. (right). The internal hash func-
tion family of Xuox: is defined byH,x (tag,u) = (X*X,)", and that of Xk, is defined by
o (tag, u) = (AgAPEAE )™ whereu = ¢”. ) In Xixa, The valuesd; and A in XKG

and the value:’'® in Ext can be computed by Lagrange interpolation in the exponent [13].

' = H,k(tag,u). Formally, consider the expenmelﬁkptWCS (k) that an adversary
A = (A, Az) runsin as in Fig. 2 (bottom-right).

Definition 5. We say that an ABO-XHPS$ satisfiesweak computational soundness
(wCS secure, for shoit if the advantagé\dv’y™, (k) = Pr[Expty 4 (k) = 1] is negligi-
ble for any PPTAA.

We show that:CS security is indeed weaker than bat® andPR- Ext security.

Theorem 1. Let R be a relation family and lef be an ABO-XHPS associated with
R. Assume thaR is a one-way relation family, and’ is eitherCS secure orPR- Ext
secure. Ther’ is wCS secure.

Intuition. If X is CS secure, then it is hard to find an invalid praof# H,;(tag, u)
from which we can extract some value that is igtand thus:CS security is satisfied.
If X isPR- Ext secure, then an extracted vakigom an invalid proofzr # Hpi(tag, u)
is pseudorandom, which will be different from the vaEbet(sk tag, u, Hpr (tag, u))
with overwhelming probability, and thugs security is satisfied.

ConcretewCS Secure ABO-XHP 3y definition, any ABO-XHPS whosExt algorithm
satisfies the “if-and-only-if"-style correctness of [27], is automaticallg secure (and



XKG(pub = (g, h), pri = «) : XKG(pub = (g, h),tag") :
2 Zp; X <+ g° 2z Ly, X « g°h™ ¢
Returnpk « (g, h, X) andsk < (o, ) | Returnpk « (g, h, X) andsk < (z, tag")
Pub(pk, tag, w) : Priv(sk,u) :
Returnm < (h"8X)" Returnm + u*
Ext(sk,tag,u, ) : Ext(sk,tag,u, ) :
If w85 = 7 then Returns « (- u~ )@ o5
returns < u® else returnL

Fig.5. The wCS secure ABO-XHPSXki1t.. The internal hash function family is defined by
Hpk(tag, u) = (8 X)" whereu = g*.

hence all XHPS shown in [27] i8CS secure). Here, we show another concrete ex-
ample of awCS secure ABO-XHPS, which is based on the KEM by Kiltz [19] and is
associated with the Diffie-Hellman relation famiRP". (This is a variant of the (non-
twin-)Diffie-Hellman-based ABO-XHPS in [27, Sect. 5.1].) Specifically, the example
of the ABO-XHPS, which we calltkii+, is as in Fig. 5Xk;1t, can be shown to beCs
secure because there is no tufileg, u, 7, s) that satisfies the winning condition of an
adversaryA in thewCs experiment. Namely, ifag # tag* andn # H,(tag, ), then

itis guaranteed thdixt(sk, tag, u, 7) # Ext(sk, tag, u, Hy, (tag, u)).

4.4 CombiningPR- Ext and wCS to Obtain CS

Here, we propose a “transformation” for obtainingsesecure ABO-XHPS fromR- Ext
secure one andCs secure one. LeR be a relation family, and foi € [2], let X; =
(XKG;, Pub;, Exti7>ﬁ<\Gi, ﬂ/i, EAth-) be an ABO-XHPS which is associated wikh
Furthermore, leH®) be the internal hash function family &f. Then, using¥; and X,

as building blocks, we construct another ABO-XHRS= (XKG', Pub’, Ext/, X/K\G/,

FTrR/I, E/;t/), which is associated with the sare as in Fig. 6. LetPK = (pky, pka)

be a public key oft’. Then the internal hash function family of X’ is defined by

Hp i (tag, u) = (m1,m2) = (HU) (tag,u), H) (tag, u)).

The following theorem holds.

Theorem 2. Let 'R be a relation family and lef’; and X, be ABO-XHPS associated
with R. Assume thaR is a one-way relation familyY; and X, are PR- Ext secure and
wCS secure, respectively. Then the ABO-XHP'Sonstructed as in Fig. 6 i6S secure.

Intuition. In order for an adversaryl against thecs security of X’ to win, it has to
make a querytag, u, m = (71, m2)) of either of the following types: (1jag # tag*

A H;?l(tag,u) # m A E/;tl(gEl,tag,u,m) = Exta(ska,tag,u,m) # L, or (2)

tag # tag® A HSC)I (tag,u) = m A Hz()i)z(tag,u) %+ ma A E;tl(gﬁl,tag,u,m) =

E/;tg(gEg,tag, u,m2) # L. However, a tuple of the first type is hard to find due to the
PR- Ext security ofX, because if the query is of first type, then the extracted value



XKG'(pub, pri) : ml(pub, tag”) :
(Pki, ski) < XKGi(pub, pri) fori € [2] | (pk, sk:) < XKG;(pub, tag") for i € [2]
PK + (pkl,pkg); SK + (Sk1,5k’2) PK «— (pkhka); §[\( — (gkl’gEQ)
Return(PK, SK) Return(PK, §I\()

Pub’(PK,tag,w) : ﬁrﬁ/(@?,u) :
i+ Pub;(pk;, tag, w) fori € [2] i < Priv;(ski, u) for i € [2]
Returnm < (w1, m2) Returnm + (1, m2)
Ext'(SK, tag,u, ) : E/;t/(gl\(, tag, u, ) :
si < Ext;(sk;, tag, u, m;) fori € [2] 8 §t¢(§E¢,tag, u, ;) fori € [2]
If s1 = s2 # L then returnsy If s1 = s2 # L then returns;
else returnL else returnL

Fig. 6. The transformation for obtaininges secure ABO-XHPSY’ from aPR- Ext secure ABO-
XHPS X and awCS secure ABO-XHPSY,.

EAxtl (5%1 ,tag, u, 1) is a pseudorandom and is different frep= E/;tg(;EQ, tag, u, m2)

with overwhelming probability, regardless of the vakse Furthermore, a query of the
second type is also hard to find because such tuple can be directly used to break the
wCS security of X5. More specifically, the conditiohlﬁ)l (tag,u) = m; guarantees;

= E;tl(EEl,tag, u, ) = §tg(§E2,tag,u, ka)z (tag, u)) due to the correctness of the

all-but-one mode of ABO-XHPS. Therefore, the tupleg, u, w2, s1) with tag # tag*
and Hggz (tag,u) # mo satisfies the winning condition of th&s experiment.

5 KEMs Based on ABO-XHPS

In this section, we show our results regarding the KEMs based on ABO-XHPS. Specif-
ically, we show thatCA security of the ABO-XHPS-based KEM can be shown without
using gap version of one-way relation families and the stronger correctness requirement
defined in [27], and instead a (non-gap) one-way relation family and our weaker cor-
rectness, together wittg security, suffices. Furthermore, we show that the KEM can be
shown to becCCA secure if the ABO-XHPS satisfi®®- Ext security. Finally, we show

that using the ABO-XHPS in a slightly different way, the ABO-XHPS-based KEM can
be extended to be &)CCA secure MR-KEM.

5.1 Single-Recipient KEM

Let R = (RSetup, RSamp, G) be a relation familyX = (XKG, Pub, Ext, XKG, Priv,
E/;t) be an ABO-XHPS associated witR, andTCR : &/ — 7T be a target collision
resistant hash function (TCRHE)Then we construct a KEM; = (KG, Enc, Dec)
based on the ABO-XHP& as in Fig. 7 (left).

3 Roughly, an efficiently computable functiGfiCR is said to be a TCRHF if given a random
inputz, it is hard to find another input’ such thafTCR(xz) = TCR(z') Az # z’. The formal
definition can be found in the full version or in the papers [19, 17,12, 18, 27].



KG(1F) : MSetup(1¥) : MEnc(pk) :

(pub, pri) < RSetup(1") (pub, pri) <— RSetup(1%) (pk1,...,pkn) < pk
(pk, sk) <= XKG(pub, pri) | | Returnpub w < W

Return(pk, sk) MKG (pub) : (u, s) < RSamp(w)
Enc(pk) : dummy < T tag < TCR(u)

w W (pk7§E) — )ﬁ(\G(pub7dummy) m; + Pub(pks, tag, w)
(u; 5) +— RSamp(w) SK «+ (EE dummy) fori € [n]
tag < TCR(u) Return(pk 7SK) 7= (T, )

7 < Pub(pk, tag, w) MExt(pk: é) - ¢+ (u,m); K<« G(s)
¢+ (u,m); K < G(s) (u ﬂ-)p;,c. (m1 ) T Return(c, K)
Return(c, &) Returnc; < (u, ;)

Dec(sk,c) :
(u, )  c; tag < TCR(u) M/D\eC(SKi’ ci) :
s < Ext(sk,tag, u, ) (ski, dummy,) < SK; (uil)/i_ ci; tag < TCR(w)
If s = L then returnL If tag # dummy, ands = Ext(sk;, tag, u, m;) # L
ReturnK «+ G(s) then returni < G(s) else returnl

Fig. 7. The (single-recipient) KEM; (left) and the MR-KEMI s (right).

CCA Security.Wee [27] showed the following.

Theorem 3. ([27]) If R is a gap one-way relation familyy' ™ is an ABO-XHPS, and
TCR is a TCRHF, then the KENI; is CCA secure.

We show that the same KEN}, can be proved in the following way, without using
a “gap” one-way relation family.

Theorem 4. If R is a one-way relation family¥' ™ is an ABO-XHPS which satisfies
security, andl CR is a TCRHF, then the KEM is CCA secure.

Intuition. To ensure that the real challenge K€y = G(s*) looks random for &CA ad-
versaryA, we have to use pseudorandomness of the gendtatbithe one-way relation
R. However, the reduction algorithi, who attacks pseudorandomnes$oheeds to
simulate theCCA experiment forA without knowing the private parameteri or the
randomnessy* used to sampléu*, s*) € Ryu. B therefore simulates thecA exper-
iment for A by using the all-but-one mode of the ABO-XHPS The Priv algorithm
enables5 to generate the challenge ciphertext= (u*, 7*) correctly, using?lg output
from %(pubﬁag*) wheretag* = TCR(u*). However, since we do not use “gap”
one-way relation family3 does not have access to the relation or&delg,, and thus
cannot check inconsistency of a ciphertext by itself. Hegesecurity of X’ guarantees
that even ifA submits an invalid ciphertext= (u, 7) with H,;(TCR(u), v) # , the
Ext algorithm almost perfectly works like thext algorithm in the real decapsulation
algorithm inDec of I';. In doing so, the TCRHH CR enablesB to always useExt,

4 As we have mentioned, Wee’s definition of ABO-XHPS in [27] requires stronger correctness
for Ext algorithm. HowevergCA security of the ABO-XHPS-based KEM can be shown with-
out this requirement.



so that the problematic situation wheeg = TCR(u) = tag* never occurs. Then, in-
distinguishability of two modes guarantees thd behavior cannot be non-negligibly
different between the case in which the experiment is simulatefl with the all-but-
one mode, and the case in whighis in the originalCCA experiment.

CCCA SecurityWe show that the KEM™, based on the ABO-XHPS is CCCA secure,
whenX is PR- Ext secure.

Theorem 5. If R is a one-way relation familyxX® is an ABO-XHPS which satisfies
PR- Ext security, andT CR is a TCRHF, then the KEM; is CCCA secure.

Intuition. The intuitive explanation on the proof of this theorem is very close to that of
Theorem 4. The difference is that we can no longer expect thﬁﬁh@lgorithm can be
used to reject an invalid ciphertext= (u, ) with m # H,, (TCR(u),u), becauseY is

not guaranteed to bes secure. However, recall thBk- Ext security of X guarantees
that an extracted valuefrom an invalid input is a pseudorandom valueSinwhich in

turn guarantees thd = G(s) € K is also pseudorandom and thus unpredictable to the
adversaryA. Recall also that a validCcCA adversary has to control its “uncertainty” to
be negligible. These help thadfs CDEC query with an invalid ciphertext is “implicitly”
rejected, and thus the main reduction algoritBis simulation of theCCCA experiment

for A are guaranteed to be almost perfect.

5.2 Multi-Recipient KEM

Here, we show how to construct a MR-KEM using ABO-XHPS. Using the same build-
ing blocks R, X, andTCR) as inI, we constructa MR-KEM ™, = (MSetup, MKG,
MEnc, MExt, MDec) as in Fig. 7 (right).

The main feature of the MR-KEM7,; is that we use the all-but-one mode of the
underlying ABO-XHPSY even for normal operations, namely, each user’s key is setup
with XKG using a “dummy tagdummy. This is to setup users’ keys without using the
private parametegri corresponding teub, which makes it possible to shapseb with
many users. SincExt cannot extract a value when it is invoked with the tag that is
used to generafdc\, the decapsulation algorithMDec rejects a useft’s ciphertextc =
(u, ;) satisfyingTCR(u) = dummy, even ifc is honestly generated by usifdEnc.
Therefore, our MR-KEMI,, does not have perfect correctness. However, it satisfies
almost-correctnessrhe information ordummy in a user’s secret key is information-
theoretically hidden from entities other than the user who halasmy. Therefore, it
is hard to find a ciphertext = (u, 7) that satisfieSTCR(u) = dummy, regardless of
the validity ofc.

Hiwatari et al. [16] proposed two MR-KEMs. Their first scheme, whictcta
secure, is based on the KEM by [6, Sect. 5.2], while their second scheme, which is
CCCA secure, is based on the KEM by [13, Sect. 5]. Both of their schemes can be seen
as concrete instantiations of the MR-KEN),: Their first one is based on the ABO-
XHPS Xs, while their second one is based on the ABO-XHRBSk,. From another
viewpoint, our MR-KEM based on ABO-XHPS is a generalization of Hiwatari et al.

Theorem 6. If R is a one-way relation¥™ is an ABO-XHPS which satisfi€s secu-
rity, and TCR is a TCRHF, then the MR-KENT),, is CCA secure.



Theorem 7. If R is a one-way relationY® is an ABO-XHPS which satisfi®8- Ext
security, andl CR is a TCRHF, then the MR-KENT),, is CCCA secure.

The proofs proceed similarly to those of Theorems 4 and 5. The difference is that here,

we start from the situation in which each user’s key is generat@@l?ywith dummy
tagdummy, while in the proofs of Theorems 4 and 5, we started from the situation in
which each user’s key is generated Xi{G. We also have to deal with the difference
between multi-recipientr{ users) and single-recipient environments, but this can be
essentially dealt with users’ key-wise hybrid argument.

6 Discussion

Capturing a Wider Class of Constructions and Security Prodfée see that by our
results, the framework of KEMs based on ABO-XHPS captures most practicais
secure KEMs. Concretely, many existigGgA secure KEMs can be seen as concrete
instantiations derived from our extended framework, which include KEMs by Boyen et
al. [5], Cash et al. [6, Sect. 5.2], and Hanaoka and Kurosawa [13, Sect. 4], attCthe
secure KEMs by Hofheinz and Kiltz [17] and Hanaoka and Kurosawa [13, Sect. 6].

Interestingly, the extraction mode of the ABO-XHRGs based on the Cash et al.
KEM [6, Sect. 5.2] is exactly the same as that of dsesecure ABO-XHPS obtained
via the transformation (Theorem 2) using tPe Ext secure ABO-XHPSYj.x; and
the wCS secure ABO-XHPSY;;1:,. Therefore, Theorems 2 and 4 provide us with an
alternative proof ofcCA security of Cash et al. KEM, without using the trapdoor test
theorem [6, Theorem 2]. We see that this is a concrete evidence that our results are use-
ful for understanding constructions and security proofs of practicalsecure KEMs
in a modular manner.

As is the same with the original framework [27], our results also workifarise
product relation (i.ek-independent copies of relation families). This extension is useful
to capture hardcore bit-based constructions of KEMs in the framework of ABO-XHPS.
However, the clear disadvantage of this approach is that the ciphertext size of the KEM
derived from the ABO-XHPS for th&e-wise product relation becomes linearkin

Strictly speaking, ours (and the original framework in [27]) still does not capture the
CCA secure KEMs whose session-key is derived using hardcore bits but whose cipher-
text size is constant (e.g. [13-15, 29]). Technically, the security proofs of these KEMs
require hybrid argument to replace the real session-key bit-by-bit to finally reach the
game in which the real session-key is truly random (and thus an adversary has zero
advantage), while the security proofs of the ABO-XHPS-based KEMs in our work and
in [27], do not allow this approach. Moreover, it seems to us that how to derive many
hardcore-bits in each scheme is quite dependent on the algebraic structure of the con-
structions. However, we note that at least the “basic structures” of the KEMs in [15,
29], which do not consider hardcore-bit-based session-key derivation but derive key by
considering “the corresponding (hashed version of) decisional problems, can be seen
as concrete instantiations from our extended framework. To extend the framework of
ABO-XHPS-based KEMs further to capture these constructions will be worth tackling.

New Instantiations of (MR-)KEMsDue to Theorems 4, 5, 6, and 7, we can derive
a number of new@)CCA secure (MR-)KEMSs. Specifically, due to Theorem 2, we can



construct &S secure ABO-XHPS from BR- Ext secure ABO-XHPS andwCS secure
ABO-XHPS, or from twoPR- Ext secure ABO-XHPS via Theorem 1 (i.e. one of the
two ABO-XHPS is treated as weCS secure ABO-XHPS). Therefore, using the ABO-
XHPS we show in Section 4, we can derive a number of variants of KEMs [8, 6, 12]:
we can obtain &S secure ABO-XHPS by the combination &f.x; andXx;1t. (Which
happens to be essentially identicaltgs as mentioned above) and the combination of
Xiaxe aNd Xgi14.. We can also obtain a ne@8 ABO-XHPS by combining¥y.x; and
Xuaxu, tWo independent instances Afx;, and two independent instances &f.x..
Then, from thes&€s secure ABO-XHPS, we derive ne@CA secure KEMs and MR-
KEMSs, due to Theorems 4 and 6, respectively.

Furthermore, we can also obtain a number of practical MR-KEMs from existing
ABO-XHPS. For example, from thées secure ABO-XHPS based on the KEM by
Boyen et al. [5] (which can be found the full version), we obtai@iCa secure MR-
KEM based on the DBDH assumption whose ciphertext size4s1 group elements
when sending ta recipients. This construction is the most efficieats secure MR-
KEM in terms of ciphertext size. Moreover, by using the factoring-based ABO-XHPS
shown in [27, Sect. 4.2] (which i8S secure), we obtain @A secure factoring-based
MR-KEM which is more efficient than the construction that naively concatenates the
ciphertexts from a single-recipient KEM by Hofheinz and Kiltz [18].

Finally, we stress that the advantages of our results are not only the efficiency of the
concretely derived (MR-)KEMSs, but also the strengthening of the framework of [27],
which we believe is useful for future design @j¢CA secure (MR-)KEMSs.
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