Sequential Aggregate Signatures with Short Public Keys: Design, Analysis and Implementation Studies

Kwangsu Lee^{1*}, Dong Hoon Lee^{2**}, and Moti Yung³

 ¹ Columbia University, NY, USA kwangsu@cs.columbia.edu,
 ² Korea University, Seoul, Korea donghlee@korea.ac.kr,
 ³ Google Inc. and Columbia University, NY, USA moti@cs.columbia.edu

Abstract. The notion of aggregate signature has been motivated by applications and it enables any user to compress different signatures signed by different signers on different messages into a short signature. Sequential aggregate signature, in turn, is a special kind of aggregate signature that only allows a signer to add his signature into an aggregate signature in sequential order. This latter scheme has applications in diversified settings, such as in reducing bandwidth of a certificate chains, and in secure routing protocols. Lu, Ostrovsky, Sahai, Shacham, and Waters presented the first sequential aggregate signature scheme in the standard (non idealized ROM) model. The size of their public key, however, is quite large (i.e., the number of group elements is proportional to the security parameter), and therefore they suggested as an open problem the construction of such a scheme with short keys. Schröder recently proposed a sequential aggregate signature (SAS) with short public keys using the Camenisch-Lysyanskaya signature scheme, but the security is only proven under an interactive assumption (which is considered a relaxed notion of security). In this paper, we propose the first sequential aggregate signature scheme with short public keys (i.e., a constant number of group elements) in prime order (asymmetric) bilinear groups which is secure under static assumptions in the standard model. Technically, we start with a public key signature scheme based on the recent dual system encryption technique of Lewko and Waters. This technique cannot give directly an aggregate signature scheme since, as we observed, additional elements should be published in the public key to support aggregation. Thus, our construction is a careful augmentation technique for the dual system technique to allow it to support a sequential aggregate signature scheme. We further implemented our scheme and conducted a performance study and implementation optimization.

^{*} Supported by the MKE (The Ministry of Knowledge Economy), Korea, under the ITRC (Information Technology Research Center) support program (NIPA-2012-H0301-12-3007) supervised by the NIPA (National IT Industry Promotion Agency).

^{**} Supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2010-0029121).

1 Introduction

Aggregate signature is a relatively new type of public key signature which enables any user to combine n signatures signed by different n signers on different nmessages into a short signature. The concept of public key aggregate signature (PKAS) was introduced by Boneh, Gentry, Lynn, and Shacham [9], and they proposed an efficient PKAS scheme in the random oracle model using the bilinear groups. After that, numerous PKAS schemes were proposed using bilinear groups [14, 22, 6, 7, 1, 15] or using trapdoor permutations [24, 3, 25].

One application of aggregate signature is the certificate chains of the public key infrastructure (PKI) [9]. The PKI system has a tree structure, and a certificate for a user consists of a certificate chain from a root node to a leaf node, each node in the chain signing its predecessor. If the signatures in the certificate chain are replaced with a single aggregate signature, then the bandwidth for signatures transfer can be significantly saved. Another application is to the secure routing protocol of the internet protocol [9]. If each router which participates in the routing protocol uses PKAS instead of a public key signature (PKS), then the communication overload of signature transfer can be dramatically reduced. Further, aggregate signatures have other applications such as reducing bandwidth in sensor networks or ad-hoc networks, and in software authentication in the presence of software update [1].

1.1 Previous Methods

Aggregate signature schemes are categorized as *full* aggregate signature, *synchronized* aggregate signature, and *sequential* aggregate signature depending on the type of signature aggregation. They have also been applied to regular signatures in the PKI model, and to ID-based signatures (with trusted key server).

The first type of aggregate signature is *full aggregate signature* which enables any user to freely aggregate different signatures of different signers. This full aggregate signature is the most flexible aggregate signature since it does not require any restriction on the aggregation step (though, restriction may be needed at times for certain applications). However, there is only one full aggregate signature scheme that was proposed by Boneh et al. [9]. Since this scheme is based on the short signature scheme of Boneh et al. [10], the signature length it provides is also very short. However, the security of the scheme is just proven in the idealized random oracle model and the number of pairing operations in the aggregate signature.

The second type of aggregate signature is *synchronized aggregate signature* which enables any user to combine different signatures with the same synchronizing information into a single signature. The synchronized aggregate signature has a demerit which dictates that all signers should share the same synchronizing information (like a time clock or other shared value). Gentry and Ramzan introduced the concept of synchronized aggregate signature, they proposed an identity-based synchronized aggregate signature scheme using bilinear groups,

and they proved its security in the random oracle model [14]. We note that identity-based aggregate signature (IBAS) is an ID-based scheme and thus relies on a trusted server knowing all private keys (i.e., its trust structure is different than in regular PKI). However, it also has a notable advantage such that it is not required to retrieve the public keys of signers in the verification algorithm since an identity string plays the role of a public key (the lack of public key is indicated in our comparison table as public key of no size!). Recently, Ahn et al. presented a public key synchronized aggregate signature scheme without relying on random oracles [1].

The third type of aggregate signature is sequential aggregate signature (SAS) that enables each signer to aggregate his signature to a previously aggregated signature in a sequential order. The sequential aggregate signature has the obvious limitation of signers being ordered to aggregate their signatures in contrast to the full aggregate signature and the synchronized aggregate signature. However, it has an advantage such that it is not required to share synchronized information among signers in contrast to the synchronized aggregate signature, and many natural applications lead themselves to this setting. The concept of sequential aggregate signature was introduced by Lysvanskava et al., and they proposed a public key sequential aggregate signature scheme using the certified trapdoor permutations in the random oracle model [24]. Boldyreva et al. presented an identity-based sequential aggregate signature scheme in the random oracle model using an interactive assumption [6], but it was shown that their construction is not secure by Hwang et al. [17]. After that, Boldyreva et al. proposed a new identity-based sequential aggregate signature by modifying their previous construction and proved its security in the generic group model [7]. Recently, Gerbush et al. showed that the modified IBAS scheme of Boldyreva et al. is secure under static assumptions using the dual form signatures framework [15]. The first sequential aggregate signature scheme without the random oracle idealization was proposed by Lu et al. [22]. They converted the PKS scheme of Waters [28] to the PKAS scheme, and proved its security under the well known CDH assumption. However, the scheme of Lu et al. has a demerit since the number of group elements in the public key is proportional to the security parameter (for a security of 2^{80} they need 160 elements or about 80 elements in a larger group); they left as an open question to design a scheme with shorter public key. Schröder proposed a PKAS scheme with short public keys relying on the Camenisch-Lysyanskaya signature scheme [27], however the scheme's security is proven under an interactive assumption (which typically, is a relaxation used when designs based on static assumptions are hard to find).⁴ Therefore, the construction of sequential aggregate signature scheme with short public keys without relaxations like random oracles or an interactive assumptions was left as an open question.

⁴ Gerbush et al. showed that a modified Camenisch-Lysyanskaya signature scheme in composite order groups is secure under static assumptions [15]. However, it is unclear whether the construction of Schröder can be directly applied to this modified Camenisch-Lysyanskaya signature scheme.

Scheme	Type	ROM	PK Size	AS Size	Sign Time	Verify Time	Assumption
BGLS $[9]$	Full	Yes	$1k_p$	$1k_p$	$1\mathrm{E}$	$l\mathrm{P}$	CDH
GR [14]	IB, Sync	Yes		$\overline{2k_p} + \lambda$	3E	3P + lE	CDH
AGH [1]	Sync	Yes	$1k_p$	$2k_p + 32$	$6\mathrm{E}$	4P + lE	CDH
AGH [1]	Sync	No	$1k_p$	$2k_p + 32$	10E	8P + lE	CDH
LMRS $[24]$	Seq	Yes	$1k_f$	$-1k_{f}$	l = l = l	lE	cert TDP
Neven $[25]$	Seq	Yes	$1k_f$	$1k_f + 2\lambda$	$1\mathrm{E} + 2l\mathrm{M}$	2lM	uncert CFP
BGOY $[7]$	IB, Seq	Yes	—	$3k_p$	4P + lE	4P + lE	Interactive
GLOW [15]	IB, Seq	Yes	—	$5k_f$	10P + 2lE	10P + 2lE	Static
LOSSW [22]	Seq	No	$2\lambda k_p$	$2\overline{k_p}$	$2P + 4\lambda lM$	$\overline{2P} + \overline{2\lambda lM}$	CDH
Schröder [27]	Seq	No	$2k_p$	$4k_p$	lP + 2lE	lP + lE	Interactive
Ours	Seq	No	$11k_p$	$8k_p$	8P + 5lE	8P + 4lE	Static

 Table 1. Comparison of aggregate signature schemes

ROM = random oracle model, IB = identity based, λ = security parameter

 k_p, k_f = the bit size of element for pairing and factoring, l = the number of signers P = pairing computation, E = exponentiation, M = multiplication

1.2 Our Contributions

Challenged by the above question, the motivation of our research is to construct an efficient sequential aggregate signature scheme secure in the standard model (i.e., without employing assumptions like random oracle or interactive assumptions as part of the proof) with short public keys (e.g., constant number of group elements). To achieve this goal, we use the public key signature scheme derived from the identity-based encryption (IBE) scheme that adopts the innovative dual system encryption techniques of Waters [29, 21]. That is, an IBE scheme is first converted to a PKS scheme by the clever observation of Naor [8]. The PKS schemes that adopt the dual system encryption techniques are the scheme of Waters [29] which includes a random tag in a signature and the scheme of Lewko and Waters [21] which does not include a random tag in a signature. The scheme of Waters is not appropriate to aggregate signature since the random tags in signatures cannot be compressed into a single value. The scheme of Lewko and Waters in composite order groups is easily converted to an aggregate signature scheme if the element of \mathbb{G}_{p_3} is moved from a private key to a public key, but it is inefficient because of composite order groups.⁵ Therefore, we start the construction from the IBE scheme in prime order (asymmetric) bilinear groups of Lewko and Waters. However, this PKS scheme which is directly derived from the IBE scheme of Lewko and Waters is not easily converted to a sequential aggregate

⁵ Lewko obtained a prime order IBE scheme by translating the Lewko-Waters composite order IBE scheme using the dual pairing vector spaces [20]. One may consider to construct an aggregate signature scheme using this IBE scheme. However, it is not easy to aggregate individual signatures since the dual orthonormal basis vectors of each users are randomly generated.

signature scheme (as far as we see). The reason is that we need a PKS scheme that supports multi-user setting and public re-randomization to construct a SAS scheme by using the randomness reuse technique of Lu et al. [22], but this PKS scheme does not support these two properties.

Here we first construct a PKS scheme in prime order (asymmetric) bilinear groups which supports multi-user seting and public re-randomization by modifying the PKS scheme of Lewko and Waters, and we prove its security using the dual system encryption technique. Next, we convert the modified PKS scheme to a SAS scheme with short public keys by using the randomness reuse technique of Lu et al. [22], and we prove its security without random oracles and based on the traditional static assumptions. Our security proof crucially relies on the fact that we add additional randomization elements to the SAS verification algorithm, so that we can expand these elements to a semi-functional space; this allows us to introduce in the SAS scheme public-key elements used in aggregation. Note that Table 1 gives a comparison of past schemes to ours. Finally, to support our claim of efficiency, we implemented our SAS scheme using the PBC library and we measured the performance of the scheme. Additionally, as part of the implementation we provide a computational preprocessing method which improves the amortized performance of our scheme.

1.3 Additional Related Work

There are some work on aggregate signature schemes which allow signers to communicate with each other or schemes which compress only partial elements of a signature in the aggregate algorithm [4, 2, 16, 11]. Generally, communication resources of computer systems are very expensive compared to the computation resources. Thus, it is preferred to perform several expensive computational operations instead of a single communication exchange. Additionally, a signature scheme with added communications does not correspond to a pure public key signature schemes, but corresponds more to a multi-party protocol. In addition, signature schemes which compress just partial elements of signatures cannot be an aggregate signature since the total size of signatures is still proportional to the number of signers.

Another research area related to aggregate signature is multi-signature [5, 22]. Multi-signature is a special type of aggregate signature in which all signers generate signatures on the same message, and then any user can combine these signature to a single signature. Aggregate message authentication code (AMAC) is the symmetric key analogue of aggregate signature: Katz and Lindell introduced the concept of AMAC and showed that it is possible to construct AMAC schemes based on any message authentication code schemes [18].

2 Preliminaries

We first define public key signature and sequential aggregate signature, and then give the definition of their correctness and security.

2.1 Public Key Signature

A public key signature (PKS) scheme consists of three PPT algorithms **KeyGen**, **Sign**, and **Verify**, which are defined as follows: The key generation algorithm **KeyGen** (1^{λ}) takes as input the security parameters 1^{λ} , and outputs a public key PK and a private key SK. The signing algorithm **Sign**(M, SK) takes as input a message M and a private key SK, and outputs a signature σ . The verification algorithm **Verify** (σ, M, PK) takes as input a signature σ , a message M, and a public key PK, and outputs either 1 or 0 depending on the validity of the signature. The correctness requirement is that for any (PK, SK) output by **KeyGen** and any $M \in \mathcal{M}$, we have that **Verify** $(\mathbf{Sign}(M, SK), M, PK) = 1$. We can relax this notion to require that the verification is correct with overwhelming probability over all the randomness of the experiment.

The security notion of existential unforgeability under a chosen message attack is defined in terms of the following experiment between a challenger C and a PPT adversary \mathcal{A} : C first generates a key pair (PK, SK) by running **KeyGen**, and gives PK to \mathcal{A} . Then \mathcal{A} , adaptively and polynomially many times, requests a signature query on a message M under the challenge public key PK, and receives a signature σ . Finally, \mathcal{A} outputs a forged signature σ^* on a message M^* . C then outputs 1 if the forged signature satisfies the following two conditions, or outputs 0 otherwise: 1) **Verify** $(\sigma^*, M^*, PK) = 1$ and 2) M^* was not queried by \mathcal{A} to the signing oracle. The advantage of \mathcal{A} is defined as $\mathbf{Adv}_{\mathcal{A}}^{PKS} = \Pr[\mathcal{C} = 1]$ where the probability is taken over all the randomness of the experiment. A PKS scheme is existentially unforgeable under a chosen message attack if all PPT adversaries have at most a negligible advantage in the above experiment (for large enough security parameter).

2.2 Sequential Aggregate Signature

A sequential aggregate signature (SAS) scheme consists of four PPT algorithms Setup, KeyGen, AggSign, and AggVerify, which are defined as follows: The setup algorithm **Setup** (1^{λ}) takes as input a security parameter 1^{λ} and outputs public parameters PP. The key generation algorithm **KeyGen**(PP) takes as input the public parameters PP, and outputs a public key PK and a private key SK. The aggregate signing algorithm AggSign(AS', M, PK, M, SK)takes as input an aggregate-so-far AS' on messages $\mathbf{M} = (M_1, \ldots, M_l)$ under public keys $\mathbf{PK} = (PK_1, \dots, PK_l)$, a message M, and a private key SK, and outputs a new aggregate signature AS. The aggregate verification algorithm AggVerify(AS, M, PK) takes as input an aggregate signature AS on messages $\mathbf{M} = (M_1, \ldots, M_l)$ under public keys $\mathbf{PK} = (PK_1, \ldots, PK_l)$, and outputs either 1 or 0 depending on the validity of the sequential aggregate signature. The correctness requirement is that for each PP output by **Setup**, for all (PK, SK) output by **KeyGen**, any M, we have that **AggVerify**(**AggSign**(AS', **M'**, **PK'**, M, SK, $\mathbf{M}'||M, \mathbf{PK}'||PK$) = 1 where AS' is a valid aggregate-so-far signature on messages \mathbf{M}' under public keys \mathbf{PK}' .

The security notion of existential unforgeability under a chosen message attack is defined in terms of the following experiment between a challenger C and a PPT adversary A:

- **Setup**: C first initializes a certification list CL as empty. Next, it runs **Setup** to obtain public parameters PP and **KeyGen** to obtain a key pair (PK, SK), and gives PK to A.
- **Certification Query:** \mathcal{A} adaptively requests the certification of a public key by providing a key pair (PK, SK). Then \mathcal{C} adds the key pair (PK, SK) to CL if the key pair is a valid one.
- **Signature Query**: \mathcal{A} adaptively requests a sequential aggregate signature (by providing an aggregate-so-far AS' on messages \mathbf{M}' under public keys \mathbf{PK}'), on a message M to sign under the challenge public key PK, and receives a sequential aggregate signature AS.
- **Output:** Finally (after a sequence of the above queries), \mathcal{A} outputs a forged sequential aggregate signature AS^* on messages \mathbf{M}^* under public keys \mathbf{PK}^* . \mathcal{C} outputs 1 if the forged signature satisfies the following three conditions, or outputs 0 otherwise: 1) **AggVerify** $(AS^*, \mathbf{M}^*, \mathbf{PK}^*) = 1, 2$) The challenge public key PK must exists in \mathbf{PK}^* and each public key in \mathbf{PK}^* except the challenge public key must be in CL, and 3) The corresponding message M in \mathbf{M}^* of the challenge public key PK must not have been queried by \mathcal{A} to the sequential aggregate signing oracle.

The advantage of \mathcal{A} is defined as $\mathbf{Adv}_{\mathcal{A}}^{SAS} = \Pr[\mathcal{C} = 1]$ where the probability is taken over all the randomness of the experiment. A SAS scheme is existentially unforgeable under a chosen message attack if all PPT adversaries have at most a negligible advantage (for large enough security parameter) in the above experiment.

2.3 Asymmetric Bilinear Groups

Let $\mathbb{G}, \hat{\mathbb{G}}$ and \mathbb{G}_T be multiplicative cyclic groups of prime order p. Let g, \hat{g} be generators of $\mathbb{G}, \hat{\mathbb{G}}$. The bilinear map $e : \mathbb{G} \times \hat{\mathbb{G}} \to \mathbb{G}_T$ has the following properties:

- 1. Bilinearity: $\forall u \in \mathbb{G}, \forall \hat{v} \in \hat{\mathbb{G}} \text{ and } \forall a, b \in \mathbb{Z}_p, e(u^a, \hat{v}^b) = e(u, \hat{v})^{ab}.$
- 2. Non-degeneracy: $\exists g, \hat{g}$ such that $e(g, \hat{g})$ has order p, that is, $e(g, \hat{g})$ is a generator of \mathbb{G}_T .

We say that $\mathbb{G}, \hat{\mathbb{G}}, \mathbb{G}_T$ are bilinear groups with no efficiently computable isomorphisms if the group operations in $\mathbb{G}, \hat{\mathbb{G}}$, and \mathbb{G}_T as well as the bilinear map e are all efficiently computable, but there are no efficiently computable isomorphisms between \mathbb{G} and $\hat{\mathbb{G}}$.

2.4 Complexity Assumptions

We employ three static assumptions in prime order bilinear groups. Assumptions 1 and 3 have been used extensively, while Assumption 2 was introduced by Lewko and Waters [21].

Assumption 1 (Symmetric eXternal Diffie-Hellman) Let $(p, \mathbb{G}, \hat{\mathbb{G}}, \mathbb{G}_T, e)$ be a description of the asymmetric bilinear group of prime order p. Let g, \hat{g} be generators of $\mathbb{G}, \hat{\mathbb{G}}$ respectively. The assumption is that if the challenge values

$$D = ((p, \mathbb{G}, \hat{\mathbb{G}}, \mathbb{G}_T, e), g, \hat{g}, \hat{g}^a, \hat{g}^b)$$
 and T

are given, no PPT algorithm \mathcal{B} can distinguish $T = T_0 = \hat{g}^{ab}$ from $T = T_1 = \hat{g}^c$ with more than a negligible advantage. The advantage of \mathcal{B} is defined as $\mathbf{Adv}_{\mathcal{B}}^{A1}(\lambda) = |\Pr[\mathcal{B}(D,T_0)=0] - \Pr[\mathcal{B}(D,T_1)=0]|$ where the probability is taken over the random choice of $a, b, c \in \mathbb{Z}_p$.

Assumption 2 (LW2) Let $(p, \mathbb{G}, \hat{\mathbb{G}}, \mathbb{G}_T, e)$ be a description of the asymmetric bilinear group of prime order p. Let g, \hat{g} be generators of $\mathbb{G}, \hat{\mathbb{G}}$ respectively. The assumption is that if the challenge values

$$D = ((p, \mathbb{G}, \hat{\mathbb{G}}, \mathbb{G}_T, e), g, g^a, g^b, g^c, \hat{g}, \hat{g}^a, \hat{g}^{a^2}, \hat{g}^{bx}, \hat{g}^{abx}, \hat{g}^{a^2x}) \text{ and } T,$$

are given, no PPT algorithm \mathcal{B} can distinguish $T = T_0 = g^{bc}$ from $T = T_1 = g^d$ with more than a negligible advantage. The advantage of \mathcal{B} is defined as $\mathbf{Adv}_{\mathcal{B}}^{A2}(\lambda) = |\Pr[\mathcal{B}(D,T_0)=0] - \Pr[\mathcal{B}(D,T_1)=0]|$ where the probability is taken over the random choice of $a, b, c, x, d \in \mathbb{Z}_p$.

Assumption 3 (Decisional Bilinear Diffie-Hellman) Let $(p, \mathbb{G}, \hat{\mathbb{G}}, \mathbb{G}_T, e)$ be a description of the asymmetric bilinear group of prime order p. Let g, \hat{g} be generators of $\mathbb{G}, \hat{\mathbb{G}}$ respectively. The assumption is that if the challenge values

$$D = ((p, \mathbb{G}, \hat{\mathbb{G}}, \mathbb{G}_T, e), g, g^a, g^b, g^c, \hat{g}, \hat{g}^a, \hat{g}^b, \hat{g}^c) \text{ and } T,$$

are given, no PPT algorithm \mathcal{B} can distinguish $T = T_0 = e(g, \hat{g})^{abc}$ from $T = T_1 = e(g, \hat{g})^d$ with more than a negligible advantage. The advantage of \mathcal{B} is defined as $\mathbf{Adv}_{\mathcal{B}}^{A3}(\lambda) = |\Pr[\mathcal{B}(D, T_0) = 0] - \Pr[\mathcal{B}(D, T_1) = 0]|$ where the probability is taken over the random choice of $a, b, c, d \in \mathbb{Z}_p$.

3 Aggregate Signature

We construct a SAS scheme in prime order (asymmetric) bilinear groups and prove its existential unforgeability under a chosen message attack. The main idea is to modify a PKS scheme to support multi-user setting and signature aggregation by using the "randomness reuse" technique of Lu et al. [22]. To support multi-user setting, it is required for all users to share common elements in the public parameters. To use the randomness reuse technique, it is crucial for a signer to publicly re-randomize a sequential aggregate signature to prevent a forgery attack. Thus we need a PKS scheme with short public key that supports "multi-user setting" and "public re-randomization".

Before we present a SAS scheme, we first construct a PKS scheme with short public key that will be augmented to support multi-user setting and public rerandomization. One method to build a PKS scheme is to use the observation of Naor [8] that private keys of fully secure IBE are easily converted to signatures of PKS. Thus we can convert the prime order IBE scheme of Lewko and Waters [21] to a prime order PKS scheme. However, this directly converted PKS scheme does not support multi-user setting and public re-randomization since it needs to publish additional public key components: Specifically, we need to publish an element g for multi-user setting and elements u, h for public re-randomization. Note that $\hat{g}, \hat{u}, \hat{h}$ are already in the public key, but g, u, h are not. One may try to publish g, u, h in the public key. The technical difficulty arising in this case is that the simulator of the security proof can easily distinguish the changes of the verification algorithm that checks the validity of the forged signature from the normal verification algorithm to the semi-functional one, without using an adversary.

To solve this problem, we devise a method that allows a PKS scheme to safely publish elements g, u, h in the public key for multi-user setting and public re-randomization. The main idea is to additionally randomize the verification components using $\hat{v}, \hat{v}^{\nu_3}, \hat{v}^{-\pi}$ in the verification algorithm. If a valid signature is given in the verification algorithm, then the additionally added randomization elements $\hat{v}, \hat{v}^{\nu_3}, \hat{v}^{-\pi}$ are canceled. Otherwise, the added randomization components prevent the verification of an invalid signature. Therefore, the simulator of the security proof cannot distinguish the changes of the verification algorithm even if g, u, h are published, since the additional elements $\hat{v}, \hat{v}^{\nu_3}, \hat{v}^{-\pi}$ prevent the signature verification.

3.1 Our PKS Scheme

The PKS scheme in prime order bilinear groups is described as follows:

PKS.KeyGen (1^{λ}) : This algorithm first generates the asymmetric bilinear groups $\mathbb{G}, \hat{\mathbb{G}}$ of prime order p of bit size $\Theta(\lambda)$. It chooses random elements $g, w \in \mathbb{G}$ and $\hat{g}, \hat{v} \in \hat{\mathbb{G}}$. Next, it chooses random exponents $\nu_1, \nu_2, \nu_3, \phi_1, \phi_2, \phi_3 \in \mathbb{Z}_p$ and sets $\tau = \phi_1 + \nu_1 \phi_2 + \nu_2 \phi_3, \pi = \phi_2 + \nu_3 \phi_3$. It selects random exponents $\alpha, x, y \in \mathbb{Z}_p$ and sets $u = g^x, h = g^y, \hat{u} = \hat{g}^x, \hat{h} = \hat{g}^y$. It outputs a private key $SK = (\alpha, x, y)$ and a public key PK as

$$g, u, h, \ w_1 = w^{\phi_1}, w_2 = w^{\phi_2}, w_3 = w^{\phi_3}, w, \ \hat{g}, \hat{g}^{\nu_1}, \hat{g}^{\nu_2}, \hat{g}^{-\tau}, \\ \hat{u}, \hat{u}^{\nu_1}, \hat{u}^{\nu_2}, \hat{u}^{-\tau}, \ \hat{h}, \hat{h}^{\nu_1}, \hat{h}^{\nu_2}, \hat{h}^{-\tau}, \ \hat{v}, \hat{v}^{\nu_3}, \hat{v}^{-\pi}, \ \Omega = e(g, \hat{g})^{\alpha}.$$

PKS.Sign(M, SK): This algorithm takes as input a message $M \in \{0, 1\}^k$ where $k < \lambda$ and a private key $SK = (\alpha, x, y)$. It selects random exponents $r, c_1, c_2 \in \mathbb{Z}_p$ and outputs a signature σ as

$$\begin{split} W_{1,1} &= g^{\alpha} (u^{M} h)^{r} w_{1}^{c_{1}}, W_{1,2} = w_{2}^{c_{1}}, W_{1,3} = w_{3}^{c_{1}}, W_{1,4} = w^{c_{1}}, \\ W_{2,1} &= g^{r} w_{1}^{c_{2}}, W_{2,2} = w_{2}^{c_{2}}, W_{2,3} = w_{3}^{c_{2}}, W_{2,4} = w^{c_{2}}. \end{split}$$

PKS.Verify (σ, M, PK) : This algorithm takes as input a signature σ on a message $M \in \{0, 1\}^k$ under a public key PK. It first chooses random exponents

 $t, s_1, s_2 \in \mathbb{Z}_p$ and computes verification components as

$$\begin{aligned} V_{1,1} &= \hat{g}^t, V_{1,2} = (\hat{g}^{\nu_1})^t \hat{v}^{s_1}, V_{1,3} = (\hat{g}^{\nu_2})^t (\hat{v}^{\nu_3})^{s_1}, V_{1,4} = (\hat{g}^{-\tau})^t (\hat{v}^{-\pi})^{s_1}, \\ V_{2,1} &= (\hat{u}^M \hat{h})^t, V_{2,2} = ((\hat{u}^{\nu_1})^M \hat{h}^{\nu_1})^t \hat{v}^{s_2}, V_{2,3} = ((\hat{u}^{\nu_2})^M \hat{h}^{\nu_2})^t (\hat{v}^{\nu_3})^{s_2}, \\ V_{2,4} &= ((\hat{u}^{-\tau})^M \hat{h}^{-\tau})^t (\hat{v}^{-\pi})^{s_2}. \end{aligned}$$

Next, it verifies that $\prod_{i=1}^{4} e(W_{1,i}, V_{1,i}) \cdot \prod_{i=1}^{4} e(W_{2,i}, V_{2,i})^{-1} \stackrel{?}{=} \Omega^t$. If this equation holds, then it outputs 1. Otherwise, it outputs 0.

We first note that the inner product of $(\phi_1, \phi_2, \phi_3, 1)$ and $(1, \nu_1, \nu_2, -\tau)$ is zero since $\tau = \phi_1 + \nu_1 \phi_2 + \nu_2 \phi_3$, and the inner product of $(\phi_1, \phi_2, \phi_3, 1)$ and $(0, 1, \nu_3, -\pi)$ is zero since $\pi = \phi_2 + \nu_3 \phi_3$. Using these facts, the correctness requirement of the above PKS scheme is easily verified as

$$\prod_{i=1}^{4} e(W_{1,i}, V_{1,i}) \cdot \prod_{i=1}^{4} e(W_{2,i}, V_{2,i})^{-1} = e(g^{\alpha}(u^{M}h)^{r}, \hat{g}^{t}) \cdot e(g^{r}, (\hat{u}^{M}\hat{h})^{t})^{-1} = \Omega^{t}.$$

Theorem 1. The above PKS scheme is existentially unforgeable under a chosen message attack if Assumptions 1, 2, and 3 hold. That is, for any PPT adversary \mathcal{A} , there exist PPT algorithms $\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3$ such that $\mathbf{Adv}_{\mathcal{A}}^{PKS}(\lambda) \leq \mathbf{Adv}_{\mathcal{B}_1}^{A1}(\lambda) + q\mathbf{Adv}_{\mathcal{B}_2}^{A2}(\lambda) + \mathbf{Adv}_{\mathcal{B}_3}^{A3}(\lambda)$ where q is the maximum number of signature queries of \mathcal{A} .

The proof of this theorem is given in Section 4.1.

3.2 Our SAS Scheme

The SAS scheme in prime order bilinear groups is described as follows:

SAS.Setup(1^{λ}): This algorithm first generates the asymmetric bilinear groups $\mathbb{G}, \hat{\mathbb{G}}$ of prime order p of bit size $\Theta(\lambda)$. It chooses random elements $g, w \in \mathbb{G}$ and $\hat{g}, \hat{v} \in \hat{\mathbb{G}}$. Next, it chooses random exponents $\nu_1, \nu_2, \nu_3, \phi_1, \phi_2, \phi_3 \in \mathbb{Z}_p$ and sets $\tau = \phi_1 + \nu_1 \phi_2 + \nu_2 \phi_3, \pi = \phi_2 + \nu_3 \phi_3$. It publishes public parameters PP as

$$g, w_1 = w^{\phi_1}, w_2 = w^{\phi_2}, w_3 = w^{\phi_3}, w, \ \hat{g}, \hat{g}^{\nu_1}, \hat{g}^{\nu_2}, \hat{g}^{-\tau}, \ \hat{v}, \hat{v}^{\nu_3}, \hat{v}^{-\pi}.$$

SAS.KeyGen(*PP*): This algorithm takes as input the public parameters *PP*. It selects random exponents $\alpha, x, y \in \mathbb{Z}_p$ and computes $u = g^x, h = g^y, \hat{u} = \hat{g}^x, \hat{u}^{\nu_1} = (\hat{g}^{\nu_1})^x, \hat{u}^{\nu_2} = (\hat{g}^{\nu_2})^x, \hat{u}^{-\tau} = (\hat{g}^{-\tau})^x, \hat{h} = \hat{g}^y, \hat{h}^{\nu_1} = (\hat{g}^{\nu_1})^y, \hat{h}^{\nu_2} = (\hat{g}^{\nu_2})^y, \hat{h}^{-\tau} = (\hat{g}^{-\tau})^y$. It outputs a private key $SK = (\alpha, x, y)$ and a public key *PK* as

$$u, h, \hat{u}, \hat{u}^{\nu_1}, \hat{u}^{\nu_2}, \hat{u}^{-\tau}, \hat{h}, \hat{h}^{\nu_1}, \hat{h}^{\nu_2}, \hat{h}^{-\tau}, \Omega = e(g, \hat{g})^{\alpha}.$$

SAS.AggSign $(AS', \mathbf{M}', \mathbf{PK}', M, SK)$: This algorithm takes as input an aggregateso-far $AS' = (S'_{1,1}, \ldots, S'_{2,4})$ on messages $\mathbf{M}' = (M_1, \ldots, M_{l-1})$ under public keys $\mathbf{PK}' = (PK_1, \ldots, PK_{l-1})$ where $PK_i = (u_i, h_i, \ldots, \Omega_i)$, a message $M \in \{0, 1\}^k$ where $k < \lambda$, a private key $SK = (\alpha, x, y)$ with $PK = (u, h, \dots, \Omega)$ and PP. It first checks the validity of AS' by calling **AggVerify** $(AS', \mathbf{M}', \mathbf{PK}')$. If AS' is not valid, then it halts. If the public key PK of SK does already exist in **PK'**, then it halts. Next, it selects random exponents $r, c_1, c_2 \in \mathbb{Z}_p$ and outputs an aggregate signature AS as

$$S_{1,1} = S'_{1,1}g^{\alpha}(S'_{2,1})^{xM+y} \cdot \prod_{i=1}^{l-1} (u_i^{M_i}h_i)^r (u^Mh)^r w_1^{c_1},$$

$$S_{1,2} = S'_{1,2}(S'_{2,2})^{xM+y} \cdot w_2^{c_1}, S_{1,3} = S'_{1,3}(S'_{2,3})^{xM+y} \cdot w_3^{c_1},$$

$$S_{1,4} = S'_{1,4}(S'_{2,4})^{xM+y} \cdot w^{c_1}, S_{2,1} = S'_{2,1} \cdot g^r w_1^{c_2},$$

$$S_{2,2} = S'_{2,2} \cdot w_2^{c_2}, S_{2,3} = S'_{2,3} \cdot w_3^{c_2}, S_{2,4} = S'_{2,4} \cdot w^{c_2}.$$

SAS.AggVerify $(AS, \mathbf{M}, \mathbf{PK})$: This algorithm takes as input a sequential aggregate signature AS on messages $\mathbf{M} = (M_1, \ldots, M_l)$ under public keys $\mathbf{PK} = (PK_1, \ldots, PK_l)$ where $PK_i = (u_i, h_i, \ldots, \Omega_i)$. It first checks that any public key does not appear twice in \mathbf{PK} and that any public key in \mathbf{PK} has been certified. If these checks fail, then it outputs 0. If l = 0, then it outputs 1 if $S_1 = S_2 = 1, 0$ otherwise. It chooses random exponents $t, s_1, s_2 \in \mathbb{Z}_p$ and computes verification components as

$$\begin{split} C_{1,1} &= \hat{g}^t, \ C_{1,2} &= (\hat{g}^{\nu_1})^t \hat{v}^{s_1}, \ C_{1,3} &= (\hat{g}^{\nu_2})^t (\hat{v}^{\nu_3})^{s_1}, \ C_{1,4} &= (\hat{g}^{-\tau})^t (\hat{v}^{-\pi})^{s_1}, \\ C_{2,1} &= \prod_{i=1}^l (\hat{u}_i^{M_i} \hat{h}_i)^t, \ C_{2,2} &= \prod_{i=1}^l ((\hat{u}_i^{\nu_1})^{M_i} \hat{h}_i^{\nu_1})^t \hat{v}^{s_2}, \\ C_{2,3} &= \prod_{i=1}^l ((\hat{u}_i^{\nu_2})^{M_i} \hat{h}_i^{\nu_2})^t (\hat{v}^{\nu_3})^{s_2}, \ C_{2,4} &= \prod_{i=1}^l ((\hat{u}_i^{-\tau})^{M_i} \hat{h}_i^{-\tau})^t (\hat{v}^{-\pi})^{s_2}. \end{split}$$

Next, it verifies that $\prod_{i=1}^{4} e(S_{1,i}, C_{1,i}) \cdot \prod_{i=1}^{4} e(S_{2,i}, C_{2,i})^{-1} \stackrel{?}{=} \prod_{i=1}^{l} \Omega_{i}^{t}$. If this equation holds, then it outputs 1. Otherwise, it outputs 0.

The aggregate signature AS is a valid sequential aggregate signature on messages $\mathbf{M}'||M$ under public keys $\mathbf{PK}'||PK$ with randomness $\tilde{r} = r' + r$, $\tilde{c}_1 = c'_1 + c'_2(xM + y) + c_1$, $\tilde{c}_2 = c'_2 + c_2$ where r', c'_1, c'_2 are random values in AS'. The sequential aggregate signature has the following form

$$\begin{split} S_{1,1} &= \prod_{i=1}^{l} g^{\alpha_i} \prod_{i=1}^{l} (u_i^{M_i} h_i)^{\tilde{r}} w_1^{\tilde{c}_1}, \ S_{1,2} = w_2^{\tilde{c}_1}, \ S_{1,3} = w_3^{\tilde{c}_1}, \ S_{1,4} = w^{\tilde{c}_1}, \\ S_{2,1} &= g^{\tilde{r}} w_1^{\tilde{c}_2}, \ S_{2,2} = w_2^{\tilde{c}_2}, \ S_{2,3} = w_3^{\tilde{c}_2}, \ S_{2,4} = w^{\tilde{c}_2}. \end{split}$$

Theorem 2. The above SAS scheme is existentially unforgeable under a chosen message attack if the PKS scheme is existentially unforgeable under a chosen message attack. That is, for any PPT adversary \mathcal{A} for the above SAS scheme, there exists a PPT algorithm \mathcal{B} for the PKS scheme such that $\mathbf{Adv}_{\mathcal{A}}^{SAS}(\lambda) \leq \mathbf{Adv}_{\mathcal{B}}^{PKS}(\lambda)$.

The proof of this theorem is given in Section 4.2.

3.3 Extensions

In this section, we discuss various extensions of our SAS scheme.

Multiple Messages. To support multiple signing per one signer, we can use the method of Lu et al. [22]. The basic idea of Lu et al. is to apply a collision resistant hash function H to a message M before performing the signing algorithm. If a signer wants to add a signature on a message M_2 into the aggregate signature, he first removes his previous signature on $H(M_1)$ from the aggregate signature using his private key, and then he adds the new signature on the $H(M_1||M_2)$ to the aggregate signature.

Multi-signatures. The SAS scheme of this paper can be easily converted to a multi-signature scheme. In case of multi-signature, some elements of public keys in SAS can be moved to the public parameters since multi-signature only allows signers to sign on the same message. Compared to the multi-signature scheme of Lu et al. [22], our multi-signature scheme has short size public parameters.

4 Security Analysis

In this section, we analyze the security of the basic PKS scheme and our SAS scheme.

4.1 Proof of Theorem 1

To prove the security of our PKS scheme, we use the dual system encryption technique of Lewko and Waters [21]. We describe a semi-functional signing algorithm and a semi-functional verification algorithm. They are not used in a real system, rather they are used in the security proof. When comparing our proof to that of Lewko and Waters, we employ a different assumption since we have published additional elements g, u, h used in aggregation (in fact, direct adaptation of the earlier technique will break the assumption and thus the proof). A crucial idea in our proof is that we have added elements $\hat{v}, \hat{v}^{\nu_3}, \hat{v}^{-\pi}$ in the public key which are used in randomization of the verification algorithm. In the security proof when moving from normal to semi-functional verification, it is the randomization elements $\hat{v}, \hat{v}^{\nu_3}, \hat{v}^{-\pi}$ which are expanded to the semi-functional space; this enables deriving semi-functional verification as part of the security proof under our assumption, without being affected by the publication of the additional public key elements used for aggregation.

For the semi-functional signing and verification we set $f = g^{y_f}, \hat{f} = \hat{g}^{y_f}$ where y_f is a random exponent in \mathbb{Z}_p .

PKS.SignSF. The semi-functional signing algorithm first creates a normal signature using the private key. Let $(W'_{1,1}, \ldots, W'_{2,4})$ be the normal signature of a message M with random exponents $r, c_1, c_2 \in \mathbb{Z}_p$. It selects random exponents $s_k, z_k \in \mathbb{Z}_p$ and outputs a semi-functional signature σ as

$$W_{1,1} = W'_{1,1} (f^{\nu_1 \nu_3 - \nu_2})^{s_k z_k}, \ W_{1,2} = W'_{1,2} (f^{-\nu_3})^{s_k z_k}, \ W_{1,3} = W'_{1,3} f^{s_k z_k}, \ W_{1,4} = W'_{1,4}, W_{2,1} = W'_{2,1} (f^{\nu_1 \nu_3 - \nu_2})^{s_k}, \ W_{2,2} = W'_{2,2} (f^{-\nu_3})^{s_k}, \ W_{2,3} = W'_{2,3} f^{s_k}, \ W_{2,4} = W'_{2,4}.$$

PKS.VerifySF. The semi-functional verification algorithm first creates a normal verification components using the public key. Let $(V'_{1,1}, \ldots, V'_{2,4})$ be the normal verification components with random exponents $t, s_1, s_2 \in \mathbb{Z}_p$. It chooses random exponents $s_c, z_c \in \mathbb{Z}_p$ and computes semi-functional verification components as

$$\begin{split} V_{1,1} &= V_{1,1}', \ V_{1,2} &= V_{1,2}', \ V_{1,3} &= V_{1,3}' \hat{f}^{s_c}, \ V_{1,4} &= V_{1,4}' (\hat{f}^{-\phi_3})^{s_c}, \\ V_{2,1} &= V_{2,1}', \ V_{2,2} &= V_{2,2}', \ V_{2,3} &= V_{2,3}' \hat{f}^{s_c z_c}, \ V_{2,4} &= V_{2,4}' (\hat{f}^{-\phi_3})^{s_c z_c}. \end{split}$$

Next, it verifies that $\prod_{i=1}^{4} e(W_{1,i}, V_{1,i}) \cdot \prod_{i=1}^{4} e(W_{2,i}, V_{2,i})^{-1} \stackrel{?}{=} \Omega^t$. If this equation holds, then it outputs 1. Otherwise, it outputs 0.

Note that if the semi-functional verification algorithm verifies a semi-functional signature, then the left part of the above verification equation contains an additional random element $e(f, \hat{f})^{s_k s_c(z_k - z_c)}$. If $z_k = z_c$, then the semi-functional verification algorithm succeeds. In this case, we say that the signature is *nominally* semi-functional.

The security proof uses a sequence of games $\mathbf{G}_0, \mathbf{G}_1, \mathbf{G}_2, \mathbf{G}_3$: The first game \mathbf{G}_0 will be the original security game and the last game \mathbf{G}_3 will be a game such that an adversary \mathcal{A} has no advantage. Formally, the hybrid games are defined as follows:

Game \mathbf{G}_0 . In this game, the signatures that are given to \mathcal{A} are normal and the challenger use the normal verification algorithm **PKS.Verify** to check the validity of the forged signature of \mathcal{A} .

Game G_1 . This game is almost identical to G_0 except that the challenger use the semi-functional verification algorithm **PKS.VerifySF** to check the validity of the forged signature of A.

Game G₂. This game is the same as the \mathbf{G}_1 except that the signatures that are given to \mathcal{A} will be semi-functional. At this moment, the signatures are semi-functional and the challenger use the semi-functional verification algorithm **PKS.VerifySF** to check the validity of the forged signature. Suppose that \mathcal{A} makes at most q signature queries. For the security proof, we define a sequence of hybrid games $\mathbf{G}_{1,0}, \ldots, \mathbf{G}_{1,k}, \ldots, \mathbf{G}_{1,q}$ where $\mathbf{G}_{1,0} = \mathbf{G}_1$. In $\mathbf{G}_{1,k}$, a normal signature is given to \mathcal{A} for all j-th signature queries such that j > k and a semi-functional signature is given to \mathcal{A} for all j-th signature queries such that $j \leq k$. It is obvious that $\mathbf{G}_{1,q}$ is equal to \mathbf{G}_2 .

Game G₃. Finally, we define a new game \mathbf{G}_3 . This game differs from \mathbf{G}_2 in that the challenger always rejects the forged signature of \mathcal{A} . Therefore, the advantage of this game is zero since \mathcal{A} cannot win this game.

For the security proof, we show the indistinguishability of each hybrid games. We informally describe the meaning of each indistinguishability as follows:

- Indistinguishability of \mathbf{G}_0 and \mathbf{G}_1 : This property shows that \mathcal{A} cannot forge a semi-functional signature if it is only given normal signatures. That is, if \mathcal{A} forges a semi-functional signature, then it can distinguish \mathbf{G}_0 from \mathbf{G}_1 .

- Indistinguishability of \mathbf{G}_1 and \mathbf{G}_2 : This property shows that the probability of \mathcal{A} to forge a normal signature is almost the same when the signatures given to the adversary are changed from normal type to semi-functional type. That is, if the probability of \mathcal{A} to forge a normal signature is different in \mathbf{G}_1 and \mathbf{G}_2 , then \mathcal{A} can distinguish two games.
- Indistinguishability of \mathbf{G}_2 and \mathbf{G}_3 : This property shows that \mathcal{A} cannot forge a normal signature if it is only given semi-functional signatures. That is, if \mathcal{A} forges a normal signature, then it can distinguish \mathbf{G}_2 from \mathbf{G}_3 .

The security (unforgeability) of our PKS scheme follows from a hybrid argument. We first consider an adversary \mathcal{A} to attack our PKS scheme in the original security game \mathbf{G}_0 . By the indistinguishability of \mathbf{G}_0 and \mathbf{G}_1 , we have that \mathcal{A} can forge a normal signature with a non-negligible ϵ probability, but it can forge a semi-functional signature with only a negligible probability. Now we should show that the ϵ probability of \mathcal{A} to forge a normal signature is also negligible. By the indistinguishability of \mathbf{G}_1 and \mathbf{G}_2 , we have that the ϵ probability of \mathcal{A} to forge a normal signature is almost the same when the signatures given to \mathcal{A} are changed from normal type to semi-functional type. Finally, by the indistinguishability of \mathbf{G}_2 and \mathbf{G}_3 , we have that \mathcal{A} can forge a normal signature with only a negligible probability. Summing up, we obtain that the probability of \mathcal{A} to forge a semifunctional signature is negligible (from the indistinguishability of \mathbf{G}_0 and \mathbf{G}_1) and the probability of \mathcal{A} to forge a normal signature is also negligible (from the indistinguishability of \mathbf{G}_0 and \mathbf{G}_1)

Let $\mathbf{Adv}_{\mathcal{A}}^{G_j}$ be the advantage of \mathcal{A} in \mathbf{G}_j for $j = 0, \ldots, 3$. Let $\mathbf{Adv}_{\mathcal{A}}^{G_{1,k}}$ be the advantage of \mathcal{A} in $\mathbf{G}_{1,k}$ for $k = 0, \ldots, q$. It is clear that $\mathbf{Adv}_{\mathcal{A}}^{G_0} = \mathbf{Adv}_{\mathcal{A}}^{PKS}(\lambda)$, $\mathbf{Adv}_{\mathcal{A}}^{G_{1,0}} = \mathbf{Adv}_{\mathcal{A}}^{G_1,q} = \mathbf{Adv}_{\mathcal{A}}^{G_2}$, and $\mathbf{Adv}_{\mathcal{A}}^{G_3} = 0$. From the following three Lemmas, we prove that it is hard for \mathcal{A} to distinguish \mathbf{G}_{i-1} from \mathbf{G}_i under the given assumptions. Therefore, we have that

$$\begin{split} \mathbf{A} \mathbf{d} \mathbf{v}_{\mathcal{A}}^{PKS}(\lambda) \\ &= \mathbf{A} \mathbf{d} \mathbf{v}_{\mathcal{A}}^{G_0} + \sum_{i=1}^{2} \left(\mathbf{A} \mathbf{d} \mathbf{v}_{\mathcal{A}}^{G_i} - \mathbf{A} \mathbf{d} \mathbf{v}_{\mathcal{A}}^{G_i} \right) - \mathbf{A} \mathbf{d} \mathbf{v}_{\mathcal{A}}^{G_3} \leq \sum_{i=1}^{3} \left| \mathbf{A} \mathbf{d} \mathbf{v}_{\mathcal{A}}^{G_{i-1}} - \mathbf{A} \mathbf{d} \mathbf{v}_{\mathcal{A}}^{G_i} \right| \\ &= \mathbf{A} \mathbf{d} \mathbf{v}_{\mathcal{B}_1}^{A1}(\lambda) + \sum_{k=1}^{q} \mathbf{A} \mathbf{d} \mathbf{v}_{\mathcal{B}_2}^{A2}(\lambda) + \mathbf{A} \mathbf{d} \mathbf{v}_{\mathcal{B}_3}^{A3}(\lambda). \end{split}$$

This completes our proof.

DICO

Lemma 1. If Assumption 1 holds, then no polynomial-time adversary can distinguish between G_0 and G_1 with non-negligible advantage. That is, for any adversary \mathcal{A} , there exists a PPT algorithm \mathcal{B}_1 such that $|\mathbf{Adv}_{\mathcal{A}}^{G_0} - \mathbf{Adv}_{\mathcal{A}}^{G_1}| =$ $\mathbf{Adv}_{\mathcal{B}_1}^{A_1}(\lambda)$.

Lemma 2. If Assumption 2 holds, then no polynomial-time adversary can distinguish between G_1 and G_2 with non-negligible advantage. That is, for any adversary \mathcal{A} , there exists a PPT algorithm \mathcal{B}_2 such that $|\mathbf{Adv}_{\mathcal{A}}^{G_{1,k-1}} - \mathbf{Adv}_{\mathcal{A}}^{G_{1,k}}| =$ $\mathbf{Adv}_{\mathcal{B}_2}^{\mathcal{A}_2}(\lambda)$. **Lemma 3.** If Assumption 3 holds, then no polynomial-time adversary can distinguish between G_2 and G_3 with non-negligible advantage. That is, for any adversary \mathcal{A} , there exists a PPT algorithm \mathcal{B}_3 such that $|\mathbf{Adv}_{\mathcal{A}}^{G_2} - \mathbf{Adv}_{\mathcal{A}}^{G_3}| =$ $\mathbf{Adv}_{\mathcal{B}_2}^{A_3}(\lambda)$.

The proofs of these lemmas are given in the full version of this paper [19].

4.2 Proof of Theorem 2

Our overall proof strategy for this part follows Lu et al. [22] and adapts it to our setting. The proof uses two properties: the fact that the aggregated signature result is independent of the order of aggregation, and the fact that the simulator of the SAS system possesses the private keys of all but the target PKS.

Suppose there exists an adversary \mathcal{A} that forges the above SAS scheme with non-negligible advantage ϵ . A simulator \mathcal{B} that forges the PKS scheme is first given: a challenge public key $PK_{PKS} = (g, u, h, w_1, \dots, w, \hat{g}, \dots, \hat{g}^{-\tau}, \hat{u}, \dots, \hat{u}^{-\tau}, \hat{h}, \dots, \hat{h}^{-\tau}, \hat{v}, \hat{v}^{\nu_3}, \hat{v}^{-\pi}, \Omega)$. Then \mathcal{B} that interacts with \mathcal{A} is described as follows: \mathcal{B} first constructs $PP = (g, w_1, \dots, w, \hat{g}, \dots, \hat{g}^{-\tau}, \hat{v}, \hat{v}^{\nu_3}, \hat{v}^{-\pi})$ and $PK^* =$ $(u, h, \hat{u}, \dots, \hat{u}^{-\tau}, \hat{h}, \dots, \hat{h}^{-\tau}, \Omega = e(g, \hat{g})^{\alpha})$ from PK_{PKS} . Next, it initializes a certification list CL as an empty one and gives PP and PK^* to \mathcal{A} . \mathcal{A} may adaptively requests certification queries or sequential aggregate signature queries. If \mathcal{A} requests the certification of a public key by providing a public key $PK_i =$ $(u_i, h_i, \dots, \Omega_i)$ and its private key $SK_i = (\alpha_i, x_i, y_i)$, then \mathcal{B} checks the private key and adds the key pair (PK_i, SK_i) to CL. If \mathcal{A} requests a sequential aggregate signature by providing an aggregate-so-far \mathcal{AS}' on messages $\mathbf{M}' =$ (M_1, \dots, M_{l-1}) under public keys $\mathbf{PK}' = (PK_1, \dots, PK_{l-1})$, and a message Mto sign under the challenge private key of PK^* , then \mathcal{B} proceeds the aggregate signature query as follows:

- 1. It first checks that the signature AS' is valid and that each public key in \mathbf{PK}' exits in CL.
- 2. It queries its signing oracle that simulates **PKS.Sign** on the message M for the challenge public key PK^* and obtains a signature σ .
- 3. For each $1 \leq i \leq l-1$, it constructs an aggregate signature on message M_i using **SAS.AggSign** since it knows the private key that corresponds to PK_i . The result signature is an aggregate signature for messages $\mathbf{M}' || M$ under public keys $\mathbf{PK}' || PK^*$ since this scheme does not check the order of aggregation. It gives the result signature AS to \mathcal{A} .

Finally, \mathcal{A} outputs a forged aggregate signature $AS^* = (S_{1,1}^*, \ldots, S_{2,4}^*)$ on messages $\mathbf{M}^* = (M_1, \ldots, M_l)$ under public keys $\mathbf{PK}^* = (PK_1, \ldots, PK_l)$ for some l. Without loss of generality, we assume that $PK_1 = PK^*$. \mathcal{B} proceeds as follows:

1. \mathcal{B} first checks the validity of AS^* by calling **SAS.AggVerify**. Additionally, the forged signature should not be trivial: the challenge public key PK^* must be in **PK**^{*}, and the message M_1 must not be queried by \mathcal{A} to the signature query oracle.

2. For each $2 \leq i \leq l$, it parses $PK_i = (u_i, h_i, \dots, \Omega_i)$ from **PK**^{*}, and it retrieves the private key $SK_i = (\alpha_i, x_i, y_i)$ of PK_i from CL. It then computes

$$W_{1,1} = S_{1,1}^* \cdot \prod_{i=2}^l \left(g^{\alpha_j} (S_{2,1}^*)^{x_i M_i + y_i} \right)^{-1}, \ W_{1,2} = S_{1,2}^* \cdot \prod_{i=2}^l \left((S_{2,2}^*)^{x_i M_i + y_i} \right)^{-1},$$
$$W_{1,3} = S_{1,3}^* \cdot \prod_{i=2}^l \left((S_{2,3}^*)^{x_i M_i + y_i} \right)^{-1}, \ W_{1,4} = S_{1,4}^* \cdot \prod_{i=2}^l \left((S_{2,4}^*)^{x_i M_i + y_i} \right)^{-1},$$
$$W_{2,1} = S_{2,1}^*, \ W_{2,2} = S_{2,2}^*, \ W_{2,3} = S_{2,3}^*, \ W_{2,4} = S_{2,4}^*.$$

3. It outputs $\sigma = (W_{1,1}, \ldots, W_{2,4})$ as a non-trivial forgery of the PKS scheme since it did not make a signing query on M_1 .

To finish the proof, we first show that the distribution of the simulation is correct. It is obvious that the public parameters and the public key are correctly distributed. The sequential aggregate signatures is correctly distributed since this scheme does not check the order of aggregation. Finally, we can show that the result signature $\sigma = (W_{1,1}, \ldots, W_{2,4})$ of the simulator is a valid signature for the PKS scheme on the message M_1 under the public key PK^* since it satisfies the following equation:

$$\begin{split} &\prod_{i=1}^{4} e(W_{1,i},V_{1,i}) \cdot \prod_{i=1}^{4} e(W_{2,i},V_{2,i})^{-1} \\ &= e(S_{1,1}^{*},\hat{g}^{t}) \cdot e(S_{1,2}^{*},\hat{g}^{\nu_{1}t}\hat{v}^{s_{1}}) \cdot e(S_{1,3}^{*},\hat{g}^{\nu_{2}t}\hat{v}^{\nu_{3}s_{1}}) \cdot e(S_{1,4}^{*},\hat{g}^{-\tau t}\hat{v}^{-\pi s_{1}}) \cdot e(\prod_{i=2}^{l} g^{\alpha_{i}},\hat{g}^{t})^{-1} \cdot \\ &e(S_{2,1}^{*},\prod_{i=2}^{l} (\hat{u}_{i}^{M_{i}}\hat{h}_{i})^{t})^{-1} \cdot e(S_{2,2}^{*},\prod_{i=2}^{l} (\hat{u}_{i}^{M_{i}}\hat{h}_{i})^{\nu_{1}t}\hat{v}^{\delta_{i}s_{1}})^{-1} \cdot e(S_{2,3}^{*},\prod_{i=2}^{l} (\hat{u}_{i}^{M_{i}}\hat{h}_{i})^{\nu_{2}t}\hat{v}^{\delta_{i}s_{1}})^{-1} \\ &e(S_{2,4}^{*},\prod_{i=2}^{l} (\hat{u}_{i}^{M_{i}}\hat{h}_{i})^{-\tau t}\hat{v}^{-\pi\delta_{i}s_{1}})^{-1} \cdot e(S_{2,1}^{*},(\hat{u}^{M_{1}}\hat{h})^{t})^{-1} \cdot e(S_{2,2}^{*},(\hat{u}^{M_{1}}\hat{h})^{\nu_{1}t}\hat{v}^{s_{2}})^{-1} \\ &e(S_{2,3}^{*},(\hat{u}^{M_{1}}\hat{h})^{\nu_{2}t}\hat{v}^{\nu_{3}s_{2}})^{-1} \cdot e(S_{2,4}^{*},(\hat{u}^{M_{1}}\hat{h})^{-\tau t}\hat{v}^{-\pis_{2}})^{-1} \\ &= e(S_{1,1}^{*},C_{1,1}) \cdot e(S_{1,2}^{*},C_{1,2}) \cdot e(S_{1,3}^{*},C_{1,3}) \cdot e(S_{1,4}^{*},C_{1,4}) \cdot e(\prod_{i=2}^{l} g^{\alpha_{i}},\hat{g}^{t})^{-1} \\ &e(S_{2,1}^{*},\prod_{i=1}^{l} (\hat{u}_{i}^{M_{i}}\hat{h}_{i})^{t})^{-1} \cdot e(S_{2,2}^{*},\prod_{i=1}^{l} (\hat{u}_{i}^{M_{i}}\hat{h}_{i})^{\nu_{1}t}\hat{v}^{\tilde{s}_{2}})^{-1} \\ &e(S_{2,4}^{*},\prod_{i=1}^{l} (\hat{u}_{i}^{M_{i}}\hat{h}_{i})^{t})^{-1} \cdot e(S_{2,2}^{*},\prod_{i=1}^{l} (\hat{u}_{i}^{M_{i}}\hat{h}_{i})^{\nu_{1}t}\hat{v}^{\tilde{s}_{2}})^{-1} \\ &= \prod_{i=1}^{4} e(S_{1,i}^{*},C_{1,i}) \cdot \prod_{i=1}^{4} e(S_{2,i}^{*},C_{2,i})^{-1} \cdot e(\prod_{i=2}^{l} g^{\alpha_{i}},\hat{g}^{t})^{-1} \\ &= \prod_{i=1}^{4} e(S_{1,i}^{*},C_{1,i}) \cdot \prod_{i=1}^{4} e(S_{2,i}^{*},C_{2,i})^{-1} \cdot e(\prod_{i=2}^{l} g^{\alpha_{i}},\hat{g}^{t})^{-1} \\ &= \prod_{i=1}^{4} e(S_{1,i}^{*},C_{1,i}) \cdot \prod_{i=1}^{4} e(S_{2,i}^{*},C_{2,i})^{-1} \cdot e(\prod_{i=2}^{l} g^{\alpha_{i}},\hat{g}^{t})^{-1} \\ &= \prod_{i=1}^{4} e(S_{1,i}^{*},C_{1,i}) \cdot \prod_{i=1}^{4} e(S_{2,i}^{*},C_{2,i})^{-1} \cdot e(\prod_{i=2}^{l} g^{\alpha_{i}},\hat{g}^{t})^{-1} \\ &= \prod_{i=1}^{4} e(S_{1,i}^{*},C_{1,i}) \cdot \prod_{i=1}^{4} e(S_{2,i}^{*},C_{2,i})^{-1} \cdot e(\prod_{i=2}^{l} g^{\alpha_{i}},\hat{g}^{t})^{-1} \\ &= \prod_{i=1}^{4} e(S_{1,i}^{*},C_{1,i}) \cdot \prod_{i=1}^{4} e(S_{2,i}^{*},C_{2,i})^{-1} \\ &= \prod_{i=1}^{4} e(S_{1,i}^{*},C_{1,i}) \cdot \prod_{i=1}^{4} e(S$$

where $\delta_i = x_i M_i + y_i$ and $\tilde{s}_2 = \sum_{i=2}^{l} (x_i M_i + y_i) s_1 + s_2$. This completes our proof.

5 Implementation

In this section, we report on the implementation of our SAS scheme and analysis of its performance.

We used the Pairing Based Cryptography (PBC) library of Ben Lynn [23] to implement our SAS scheme. According to the NIST recommendations for the 80bit security [26], the key size of elliptic curve systems should be at least 160 bits and the key size of discrete logarithm systems should be at least 1024 bits. For 80-bit security, we, therefore, selected the Miyaji-Nakabayashi-Takano (MNT) curve with embedding degree 6. In the MNT curve with embedding degree 6, the group size of \mathbb{G} should be at least 171 bits and the group size of \mathbb{G}_T should be at least 1024 bits since the security of the \mathbb{G}_T group is related to the security of the discrete logarithm [13]. Therefore, we used a 175-bit MNT curve that is generated by the MNT parameter generation program in the PBC library.

5.1 Signature and Public Key Size

We compare the signature size and the public key size of Lu et al.'s SAS scheme (the earlier scheme with non relaxed-model proof, based on a static assumption and standard model) with our SAS scheme. The original SAS scheme of Lu et al. is described using symmetric bilinear groups, but it can also be described using asymmetric bilinear groups. In the 175-bit MNT curve with point compression, the group size of \mathbb{G} is about 175 bits, the group size of $\hat{\mathbb{G}}$ is about 525 bits, and the group size of \mathbb{G}_T is 1050 bits respectively.

In Lu et al. system, the size of an aggregate signature is about 350 bits and the size of a public key is about 113,000 bits. Alternately, one may consider to use the method of Chatterjee and Sarkar [12] to reduce the public key size of the SAS scheme of Lu et al. However, this method obtains shorter public key size by sacrificing the security reduction of the scheme. Thus, it should use a larger size of prime for the order of groups to support the same security level of the original scheme.

5.2 Performance Measurements

We implemented and measured the performance of our SAS scheme on a notebook computer with an Intel Core i5-460M 2.53 GHz CPU. The PBC library on the test machine can compute a pairing operation in 14.0 ms, an exponentiation operation of \mathbb{G} and $\hat{\mathbb{G}}$ in 1.7 ms and 20.3 ms respectively. We assume that there are 100 users who participate in the sequential aggregate signature system (indexed 1 to 100).

At first, the setup algorithm takes about 0.159 seconds to generate the public parameters and the key generation algorithm for each user takes about 0.185 seconds. The aggregate signing algorithm mainly consists of verifying the previous

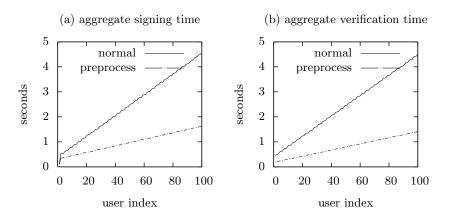


Fig. 1. Performance of our SAS scheme

aggregate signature and adding its own signature into the aggregate signature. The time to generate an aggregate signature is proportional to the index number of the user who participates in the aggregate signing algorithm. Furthermore, this algorithm spends nearly 98 percent of its time on verifying the previous aggregate signature since it should compute 4l + 14 numbers of exponentiation in $\hat{\mathbb{G}}$ where l is the number of previous signers.

Optimization: We can improve the performance of the aggregate verification algorithm by preprocessing the exponentiations in $\hat{\mathbb{G}}$. To use the preprocessing method, users should keep the public keys of the previous users. If the set of users who participate in the aggregate signature system is not changed or changed a little (as in the routing and the certification cases), then users can preprocess the public keys of previous users after running the first aggregate signing algorithm.

6 Conclusion

In this paper, we proposed a sequential aggregate signature scheme with a proof of security in the standard model and with no relaxation of assumptions (i.e., employing neither random oracles nor interactive assumptions). The proposed scheme is the first of this kind which has short (constant number of group elements) size public keys and constant number of pairing operations per message in the verification algorithm. Also, we provided an implementation and performance measurements of our scheme.

Acknowledgements

We thank Adam O'Neill and Benoît Libert for their helpful comments. We gratefully thank the anonymous reviewers of PKC 2013 for their valuable comments.

References

- Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: new definitions, constructions and applications. In: ACM Conference on Computer and Communications Security. (2010) 473–484
- Bagherzandi, A., Jarecki, S.: Identity-based aggregate and multi-signature schemes based on rsa. In Nguyen, P.Q., Pointcheval, D., eds.: Public Key Cryptography. Volume 6056 of Lecture Notes in Computer Science., Springer (2010) 480–498
- Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A., eds.: ICALP. Volume 4596 of Lecture Notes in Computer Science., Springer (2007) 411–422
- Bellare, M., Neven, G.: Identity-based multi-signatures from rsa. In Abe, M., ed.: CT-RSA. Volume 4377 of Lecture Notes in Computer Science., Springer (2007) 145–162
- Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In Desmedt, Y., ed.: Public Key Cryptography. Volume 2567 of Lecture Notes in Computer Science., Springer (2003) 31–46
- Boldyreva, A., Gentry, C., O'Neill, A., Yum, D.H.: Ordered multisignatures and identity-based sequential aggregate signatures, with applications to secure routing. In Ning, P., di Vimercati, S.D.C., Syverson, P.F., eds.: ACM Conference on Computer and Communications Security, ACM (2007) 276–285
- Boldyreva, A., Gentry, C., O'Neill, A., Yum, D.H.: Ordered multisignatures and identity-based sequential aggregate signatures, with applications to secure routing. Cryptology ePrint Archive, Report 2007/438 (2010) http://eprint.iacr.org/ 2007/438.
- Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In Kilian, J., ed.: CRYPTO. Volume 2139 of Lecture Notes in Computer Science., Springer (2001) 213–229
- Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In Biham, E., ed.: EUROCRYPT. Volume 2656 of Lecture Notes in Computer Science., Springer (2003) 416–432
- Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In Boyd, C., ed.: ASIACRYPT. Volume 2248 of Lecture Notes in Computer Science., Springer (2001) 514–532
- Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with lazy verification from trapdoor permutations - (extended abstract). In Wang, X., Sako, K., eds.: ASIACRYPT. Volume 7658 of Lecture Notes in Computer Science., Springer (2012) 644–662
- Chatterjee, S., Sarkar, P.: Trading time for space: Towards an efficient ibe scheme with short(er) public parameters in the standard model. In Won, D., Kim, S., eds.: ICISC. Volume 3935 of Lecture Notes in Computer Science., Springer (2005) 424–440
- Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics 156(16) (2008) 3113–3121
- Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In Yung, M., Dodis, Y., Kiayias, A., Malkin, T., eds.: Public Key Cryptography. Volume 3958 of Lecture Notes in Computer Science., Springer (2006) 257–273
- 15. Gerbush, M., Lewko, A.B., O'Neill, A., Waters, B.: Dual form signatures: An approach for proving security from static assumptions. In Wang, X., Sako, K.,

eds.: ASIACRYPT. Volume 7658 of Lecture Notes in Computer Science., Springer (2012) 25–42

- Herranz, J.: Deterministic identity-based signatures for partial aggregation. Comput. J. 49(3) (2006) 322–330
- Hwang, J.Y., Lee, D.H., Yung, M.: Universal forgery of the identity-based sequential aggregate signature scheme. In Li, W., Susilo, W., Tupakula, U.K., Safavi-Naini, R., Varadharajan, V., eds.: ASIACCS, ACM (2009) 157–160
- Katz, J., Lindell, A.Y.: Aggregate message authentication codes. In Malkin, T., ed.: CT-RSA. Volume 4964 of Lecture Notes in Computer Science., Springer (2008) 155–169
- Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures with short public keys: Design, analysis, and implementation studies. Cryptology ePrint Archive, Report 2012/518 (2012) http://eprint.iacr.org/2012/518.
- 20. Lewko, A.B.: Tools for simulating features of composite order bilinear groups in the prime order setting. In Pointcheval, D., Johansson, T., eds.: EUROCRYPT. Volume 7237 of Lecture Notes in Computer Science., Springer (2012) 318–335
- Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully secure hibe with short ciphertexts. In Micciancio, D., ed.: TCC. Volume 5978 of Lecture Notes in Computer Science., Springer (2010) 455–479
- Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In Vaudenay, S., ed.: EU-ROCRYPT. Volume 4004 of Lecture Notes in Computer Science., Springer (2006) 465–485
- Lynn, B.: The pairing-based cryptography library http://crypto.stanford.edu/ pbc/.
- Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signatures from trapdoor permutations. In Cachin, C., Camenisch, J., eds.: EURO-CRYPT. Volume 3027 of Lecture Notes in Computer Science., Springer (2004) 74–90
- Neven, G.: Efficient sequential aggregate signed data. In Smart, N.P., ed.: EU-ROCRYPT. Volume 4965 of Lecture Notes in Computer Science., Springer (2008) 52–69
- 26. NIST: Recommendation for key management (2011) http://csrc.nist.gov/ publications/PubsSPs.html.
- Schröder, D.: How to aggregate the cl signature scheme. In Atluri, V., Díaz, C., eds.: ESORICS. Volume 6879 of Lecture Notes in Computer Science., Springer (2011) 298–314
- Waters, B.: Efficient identity-based encryption without random oracles. In Cramer, R., ed.: EUROCRYPT. Volume 3494 of Lecture Notes in Computer Science., Springer (2005) 114–127
- Waters, B.: Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions. In Halevi, S., ed.: CRYPTO. Volume 5677 of Lecture Notes in Computer Science., Springer (2009) 619–636