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Abstract. In Eurocrypt 2010, Fehr et al. proposed the first sender-
equivocable encryption scheme secure against chosen-ciphertext attacks
(NC-CCA) and proved that NC-CCA security implies security against
selective opening chosen-ciphertext attacks (SO-CCA). The NC-CCA se-
curity proof of the scheme relies on security against substitution attacks
of a new primitive, “cross-authentication code”. However, the security of
cross-authentication code can not be guaranteed when all the keys used
in the code are exposed. Our key observation is that in the NC-CCA
security game, the randomness used in the generation of the challenge
ciphertext is exposed to the adversary. This random information can be
used to recover all the keys involved in the cross-authentication code,
and forge a ciphertext (like a substitution attack of cross-authentication
code) that is different from but related to the challenge ciphertext. And
the response of the decryption oracle, with respect to the forged cipher-
text, leaks information. This leaked information can be employed by an
adversary to spoil the NC-CCA security proof of Fehr et al.’s scheme
encrypting multi-bit plaintexts. We also show that Fehr et al.’s scheme
encrypting single-bit plaintexts can be refined to achieve NC-CCA secu-
rity, free of any cross-authentication code.

Keywords: sender-equivocable encryption, chosen-ciphertext attack, cross-
authentication code.

1 Introduction

The notion of sender equivocability for a public-key encryption (PKE) scheme
was formalized by Fehr et al. [7] in Eurocrypt 2010. It is an important tool to con-
struct PKE schemes secure against chosen-plaintext/ciphertext selective opening
attacks (SO-CPA/CCA). Sender equivocability focuses on the ability of a P-
KE scheme to generate some “equivocable” ciphertexts which can be efficiently
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opened arbitrarily. More specifically, a PKE scheme is called sender-equivocable,
if there is a simulator which can generate non-committing ciphertexts and lat-
er open them to any requested plaintexts by releasing some randomness, such
that the simulation and real encryption are indistinguishable. This notion is
similar to non-committing encryption [5]. In fact, Fehr et al. [7] have pointed
out that sender-equivocable encryption secure under chosen-plaintext attack-
s (CPA) is a variant of non-committing encryption defined in [5]. Following
the notations in [7], security of a sender-equivocable encryption scheme against
chosen-plaintext/ciphertext attacks is denoted by NC-CPA/CCA security.

As proved in [7], NC-CPA/CCA security implies simulation-based selective
opening security against chosen-plaintext/ciphertext attacks (SIM-SO-CPA/CCA
security). This fact suggests an alternative way of constructing PKE secure a-
gainst selective opening attacks, besides the construction from lossy encryption
proposed in [3].

Discussion and related work. In Eurocrypt 2009, Bellare et al. [3] formal-
ized the notion of security against selective opening attacks (SOA security) for
sender corruptions. This security notion captures a situation that n senders en-
crypt their own messages and send the ciphertexts to a single receiver. Some
subset of the senders can be corrupted by an adversary, exposing their messages
and randomness to the adversary. SOA security requires that the unopened ci-
phertexts remain secure.

In [3], Bellare et al. proposed two kinds of SOA security: simulation-based se-
lective opening (SIM-SO) security and indistinguishability-based selective open-
ing (IND-SO) security. The relations between the two notions are figured out
by Böhl et al. [2]. Bellare et al. [1] showed that the standard security of PKE
does not imply SIM-SO security. Bellare et al. [3] proposed that IND-SO-CPA
security and SIM-SO-CPA security can be achieved through a special class of en-
cryption named lossy encryption, and lossy encryption can be constructed from
lossy trapdoor functions [13]. Hemenway et al. [10] showed more constructions of
lossy encryption, which achieved IND-SO-CCA security with a-priori bounded
number of challenge ciphertexts. In Eurocrypt 2012, Hofheinz [9] proposed a new
primitive called all-but-many lossy trapdoor functions, which were employed to
construct IND-SO-CCA secure and SIM-SO-CCA secure PKE with unbounded
number of challenge ciphertexts. In [4], Bellare et al. extended SOA security
from PKE to IBE.

In [7], Fehr et al. presented a totally different way of achieving SIM-SO-CCA
security, also with unbounded number of challenge ciphertexts. They formalized
the security notion of sender equivocability under chosen-plaintext/ciphertext
attacks (NC-CPA/CCA security), and proved that NC-CPA (resp. NC-CCA)
security implies SIM-SO-CPA (resp. SIM-SO-CCA) security. In [7], two PKE
schemes were proposed. The first one, constructed from trapdoor one-way per-
mutations, is NC-CPA secure, so it is SIM-SO-CPA secure. The second one
(denoted by the FHKW scheme) is constructed from an extended hash proof
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system [6] and a new primitive, “cross-authentication code”. They proved that
the FHKW scheme is NC-CCA secure.

With help of similar techniques as those in the FHKW scheme, Gao et al.
[8] presented a deniable encryption scheme in 2012. The CCA security of their
scheme was guaranteed mainly by an extended hash proof system of [6] and a
cross-authentication code of [7].

In this paper, we will analyze the security proof of the FHKW scheme and
show that its NC-CCA security can not be guaranteed by their proof. The GXW
scheme suffers from the similar security problem. We also offer a refined version
of the FHKW scheme for single bit with NC-CCA security.

Our contribution. In this paper, we focus on NC-CCA security.

– We provide an analysis of the security proof of the FHKW scheme in [7], and
show the proof of NC-CCA security in [7] is flawed by showing an attack.
The key observation is: In the definition of NC-CCA security, the random-
ness used in the generation of the challenge ciphertext C∗ is offered to the
adversary. The adversary is able to use the randomness to forge a cipher-
text and obtain useful information by querying the forged ciphertext to the
decryption oracle. Assume that the plaintext consists of L bits. We present
a PPT adversary who can always distinguish the real experiment and the
simulated experiment for L > 1. We also show that the security requirement
of “L-cross-authentication codes” is not enough in the proof of NC-CCA
security in [7] for any positive integer L.

– We refine the FHKW scheme encrypting one bit. Although we showed that
“L-cross-authentication codes” are generally not sufficient to prove NC-CCA
security, some specific instances of “1-cross-authentication codes” are helpful
to finish the proof of NC-CCA security of the FHKW scheme [7], but limit-
ed to encryption of a single bit. We provide a simpler encryption scheme for
single-bit plaintexts, free of any cross-authentication code.

Organization. We start by notations and definitions in Section 2. We recall the
FHKW scheme in Section 3, and then provide a security analysis of it in Section
4. We present a refined version of the FHKW scheme for single-bit plaintexts in
Section 5 and leave the proof in the Appendix. Finally, we give a summary of
our work in Section 6.

2 Preliminaries

2.1 Notations

Let N denote the set of natural numbers. We use k ∈ N as the security parameter
throughout the paper. For n ∈ N, let [n] denote the set {1, 2, · · · , n} and {0, 1}n
the set of bitstrings of length n. For a finite set S, let s← S denote the process
of sampling s uniformly at random from S. If A is a probabilistic algorithm, we
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denote by RA the randomness set of A. Let y ← A(x1, x2, · · · , xt) denote the
process of running A on inputs {x1, x2, · · · , xt} and inner randomness R← RA,
and outputting y. If the running time of probabilistic algorithm A is polynomial
in k, then A is a probabilistic polynomial time (PPT) algorithm.

2.2 Sender-Equivocable Encryption Schemes

The notion of Sender Equivocability was formalized by Fehr et al. [7] in 2010. For
a public-key encryption scheme

∏
= (Gen,Enc,Dec), let A = (A1, A2) denote

a stateful adversary, S = (S1, S2) denote a stateful simulator, and M denote
a plaintext. Let state denote some state information output by A1 and then is
passed to A2. Sender equivocability under adaptive chosen-ciphertext attacks is
defined through the following two experiments.

Experiment ExpNC-CCA-Real∏
,A (k):

(pk, sk)← Gen(1k)

(M, state)← A
Decsk(·)
1 (pk)

R← REnc

C ← Encpk(M ;R)

return A
Decsk(·)
2 (M,C,R, state)

Experiment ExpNC-CCA-Sim∏
,A (k):

(pk, sk)← Gen(1k)

(M, state)← A
Decsk(·)
1 (pk)

C ← S1(pk, 1|M |)
R← S2(M)

return A
Decsk(·)
2 (M,C,R, state)

In both experiments, A = (A1, A2) is allowed to access to a decryption oracle
Decsk(·) with constraint that A2 is not allowed to query C.

The advantage of adversary A is defined as follows.

AdvNC-CCA∏
,A,S (k) :=

∣∣∣Pr
[
ExpNC-CCA-Real∏

,A (k) = 1
]
− Pr

[
ExpNC-CCA-Sim∏

,A (k) = 1
]∣∣∣ .

Definition 1 (NC-CCA security). A public-key encryption scheme
∏

=
(Gen,Enc,Dec) is sender-equivocable under adaptive chosen-ciphertext attacks
(NC-CCA secure), if there is a stateful PPT algorithm S (the simulator), such
that for any PPT algorithm A (the adversary), the advantage AdvNC-CCA∏

,A,S (k) is
negligible.

2.3 Building Blocks of the FHKW Scheme

In [7], Fehr et al. presented a construction of PKE with NC-CCA security. We
will call their scheme the FHKW scheme. The FHKW scheme was built from
the following cryptographic primitives: a collision-resistant hash function (in-
formally, a function is collision-resistant if any PPT adversary cannot find two
distinct inputs hashing to the same output except with negligible probability), a
subset membership problem, an extended version of hash proof system [6], and
a cross-authentication code [7].

Definition 2 (Subset membership problem). A subset membership problem
consists of the following PPT algorithms.
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– SmpGen(1k): On input 1k, algorithm SmpGen outputs a parameter Λ, which
specifies a set XΛ and its subset LΛ ⊆ XΛ. Set XΛ is required to be easily
recognizable with Λ.

– SampleL(LΛ;W ): Algorithm SampleL samples X ∈ LΛ using randomness
W ∈ RSampleL.

A subset membership problem SMP is hard, if for any PPT distinguisher D, D’s
advantage

AdvSMP,D(k) := | Pr[Λ← SmpGen(1k), X ← LΛ : D(X) = 1]
− Pr[Λ← SmpGen(1k), X ← XΛ : D(X) = 1] |

is negligible.

Definition 3 (Subset sparseness). A subset membership problem SMP has
the property of subset sparseness, if the probability Pr[Λ ← SmpGen(1k), X ←
XΛ : X ∈ LΛ] is negligible.

Definition 4 (Hash Proof System and Extended Hash Proof System).
A hash proof system HPS for a subset membership problem SMP associates each
Λ← SmpGen(1k) with an efficiently recognizable key space KΛ and the following
PPT algorithms:

– HashGen(Λ): On input Λ, HashGen outputs a public key hpk and a secret key
hsk, both containing the parameter Λ.

– SecEvl(hsk,X): It is a deterministic algorithm. On input a secret key hsk
and an element X ∈ XΛ, SecEvl outputs a key K ∈ KΛ.

– PubEvl(hpk,X,W ): It is a deterministic algorithm. On input a public key
hpk, an element X ∈ XΛ and a witness W for X ∈ LΛ, PubEvl out-
puts a key K ∈ KΛ. The correctness requires that PubEvl(hpk,X,W ) =
SecEvl(hsk,X) for all Λ ← SmpGen(1k), (hpk, hsk) ← HashGen(Λ) and
X ← SampleL(LΛ;W ).

An extended hash proof system EHPS is a variation of a hash proof system HPS,
extending the sets XΛ and LΛ by taking the Cartesian product of these sets with
an efficiently recognizable tag space TΛ. Hence, the tuple of the three algorithms
(HashGen, SecEvl, PubEvl) of EHPS is changed to (hpk, hsk) ← HashGen(Λ),
K ← SecEvl(hsk,X, t) and K ← PubEvl(hpk,X,W, t), with t ∈ TΛ.

The public key hpk in a hash proof system HPS uniquely determines the
action of algorithm SecEvl for all X ∈ LΛ. However, the action of SecEvl for
X ∈ XΛ \ LΛ is still undetermined by hpk. This is defined by a perfectly 2-
universal property.

Definition 5 (perfectly 2-universal). A hash proof system HPS for SMP is
perfectly 2-universal if for any Λ ← SmpGen(1k), any hpk from HashGen(Λ),
any distinct X1, X2 ∈ XΛ \ LΛ, and any K1,K2 ∈ KΛ,

Pr[SecEvl(hsk,X2) = K2 | SecEvl(hsk,X1) = K1] =
1

|KΛ|
,
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where the probability is taken over all possible hsk with (hpk, hsk)← HashGen(Λ).

Definition 6 (Efficiently samplable and explainable domain). A domain
D is efficiently samplable and explainable, if there exists two PPT algorithms:

– Sample(D;R): On input a random coin R ← RSample and a domain D, it
outputs an element uniformly distributed over D.

– Explain(D, x): On input D and x ∈ D, this algorithm outputs R that is uni-
formly distributed over the set {R ∈ RSample | Sample(D;R) = x}.

Definition 7 (L-Cross-Authentication Code [7]). For any L ∈ N, an L-
cross-authentication code XAC, associated with a key space XK and a tag space
XT , consists of three PPT algorithms (XGen, XAuth, XVer). Algorithm XGen(1k)
generates a uniformly random key K ∈ XK, XAuth(K1, · · · ,KL) produces a tag
T ∈ XT , and XVer(K, i, T ) outputs b ∈ {0, 1}. The following properties are
required:

Correctness. The function

failcorrectXAC (k) := max
i∈[L]

Pr[XVer(Ki, i,XAuth(K1, · · · ,KL)) 6= 1]

is negligible in k, where the max is over all i ∈ [L] and the probability is
taken over all possible K1, · · · ,KL ← XGen(1k).

Security against impersonation and substitution attacks. The advan-
tages AdvimpXAC(k) and AdvsubXAC(k), defined as follows, are both negligible.

AdvimpXAC(k) := max
i,T ′

Pr[K ← XGen(1k) : XVer(K, i, T ′) = 1]

where the max is over all i ∈ [L] and T ′ ∈ XT .

AdvsubXAC(k) := max
i,K6=i,Func

Pr

Ki ← XGen(1k)
T ← XAuth(K1, · · · ,KL)
T ′ ← Func(T )

:T
′ 6= T∧

XVer(Ki, i, T
′) = 1


where the max is over all i ∈ [L], all K6=i := (Kj)j 6=i ∈ XKL−1 and all
possibly randomized functions Func : XT → XT .

3 Review on the FHKW Scheme in [7]

With the above cryptographic primitives, we now present the FHKW scheme
[7].

Let SMP be a hard subset membership problem that has the property of
subset sparseness. Let XΛ, with Λ ← SmpGen(1k), be efficiently samplable and
explainable. Let EHPS be a perfectly 2-universal extended hash proof system
for SMP with tag space TΛ and key space (range) KΛ, which is efficiently sam-
plable and explainable as well. Let H : (XΛ)L → TΛ be a family of collision-
resistant hash functions, and XAC be an L-cross-authentication code with key
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space XK = KΛ and tag space XT .

The FHKW scheme

Gen(1k): On input 1k, algorithm Gen runs Λ ← SmpGen(1k), (hpk, hsk) ←
HashGen(Λ), H ← H, and outputs (pk, sk), where pk = (hpk,H) and sk =
(hsk,H).

Enc(pk,M ;R): To encrypt a plaintext M = (M1, · · · ,ML) ∈ {0, 1}L under
a public key pk = (hpk,H) with randomness R = (Wi, R

XΛ
i , RKΛi )i∈[L] ∈

(RSampleL ×RSample ×RSample)
L, algorithm Enc runs as follows:

For i ∈ [L], set

Xi :=

{
Sample(XΛ;RXΛi ) if Mi = 0

SampleL(LΛ;Wi) if Mi = 1

and t := H(X1, · · · , XL). Then for i ∈ [L], set the keys

Ki :=

{
Sample(KΛ;RKΛi ) if Mi = 0

PubEvl(hpk,Xi,Wi, t) if Mi = 1

and the tag T := XAuth(K1, · · · ,KL). Finally, return C = (X1, · · · , XL, T )
as the ciphertext.

Dec(sk, C): To decrypt a ciphertext C = (X1, · · · , XL, T ) ∈ XLΛ × XT under
a secret key sk = (hsk,H), algorithm Dec computes t = H(X1, · · · , XL), for
i ∈ [L] sets Ki := SecEvl(hsk,Xi, t) and Mi = XVer(Ki, i, T ), and returns
M = (M1, · · · ,ML) as the plaintext.

The correctness of the FHKW scheme is proved by [7], which we omit here.

4 Security Analysis of the FHKW Scheme

According to the definition of NC-CCA security, the FHKW scheme is NC-CCA
secure, if and only if there exists a simulator S such that for any PPT algorithm
A, the two experiments ExpNC-CCA-Real

FHKW,A (k) and ExpNC-CCA-Sim
FHKW,A (k), defined in

Section 2, are indistinguishable.

In order to prove NC-CCA security of the FHKW scheme, Fehr et al. [7]
constructed the following simulator S = (S1, S2).

Simulator S:

– S1(pk, 1|M |): Parse pk = (hpk,H). For i ∈ [L], choose W̃i ← RSampleL and

set Xi := SampleL(LΛ; W̃i). Compute t := H(X1, · · · , XL). For i ∈ [L],

set Ki := PubEvl(hpk,Xi, W̃i, t). Set T ← XAuth(K1, · · · ,KL). Return the
ciphertext C = (X1, · · · , XL, T ).
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– S2(M): Parse M = (M1, · · · ,ML). For i ∈ [L], if Mi = 1, set Wi := W̃i, and
choose RXΛi ← RSample, R

KΛ
i ← RSample; else, choose Wi ← RSampleL, and set

RXΛi ← Explain(XΛ, Xi), R
KΛ
i ← Explain(KΛ,Ki). Return the randomness

R = (Wi, R
XΛ
i , RKΛi )i∈[L].

With simulator S, Fehr et al. [7] proved that the FHKW scheme is NC-CCA
secure. However, we will show that this specific simulator S does not guarantee
NC-CCA security of the FHKW scheme for any positive integer L.

4.1 The Problem of Security Proof in [7]

To prove NC-CCA security, it is essential to show that the decryption oracle will
not leak any useful information to any PPT adversary. As to the FHKW scheme,
given a challenge ciphertext C = (X1, · · · , XL, T ), an adversary A comes up with
a decryption query C ′ = (X1, · · · , XL, T

′) where T ′ 6= T . NC-CCA security ex-
pects the decryption of C ′ by the oracle will not help the adversary to distinguish
the two experiments ExpNC-CCA-Real

FHKW,A (k) and ExpNC-CCA-Sim
FHKW,A (k)(see the proof of

[7, Lemma 5]). This strongly relies on the security against substitution attacks of
cross-authentication code, which requires that “given T and K6=i, it is difficult to
output a T ′ 6= T such that XVer(Ki, i, T

′) = 1, where Ki is uniformly distribut-
ed”. However, in the NC-CCA game, adversary A KNOWs Ki for any i ∈ [L]!
The reason is as follows. Upon returning a plaintext M , adversary A receives not
only a challenge ciphertext C, but also some related random coins R which are
supposed to have been consumed in the challenge ciphertext generation. With
R and M , adversary A can recover Ki for any i ∈ [L]. Then, it is possible for
A to output a T ′ 6= T such that XVer(Ki, i, T

′) = 1. Hence, the XAC’s security
against substitution attacks is not sufficient to guarantee the aforementioned
property. That is why the security proof of [7] fails (more precisely, the proof of
[7, Lemma 5] fails).

In fact, this kind of adversary, which can output a T ′ 6= T such that XVer(Ki,
i, T ′) = 1 given T and Ki for any i ∈ [L], does exist. In Section 4.2, we will
present such an adversary A to destroy the security proof of the FHKW scheme
for L > 1.

Gao et al.’s deniable scheme in [8]. In [8], Gao et al. utilized exactly the
same technique as that in the FHKW scheme to construct a deniable encryption
scheme and “proved” the CCA security. The similar problem we pointed out
above also exists in their security proof (more specifically, the proof of [8, Claim
1]). As a result, our following attack in Section 4.2 applies to their scheme and
ruins their proof, too.

4.2 Security Analysis of the FHKW Scheme - L > 1

Before going into a formal statement and its proof, we briefly give a high-level
description of our security analysis for L > 1.
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With the aforementioned simulator S, for any L > 1, our aim is to construct
an adversary A = (A1, A2) to distinguish the two experiments ExpNC-CCA-Real

FHKW,A (k)

and ExpNC-CCA-Sim
FHKW,A (k). The construction of adversary A is as follows.

In an experiment environment (either ExpNC-CCA-Real
FHKW,A (k) or ExpNC-CCA-Sim

FHKW,A (k)),
upon receiving pk, A1 returns M = (0, · · · , 0). Then, upon receiving a cipher-
text C = (X1, · · · , XL, T ) and randomness R, A2 returns C ′ = (X1, · · · , XL, T

′)
as his decryption query, where T ′ ← XAuth(K ′1,K2, · · · ,KL), K ′1 is uniformly
random chosen from KΛ and K2, · · · ,KL are all recovered from R. Finally, if the
decryption oracle returns M ′ = (0, · · · , 0), A2 will output b = 1, and otherwise,
A2 will output b = 0.

Now, we consider the probabilities that A outputs 1 in the two experi-
ments, respectively. In ExpNC-CCA-Real

FHKW,A (k), for i ∈ [L], Xi (resp. Ki) is cho-
sen uniformly random from XΛ (resp. KΛ), so the subset sparseness of SM-
P and the perfect 2-universality of HPS guarantee that for i ∈ [L], K ′i =
SecEvl(hsk,Xi, t) is uniformly random in KΛ from A’s point of view. Due to
the security of XAC, the decryption oracle returns M ′ = (0, 0, ..., 0) for the
queried ciphertext C ′. Consequently, A outputs b = 1 with overwhelming proba-
bility in ExpNC-CCA-Real

FHKW,A (k). On the other hand, in ExpNC-CCA-Sim
FHKW,A (k), for i ∈ [L],

Xi is chosen uniformly random from LΛ and Ki = PubEvl(hpk,Xi,Wi, t), so
the property of HPS guarantees that for i ∈ [L], K ′i = SecEvl(hsk,Xi, t) = Ki.
Due to the correctness of XAC and the facts that T ′ ← XAuth(K ′1,K2, · · · ,KL)
and M ′i = XVer(K ′i, i, T

′) = 1 for i ∈ {2, 3, · · · , L}, the decryption oracle re-
turns M ′ = (0, 1, · · · , 1) with overwhelming probability. As a result, A outputs
b = 1 with negligible probability in ExpNC-CCA-Sim

FHKW,A (k). The two experiments

ExpNC-CCA-Real
FHKW,A (k) and ExpNC-CCA-Sim

FHKW,A (k) have been distinguished by A with
overwhelming advantage.

A formal statement of the result and its corresponding proof are as follows.

Theorem 1. With the aforementioned simulator S, the FHKW scheme cannot
be proved to be NC-CCA secure for any L > 1. More specifically, there exists
an adversary A distinguishing the real and the simulated NC-CCA experiments,
with advantage

AdvNC-CCA
FHKW,A,S(k) ≥ 1− 2AdvimpXAC(k)− failcorrectXAC (k).

Proof. For simplicity, we consider the case of L = 2. We note that this attack is
applicable to any L > 1.

Our aim is to construct a specific adversary A = (A1, A2) to distinguish the
two experiments ExpNC-CCA-Real

FHKW,A (k) and ExpNC-CCA-Sim
FHKW,A (k) with non-negligible

advantage.
Specifically, given an experiment environment (either ExpNC-CCA-Real

FHKW,A (k) or

ExpNC-CCA-Sim
FHKW,A (k)), the adversary A = (A1, A2) behaves as follows.

– Upon receiving pk = (hpk,H), A1 returns M = (0, 0), i.e. M1 = M2 = 0.
– Upon receiving a ciphertext C = (X1, X2, T ) and randomnessR = ((W1, R

XΛ
1 ,

RKΛ1 ), (W2, R
XΛ
2 , RKΛ2 )), A2 creates a new ciphertext C ′ according to C.
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• Set X ′1 := X1, X ′2 := X2.
• Set K ′1 ← KΛ,K ′2 ← Sample(KΛ;RKΛ2 ).
• Compute T ′ ← XAuth(K ′1,K

′
2).

• Check that T ′ 6= T . If T ′ = T , choose another random value for K ′1 and
repeat the above steps, until T ′ 6= T .

• Set C ′ := (X ′1, X
′
2, T

′).
Then A2 submits C ′ to the decryption oracle.

– Let M ′ ← Dec(sk, C ′). A2 outputs b, where

b =

{
1 ifM ′ = (0, 0);
0 ifM ′ 6= (0, 0).

Now we analyze the probabilities that A2 outputs b = 1 in the real experi-
ment and the simulated experiment, respectively.

In both experiments, A2 receives a ciphertext C = (X1, X2, T ) and ran-
domness R = ((W1, R

XΛ
1 , RKΛ1 ), (W2, R

XΛ
2 , RKΛ2 )). The ciphertext created and

submitted to the decryption oracle by A2 is C ′ = (X ′1, X
′
2, T

′) = (X1, X2, T
′),

where T ′ = XAuth(K ′1,K
′
2) = XAuth(K ′1,K2) (due to K ′2 = K2) and T ′ 6= T .

The Real Experiment. The challenge ciphertext C = (X1, X2, T ) satisfies
X1 ← Sample(XΛ;RXΛ1 ), X2 ← Sample(XΛ;RXΛ2 ), and T = XAuth(K1,K2),
where K1 ← Sample(KΛ;RKΛ1 ) and K2 ← Sample(KΛ;RKΛ2 ).
The decryption of C ′ by the decryption oracle Dec(sk, ·) involves the compu-
tation of t′ := H(X ′1, X

′
2) = H(X1, X2) = t and K ′i := SecEvl(hsk,X ′i, t

′) =
SecEvl(hsk,Xi, t), for i ∈ {1, 2}.
Due to the perfect 2-universality of EHPS, K ′i is uniformly random distribut-
ed in KΛ. Hence, for i ∈ {1, 2},

Pr
[
XVer(K ′i, i, T

′) = 1 | in ExpNC-CCA-Real
FHKW,A (k)

]
≤ AdvimpXAC(k).

Let M ′ = (M ′1,M
′
2) denote the decryption result of C ′ by the decryption

oracle Dec(sk, ·). Then for i ∈ {1, 2},

Pr
[
M ′i = 1 | in ExpNC-CCA-Real

FHKW,A (k)
]

= Pr
[
XVer(K ′i, i, T

′) = 1 | in ExpNC-CCA-Real
FHKW,A (k)

]
≤ AdvimpXAC(k).

The probability that A2 outputs b = 1 in the real experiment is given by

Pr
[
ExpNC-CCA-Real

FHKW,A (k) = 1
]

= Pr
[
M ′ = (0, 0) | in ExpNC-CCA-Real

FHKW,A (k)
]

= 1− Pr
[
M ′ 6= (0, 0) | in ExpNC-CCA-Real

FHKW,A (k)
]

= 1− Pr
[
M ′1 = 1 ∨M ′2 = 1 | in ExpNC-CCA-Real

FHKW,A (k)
]

≥ 1− 2AdvimpXAC(k).
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The Simulated Experiment. The ciphertext C = (X1, X2, T ) satisfies X1 ←
SampleL(LΛ; W̃1), X2 ← SampleL(LΛ; W̃2), and T = XAuth(K1,K2), where

for i ∈ {1, 2}, W̃i ← RSampleL and Ki = PubEvl(hpk,Xi, W̃i, t) with t =
H(X1, X2).
The decryption of C ′ by the decryption oracle Dec(sk, ·) involves the com-
putation of t′ = H(X ′1, X

′
2) = H(X1, X2) = t and K ′i = SecEvl(hsk,X ′i, t

′) =
SecEvl(hsk,Xi, t), for i ∈ {1, 2}. On the other hand, we know that K ′2 = K2

and K2 = PubEvl(hpk,X2,W2, t). Since X2 ∈ LΛ, the property of EHPS
guarantees that SecEvl(hsk,X2, t) = PubEvl(hpk,X2,W2, t), which means
that K ′2 = K2 = K ′2. Note that M ′2 = XVer(K ′2, 2, T

′). Hence, we have

Pr
[
M ′2 = 1 | in ExpNC-CCA-Sim

FHKW,A (k)
]

= Pr
[
XVer(K ′2, 2, T

′) = 1 | in ExpNC-CCA-Sim
FHKW,A (k)

]
= Pr

[
XVer(K ′2, 2, T

′) = 1 | in ExpNC-CCA-Sim
FHKW,A (k)

]
≥ 1− failcorrectXAC (k).

The probability that A2 outputs b = 1 in the simulated experiment is given
by

Pr
[
ExpNC-CCA-Sim

FHKW,A (k) = 1
]

= Pr
[
M ′ = (0, 0) | in ExpNC-CCA-Sim

FHKW,A (k)
]

= 1− Pr
[
M ′ 6= (0, 0) | in ExpNC-CCA-Sim

FHKW,A (k)
]

≤ 1− Pr
[
M ′2 = 1 | in ExpNC-CCA-Sim

FHKW,A (k)
]

≤ failcorrectXAC (k).

The advantage of adversary A is given by

AdvNC-CCA
FHKW,A,S(k) =

∣∣∣Pr
[
ExpNC-CCA-Real

FHKW,A (k) = 1
]
− Pr

[
ExpNC-CCA-Sim

FHKW,A (k) = 1
]∣∣∣

≥ 1− 2AdvimpXAC(k)− failcorrectXAC (k).

Note that both AdvimpXAC(k) and failcorrectXAC (k) are negligible. So A’s advantage

AdvNC-CCA
FHKW,A,S(k) is non-negligible (in fact, it is overwhelming), i.e., the security

proof of the FHKW scheme in [7] is incorrect. ut

4.3 Security Analysis of the FHKW Scheme - L = 1

Note that our attack in the previous section does not apply to the case L = 1.
In the previous section, upon receiving the ciphertext C and randomness R, the
adversary A recovers K and switches the first element of K with a random one.
If L = 1, A will get a new K ′ = K ′1 and then T ′ = XAuth(K ′1). Afterwards, A
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will return C ′ = (X1, T
′) as his decryption query. Then, A will receive M ′ = 0

with overwhelming probability in both ExpNC-CCA-Real
FHKW,A (k) and ExpNC-CCA-Sim

FHKW,A (k).
Hence, the two experiments are still indistinguishable for A.

As we have pointed out earlier, the security of L-cross-authentication code
against substitution attacks is not sufficient for the security proof of the FHKW
scheme for any value of L. But our above attack only works for L > 1. Therefore,
the remaining problem is whether it is possible for the FHKW scheme to achieve
NC-CCA security for L = 1, still with the aforementioned simulator S.

Before solving the problem, we claim that algorithm XAuth of XAC in the
FHKW scheme is deterministic (this is not explicitly expressed in [7]). That’s
because R = (Wi, R

XΛ
i , RKΛi )i∈[L] is the only randomness used in the encryption

process. In other words, if XAuth is probabilistic, the inner random number
used by XAuth should be contained in the randomness R (and then passed to
the adversary, according to the definition of NC-CCA security). On the other
hand, if algorithm XAuth of XAC in the FHKW scheme is probabilistic, with the
aforementioned simulator S, the FHKW scheme cannot be proved secure in the
sense of NC-CCA for any positive integer L. (See Appendix A for the proof.)

In fact, the security proof of the FHKW scheme expected such a property
from L-cross-authentication code: “given (K1,K2, · · · ,KL) and T = XAuth(K1,
· · · ,KL), it is difficult to output a T ′ 6= T such that XVer(Ki, i, T

′) = 1 for some
i ∈ [L]”. This property generally does not hold for L-cross-authentication code.
However, it is true for some special 1-cross-authentication code, for example, the
instance of L-cross-authentication code given by Fehr et al. [7] when constricted
to L = 1. For that special instance, when L = 1, given K = K1 and T =
XAuth(K1) (note that XAuth is deterministic), it is impossible to find a T ′ 6= T
such that XVer(K1, 1, T

′) = 1, since only T = XAuth(K1) itself could pass the
verification. Therefore, with the special 1-cross-authentication code instance (or
other instance with similar property) as ingredient, the FHKW scheme is NC-
CCA secure for L = 1.

5 Sender-Equivocable Encryption Scheme for Single Bit

In this section, we will refine the FHKW scheme for L = 1. Specifically, we will
present a PKE scheme with NC-CCA security for L = 1 without any L-cross-
authentication code.

Our scheme can be seen as a simplified version of the FHKW scheme in-
stantiated with a special 1-cross-authentication code. As we pointed earlier, the
special property of 1-cross-authentication code requires that each K determines
a unique tag T satisfying XVer(K,T ) = 1. In our scheme, the encryption al-
gorithm replaces the tag T by the key K directly. In the decryption, whether
the plaintext is 1 or 0 depends on the equality of K in the ciphertext and K
computed by SecEvl(hsk,X), while in the FHKW scheme the plaintext bit is
determined by whether XVer(K,T ′) = 1 or not.

Below describes our scheme E = (GenE ,EncE ,DecE). The scheme consists of
a hard subset membership problem SMP, with subset sparseness, and its cor-



Sender-Equivocable Encryption Schemes Secure against CCA Revisited 13

responding perfectly 2-universal hash proof system HPS. We require that for
any Λ ← SmpGen(1k), both XΛ (with respect to SMP) and KΛ (with respect
to HPS) are efficiently explainable. As suggested in [7], the requirement of effi-
cient samplability and explainability on KΛ imposes no real restriction, and it
has shown in [6] that both the above ingredients can be constructed based on
some standard number-theoretic assumptions, such as the DDH, DCR and QR
assumptions.

Scheme E = (GenE ,EncE ,DecE)

GenE(1
k): On input 1k, algorithm GenE runs Λ ← SmpGen(1k), (hpk, hsk) ←

HashGen(Λ), and outputs (pk, sk), where pk = hpk and sk = hsk.
EncE(pk,M ;R): To encrypt a plaintext M ∈ {0, 1} under a public key pk =
hpk with randomness R = (W,RXΛ , RKΛ) ∈ RSampleL × RSample × RSample,
algorithm EncE sets

X :=

{
Sample(XΛ;RXΛ) if M = 0

SampleL(LΛ;W ) if M = 1

and

K :=

{
Sample(KΛ;RKΛ) if M = 0

PubEvl(hpk,X,W ) if M = 1

then returns ciphertext C = (X,K).
DecE(sk, C): To decrypt a ciphertext C = (X,K) ∈ XΛ × KΛ under a secret

key sk = hsk, algorithm DecE sets K := SecEvl(hsk,X). If K = K, return
M = 1; else, return M = 0.

Correctness: On one hand, if C = (X,K) is a ciphertext of M = 1, then
K = SecEvl(hsk,X) = PubEvl(hpk,X,W ) = K due to the property of HPS. So
DecE(sk, C) returns M = 1. On the other hand, if C = (X,K) is a ciphertext of
M = 0, then X ← XΛ, K ← KΛ and K = SecEvl(hsk,X). So Pr[K = K] = 1

|KΛ| .

Hence, with probability 1− 1
|KΛ| , DecE(sk, C) returns M = 0.

Security: As for the security of scheme E , we have the following Theorem 2.
The proof is similar to that of the FHKW scheme in [7]. But the key observation
is: given C = (X,K), it is impossible to create C ′ = (X,K ′), K 6= K ′, such
that K ′ = K ′. Note that the security proof of our scheme doesn’t involve any
cross-authentication code. Details of the proof are in Appendix B.

Theorem 2. Scheme E = (GenE ,EncE ,DecE) is NC-CCA secure.

6 Conclusion

We provided a security analysis of the FHKW scheme in [7] and showed that the
original simulator constructed in [7] is not sufficient to prove NC-CCA security.
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However, some specific instances of 1-cross-authentication codes help the FHKW
scheme to obtain NC-CCA security for encryption of single-bit plaintexts. We
provided a refined version of the FHKW scheme for single bit and proved its
NC-CCA security. Our scheme does not involve any cross-authentication code,
avoiding the security problem that annoys the FHKW scheme.

Open questions. (1) The failure of the simulator proposed in [7] does not
rule out the existence of other simulators working properly for the NC-CCA
security proof of the FHKW scheme. Therefore, it is still open whether the
FHKW scheme is NC-CCA secure or not. (2) Even if the FHKW scheme is not
NC-CCA secure, it might still possess SIM-SO-CCA security. Hence, another
question is whether it is SIM-SO-CCA secure or not. (3) Now that an NC-CCA
secure PKE encrypting single bits is available in this paper, it may be interesting
to construct an NC-CCA secure PKE encrypting multiple bits from an NC-CCA
secure PKE encrypting single bits. This question in the relaxed setting of IND-
CCA2 has been answered by Myers and Shelat [12]. But the selective opening
scenario is much more complicated and we believe that the problem is much
harder. (4) The last open question is how to construct a public-key encryption
scheme that is NC-CCA secure for multi-bit plaintexts directly. We believe that
with some extra property, the underlying cross-authentication code might be
sufficient for the NC-CCA security proof of the FHKW scheme. We are working
on this question. See [11] for details.
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A In case algorithm XAuth is probabilistic.

In Section 4.3, we have claimed that if algorithm XAuth of XAC in the FHKW
scheme is probabilistic, with the aforementioned simulator S in Section 4, the
FHKW scheme can not be proved NC-CCA secure for any positive integer L.
Now we show the reason.

Firstly, a slight modification to XAuth is needed. Because XAuth is proba-
bilistic, there exists an inner random number RXAuth used by XAuth during the
encryption process (i.e., T ← XAuth(K1, · · · ,KL;RXAuth)). Note that the afore-
mentioned simulator S should output randomness R = ((Wi, R

XΛ
i , RKΛi )i∈[L],

RXAuth) according to the ciphertext C and its related plaintext M . In the mean
time, the original simulator S can recover (Wi, R

XΛ
i , RKΛi )i∈[L]. Therefore, S

should generate RXAuth according to T and (K1, · · · ,KL), which can be recov-
ered from R = (Wi, R

XΛ
i , RKΛi )i∈[L]. Now we make a modification to XAuth: we

require that XAuth is efficiently “explainable”, which means that there is an effi-
cient algorithm ExplainXAuth such that RXAuth ← ExplainXAuth((K1, · · · ,KL), T ).
For simplicity, we still use the original notations S and XAuth after this modifi-
cation.

Secondly, with the above modification, consider our main conclusion of this
Appendix. As the proof of Theorem 1, our aim is to construct an adversary A =
(A1, A2) to distinguish the two experiments ExpNC-CCA-Real

FHKW,A (k) and ExpNC-CCA-Sim
FHKW,A

(k). The adversary A is the same as the one in the proof of Theorem 1, ex-
cept that in the decryption query stage, instead of choosing a random K ′1,
the adversary A uses the original K1, which can be recovered from random-
ness R = ((Wi, R

XΛ
i , RKΛi )i∈[L], R

XAuth). More specifically, in the first stage,
A1 returns M = (0, · · · , 0) to the challenger, and in the second stage, upon
receiving the ciphertext C = (X1, · · · , XL, T ) and randomness R, A2 recovers

(K1, · · · ,KL) from R, computes T ′ ← XAuth(K1, · · · ,KL; R̃XAuth), where R̃XAuth

is uniformly random chosen from RXAuth, and returns C ′ = (X1, · · · , XL, T
′) as

his decryption query. Because XAuth is probabilistic, it is very easy for A to get
a T ′ 6= T with the above method. As a result, with overwhelming probability, A2

will receive M ′ = (0, · · · , 0) as the decryption result of C ′ in ExpNC-CCA-Real
FHKW,A (k),



16 Z. Huang, S. Liu and B. Qin

and receive M ′ = (1, · · · , 1) in ExpNC-CCA-Sim
FHKW,A (k). Hence, A can distinguish

ExpNC-CCA-Real
FHKW,A (k) and ExpNC-CCA-Sim

FHKW,A (k).

B Proof of Theorem 2.

Proof. First, we construct a simulator SE for scheme E = (GenE ,EncE ,DecE).

Simulator SE :

– SE1(pk, 1): With pk = hpk, choose W̃ ← RSampleL and set X := SampleL(LΛ;

W̃ ). Then set K := PubEvl(hpk,X, W̃ ). Return the ciphertext C = (X,K).

– SE2(M): If M = 1, set W := W̃ and choose RXΛ ← RSample, R
KΛ ←

RSample; otherwise choose W ← RSampleL, and set RXΛ ← Explain(XΛ, X),
RKΛ ← Explain(KΛ,K). Return the randomness R = (W,RXΛ , RKΛ).

With simulator SE , we will show that for any PPT adversary A, the two
experiments ExpNC-CCA-Real

E,A (k) and ExpNC-CCA-Sim
E,A (k) are computationally in-

distinguishable through a series of indistinguishable games. Technically, we de-
note the challenge ciphertext and its corresponding plaintext by C∗ and M∗,
and write C∗ := (X∗,K∗). Without loss of generality, we assume that A always
makes q decryption queries, where q = poly(k). For j ∈ [q], denote A’s j-th
decryption query by Cj := (Xj ,Kj) and let its corresponding plaintext be M j .

At the same time, we define K∗ := SecEvl(hsk,X∗), Kj := SecEvl(hsk,Xj) for
j ∈ [q], and denote the final output of A in Game i by outputA,i.

Game 0: Game 0 is the real experiment ExpNC-CCA-Real
E,A (k). By our above no-

tations,

Pr
[
outputA,0 = 1

]
= Pr

[
ExpNC-CCA-Real
E,A (k) = 1

]
.

Game 1: Game 1 is the same as Game 0, except for the decryption oracle. In
Game 1, for any decryption query Cj = (Xj ,Kj) made by A, if Xj /∈ LΛ, the
challenger will return M j = 0 directly, and if Xj ∈ LΛ, the challenger will
answer the query as in Game 0: compute Kj = SecEvl(hsk,Xj), and if Kj =
Kj , return M j = 1, else return M j = 0. Note that the decryption oracle in
Game 1 is inefficient and it doesn’t leak any information on hsk beyond hpk.
Let badi denote the event that in Game i, A makes some decryption query
Cj = (Xj ,Kj) such that Xj /∈ LΛ and Kj = Kj . Note that Pr[bad1] =
Pr[bad0] and that Game 1 and Game 0 are identical unless events bad1
or bad0 occurs. By the perfect 2-universality of HPS and a union bound,
Pr[bad1] = Pr[bad0] ≤ q

|KΛ| . So we have

|Pr
[
outputA,1 = 1

]
− Pr

[
outputA,0 = 1

]
| ≤ Pr [bad1] =

q

|KΛ|
.

Game 2: Game 2 is the same as Game 1, except that in the challenge ciphertext
generation, set K∗ = SecEvl(hsk,X∗) for M∗ = 0 and then the randomness
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of K∗ is opened as Explain(KΛ,K∗). In Game 1 if M∗ = 0, K∗ also can
be seen as being opened by Explain(KΛ,K∗). In Game 2, since the only
information on hsk beyond hpk is released in the computation of K∗, the
perfect 2-universality of HPS implies that if X∗ /∈ LΛ, K∗ is uniformly
distributed in KΛ. Let subi denote the event that in Game i when M∗ = 0,
X∗ ∈ LΛ. Note that Pr[sub2] = Pr[sub1] and that Game 2 and Game 1 are
the same unless events sub2 or sub1 occurs. So we have

|Pr
[
outputA,2 = 1

]
− Pr

[
outputA,1 = 1

]
| ≤ Pr [sub2] =

|LΛ|
|XΛ|

.

Game 3: Game 3 is the same as Game 2, except that the decryption oracle
works with the original decryption rule. In Game 3, for any decryption query
Cj = (Xj ,Kj), the challenger sets Kj = SecEvl(hsk,Xj), then returns

M j = 1 if Kj = Kj , or returns M j = 0 if Kj 6= Kj . Note that the decryption
oracle in Game 3 is efficient. Similarly, badi denotes the event that in Game
i, A makes some decryption query Cj = (Xj ,Kj) such that Xj /∈ LΛ and

Kj = Kj . Note that Pr[bad3] = Pr[bad2] and that Game 3 and Game 2
are identical unless events bad3 or bad2 occurs. Since the only information
on hsk beyond hpk is released in the computation of K∗, by the perfect
2-universality of HPS and a union bound, Pr[bad3] = Pr[bad2] = q

|KΛ| . So

|Pr
[
outputA,3 = 1

]
− Pr

[
outputA,2 = 1

]
| ≤ Pr [bad3] =

q

|KΛ|
.

Game 4: Game 4 is the same as Game 3, except that in the challenge ciphertext
generation, the challenger chooses X∗ ← LΛ if M∗ = 0. That is to say,
choose X∗ ← LΛ no matter whether M∗ is 0 or 1, and X∗ is opened as
Explain(XΛ, X∗) if M∗ = 0. Since SMP is hard,

|Pr
[
outputA,4 = 1

]
− Pr

[
outputA,3 = 1

]
| ≤ AdvSMP,A(k).

Combining all the above results, we have

|Pr
[
outputA,0 = 1

]
− Pr

[
outputA,4 = 1

]
| ≤ 2q

|KΛ|
+
|LΛ|
|XΛ|

+ AdvSMP,A(k).

Note that Game 4 is just the experiment ExpNC-CCA-Sim
E,A (k). So we have

AdvNC-CCA
E,A,S (k) = | Pr

[
ExpNC-CCA-Real
E,A (k) = 1

]
− Pr

[
ExpNC-CCA-Sim
E,A (k) = 1

]
|

≤ 2q
|KΛ| + |LΛ|

|XΛ| + AdvSMP,A(k).

ut


