
Sequential Aggregate Signatures with Short
Public Keys: Design, Analysis and

Implementation Studies

Kwangsu Lee1⋆, Dong Hoon Lee2⋆⋆, and Moti Yung3

1 Columbia University, NY, USA
kwangsu@cs.columbia.edu,

2 Korea University, Seoul, Korea
donghlee@korea.ac.kr,

3 Google Inc. and Columbia University, NY, USA
moti@cs.columbia.edu

Abstract. The notion of aggregate signature has been motivated by ap-
plications and it enables any user to compress different signatures signed
by different signers on different messages into a short signature. Sequen-
tial aggregate signature, in turn, is a special kind of aggregate signature
that only allows a signer to add his signature into an aggregate signature
in sequential order. This latter scheme has applications in diversified set-
tings, such as in reducing bandwidth of a certificate chains, and in secure
routing protocols. Lu, Ostrovsky, Sahai, Shacham, and Waters presented
the first sequential aggregate signature scheme in the standard (non ide-
alized ROM) model. The size of their public key, however, is quite large
(i.e., the number of group elements is proportional to the security param-
eter), and therefore they suggested as an open problem the construction
of such a scheme with short keys. Schröder recently proposed a sequential
aggregate signature (SAS) with short public keys using the Camenisch-
Lysyanskaya signature scheme, but the security is only proven under an
interactive assumption (which is considered a relaxed notion of security).
In this paper, we propose the first sequential aggregate signature scheme
with short public keys (i.e., a constant number of group elements) in
prime order (asymmetric) bilinear groups which is secure under static
assumptions in the standard model. Technically, we start with a pub-
lic key signature scheme based on the recent dual system encryption
technique of Lewko and Waters. This technique cannot give directly an
aggregate signature scheme since, as we observed, additional elements
should be published in the public key to support aggregation. Thus,
our construction is a careful augmentation technique for the dual system
technique to allow it to support a sequential aggregate signature scheme.
We further implemented our scheme and conducted a performance study
and implementation optimization.

⋆ Supported by the MKE (The Ministry of Knowledge Economy), Korea, under the
ITRC (Information Technology Research Center) support program (NIPA-2012-
H0301-12-3007) supervised by the NIPA (National IT Industry Promotion Agency).

⋆⋆ Supported by the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MEST) (No. 2010-0029121).

1 Introduction

Aggregate signature is a relatively new type of public key signature which enables
any user to combine n signatures signed by different n signers on different n
messages into a short signature. The concept of public key aggregate signature
(PKAS) was introduced by Boneh, Gentry, Lynn, and Shacham [9], and they
proposed an efficient PKAS scheme in the random oracle model using the bilinear
groups. After that, numerous PKAS schemes were proposed using bilinear groups
[14, 22, 6, 7, 1, 15] or using trapdoor permutations [24, 3, 25].

One application of aggregate signature is the certificate chains of the public
key infrastructure (PKI) [9]. The PKI system has a tree structure, and a cer-
tificate for a user consists of a certificate chain from a root node to a leaf node,
each node in the chain signing its predecessor. If the signatures in the certificate
chain are replaced with a single aggregate signature, then the bandwidth for sig-
natures transfer can be significantly saved. Another application is to the secure
routing protocol of the internet protocol [9]. If each router which participates in
the routing protocol uses PKAS instead of a public key signature (PKS), then
the communication overload of signature transfer can be dramatically reduced.
Further, aggregate signatures have other applications such as reducing band-
width in sensor networks or ad-hoc networks, and in software authentication in
the presence of software update [1].

1.1 Previous Methods

Aggregate signature schemes are categorized as full aggregate signature, synchro-
nized aggregate signature, and sequential aggregate signature depending on the
type of signature aggregation. They have also been applied to regular signatures
in the PKI model, and to ID-based signatures (with trusted key server).

The first type of aggregate signature is full aggregate signature which en-
ables any user to freely aggregate different signatures of different signers. This
full aggregate signature is the most flexible aggregate signature since it does
not require any restriction on the aggregation step (though, restriction may be
needed at times for certain applications). However, there is only one full aggre-
gate signature scheme that was proposed by Boneh et al. [9]. Since this scheme
is based on the short signature scheme of Boneh et al. [10], the signature length
it provides is also very short. However, the security of the scheme is just proven
in the idealized random oracle model and the number of pairing operations in
the aggregate signature verification algorithm is proportional to the number of
signers in the aggregate signature.

The second type of aggregate signature is synchronized aggregate signature
which enables any user to combine different signatures with the same synchro-
nizing information into a single signature. The synchronized aggregate signature
has a demerit which dictates that all signers should share the same synchroniz-
ing information (like a time clock or other shared value). Gentry and Ramzan
introduced the concept of synchronized aggregate signature, they proposed an
identity-based synchronized aggregate signature scheme using bilinear groups,

and they proved its security in the random oracle model [14]. We note that
identity-based aggregate signature (IBAS) is an ID-based scheme and thus relies
on a trusted server knowing all private keys (i.e., its trust structure is different
than in regular PKI). However, it also has a notable advantage such that it is
not required to retrieve the public keys of signers in the verification algorithm
since an identity string plays the role of a public key (the lack of public key is
indicated in our comparison table as public key of no size!). Recently, Ahn et al.
presented a public key synchronized aggregate signature scheme without relying
on random oracles [1].

The third type of aggregate signature is sequential aggregate signature (SAS)
that enables each signer to aggregate his signature to a previously aggregated
signature in a sequential order. The sequential aggregate signature has the obvi-
ous limitation of signers being ordered to aggregate their signatures in contrast
to the full aggregate signature and the synchronized aggregate signature. How-
ever, it has an advantage such that it is not required to share synchronized
information among signers in contrast to the synchronized aggregate signature,
and many natural applications lead themselves to this setting. The concept of
sequential aggregate signature was introduced by Lysyanskaya et al., and they
proposed a public key sequential aggregate signature scheme using the certified
trapdoor permutations in the random oracle model [24]. Boldyreva et al. pre-
sented an identity-based sequential aggregate signature scheme in the random
oracle model using an interactive assumption [6], but it was shown that their
construction is not secure by Hwang et al. [17]. After that, Boldyreva et al. pro-
posed a new identity-based sequential aggregate signature by modifying their
previous construction and proved its security in the generic group model [7].
Recently, Gerbush et al. showed that the modified IBAS scheme of Boldyreva et
al. is secure under static assumptions using the dual form signatures framework
[15]. The first sequential aggregate signature scheme without the random oracle
idealization was proposed by Lu et al. [22]. They converted the PKS scheme of
Waters [28] to the PKAS scheme, and proved its security under the well known
CDH assumption. However, the scheme of Lu et al. has a demerit since the
number of group elements in the public key is proportional to the security pa-
rameter (for a security of 280 they need 160 elements or about 80 elements in
a larger group); they left as an open question to design a scheme with shorter
public key. Schröder proposed a PKAS scheme with short public keys relying on
the Camenisch-Lysyanskaya signature scheme [27], however the scheme’s secu-
rity is proven under an interactive assumption (which typically, is a relaxation
used when designs based on static assumptions are hard to find).4 Therefore,
the construction of sequential aggregate signature scheme with short public keys
without relaxations like random oracles or an interactive assumptions was left
as an open question.

4 Gerbush et al. showed that a modified Camenisch-Lysyanskaya signature scheme
in composite order groups is secure under static assumptions [15]. However, it is
unclear whether the construction of Schröder can be directly applied to this modified
Camenisch-Lysyanskaya signature scheme.

Table 1. Comparison of aggregate signature schemes

Scheme Type ROM PK Size AS Size Sign Time Verify Time Assumption

BGLS [9] Full Yes 1kp 1kp 1E lP CDH

GR [14] IB, Sync Yes – 2kp + λ 3E 3P + lE CDH

AGH [1] Sync Yes 1kp 2kp + 32 6E 4P + lE CDH

AGH [1] Sync No 1kp 2kp + 32 10E 8P + lE CDH

LMRS [24] Seq Yes 1kf 1kf lE lE cert TDP

Neven [25] Seq Yes 1kf 1kf + 2λ 1E + 2lM 2lM uncert CFP

BGOY [7] IB, Seq Yes – 3kp 4P + lE 4P + lE Interactive

GLOW [15] IB, Seq Yes – 5kf 10P + 2lE 10P + 2lE Static

LOSSW [22] Seq No 2λkp 2kp 2P + 4λlM 2P + 2λlM CDH

Schröder [27] Seq No 2kp 4kp lP + 2lE lP + lE Interactive

Ours Seq No 11kp 8kp 8P + 5lE 8P + 4lE Static

ROM = random oracle model, IB = identity based, λ = security parameter

kp, kf = the bit size of element for pairing and factoring, l = the number of signers

P = pairing computation, E = exponentiation, M = multiplication

1.2 Our Contributions

Challenged by the above question, the motivation of our research is to construct
an efficient sequential aggregate signature scheme secure in the standard model
(i.e., without employing assumptions like random oracle or interactive assump-
tions as part of the proof) with short public keys (e.g., constant number of group
elements). To achieve this goal, we use the public key signature scheme derived
from the identity-based encryption (IBE) scheme that adopts the innovative
dual system encryption techniques of Waters [29, 21]. That is, an IBE scheme
is first converted to a PKS scheme by the clever observation of Naor [8]. The
PKS schemes that adopt the dual system encryption techniques are the scheme
of Waters [29] which includes a random tag in a signature and the scheme of
Lewko and Waters [21] which does not include a random tag in a signature. The
scheme of Waters is not appropriate to aggregate signature since the random tags
in signatures cannot be compressed into a single value. The scheme of Lewko and
Waters in composite order groups is easily converted to an aggregate signature
scheme if the element of Gp3

is moved from a private key to a public key, but it is
inefficient because of composite order groups.5 Therefore, we start the construc-
tion from the IBE scheme in prime order (asymmetric) bilinear groups of Lewko
and Waters. However, this PKS scheme which is directly derived from the IBE
scheme of Lewko and Waters is not easily converted to a sequential aggregate

5 Lewko obtained a prime order IBE scheme by translating the Lewko-Waters com-
posite order IBE scheme using the dual pairing vector spaces [20]. One may consider
to construct an aggregate signature scheme using this IBE scheme. However, it is
not easy to aggregate individual signatures since the dual orthonormal basis vectors
of each users are randomly generated.

signature scheme (as far as we see). The reason is that we need a PKS scheme
that supports multi-user setting and public re-randomization to construct a SAS
scheme by using the randomness reuse technique of Lu et al. [22], but this PKS
scheme does not support these two properties.

Here we first construct a PKS scheme in prime order (asymmetric) bilinear
groups which supports multi-user seting and public re-randomization by modi-
fying the PKS scheme of Lewko and Waters, and we prove its security using the
dual system encryption technique. Next, we convert the modified PKS scheme to
a SAS scheme with short public keys by using the randomness reuse technique
of Lu et al. [22], and we prove its security without random oracles and based
on the traditional static assumptions. Our security proof crucially relies on the
fact that we add additional randomization elements to the SAS verification al-
gorithm, so that we can expand these elements to a semi-functional space; this
allows us to introduce in the SAS scheme public-key elements used in aggrega-
tion. Note that Table 1 gives a comparison of past schemes to ours. Finally, to
support our claim of efficiency, we implemented our SAS scheme using the PBC
library and we measured the performance of the scheme. Additionally, as part
of the implementation we provide a computational preprocessing method which
improves the amortized performance of our scheme.

1.3 Additional Related Work

There are some work on aggregate signature schemes which allow signers to
communicate with each other or schemes which compress only partial elements
of a signature in the aggregate algorithm [4, 2, 16, 11]. Generally, communication
resources of computer systems are very expensive compared to the computation
resources. Thus, it is preferred to perform several expensive computational op-
erations instead of a single communication exchange. Additionally, a signature
scheme with added communications does not correspond to a pure public key
signature schemes, but corresponds more to a multi-party protocol. In addition,
signature schemes which compress just partial elements of signatures cannot be
an aggregate signature since the total size of signatures is still proportional to
the number of signers.

Another research area related to aggregate signature is multi-signature [5,
22]. Multi-signature is a special type of aggregate signature in which all signers
generate signatures on the same message, and then any user can combine these
signature to a single signature. Aggregate message authentication code (AMAC)
is the symmetric key analogue of aggregate signature: Katz and Lindell intro-
duced the concept of AMAC and showed that it is possible to construct AMAC
schemes based on any message authentication code schemes [18].

2 Preliminaries

We first define public key signature and sequential aggregate signature, and then
give the definition of their correctness and security.

2.1 Public Key Signature

A public key signature (PKS) scheme consists of three PPT algorithmsKeyGen,
Sign, and Verify, which are defined as follows: The key generation algorithm
KeyGen(1λ) takes as input the security parameters 1λ, and outputs a public key
PK and a private key SK. The signing algorithm Sign(M,SK) takes as input
a message M and a private key SK, and outputs a signature σ. The verification
algorithm Verify(σ,M,PK) takes as input a signature σ, a message M , and a
public key PK, and outputs either 1 or 0 depending on the validity of the signa-
ture. The correctness requirement is that for any (PK,SK) output by KeyGen
and any M ∈ M, we have that Verify(Sign(M,SK),M, PK) = 1. We can
relax this notion to require that the verification is correct with overwhelming
probability over all the randomness of the experiment.

The security notion of existential unforgeability under a chosen message at-
tack is defined in terms of the following experiment between a challenger C and a
PPT adversary A: C first generates a key pair (PK,SK) by running KeyGen,
and gives PK to A. Then A, adaptively and polynomially many times, requests
a signature query on a message M under the challenge public key PK, and re-
ceives a signature σ. Finally, A outputs a forged signature σ∗ on a message M∗.
C then outputs 1 if the forged signature satisfies the following two conditions, or
outputs 0 otherwise: 1) Verify(σ∗,M∗, PK) = 1 and 2) M∗ was not queried by
A to the signing oracle. The advantage of A is defined as AdvPKS

A = Pr[C = 1]
where the probability is taken over all the randomness of the experiment. A PKS
scheme is existentially unforgeable under a chosen message attack if all PPT ad-
versaries have at most a negligible advantage in the above experiment (for large
enough security parameter).

2.2 Sequential Aggregate Signature

A sequential aggregate signature (SAS) scheme consists of four PPT algorithms
Setup, KeyGen, AggSign, and AggVerify, which are defined as follows: The
setup algorithm Setup(1λ) takes as input a security parameter 1λ and out-
puts public parameters PP . The key generation algorithm KeyGen(PP) takes
as input the public parameters PP , and outputs a public key PK and a pri-
vate key SK. The aggregate signing algorithm AggSign(AS′,M,PK,M, SK)
takes as input an aggregate-so-far AS′ on messages M = (M1, . . . ,Ml) under
public keys PK = (PK1, . . . , PKl), a message M , and a private key SK, and
outputs a new aggregate signature AS. The aggregate verification algorithm
AggVerify(AS,M,PK) takes as input an aggregate signature AS on messages
M = (M1, . . . ,Ml) under public keys PK = (PK1, . . . , PKl), and outputs either
1 or 0 depending on the validity of the sequential aggregate signature. The cor-
rectness requirement is that for each PP output by Setup, for all (PK,SK) out-
put by KeyGen, any M , we have that AggVerify(AggSign(AS′,M′,PK′,M,
SK),M′||M,PK′||PK) = 1 where AS′ is a valid aggregate-so-far signature on
messages M′ under public keys PK′.

The security notion of existential unforgeability under a chosen message at-
tack is defined in terms of the following experiment between a challenger C and
a PPT adversary A:

Setup: C first initializes a certification list CL as empty. Next, it runs Setup to
obtain public parameters PP and KeyGen to obtain a key pair (PK,SK),
and gives PK to A.

Certification Query: A adaptively requests the certification of a public key
by providing a key pair (PK,SK). Then C adds the key pair (PK,SK) to
CL if the key pair is a valid one.

Signature Query: A adaptively requests a sequential aggregate signature (by
providing an aggregate-so-far AS′ on messages M′ under public keys PK′),
on a message M to sign under the challenge public key PK, and receives a
sequential aggregate signature AS.

Output: Finally (after a sequence of the above queries), A outputs a forged
sequential aggregate signature AS∗ on messages M∗ under public keys PK∗.
C outputs 1 if the forged signature satisfies the following three conditions, or
outputs 0 otherwise: 1) AggVerify(AS∗,M∗,PK∗) = 1, 2) The challenge
public key PK must exists in PK∗ and each public key in PK∗ except the
challenge public key must be in CL, and 3) The corresponding message M
in M∗ of the challenge public key PK must not have been queried by A to
the sequential aggregate signing oracle.

The advantage of A is defined as AdvSAS
A = Pr[C = 1] where the probability

is taken over all the randomness of the experiment. A SAS scheme is existen-
tially unforgeable under a chosen message attack if all PPT adversaries have at
most a negligible advantage (for large enough security parameter) in the above
experiment.

2.3 Asymmetric Bilinear Groups

Let G, Ĝ and GT be multiplicative cyclic groups of prime order p. Let g, ĝ be
generators ofG, Ĝ. The bilinear map e : G×Ĝ → GT has the following properties:

1. Bilinearity: ∀u ∈ G,∀v̂ ∈ Ĝ and ∀a, b ∈ Zp, e(u
a, v̂b) = e(u, v̂)ab.

2. Non-degeneracy: ∃g, ĝ such that e(g, ĝ) has order p, that is, e(g, ĝ) is a gen-
erator of GT .

We say that G, Ĝ,GT are bilinear groups with no efficiently computable isomor-
phisms if the group operations in G, Ĝ, and GT as well as the bilinear map e are
all efficiently computable, but there are no efficiently computable isomorphisms
between G and Ĝ.

2.4 Complexity Assumptions

We employ three static assumptions in prime order bilinear groups. Assumptions
1 and 3 have been used extensively, while Assumption 2 was introduced by Lewko
and Waters [21].

Assumption 1 (Symmetric eXternal Diffie-Hellman) Let (p,G, Ĝ,GT , e)
be a description of the asymmetric bilinear group of prime order p. Let g, ĝ be
generators of G, Ĝ respectively. The assumption is that if the challenge values

D = ((p,G, Ĝ,GT , e), g, ĝ, ĝ
a, ĝb) and T,

are given, no PPT algorithm B can distinguish T = T0 = ĝab from T = T1 =
ĝc with more than a negligible advantage. The advantage of B is defined as
AdvA1

B (λ) =
∣∣Pr[B(D,T0) = 0] − Pr[B(D,T1) = 0]

∣∣ where the probability is
taken over the random choice of a, b, c ∈ Zp.

Assumption 2 (LW2) Let (p,G, Ĝ,GT , e) be a description of the asymmetric

bilinear group of prime order p. Let g, ĝ be generators of G, Ĝ respectively. The
assumption is that if the challenge values

D = ((p,G, Ĝ,GT , e), g, g
a, gb, gc, ĝ, ĝa, ĝa

2

, ĝbx, ĝabx, ĝa
2x) and T,

are given, no PPT algorithm B can distinguish T = T0 = gbc from T = T1 =
gd with more than a negligible advantage. The advantage of B is defined as
AdvA2

B (λ) =
∣∣Pr[B(D,T0) = 0] − Pr[B(D,T1) = 0]

∣∣ where the probability is
taken over the random choice of a, b, c, x, d ∈ Zp.

Assumption 3 (Decisional Bilinear Diffie-Hellman) Let (p,G, Ĝ,GT , e)
be a description of the asymmetric bilinear group of prime order p. Let g, ĝ be
generators of G, Ĝ respectively. The assumption is that if the challenge values

D = ((p,G, Ĝ,GT , e), g, g
a, gb, gc, ĝ, ĝa, ĝb, ĝc) and T,

are given, no PPT algorithm B can distinguish T = T0 = e(g, ĝ)abc from
T = T1 = e(g, ĝ)d with more than a negligible advantage. The advantage of
B is defined as AdvA3

B (λ) =
∣∣Pr[B(D,T0) = 0] − Pr[B(D,T1) = 0]

∣∣ where the
probability is taken over the random choice of a, b, c, d ∈ Zp.

3 Aggregate Signature

We construct a SAS scheme in prime order (asymmetric) bilinear groups and
prove its existential unforgeability under a chosen message attack. The main
idea is to modify a PKS scheme to support multi-user setting and signature
aggregation by using the “randomness reuse” technique of Lu et al. [22]. To
support multi-user setting, it is required for all users to share common elements
in the public parameters. To use the randomness reuse technique, it is crucial for
a signer to publicly re-randomize a sequential aggregate signature to prevent a
forgery attack. Thus we need a PKS scheme with short public key that supports
“multi-user setting” and “public re-randomization”.

Before we present a SAS scheme, we first construct a PKS scheme with short
public key that will be augmented to support multi-user setting and public re-
randomization. One method to build a PKS scheme is to use the observation of

Naor [8] that private keys of fully secure IBE are easily converted to signatures
of PKS. Thus we can convert the prime order IBE scheme of Lewko and Waters
[21] to a prime order PKS scheme. However, this directly converted PKS scheme
does not support multi-user setting and public re-randomization since it needs
to publish additional public key components: Specifically, we need to publish an
element g for multi-user setting and elements u, h for public re-randomization.
Note that ĝ, û, ĥ are already in the public key, but g, u, h are not. One may try
to publish g, u, h in the public key. The technical difficulty arising in this case
is that the simulator of the security proof can easily distinguish the changes of
the verification algorithm that checks the validity of the forged signature from
the normal verification algorithm to the semi-functional one, without using an
adversary.

To solve this problem, we devise a method that allows a PKS scheme to
safely publish elements g, u, h in the public key for multi-user setting and public
re-randomization. The main idea is to additionally randomize the verification
components using v̂, v̂ν3 , v̂−π in the verification algorithm. If a valid signature is
given in the verification algorithm, then the additionally added randomization
elements v̂, v̂ν3 , v̂−π are canceled. Otherwise, the added randomization compo-
nents prevent the verification of an invalid signature. Therefore, the simulator
of the security proof cannot distinguish the changes of the verification algorithm
even if g, u, h are published, since the additional elements v̂, v̂ν3 , v̂−π prevent the
signature verification.

3.1 Our PKS Scheme

The PKS scheme in prime order bilinear groups is described as follows:

PKS.KeyGen(1λ): This algorithm first generates the asymmetric bilinear groups

G, Ĝ of prime order p of bit size Θ(λ). It chooses random elements g, w ∈ G and

ĝ, v̂ ∈ Ĝ. Next, it chooses random exponents ν1, ν2, ν3, ϕ1, ϕ2, ϕ3 ∈ Zp and sets
τ = ϕ1 + ν1ϕ2 + ν2ϕ3, π = ϕ2 + ν3ϕ3. It selects random exponents α, x, y ∈ Zp

and sets u = gx, h = gy, û = ĝx, ĥ = ĝy. It outputs a private key SK = (α, x, y)
and a public key PK as

g, u, h, w1 = wϕ1 , w2 = wϕ2 , w3 = wϕ3 , w, ĝ, ĝν1 , ĝν2 , ĝ−τ ,

û, ûν1 , ûν2 , û−τ , ĥ, ĥν1 , ĥν2 , ĥ−τ , v̂, v̂ν3 , v̂−π, Ω = e(g, ĝ)α.

PKS.Sign(M,SK): This algorithm takes as input a message M ∈ {0, 1}k where
k < λ and a private key SK = (α, x, y). It selects random exponents r, c1, c2 ∈ Zp

and outputs a signature σ as

W1,1 = gα(uMh)rwc1
1 ,W1,2 = wc1

2 ,W1,3 = wc1
3 ,W1,4 = wc1 ,

W2,1 = grwc2
1 ,W2,2 = wc2

2 ,W2,3 = wc2
3 ,W2,4 = wc2 .

PKS.Verify(σ,M,PK): This algorithm takes as input a signature σ on a mes-
sage M ∈ {0, 1}k under a public key PK. It first chooses random exponents

t, s1, s2 ∈ Zp and computes verification components as

V1,1 = ĝt, V1,2 = (ĝν1)tv̂s1 , V1,3 = (ĝν2)t(v̂ν3)s1 , V1,4 = (ĝ−τ)t(v̂−π)s1 ,

V2,1 = (ûM ĥ)t, V2,2 = ((ûν1)M ĥν1)tv̂s2 , V2,3 = ((ûν2)M ĥν2)t(v̂ν3)s2 ,

V2,4 = ((û−τ)M ĥ−τ)t(v̂−π)s2 .

Next, it verifies that
∏4

i=1 e(W1,i, V1,i) ·
∏4

i=1 e(W2,i, V2,i)
−1 ?

= Ωt. If this equa-
tion holds, then it outputs 1. Otherwise, it outputs 0.

We first note that the inner product of (ϕ1, ϕ2, ϕ3, 1) and (1, ν1, ν2,−τ) is
zero since τ = ϕ1 + ν1ϕ2 + ν2ϕ3, and the inner product of (ϕ1, ϕ2, ϕ3, 1) and
(0, 1, ν3,−π) is zero since π = ϕ2 + ν3ϕ3. Using these facts, the correctness
requirement of the above PKS scheme is easily verified as

4∏
i=1

e(W1,i, V1,i) ·
4∏

i=1

e(W2,i, V2,i)
−1 = e(gα(uMh)r, ĝt) · e(gr, (ûM ĥ)t)−1 = Ωt.

Theorem 1. The above PKS scheme is existentially unforgeable under a chosen
message attack if Assumptions 1, 2, and 3 hold. That is, for any PPT adversary
A, there exist PPT algorithms B1,B2,B3 such that AdvPKS

A (λ) ≤ AdvA1
B1

(λ) +

qAdvA2
B2

(λ)+AdvA3
B3

(λ) where q is the maximum number of signature queries of
A.

The proof of this theorem is given in Section 4.1.

3.2 Our SAS Scheme

The SAS scheme in prime order bilinear groups is described as follows:

SAS.Setup(1λ): This algorithm first generates the asymmetric bilinear groups

G, Ĝ of prime order p of bit size Θ(λ). It chooses random elements g, w ∈ G and

ĝ, v̂ ∈ Ĝ. Next, it chooses random exponents ν1, ν2, ν3, ϕ1, ϕ2, ϕ3 ∈ Zp and sets
τ = ϕ1 + ν1ϕ2 + ν2ϕ3, π = ϕ2 + ν3ϕ3. It publishes public parameters PP as

g, w1 = wϕ1 , w2 = wϕ2 , w3 = wϕ3 , w, ĝ, ĝν1 , ĝν2 , ĝ−τ , v̂, v̂ν3 , v̂−π.

SAS.KeyGen(PP): This algorithm takes as input the public parameters PP .
It selects random exponents α, x, y ∈ Zp and computes u = gx, h = gy, û =

ĝx, ûν1 = (ĝν1)x, ûν2 = (ĝν2)x, û−τ = (ĝ−τ)x, ĥ = ĝy, ĥν1 = (ĝν1)y, ĥν2 =

(ĝν2)y, ĥ−τ = (ĝ−τ)y. It outputs a private key SK = (α, x, y) and a public
key PK as

u, h, û, ûν1 , ûν2 , û−τ , ĥ, ĥν1 , ĥν2 , ĥ−τ , Ω = e(g, ĝ)α.

SAS.AggSign(AS′,M′,PK′,M, SK): This algorithm takes as input an aggregate-
so-far AS′ = (S′

1,1, . . . , S
′
2,4) on messages M′ = (M1, . . . ,Ml−1) under pub-

lic keys PK′ = (PK1, . . . , PKl−1) where PKi = (ui, hi, . . . , Ωi), a message

M ∈ {0, 1}k where k < λ, a private key SK = (α, x, y) with PK = (u, h, . . . , Ω)
and PP . It first checks the validity of AS′ by calling AggVerify(AS′,M′,PK′).
If AS′ is not valid, then it halts. If the public key PK of SK does already exist in
PK′, then it halts. Next, it selects random exponents r, c1, c2 ∈ Zp and outputs
an aggregate signature AS as

S1,1 = S′
1,1g

α(S′
2,1)

xM+y ·
l−1∏
i=1

(uMi
i hi)

r(uMh)rwc1
1 ,

S1,2 = S′
1,2(S

′
2,2)

xM+y · wc1
2 , S1,3 = S′

1,3(S
′
2,3)

xM+y · wc1
3 ,

S1,4 = S′
1,4(S

′
2,4)

xM+y · wc1 , S2,1 = S′
2,1 · grw

c2
1 ,

S2,2 = S′
2,2 · w

c2
2 , S2,3 = S′

2,3 · w
c2
3 , S2,4 = S′

2,4 · wc2 .

SAS.AggVerify(AS,M,PK): This algorithm takes as input a sequential ag-
gregate signature AS on messages M = (M1, . . . ,Ml) under public keys PK =
(PK1, . . . , PKl) where PKi = (ui, hi, . . . , Ωi). It first checks that any public key
does not appear twice in PK and that any public key in PK has been certified.
If these checks fail, then it outputs 0. If l = 0, then it outputs 1 if S1 = S2 = 1, 0
otherwise. It chooses random exponents t, s1, s2 ∈ Zp and computes verification
components as

C1,1 = ĝt, C1,2 = (ĝν1)tv̂s1 , C1,3 = (ĝν2)t(v̂ν3)s1 , C1,4 = (ĝ−τ)t(v̂−π)s1 ,

C2,1 =
l∏

i=1

(ûMi
i ĥi)

t, C2,2 =
l∏

i=1

((ûν1
i)Mi ĥν1

i)tv̂s2 ,

C2,3 =
l∏

i=1

((ûν2
i)Mi ĥν2

i)t(v̂ν3)s2 , C2,4 =
l∏

i=1

((û−τ
i)Mi ĥ−τ

i)t(v̂−π)s2 .

Next, it verifies that
∏4

i=1 e(S1,i, C1,i) ·
∏4

i=1 e(S2,i, C2,i)
−1 ?

=
∏l

i=1 Ω
t
i . If this

equation holds, then it outputs 1. Otherwise, it outputs 0.

The aggregate signature AS is a valid sequential aggregate signature on mes-
sages M′||M under public keys PK′||PK with randomness r̃ = r′ + r, c̃1 =
c′1+ c′2(xM +y)+ c1, c̃2 = c′2+ c2 where r′, c′1, c

′
2 are random values in AS′. The

sequential aggregate signature has the following form

S1,1 =
l∏

i=1

gαi

l∏
i=1

(uMi
i hi)

r̃wc̃1
1 , S1,2 = wc̃1

2 , S1,3 = wc̃1
3 , S1,4 = wc̃1 ,

S2,1 = gr̃wc̃2
1 , S2,2 = wc̃2

2 , S2,3 = wc̃2
3 , S2,4 = wc̃2 .

Theorem 2. The above SAS scheme is existentially unforgeable under a chosen
message attack if the PKS scheme is existentially unforgeable under a chosen
message attack. That is, for any PPT adversary A for the above SAS scheme,
there exists a PPT algorithm B for the PKS scheme such that AdvSAS

A (λ) ≤
AdvPKS

B (λ).

The proof of this theorem is given in Section 4.2.

3.3 Extensions

In this section, we discuss various extensions of our SAS scheme.

Multiple Messages. To support multiple signing per one signer, we can use the
method of Lu et al. [22]. The basic idea of Lu et al. is to apply a collision resistant
hash function H to a message M before performing the signing algorithm. If a
signer wants to add a signature on a message M2 into the aggregate signature,
he first removes his previous signature on H(M1) from the aggregate signature
using his private key, and then he adds the new signature on the H(M1||M2) to
the aggregate signature.

Multi-signatures. The SAS scheme of this paper can be easily converted to a
multi-signature scheme. In case of multi-signature, some elements of public keys
in SAS can be moved to the public parameters since multi-signature only allows
signers to sign on the same message. Compared to the multi-signature scheme
of Lu et al. [22], our multi-signature scheme has short size public parameters.

4 Security Analysis

In this section, we analyze the security of the basic PKS scheme and our SAS
scheme.

4.1 Proof of Theorem 1

To prove the security of our PKS scheme, we use the dual system encryption
technique of Lewko and Waters [21]. We describe a semi-functional signing algo-
rithm and a semi-functional verification algorithm. They are not used in a real
system, rather they are used in the security proof. When comparing our proof
to that of Lewko and Waters, we employ a different assumption since we have
published additional elements g, u, h used in aggregation (in fact, direct adap-
tation of the earlier technique will break the assumption and thus the proof).
A crucial idea in our proof is that we have added elements v̂, v̂ν3 , v̂−π in the
public key which are used in randomization of the verification algorithm. In the
security proof when moving from normal to semi-functional verification, it is the
randomization elements v̂, v̂ν3 , v̂−π which are expanded to the semi-functional
space; this enables deriving semi-functional verification as part of the security
proof under our assumption, without being affected by the publication of the
additional public key elements used for aggregation.

For the semi-functional signing and verification we set f = gyf , f̂ = ĝyf

where yf is a random exponent in Zp.

PKS.SignSF. The semi-functional signing algorithm first creates a normal sig-
nature using the private key. Let (W ′

1,1, . . . ,W
′
2,4) be the normal signature of a

message M with random exponents r, c1, c2 ∈ Zp. It selects random exponents
sk, zk ∈ Zp and outputs a semi-functional signature σ as

W1,1 = W ′
1,1(f

ν1ν3−ν2)skzk , W1,2 = W ′
1,2(f

−ν3)skzk , W1,3 = W ′
1,3f

skzk , W1,4 = W ′
1,4,

W2,1 = W ′
2,1(f

ν1ν3−ν2)sk , W2,2 = W ′
2,2(f

−ν3)sk , W2,3 = W ′
2,3f

sk , W2,4 = W ′
2,4.

PKS.VerifySF. The semi-functional verification algorithm first creates a nor-
mal verification components using the public key. Let (V ′

1,1, . . . , V
′
2,4) be the

normal verification components with random exponents t, s1, s2 ∈ Zp. It chooses
random exponents sc, zc ∈ Zp and computes semi-functional verification compo-
nents as

V1,1 = V ′
1,1, V1,2 = V ′

1,2, V1,3 = V ′
1,3f̂

sc , V1,4 = V ′
1,4(f̂

−ϕ3)sc ,

V2,1 = V ′
2,1, V2,2 = V ′

2,2, V2,3 = V ′
2,3f̂

sczc , V2,4 = V ′
2,4(f̂

−ϕ3)sczc .

Next, it verifies that
∏4

i=1 e(W1,i, V1,i) ·
∏4

i=1 e(W2,i, V2,i)
−1 ?

= Ωt. If this equa-
tion holds, then it outputs 1. Otherwise, it outputs 0.

Note that if the semi-functional verification algorithm verifies a semi-functional
signature, then the left part of the above verification equation contains an ad-
ditional random element e(f, f̂)sksc(zk−zc). If zk = zc, then the semi-functional
verification algorithm succeeds. In this case, we say that the signature is nomi-
nally semi-functional.

The security proof uses a sequence of games G0,G1,G2,G3: The first game
G0 will be the original security game and the last game G3 will be a game such
that an adversary A has no advantage. Formally, the hybrid games are defined
as follows:

Game G0. In this game, the signatures that are given to A are normal and
the challenger use the normal verification algorithm PKS.Verify to check the
validity of the forged signature of A.

Game G1. This game is almost identical to G0 except that the challenger use
the semi-functional verification algorithm PKS.VerifySF to check the validity
of the forged signature of A.

Game G2. This game is the same as the G1 except that the signatures that
are given to A will be semi-functional. At this moment, the signatures are
semi-functional and the challenger use the semi-functional verification algorithm
PKS.VerifySF to check the validity of the forged signature. Suppose that A
makes at most q signature queries. For the security proof, we define a sequence
of hybrid games G1,0, . . . ,G1,k, . . . ,G1,q where G1,0 = G1. In G1,k, a normal
signature is given to A for all j-th signature queries such that j > k and a
semi-functional signature is given to A for all j-th signature queries such that
j ≤ k. It is obvious that G1,q is equal to G2.

Game G3. Finally, we define a new game G3. This game differs from G2 in that
the challenger always rejects the forged signature of A. Therefore, the advantage
of this game is zero since A cannot win this game.

For the security proof, we show the indistinguishability of each hybrid games.
We informally describe the meaning of each indistinguishability as follows:

– Indistinguishability of G0 and G1: This property shows that A cannot forge
a semi-functional signature if it is only given normal signatures. That is, if
A forges a semi-functional signature, then it can distinguish G0 from G1.

– Indistinguishability of G1 and G2: This property shows that the probability
ofA to forge a normal signature is almost the same when the signatures given
to the adversary are changed from normal type to semi-functional type. That
is, if the probability of A to forge a normal signature is different in G1 and
G2, then A can distinguish two games.

– Indistinguishability of G2 and G3: This property shows that A cannot forge
a normal signature if it is only given semi-functional signatures. That is, if
A forges a normal signature, then it can distinguish G2 from G3.

The security (unforgeability) of our PKS scheme follows from a hybrid argu-
ment. We first consider an adversary A to attack our PKS scheme in the original
security game G0. By the indistinguishability of G0 and G1, we have that A can
forge a normal signature with a non-negligible ϵ probability, but it can forge a
semi-functional signature with only a negligible probability. Now we should show
that the ϵ probability of A to forge a normal signature is also negligible. By the
indistinguishability of G1 and G2, we have that the ϵ probability of A to forge a
normal signature is almost the same when the signatures given to A are changed
from normal type to semi-functional type. Finally, by the indistinguishability of
G2 and G3, we have that A can forge a normal signature with only a negligible
probability. Summing up, we obtain that the probability of A to forge a semi-
functional signature is negligible (from the indistinguishability of G0 and G1)
and the probability of A to forge a normal signature is also negligible (from the
indistinguishability of G2 and G3).

Let Adv
Gj

A be the advantage of A in Gj for j = 0, . . . , 3. Let Adv
G1,k

A be the

advantage of A in G1,k for k = 0, . . . , q. It is clear that AdvG0

A = AdvPKS
A (λ),

Adv
G1,0

A = AdvG1

A , Adv
G1,q

A = AdvG2

A , and AdvG3

A = 0. From the following
three Lemmas, we prove that it is hard for A to distinguish Gi−1 from Gi under
the given assumptions. Therefore, we have that

AdvPKS
A (λ)

= AdvG0

A +
2∑

i=1

(
AdvGi

A −AdvGi

A
)
−AdvG3

A ≤
3∑

i=1

∣∣Adv
Gi−1

A −AdvGi

A
∣∣

= AdvA1
B1

(λ) +

q∑
k=1

AdvA2
B2

(λ) +AdvA3
B3

(λ).

This completes our proof.

Lemma 1. If Assumption 1 holds, then no polynomial-time adversary can dis-
tinguish between G0 and G1 with non-negligible advantage. That is, for any
adversary A, there exists a PPT algorithm B1 such that

∣∣AdvG0

A − AdvG1

A
∣∣ =

AdvA1
B1

(λ).

Lemma 2. If Assumption 2 holds, then no polynomial-time adversary can dis-
tinguish between G1 and G2 with non-negligible advantage. That is, for any ad-

versary A, there exists a PPT algorithm B2 such that
∣∣Adv

G1,k−1

A −Adv
G1,k

A
∣∣ =

AdvA2
B2

(λ).

Lemma 3. If Assumption 3 holds, then no polynomial-time adversary can dis-
tinguish between G2 and G3 with non-negligible advantage. That is, for any
adversary A, there exists a PPT algorithm B3 such that

∣∣AdvG2

A − AdvG3

A
∣∣ =

AdvA3
B3

(λ).

The proofs of these lemmas are given in the full version of this paper [19].

4.2 Proof of Theorem 2

Our overall proof strategy for this part follows Lu et al. [22] and adapts it to our
setting. The proof uses two properties: the fact that the aggregated signature
result is independent of the order of aggregation, and the fact that the simulator
of the SAS system possesses the private keys of all but the target PKS.

Suppose there exists an adversary A that forges the above SAS scheme with
non-negligible advantage ϵ. A simulator B that forges the PKS scheme is first
given: a challenge public key PKPKS = (g, u, h, w1, . . . , w, ĝ, . . . , ĝ

−τ , û, . . . , û−τ ,

ĥ, . . . , ĥ−τ , v̂, v̂ν3 , v̂−π, Ω). Then B that interacts with A is described as fol-
lows: B first constructs PP = (g, w1, . . . , w, ĝ, . . . , ĝ

−τ , v̂, v̂ν3 , v̂−π) and PK∗ =

(u, h, û, . . . , û−τ , ĥ, . . . , ĥ−τ , Ω = e(g, ĝ)α) from PKPKS . Next, it initializes a
certification list CL as an empty one and gives PP and PK∗ to A. A may adap-
tively requests certification queries or sequential aggregate signature queries. If
A requests the certification of a public key by providing a public key PKi =
(ui, hi, . . . , Ωi) and its private key SKi = (αi, xi, yi), then B checks the pri-
vate key and adds the key pair (PKi, SKi) to CL. If A requests a sequential
aggregate signature by providing an aggregate-so-far AS′ on messages M′ =
(M1, . . . ,Ml−1) under public keys PK′ = (PK1, . . . , PKl−1), and a message M
to sign under the challenge private key of PK∗, then B proceeds the aggregate
signature query as follows:

1. It first checks that the signature AS′ is valid and that each public key in
PK′ exits in CL.

2. It queries its signing oracle that simulates PKS.Sign on the message M for
the challenge public key PK∗ and obtains a signature σ.

3. For each 1 ≤ i ≤ l − 1, it constructs an aggregate signature on message
Mi using SAS.AggSign since it knows the private key that corresponds
to PKi. The result signature is an aggregate signature for messages M′||M
under public keys PK′||PK∗ since this scheme does not check the order of
aggregation. It gives the result signature AS to A.

Finally, A outputs a forged aggregate signature AS∗ = (S∗
1,1, . . . , S

∗
2,4) on mes-

sages M∗ = (M1, . . . ,Ml) under public keys PK∗ = (PK1, . . . , PKl) for some l.
Without loss of generality, we assume that PK1 = PK∗. B proceeds as follows:

1. B first checks the validity of AS∗ by calling SAS.AggVerify. Additionally,
the forged signature should not be trivial: the challenge public key PK∗

must be in PK∗, and the message M1 must not be queried by A to the
signature query oracle.

2. For each 2 ≤ i ≤ l, it parses PKi = (ui, hi, . . . , Ωi) from PK∗, and it
retrieves the private key SKi = (αi, xi, yi) of PKi from CL. It then computes

W1,1 = S∗
1,1 ·

l∏
i=2

(
gαj (S∗

2,1)
xiMi+yi

)−1
, W1,2 = S∗

1,2 ·
l∏

i=2

(
(S∗

2,2)
xiMi+yi

)−1
,

W1,3 = S∗
1,3 ·

l∏
i=2

(
(S∗

2,3)
xiMi+yi

)−1
, W1,4 = S∗

1,4 ·
l∏

i=2

(
(S∗

2,4)
xiMi+yi

)−1
,

W2,1 = S∗
2,1, W2,2 = S∗

2,2, W2,3 = S∗
2,3, W2,4 = S∗

2,4.

3. It outputs σ = (W1,1, . . . ,W2,4) as a non-trivial forgery of the PKS scheme
since it did not make a signing query on M1.

To finish the proof, we first show that the distribution of the simulation is
correct. It is obvious that the public parameters and the public key are correctly
distributed. The sequential aggregate signatures is correctly distributed since
this scheme does not check the order of aggregation. Finally, we can show that
the result signature σ = (W1,1, . . . ,W2,4) of the simulator is a valid signature for
the PKS scheme on the message M1 under the public key PK∗ since it satisfies
the following equation:

4∏
i=1

e(W1,i, V1,i) ·
4∏

i=1

e(W2,i, V2,i)
−1

= e(S∗
1,1, ĝ

t) · e(S∗
1,2, ĝ

ν1tv̂s1) · e(S∗
1,3, ĝ

ν2tv̂ν3s1) · e(S∗
1,4, ĝ

−τtv̂−πs1) · e(
l∏

i=2

gαi , ĝt)−1·

e(S∗
2,1,

l∏
i=2

(ûMi
i ĥi)

t)−1 · e(S∗
2,2,

l∏
i=2

(ûMi
i ĥi)

ν1tv̂δis1)−1 · e(S∗
2,3,

l∏
i=2

(ûMi
i ĥi)

ν2tv̂δis1)−1·

e(S∗
2,4,

l∏
i=2

(ûMi
i ĥi)

−τtv̂−πδis1)−1 · e(S∗
2,1, (û

M1 ĥ)t)−1 · e(S∗
2,2, (û

M1 ĥ)ν1tv̂s2)−1·

e(S∗
2,3, (û

M1 ĥ)ν2tv̂ν3s2)−1 · e(S∗
2,4, (û

M1 ĥ)−τtv̂−πs2)−1

= e(S∗
1,1, C1,1) · e(S∗

1,2, C1,2) · e(S∗
1,3, C1,3) · e(S∗

1,4, C1,4) · e(
l∏

i=2

gαi , ĝt)−1·

e(S∗
2,1,

l∏
i=1

(ûMi
i ĥi)

t)−1 · e(S∗
2,2,

l∏
i=1

(ûMi
i ĥi)

ν1tv̂s̃2)−1 · e(S∗
2,3,

l∏
i=1

(ûMi
i ĥi)

ν2tv̂s̃2)−1·

e(S∗
2,4,

l∏
i=1

(ûMi
i ĥi)

−τtv̂−πs̃2)−1·

=

4∏
i=1

e(S∗
1,i, C1,i) ·

4∏
i=1

e(S∗
2,i, C2,i)

−1 · e(
l∏

i=2

gαi , ĝt)−1 =

l∏
i=1

Ωt
i ·

l∏
i=2

Ω−t
i = Ωt

1

where δi = xiMi + yi and s̃2 =
∑l

i=2(xiMi + yi)s1 + s2. This completes our
proof.

5 Implementation

In this section, we report on the implementation of our SAS scheme and analysis
of its performance.

We used the Pairing Based Cryptography (PBC) library of Ben Lynn [23] to
implement our SAS scheme. According to the NIST recommendations for the 80-
bit security [26], the key size of elliptic curve systems should be at least 160 bits
and the key size of discrete logarithm systems should be at least 1024 bits. For
80-bit security, we, therefore, selected the Miyaji-Nakabayashi-Takano (MNT)
curve with embedding degree 6. In the MNT curve with embedding degree 6,
the group size of G should be at least 171 bits and the group size of GT should
be at least 1024 bits since the security of the GT group is related to the security
of the discrete logarithm [13]. Therefore, we used a 175-bit MNT curve that is
generated by the MNT parameter generation program in the PBC library.

5.1 Signature and Public Key Size

We compare the signature size and the public key size of Lu et al.’s SAS scheme
(the earlier scheme with non relaxed-model proof, based on a static assumption
and standard model) with our SAS scheme. The original SAS scheme of Lu et al.
is described using symmetric bilinear groups, but it can also be described using
asymmetric bilinear groups. In the 175-bit MNT curve with point compression,
the group size of G is about 175 bits, the group size of Ĝ is about 525 bits, and
the group size of GT is 1050 bits respectively.

In Lu et al. system, the size of an aggregate signature is about 350 bits and
the size of a public key is about 113,000 bits. Alternately, one may consider to
use the method of Chatterjee and Sarkar [12] to reduce the public key size of the
SAS scheme of Lu et al. However, this method obtains shorter public key size
by sacrificing the security reduction of the scheme. Thus, it should use a larger
size of prime for the order of groups to support the same security level of the
original scheme.

5.2 Performance Measurements

We implemented and measured the performance of our SAS scheme on a note-
book computer with an Intel Core i5-460M 2.53 GHz CPU. The PBC library
on the test machine can compute a pairing operation in 14.0 ms, an exponenti-
ation operation of G and Ĝ in 1.7 ms and 20.3 ms respectively. We assume that
there are 100 users who participate in the sequential aggregate signature system
(indexed 1 to 100).

At first, the setup algorithm takes about 0.159 seconds to generate the public
parameters and the key generation algorithm for each user takes about 0.185 sec-
onds. The aggregate signing algorithm mainly consists of verifying the previous

0

1

2

3

4

5

0 20 40 60 80 100

se
co
n
d
s

user index

(a) aggregate signing time

0

1

2

3

4

5

0 20 40 60 80 100

se
co
n
d
s

user index

(b) aggregate verification time

normal
preprocess

normal
preprocess

Fig. 1. Performance of our SAS scheme

aggregate signature and adding its own signature into the aggregate signature.
The time to generate an aggregate signature is proportional to the index number
of the user who participates in the aggregate signing algorithm. Furthermore,
this algorithm spends nearly 98 percent of its time on verifying the previous
aggregate signature since it should compute 4l + 14 numbers of exponentiation
in Ĝ where l is the number of previous signers.

Optimization: We can improve the performance of the aggregate verification
algorithm by preprocessing the exponentiations in Ĝ. To use the preprocessing
method, users should keep the public keys of the previous users. If the set of users
who participate in the aggregate signature system is not changed or changed a
little (as in the routing and the certification cases), then users can preprocess the
public keys of previous users after running the first aggregate signing algorithm.

6 Conclusion

In this paper, we proposed a sequential aggregate signature scheme with a proof
of security in the standard model and with no relaxation of assumptions (i.e.,
employing neither random oracles nor interactive assumptions). The proposed
scheme is the first of this kind which has short (constant number of group ele-
ments) size public keys and constant number of pairing operations per message
in the verification algorithm. Also, we provided an implementation and perfor-
mance measurements of our scheme.

Acknowledgements

We thank Adam O’Neill and Benôıt Libert for their helpful comments. We grate-
fully thank the anonymous reviewers of PKC 2013 for their valuable comments.

References

1. Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: new
definitions, constructions and applications. In: ACM Conference on Computer and
Communications Security. (2010) 473–484

2. Bagherzandi, A., Jarecki, S.: Identity-based aggregate and multi-signature schemes
based on rsa. In Nguyen, P.Q., Pointcheval, D., eds.: Public Key Cryptography.
Volume 6056 of Lecture Notes in Computer Science., Springer (2010) 480–498

3. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In
Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A., eds.: ICALP. Volume 4596 of
Lecture Notes in Computer Science., Springer (2007) 411–422

4. Bellare, M., Neven, G.: Identity-based multi-signatures from rsa. In Abe, M., ed.:
CT-RSA. Volume 4377 of Lecture Notes in Computer Science., Springer (2007)
145–162

5. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In Desmedt, Y., ed.: Public
Key Cryptography. Volume 2567 of Lecture Notes in Computer Science., Springer
(2003) 31–46

6. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure rout-
ing. In Ning, P., di Vimercati, S.D.C., Syverson, P.F., eds.: ACM Conference on
Computer and Communications Security, ACM (2007) 276–285

7. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing.
Cryptology ePrint Archive, Report 2007/438 (2010) http://eprint.iacr.org/

2007/438.
8. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In

Kilian, J., ed.: CRYPTO. Volume 2139 of Lecture Notes in Computer Science.,
Springer (2001) 213–229

9. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In Biham, E., ed.: EUROCRYPT. Volume 2656 of
Lecture Notes in Computer Science., Springer (2003) 416–432

10. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In
Boyd, C., ed.: ASIACRYPT. Volume 2248 of Lecture Notes in Computer Science.,
Springer (2001) 514–532

11. Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with lazy ver-
ification from trapdoor permutations - (extended abstract). In Wang, X., Sako, K.,
eds.: ASIACRYPT. Volume 7658 of Lecture Notes in Computer Science., Springer
(2012) 644–662

12. Chatterjee, S., Sarkar, P.: Trading time for space: Towards an efficient ibe scheme
with short(er) public parameters in the standard model. In Won, D., Kim, S.,
eds.: ICISC. Volume 3935 of Lecture Notes in Computer Science., Springer (2005)
424–440

13. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16) (2008) 3113–3121

14. Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In Yung, M., Dodis,
Y., Kiayias, A., Malkin, T., eds.: Public Key Cryptography. Volume 3958 of Lecture
Notes in Computer Science., Springer (2006) 257–273

15. Gerbush, M., Lewko, A.B., O’Neill, A., Waters, B.: Dual form signatures: An
approach for proving security from static assumptions. In Wang, X., Sako, K.,

eds.: ASIACRYPT. Volume 7658 of Lecture Notes in Computer Science., Springer
(2012) 25–42

16. Herranz, J.: Deterministic identity-based signatures for partial aggregation. Com-
put. J. 49(3) (2006) 322–330

17. Hwang, J.Y., Lee, D.H., Yung, M.: Universal forgery of the identity-based sequen-
tial aggregate signature scheme. In Li, W., Susilo, W., Tupakula, U.K., Safavi-
Naini, R., Varadharajan, V., eds.: ASIACCS, ACM (2009) 157–160

18. Katz, J., Lindell, A.Y.: Aggregate message authentication codes. In Malkin, T.,
ed.: CT-RSA. Volume 4964 of Lecture Notes in Computer Science., Springer (2008)
155–169

19. Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures with short public
keys: Design, analysis, and implementation studies. Cryptology ePrint Archive,
Report 2012/518 (2012) http://eprint.iacr.org/2012/518.

20. Lewko, A.B.: Tools for simulating features of composite order bilinear groups in
the prime order setting. In Pointcheval, D., Johansson, T., eds.: EUROCRYPT.
Volume 7237 of Lecture Notes in Computer Science., Springer (2012) 318–335

21. Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully
secure hibe with short ciphertexts. In Micciancio, D., ed.: TCC. Volume 5978 of
Lecture Notes in Computer Science., Springer (2010) 455–479

22. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In Vaudenay, S., ed.: EU-
ROCRYPT. Volume 4004 of Lecture Notes in Computer Science., Springer (2006)
465–485

23. Lynn, B.: The pairing-based cryptography library http://crypto.stanford.edu/

pbc/.
24. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate sig-

natures from trapdoor permutations. In Cachin, C., Camenisch, J., eds.: EURO-
CRYPT. Volume 3027 of Lecture Notes in Computer Science., Springer (2004)
74–90

25. Neven, G.: Efficient sequential aggregate signed data. In Smart, N.P., ed.: EU-
ROCRYPT. Volume 4965 of Lecture Notes in Computer Science., Springer (2008)
52–69

26. NIST: Recommendation for key management (2011) http://csrc.nist.gov/

publications/PubsSPs.html.
27. Schröder, D.: How to aggregate the cl signature scheme. In Atluri, V., Dı́az, C.,

eds.: ESORICS. Volume 6879 of Lecture Notes in Computer Science., Springer
(2011) 298–314

28. Waters, B.: Efficient identity-based encryption without random oracles. In Cramer,
R., ed.: EUROCRYPT. Volume 3494 of Lecture Notes in Computer Science.,
Springer (2005) 114–127

29. Waters, B.: Dual system encryption: Realizing fully secure ibe and hibe under
simple assumptions. In Halevi, S., ed.: CRYPTO. Volume 5677 of Lecture Notes
in Computer Science., Springer (2009) 619–636

