
Delegatable Functional Signatures

Michael Backes*†, Sebastian Meiser*, and Dominique Schröder*

* CISPA, Saarland University
† MPI-SWS

Abstract. We introduce delegatable functional signatures (DFS) which
support the delegation of signing capabilities to another party, called
the evaluator, with respect to a functionality F . In a DFS, the signer
of a message can choose an evaluator, specify how the evaluator can
modify the signature without voiding its validity, allow additional in-
put, and decide how the evaluator can further delegate its capabilities.
Technically, DFS unify several seemingly di�erent signature primitives,
including functional signatures and policy-based signatures (PKC'14),
sanitizable signatures, identity based signatures, and blind signatures.
We characterize the instantiability of DFS with respect to the corre-
sponding security notions of unforgeability and privacy. On the positive
side we show that privacy-free DFS can be constructed from one-way
functions. Furthermore, we show that unforgeable and private DFS can
be constructed from doubly-enhanced trapdoor permutations. On the
negative side we show that the previous result is optimal regarding its
underlying assumptions presenting an impossibility result for unforgeable
private DFS from one-way permutations.

1 Introduction

Digital signature schemes resemble the idea of a hand written signature in the
sense that a signer signs messages with his private key sksig and anybody can
check the validity of the signature using the corresponding public key pksig.
The elementary security property is unforgeability under chosen message attacks
which says that an adversary cannot compute a signature on a fresh message,
even if he has observed q signatures on q messages of his choice [31]. This se-
curity de�nition models the idea of non-malleability for digital signatures: The
adversary should not be able to modify any signature such that it veri�es for a
di�erent message.

For many emerging applications, such as the delegation of computation on
authenticated data, the basic notion is insu�cient and a controlled form of mal-
leability would be desirable. Consider as an example a company S that wishes to
outsource the computation on authenticated data to untrusted parties (resp. to
parties that may further delegate the computation to sub-contractors), called the
evaluators, without handing out any secret key. For each data, S chooses a set
of allowed functions F that can be applied. The evaluators are organized hierar-
chically, where each evaluator receives an intermediate result and can compute

S A

A1 . . . An

B

B1 B2

. . .

FA

FA1 ⊆ FA FAn ⊆ FA

FB ⊆ FA

FB1 ⊆ FB

FB2 ⊆ FB1

FC ⊆ FB

Fig. 1. Example hierarchical application of DFS

any function f ∈ F chosen by S, or delegate subsets F ′ ⊆ F to other evaluators.
We allow S to restrict the number of delegations, as well as the order in which
functions can be applied. The chain computation should be publicly veri�able
which means that everybody can verify that:

� The computation was based on the original data of S.
� Only the functions chosen by S were applied to the data (in the right order,
if speci�ed).

� Any delegation of computation by an evaluator A to another evaluator (a
third party B or any sub-contractor Ai) has been authorized by S and A.

We refer to Figure 1 for an example structure of delegation. We consider
the following security notions: Unforgeability says that malicious evaluators can
only apply the functions(s) they were allowed to apply, e.g.: B1 can only apply
FB1 ⊆ FB ⊆ FA and further delegate sets of functions FB2 ⊆ FB1 . Privacy
says that given the result of a computation, it is not possible to gain informa-
tion about the computed functions or their input (or the parties that did the
computation): To an observer, the signature σB2

computed by B2 for a message
mB2 is indistinguisable from a signature σ for mB2 computed by S. Privacy is
a useful and desirable property in many applications as it hides the business
structure of the (sub-)contractor and still allows to verify the correctness of the
computation. Traditional signature schemes as well as their malleable variants
are not suitable in this setting. In this paper we close this gap by introducing
the concept of delegatable functional signatures.

1.1 Our Contribution

Our main contributions are as follows. First, we introduce delegatable functional
signatures (DFS). This primitive supports highly controlled, �ne-grained dele-
gation of signing capabilities to designated third parties and is general enough
to cover several malleable signature schemes. Second, we present strong security
notions for unforgeability and privacy that also take into account insider adver-
saries. Third, we provide a complete charaterization regarding the achievability
of our security notions based on general complexity assumptions. In the following
we discuss each contribution comprehensively.

Delegatable Functional Signatures. Delegatable functional signatures sup-
port the delegation of signing capabilities to another party, called the evaluator,

2

with respect to a functionality F . The evaluator may compute valid signatures
on messages m′ and delegate capabilities f ′ to another evaluator with key k
whenever (f ′,m′) ← F(f, α, k,m) for a value α of the evaluators choice. Thus,
the functionality describes how an evaluator can perform the following two tasks.

Malleability. The designated evaluator can derive a signature on m′ from a sig-
nature on m, if (f ′,m′) ← F(f, α, k,m), where the evaluator picks α and k
himself.

Delegatability. The designated evaluator can delegate signing capabilities f ′ on
his signature on m′, to other parties, if (f ′,m′)← F(f, α, k,m), where k is the
key of another evaluator (or his own key, if he wants to apply several functions
successively) and where the evaluator picks α himself.

Example 1 (Malleability). Suppose that a sender S wants to sign a document,
but allow another entity A to �ll in information in a few �elds. S chooses f to
describe the places where information can be added, as well as which information
can be added (e.g., 16 characters) without harming the validity of the signature.
A chooses the �elds and the information it wishes to �ll in by choosing the
corresponding value for α, and he derives a signature on m′, where (·,m′) ←
F(f, α, k,m).

Example 2 (Delegatability). Suppose that a sender S wants to restrict how A can
delegate further capabilities. Her choice of f additionally describes that after
�lling in information, certain parts of the document can be censored without
harming the validity of the signature, but no further information can be added.1

After �lling in information, A may delegate the censoring to B, but impose
restrictions on which part of the document may be censored by choosing the
corresponding value for α. Then, A and delegates the corresponding capabilities
f ′ to B, where (f ′, ·)← F(f, α, kB ,m).

Our de�nition also covers signing capabilities for fresh messages. If a sender S
wants to give A the capability to sign certain messages in his name, he can simply
generate a signature σfresh for a new (empty) message and use f to specify which
capabilities A has, i.e., which signatures he can derive from σfresh.

Security Model for DFS. A central contribution of this paper are the formal
de�nitions of unforgeability and privacy. On an abstract level, these notions re-
semble the well known intuition: Unforgeability means that no signatures can
be forged, except on messages within a certain class. Privacy means that de-
rived signatures are indistinguishable from fresh signatures. However, �nding
meaningful and achievable de�nitions for DFS is rather challenging, because the
signatures are malleable by nature and we are also considering the multi-party
setting:

1 If a PKI exists, S can additionally add descriptions of the evaluators that are allowed
to do this second round of processing.

3

Unforgeability In a DFS scheme the signer speci�es for every signature the
degree of malleability and how this malleability can be delegated. Unforge-
ability is then captured by a transitive closure that contains all messages
that can trivially be derived.

Privacy Our notion of privacy follows the idea that all information about sig-
natures should be hidden (except for the message). This is captured in an
indistinguishability game where the adversary can hand in a signature of
his own. Either this signature is treated exactly as the adversary speci�es it
(modi�ed by evaluators of his choice, possibly under keys of the adversary
possesses) or a new signature for the same (resulting) message is created.

For both unforgeability and privacy we present three di�erent security no-
tions for DFS schemes: The weakest one, unforgeability/privacy against outsider
attacks, holds only for adversaries that do not have access to the private key of
an evaluator. The second one, unforgeability/privacy against insider attacks,
assumes that an evaluator is malicious and possesses a honestly generated eval-
uator key. The third one, unforgeability/privacy against strong insider attacks
assumes a malicious evaluator that might generate its own keys.

Unifying signature primitives. Delegatable functional signatures are very
versatile and imply several seemingly di�erent signature primitives. These in-
clude functional signatures, which were recently introduced by Boyle, Gold-
wasser, and Ivan [15], policy-based signatures, which were recently introduced
by Bellare and Fuchsbauer [11], blind signatures, identity based signatures, san-
itizable signatures and redactable signatures.

Instantiability of DFS. We give a complete characterization of the instan-
tiability of DFS from general complexity based assumptions presenting both
positive and negative results.

Possibility of DFS. On the positive side we show that DFS can be constructed
from one-way functions in a black-box way if one gives up privacy.

Theorem 1 (Possibility, informal). Unforgeable delegatable functional signatures
exist if one-way functions exist.

Furthermore, we show that unforgeable and private DFS schemes can be
constructed from (doubly enhanced) trapdoor permutations in a black-box way.
Our scheme shows that our strong de�nitions for unforgeability and privacy are
achievable for arbitrary, e�ciently computable, choices of F .

Theorem 3 (Possibility, informal). Private unforgeable delegatable functional
signatures exist if doubly enhanced trapdoor permutations exist.

Impossibility of DFS. We show that the previous result is optimal w.r.t. the un-
derlying assumptions. We show that unforgeable and private delegatable func-
tional signatures cannot be constructed from one-way functions. The basic idea
is to construct a blind signature scheme out of any functional signature scheme

4

in a black-box way. Recently, Katz, Schröder, and Yerukhimovich have shown
that blind signature schemes cannot be build from one-way permutations using
black-box techniques only [34]. A construction of DFS based on OWFs would
yield a black-box construction of blind signature schemes based on OWFs. How-
ever, this would directly contradict the result of [34].

Theorem 2 (Impossibility, informal). Private unforgeable delegatable functional
signatures secure against insider adversaries cannot be constructed from one-way
functions in a black-box way.

1.2 Related Work

(Delegatable) Anonymous Credentials. In anonymous credential systems
users can prove the possession of a credential without revealing their identity.
We view this very successful line of research as orthogonal to our work: Cre-
dentials can be applied on top of a signature scheme in order to prove prop-
erties that are speci�ed in an external logic. In fact, one could combine del-
egatable functional signatures with credentials in order to partially leak the
delegation chain, while allowing to issue or modify credentials in an anonymous
but controlled way. Anonymous credential systems have been investigated ex-
tensively, e.g., [16,17,21,22,10,23,20,28]. The main di�erence between delegatable
anonymous credential schemes, such as [9,1], and our approach is that delega-
tion is done by extending the proof chain (and thus leaking information about
the chain). Restricting the properties of the issuer in a credential system has
been considered in [8]. However, they only focus on access control proofs and
their proof chain is necessarily visible, whereas our primitive allows for privacy-
preserving schemes.

Malleable Signature Schemes. A limited degree of malleability for digital
signatures has been considered in many di�erent ways (we refer to [24] for a nice
overview). We group malleable signature schemes into three categories: pub-
licly modi�able signatures, sanitizable signatures and proxy signatures. Publicly
modi�able signatures do not consider a special secret key for modifying signa-
tures, which means that everyone with access to the correct public key and one
or more valid message-signature pairs can derive new valid message-signature
pairs. There are schemes that allow for redacting signatures [38,33,37,18] that
allow for deriving valid signatures on parts (or subsets) of the message m. There
are schemes that allow for deriving subset and union relations on signed sets
[33], linearly homomorphic signature schemes [29,14,5] and schemes that allow
for evaluating polynomial functions [13,25]. Libert et al. combine linearly homo-
morphic signatures with structure preserving signatures [36]. However, known
publicly modi�able signature schemes only consider static functions or predicates
(one function or predicate for every scheme) and leave the signer little room for
bounding a class of functions to a speci�c message. As the signatures can be

5

modi�ed by everyone with access to public information, they do not allow for a
concept of controlled delegation.

Sanitizable signature schemes [3,19] extend the concept of malleable signa-
tures by a new secret key skSan for the evaluator. Only a party in possession
of this key can modify signatures. In general, this primitive allows the signer
to specify which blocks of the message can be changed, without restricting the
possible content. However, they do not consider delegation and they do not allow
for computing arbitrary functions on signed data.

Anonymous Proxy Signatures [30] consider delegation of signing rights in a
speci�c context. For example, the delegator may choose a subset of signing rights
for the tasks of quoting. Their notion of privacy makes sure that all delegators
remain anonymous. The main di�erence to our work is that they only allow del-
egation on the basis of the keys and that they do not support restricting further
delegation, whereas we support restricting delegation capabilities depending on
each message.

Constructing delegatable anonymous credentials out of malleable signatures
was investigated by Chase et al. [27]. The main contribution is an e�cient scheme
based on malleable zero-knowledge proofs [26] and the question regarding the
minimal assumptions was left open.

1.3 Closely Related Work

The general framework by Ahn et al. [2] is versatile and, like delegatable func-
tional signatures, uni�es a variety of signature notions. A variety of instantiations
can be captured in their framework using their predicate P to describe a complex
functionality for deriving signatures. In fact, it seems possible to describe dele-
gatable functional signatures in their framework by encoding the functionality
in a complex predicate and by encoding the keys of the evaluators as speci�-
cally structured signatures. However, so far there exist no construction for their
framework that is capable of dealing with such predicates (their constructions
support single element sets M, but to encode our scheme, at least sets of size
two are required). Attrapadung et al. [4] discuss and re�ne this framework. Both
works do not explore the minimal computational assumptions.

The works of Boyle, Goldwasser, and Ivan [15] (introducing functional dig-
ital signatures) and of Bellare and Fuchsbauer [11] (introducing policy-based
signatures) are closely related to our notion of DFS.

In a functional signature scheme, the signer hands out keys skf for functions
f to allow the recipient to sign all messages in the range of f . Similar to our
contributions, they de�ne notions of unforgeability and privacy (called function
privacy) and present several constructions for functional digital signatures. One
of their constructions also shows that functional signatures can be build from
one-way functions provided that one is willing to give up privacy. They further-
more show how to construct one-round delegation schemes out of a functional
digital signature scheme.

While our work is closely related to both works, it di�ers in several aspects:
First, we not only consider the controlled malleability of the signature, but also

6

support the delegation of signing capabilities. Second, while we also show for our
notions that unforgeable-only DFS schemes can be build from one-way functions,
we additionally show that private DFS schemes can not be constructed from
from one-way permutations (see Section 4). We believe that our impossibility
result should also hold for functional signatures [15], as well as for policy-based
signatures [11], because our impossibility result does not rely on the delegation
property of our scheme. Furthermore, DFS signatures allow for authenticated
chain computations. In the extended version [6] we compare delegatable func-
tional signature schemes to functional digital signature schemes and policy-based
signature schemes and show how to construct them out of a delegatable func-
tional signature scheme. Whether the converse is possible is unknown.

2 Delegatable Functional Signatures

Delegatable functional signatures support the delegation of signing capabilities
to another party, called the evaluator, with respect to a functionality F . The
evaluator may compute valid signatures on messagesm′ and delegate capabilities
f ′ to another evaluator with key k whenever (f ′,m′)← F(f, α, k,m) for a value
α of the evaluators choice.

Our de�nition of DFS limits the delegation capabilities of the evaluator. In
particular, the signer speci�es how an evaluator may delegate his signing rights.

2.1 Formal Description of a DFS scheme

A delegatable functional signature (DFS) scheme over a message spaceM, a key
space K, and parameter spaces Pf and Pα is a signature scheme that additionally
supports a controlled form of malleability and delegation. A DFS is described
by a functionality F : N× Pf × Pα ×K ×M→ (Pf ×M) ∪ {⊥} that speci�es
how messages can be changed and how capabilities can be delegated. Once the
signer received a message-signature pair, it can compute signatures on messages
of its choice (that are legitimate w.r.t. F) and can partially delegate his signing
capabilities to another evaluator. We model this property by introducing an
algorithm EvalF for evaluating functions on signatures. This algorithm takes as
input the parameter α that de�nes the evaluator's own input to the function f ,
the message m, and a key pk′ev. The algorithm EvalF outputs a signature σ′ on
m′, where (f ′,m′)← F(λ, f, α, pk′ev,m). This new signature σ′ can be changed
by an evaluator that owns a (possibly di�erent) key sk′ev and this evaluator can
transform it further with the new capability f ′.

De�nition 1. (Delegatable functional signatures). A delegatable functional sig-
nature scheme DFSS is a tuple of e�cient algorithms DFSS = (Setup,KGensig,
KGenev, Sig,EvalF ,Vf) de�ned as follows:

(pp,msk)← Setup(λ): The setup algorithm Setup outputs public parameters pp
and a master secret key msk.

7

(sksig,pksig)← KGensig(pp,msk): The signature key generation algorithm out-
puts a secret signing key sksig and a public signing key pksig.

(skev,pkev)← KGenev(pp,msk): The evaluation key generation algorithm KGenev
outputs a secret evaluator key skev and a public evaluator key pkev.

σ ← Sig(pp, sksig,pkev, f,m): The signing algorithm Sig outputs a signature σ
on m, on which functions from the class f can be applied (or an error symbol
⊥).

σ̂ ← EvalF (pp, skev,pksig, α,m,pk
′
ev, σ): The evaluation algorithm outputs a de-

rived signature σ̂ for m′ on the capability f ′, that can be modi�ed using the
evaluator key sk′ev associated with pk′ev, where (f ′,m′)← F(λ, f, α, pk′ev,m)
(or an error symbol ⊥).

b← Vf(pp,pksig,pkev,m, σ): The veri�cation algorithm Vf outputs a bit b ∈
{0, 1}.

A DFS is correct if the veri�cation algorithm outputs 1 for all honestly gener-
ated signatures and for all valid transformations of honestly generated signatures.
We refer to the extended edition [6] for a formal de�nition of our correctness.

3 Security Notions for DFS

In this section we de�ne unforgeability and privacy for delegatable functional
signatures. In both cases we distinguish between outsider and insider attacks:
In an outsider attack, the adversary only knows both public keys, whereas an
adversary launching an insider attack knows the private key of the evaluator. In-
formally we say that a delegatable functional signature scheme provides privacy
if it is computationally hard to distinguish whether a signature was created by
the signer or whether it was modi�ed by the evaluator. In the following subsec-
tions we discuss the intuition behind each de�nition in more detail and provide
formal de�nitions.

For the following security de�nitions we follow the concept of Bellare and
Rogaway in de�ning the security notions as a game G(DFSS,F ,A, λ) [12]. Each
game G behaves as follows: First, it invokes an algorithm Initialize with the
security parameter and sends its output to the algorithm A. Then it simulates
A with oracle access to all speci�ed algorithms Query[x] that are de�ned for G.
It also allows A to call the algorithm Finalize once and ends as soon as Finalize
is called. The output of Finalize is a boolean value and is also the output of G.
Note that G is allowed to maintain state. We say that A �wins� the game if
G(DFSS,F ,A, λ) = 1.

3.1 Unforgeability

Intuitively, a delegatable functional signature scheme is unforgeable, if no ad-
versary A is able to compute a fresh message-signature pair that is not trivially
deducible from its knowledge. In the case of regular signature schemes this means
that the attacker needs to compute a signature on a fresh message. The situation

8

here is more complex, because our signatures are malleable and because several
parties are involved (and they may even use malicious keys). We present three
di�erent unforgeability notions:

Unforgeability against outsider attacks. We model the outsider as an ac-
tive adversary that knows the public keys (pksig, pkev) and has oracle access to
both the Sig and the EvalF algorithm. Our de�nition of unforgeability against
outsider attacks resembles the traditional de�nition of unforgeability for signa-
ture schemes [32], where the adversary knows the public-key and has access to
a signing oracle.

Unforgeability against (weak/strong) insider attacks. Our second de�ni-
tion considers the case where the evaluator is malicious. We de�ne two di�erent
notions depending on the capabilities of the adversary. That is, our �rst de�-
nition that we call unforgeability against weak insider attacks (or just insider
attacks), gives the attacker access to an honestly generated private key skev. The
second notion allows the adversary to choose its own private key(s) maliciously.
Note, that the attacker might choose these keys adaptively. We refer to this
notion as unforgeability against strong insider attacks.

We model our notions by giving the adversary access to three di�erent KGen
oracles. An adversary that can only access Query[KGenP] to retrieve public keys is
considered an outsider ; an adversary that can access the oracle Query[KGenS] to
retrieve one or more secret evaluator keys is considered an insider ; an adversary
that additionally can access the oracle Query[RegKey] to (adaptively) register
its own (possibly malicious) evaluator keys is considered a strong insider (S-
Insider). All adversaries have access to the honestly generated public signer key
pksig. We keep track of the following sets: KC stores all key pairs, KA stores all
public keys for which the adversaries knows the private key, and Q stores A's
queries to both Query[Sign] and Query[Eval]. To handle the information that an
adversary can trivially deduce from its queries, we de�ne the transitive closure
for functionalities.

De�nition 2. (Transitive closure of functionality F). Given a functionality F ,
we de�ne the n-transitive closure Fn of F on parameters (λ, (f,m)) recursively
as follows:

� For n = 0, F0(λ, (f,m)) := {(f,m)}.
� For n > 0, Fn(λ, (f,m)) := {(f,m)}

⋃
α,pk′ev

Fn−1(λ,F(λ, f, α, pk′ev,m))

We de�ne the transitive closure F∗ of F on parameters (λ, (f,m)) as

F∗(λ, (f,m)) :=
∞⋃
i=0

F i(λ, (f,m)).

Note that the transitive closure F∗ on (λ, (f,m)) might not be e�ciently com-
putable (and thus a challenger for Unf might not be e�cient).

Although it is not necessary to compute the closure explicitly in our case,
one could require a DFSS to provide an e�cient algorithm Check−F such that
Check−F(λ, f,m,m∗) = 1 i� m ∈ F∗(λ, (f,m)).

9

Initialize (λ):

(pp,msk)← Setup(λ)

(sksig, pksig)← KGensig(pp,msk)

store (pp,msk, sksig, pksig)

set KC := ∅,KA := ∅,Q := ∅
output (pp, pksig)

Finalize(m∗, σ∗, pk∗ev) :

if ∃(f,m, pkev, ·) ∈ Q, s.t.
pkev ∈ KA ∧m

∗ ∈ F∗(λ, (f,m))

output 0

else

if (·, ·,m∗, ·, ·) ∈ Q
output 0

else

retrieve (pp, pksig)

b← Vf(pp, pksig, pk
∗
ev,m

∗, σ∗)

output b

Query[KGenP]() :

retrieve (pp,msk)

(skev, pkev)← KGenev(pp,msk)

set KC := KC ∪ (skev, pkev)

output (pkev)

Query[KGenS]() :

retrieve (pp,msk)

(skev, pkev)← KGenev(pp,msk)

set KC := KC ∪ {(skev, pkev)}
set KA := KA ∪ {pkev}
output (skev, pkev)

Query[RegKey](sk∗ev, pk
∗
ev) :

set KC := KC ∪ {(sk∗ev, pk∗ev)}
set KA := KA ∪ {pk∗ev}

Query[Sign](pk∗ev, f,m) :

retrieve (pp, sksig)

if (·, pk∗ev) ∈ KC
σ ← Sig(pp, sksig, pk

∗
ev, f,m)

set Q := Q∪ {(f,m, pk∗ev, σ)}
output σ

else output⊥

Query[Eval](pk∗ev, α,m, pk
′
ev, σ) :

retrieve (pp, pksig)

if (sk∗ev, pk
∗
ev) ∈ KC ∧ (·, pk′ev) ∈ KC

x := (pp, sk∗ev, pksig, α,m, pk
′
ev, σ)

σ′ ← EvalF (x)

if σ′ 6= ⊥
extract f from σ using sk

∗
ev

let (f ′,m′) := F(λ, f, α, pk′ev,m)

set Q := Q∪ {f ′,m′, pk′ev, σ
′}

output σ′

else output ⊥

Fig. 2. Unforgeability for delegatable functional signature schemes.

De�nition 3. (Unforgeability Against X ∈ {Outsider, Insider, S-Insider} At-
tacks). Let DFSS = (Setup,KGensig,KGenev, Sig,EvalF ,Vf) be a delegatable func-
tional signature scheme. The de�nition uses the game Unf(DFSS,F ,A, λ) de-
�ned in Figure 2. We say that DFSS is existential unforgeable against X-attacks
(EU-X-A) for the functionality F if for all PPT adversaries AX

AdvEU-X-A
DFSS,F,AX

= Pr [Unf(DFSS,F ,AX , λ) = 1]

is negligible in λ, where AOutsider can neither invoke the oracles Query[KGenS]
nor Query[RegKey]; the attacker AInsider can not make use of Query[RegKey] and
the adversary AS-Insider is not restricted in its queries.

Remark: We assume implicitly that f can be extracted from σ using skev
from any valid query to EvalF . We believe that this is a reasonable assumption,
because the evaluator that transforms a signature should learn the value f , as
it describes the capabilities of the evaluator. In fact, our construction (Section
5) satis�es this property.

Remark on measuring the success of A: The success of the adversary is
determined by the challenger and measured in the Finalize algorithm. Within
the oracles Query[Sign] and Query[Eval], the challenger only allows to delegate to
known keys k ∈ KC . Note that his does not restrict the adversary, but allows the
challenger to distinguish between weak insider and strong insider. All messages
m signed either by Query[Sign] or Query[Eval] are added to Q, together with the

10

respective function f and the public key of the evaluator to whom the message
was delegated.

For both outsiders (KA = ∅) and insiders (KA 6= ∅), we require that the
forgery message m∗ is a fresh message, i.e., it has not been signed by the chal-
lenger, which is formally expressed by (·,m∗, ·, ·) 6= Q. Moreover, for insider
adversaries, the forgery must not be trivially deducible from previously issued
signatures (f,m, pkev

∗, σ) for keys pkev
∗ ∈ KA. Observe that a di�erent public

key pkev might have been used when signing a message as compared to when
verifying the resulting signature.

We leave it up to the signature scheme to decide whether a signature can
verify under di�erent evaluator keys. As a matter of fact: There can be schemes
where Vf does not need to receive pkev at all.

3.2 Relations between the unforgeability notions

The three notions of unforgeability describe a hierarchy of adversaries. It is in-
tuitive, that security against outsider attacks does not imply security against
insider attacks, as the key skev of the evaluator can indeed leak enough informa-
tion to construct the signature key sksig out of it.

However, although an insider adversary is stronger than an outsider adver-
sary, making use of the additional oracle can weaken an adversary. Consider a
scheme that leaks the secret signing key sksig with every signature, and that has
only one valid public evaluator key pkev, that allows an insider with the respec-
tive secret key skev to change messages inside signatures to arbitrary values. An
insider that received skev can not create a forgery, since every message he creates
after receiving at least one signature is not considered a forgery: he could have
computed them trivially using EvalF . Without invoking Query[KGenS], the ad-
versary can request a signature and subsequently forge signatures for arbitrary
messages, using the key sksig he received with the signature.

An S-Insider is again stronger than an insider or an outsider. A scheme can
become insecure if a certain key pair (skev, pkev) is used that is highly unlikely
to be an output of KGenev (e.g., one of them is 0λ).

Proposition 1 (EU-X-A-Implications). Let DFSS be a functional signature
scheme.

(i) For all PPT adversaries AOutsider there exists a PPT adversary AInsider s.t.
AdvEU-IA

DFSS,F,AInsider
≥ AdvEU-OA

DFSS,F,AOutsider

(ii) For all PPT adversaries AInsider there exists a PPT adversary AS-Insider

s.t. AdvEU-SIA
DFSS,F,AS-Insider

≥ AdvEU-IA
DFSS,F,AInsider

Proof. The proposition follows trivially. For (i), the adversary AInsider runs a
black-box simulation of AOutsider and makes no use of the additional oracle. For
(ii) the proposition follows analogously.

11

3.3 Privacy

Our privacy notion for DFS says that it should be hard to distinguish the fol-
lowing two signatures:

� a signature on a message m′ that has been derived from a signature on a
challenge message m by one or more applications of EvalF .

� a fresh signature on m′, where (·,m′) ← F(. . .) was computed via one or
more applications of F to m.

This indistinguishability should hold even against an adversary with oracle access
to KGenev, Sig and EvalF that can choose which transformations are to be applied
to which challenge message m and under which evaluator keys (even if they are
known to the adversary), as long as the resulting signature is not delegated to
the adversary.

Analogously to our de�nitions of unforgeability, we distinguish between three
di�erent types of adversaries, depending on their strength: outsiders, insiders and
strong insiders. We model this by giving the adversary access to three di�erent
KGen oracles that are de�ned analogously to De�nition 3 in Section 3.1. In the
following de�nition, the set KC stores all key pairs, KA contains all public keys
for which the adversaries knows the private key, and KX stores the keys used in
the challenge oracle Query[Sign-F].

Initialize (λ):

b← {0, 1}
(pp,msk)← Setup(λ)

(sksig, pksig)← KGensig(pp,msk)

store (b, pp,msk, sksig, pksig)

set KC := ∅,KX := ∅,KA := ∅
output (pp, sksig, pksig)

Finalize(b∗) :

retrieve b

if b = b∗ ∧ KX ∩ KA = ∅ then
output 1

else

output 0

Query[Eval](pk∗ev, α,m, pk
′
ev, σ) :

retrieve (pp, pksig)

if (sk∗ev, pk
∗
ev) ∈ KC ∧ (pk′ev, ·) ∈ KC

x := ()pp, sk∗ev, pksig, α,m, pk
′
ev, σ

σ′ ← EvalF (x)

output σ′

Query[KGenP]() :

retrieve (pp,msk)

(skev, pkev)← KGenev(pp,msk)

set KC := KC ∪ (skev, pkev)

output (pkev)

Query[KGenS]() :

retrieve (pp,msk, sksig)

(skev, pkev)← KGenev(pp,msk)

set KC := KC ∪ {(skev, pkev)}
set KA := KA ∪ {pkev}
output (skev, pkev)

Query[Sign](pk∗ev, f,m) :

retrieve (pp, sksig)

if (·, pk∗ev) ∈ KC
σ ← Sig(pp, sksig, pk

∗
ev, f,m)

output σ

Query[RegKey](sk∗ev, pk
∗
ev) :

set KC := KC ∪ {(sk∗ev, pk∗ev)}
set KA := KA ∪ {pk∗ev}

Query[Sign-F]([pkev, α]
t
0, t,m0, σ0) :

retrieve (b, pp, sksig, pksig)

if (·, pkev[t]) /∈ KC output ⊥
if Vf(pp, pksig, pkev[0],m0, σ0) 6= 1 then

output ⊥
if ¬∃sk∗ev. (sk∗ev, pkev[0]) ∈ KCthen
output ⊥

extract f0 from σ0 using sk
∗
ev

for i ∈ {1, . . . , t}
if ¬∃sk∗ev. (sk∗ev, pkev[i− 1]) ∈ KC
output ⊥

(fi,mi) := F(λ, fi−1, α[i], pkev[i],mi−1)

qi := (pp, sk∗ev, pksig, α[i],mi−1, pkev[i], σi−1)

σi ← EvalF (qi)

set KX := KX ∪ {pkev[t]}
if b = 0 ∧ σt 6= ⊥
σ ← Sig(pp, sksig, pkev[t], ft,mt)

else

σ := σt

output σ

Fig. 3. Privacy under chosen functionality attacks CFA for delegatable functional sig-
nature schemes.

12

De�nition 4. (Privacy under chosen function attacks (CFA)) against X ∈
{Outsider, Insider, S-Insider}. Let DFSS = (Setup,KGensig,KGenev, Sig,EvalF ,
Vf) be a delegatable functional signature scheme. The de�nition uses the game
CFA(DFSS,F ,A, λ) de�ned in Figure 3. We say that DFSS is privacy-preserving
under chosen function attacks (X-CFA) for the functionality F if for all PPT ad-
versaries AX

AdvPP-X-CFA
DFSS,F,AX

=

∣∣∣∣Pr [CFA(DFSS,F ,A, λ) = 1]− 1

2

∣∣∣∣
is negligible in λ, where AOutsider can neither invoke the oracles Query[KGenS]
nor Query[RegKey]; the attacker AInsider can not make use of Query[RegKey] and
the adversary AS-Insider is not restricted in its queries.

Remark on measuring the success of A: The adversary may choose an
arbitrary challenge message m0, together with a signature σ0 that allows the
capability f0 (technically the adversary can invoke proc Query[Sign] for com-
puting σ0), and a list of t public keys of evaluators together with evaluator inputs
α. The chosen keys must be known to the challenger to distinguishing between
outsiders, insiders and strong insiders. The challenger repeatedly applies EvalF
to σ0, using the speci�ed parameters αi keys pkev[i]. Additionally, C computes
the derived valued mi and fi for the resulting signature via direct application
of F . If all transformations succeed,2 C yields a signature σt, on a message mt

delegated to pkev[t] with capability ft. Depending on the bit b, C either sends σt
or a fresh signature on mt delegated to pkev[t] with capability ft to A and adds
the key pkev[t] to the set KX that contains all keys to which the signaturews in
challenges were (�nally) delegated. If at the end of the game KA ∩ KX 6= ∅, the
challenger outputs 0. This way we allow a scheme to leak some information to
the evaluator to which a signature is delegated. For security against insider at-
tacks only �local� information is allowed. After one delegation, this information
has to vanish, since an insider adversary A can delegate the signature σt to a
key pk∗ev ∈ KA by using the Query[Eval] oracle.

3.4 Relations between the privacy notions

For privacy, we have the same hierarchy as for unforgeability: A scheme that is
secure against outsiders may be insecure against insiders, as the key skev of an
evaluator can help to distinguish between delegated and fresh signatures. Again,
calling Query[KGenS] might weaken the adversary. Consider a scheme that does
not preserve privacy against outsiders and that only has one valid evaluator key.
An insider that calls both Query[KGenS] and Query[Sign-F] is discarded, because
it knows the only valid evaluator key (and thus KX ∩ KA 6= ∅).

Analogously to the hierarchy for unforgeability, an S-Insider is stronger an
insider or an outsider. A scheme can leak information about delegation if a

2 If one of the transformations failed Query[Sign-F] outputs ⊥ independently from the
value of b, as we only want to give guarantees for valid signatures and not extend
the notion of correctness.

13

certain key pair (skev, pkev) is used that is highly unlikely to be an output of
KGenev (e.g., one of them is 0λ).

Proposition 2 (PP-X-CFA-Implications). Let DFSS be a functional signature
scheme.

(i) For all PPT adversaries AOutsider there exists a PPT adversary AInsider s.t.
AdvPP-I-CFA

DFSS,F,AInsider
≥ AdvPP-O-CFA

DFSS,F,AOutsider

(ii) For all PPT adversaries AInsider there exists a PPT adversary AS-Insider

s.t. AdvPP-SI-CFA
DFSS,F,AS-Insider

≥ AdvPP-I-CFA
DFSS,F,AInsider

Proof. The proposition follows analogously to the proof for Proposition 1.

4 Possibility and Impossibility of DFS From OWFs

In this section we investigate the instantiability of DFS. In particular, we are
interested in understanding which security property is �harder� to achieve. If
we counter-intuitively are not interested in unforgeability, naturally we can con-
struct a delegatable functional signature scheme DFSS unconditionally. A signa-
ture on m simply consists of the string �this is a signature for m�. Obviously, this
construction satis�es privacy against strong insiders in the sense of De�nition 4
but not even unforgeability against outsiders.

Similarly, if we are not interested in privacy, DFS schemes can easily be
constructed similarly to the construction in [15]. We assume a signature scheme
S that is based on any one-way function. Now, the idea is that the signer simply
signs a tuple consisting of the message together with the capability f and the
public veri�cation key of an evaluator. When evaluating, an evaluator adds his
own signature on the previous signature together with α and the key of the
following evaluator to the original signature. The veri�cation procedure only
accepts a signature if the signed trace of evaluations and delegations is legitimate
w.r.t. the functionality F . This scheme trivially satis�es unforgeability against
strong insiders (cf. De�nition 3) but none of our privacy notions. Thus, we obtain
the following simple result:

Theorem 1. If one-way functions exist, then there exists an unforgeable dele-
gatable functional signature scheme.

4.1 Impossibility of DFS from OWPs

In this section we prove an impossibility result showing that (D)FS cannot be
constructed from OWP in a black-box way. The basic idea of our impossibility is
to build a blind signature scheme in a black-box way. Since it is known that blind
signature cannot be constructed from OWP only using black-box techniques [35],
this implies that (D)FS cannot be constructed from OWF as well.

14

Signer S(skBS) User U(pkBS,m)

(c, om) := Commit(λ,m)
c←−−−−−−−−−−−−−−−−−−−−−−−

σ ← Sig(sksig, pkev, 1, c)
σ−−−−−−−−−−−−−−−−−−−−−−−→

Return σ′ ← EvalF (skev, pksig, om, pk
′
ev, σ)

Fig. 4. Issue protocol of the two move blind signature scheme.

Blind Signatures and Their Security A blind signature scheme is an interactive
protocol between a signer S, holding a secret key skBS and a user U who wishes
to obtain a signature on a message m such that the user cannot create any
additional signatures and such that S remains oblivious about this message. We
refer to the extended edition [6] for formal de�nitions of commitment schemes
and blind signatures.

Building Blind Signatures from (D)FS The basic idea of our construction is
as follows. The user chooses a message m, commits to the message and sends
the commitment c on m to the signer. The signer signs the commitment, using
a delegatable functional signature scheme and sends the signature σc back to
the user. The user then calls EvalF with the open information om to derive a
signature on m.

Given a commitment scheme C = (Commit,Open) and a delegatable func-
tional signature scheme DFSS = (Setup,KGensig,KGenev, Sig,EvalF ,Vf) for func-
tionality FC , where FC(λ, 1, α, pkev,m) := (0,Open(α,m)), we construct a blind
signature scheme BS = (KGBS, 〈S,U〉 ,VfBS) as follows.3

(skBS,pkBS)← KGBS(1
λ). The key generation algorithm KGBS(1

λ) performs the
following steps:

(msk, pp)← Setup(λ)
(sksig, pksig)← KGensig(pp,msk)
(skev, pkev)← KGenev(pp,msk)
(skBS, pkBS)← (sksig, (pp, pksig, pkev, skev))

Signing. The protocol for U to obtain a signature on message m is depicted in
Figure 4 and consists of the following steps:
U → S The user sends a commitment c to the signer, where (c, om) :=

Commit(λ,m).
S → U The signer signs c together with the capability f and the public

evaluator key of the user, obtaining σc ← Sig(sksig, pkev, 1, c). It sends
σc to U . The user calls EvalF with the open information om to derive
a signature on m, as σm ← EvalF (skev, pksig, om, pk

′
ev, σc) and outputs

(m,σ′).
b← VfBS(pkBS, σ,m). The veri�cation algorithm VfBS(pkBS, σ,m) immediately

returns Vf(pp, pksig, pkev,m, σ).

3 FC outputs ⊥ whenever f 6= 1.

15

Theorem 2. If DFSS = (Setup,KGensig,KGenev, Sig,EvalF ,Vf) is an unforge-
able and private delegatable signature scheme (both against insider attacks) and
C = (Commit,Open) is a commitment scheme which is both computationally
binding and hiding, then the interactive signature scheme BS = (KGBS, 〈S,U〉 ,
VfBS) as de�ned above is unforgeable and blind.

Intuitively, unforgeability holds because the user can only obtain a signature
on m if he calls EvalF on an authenticated commitment. This follows from the
binding of the commitment scheme and from the unforgeability of the DFS.
Blindness follows directly from the hiding property of the commitment scheme
and from the privacy of our DFS. Note that the impossibility result of [34] rules
out blind signature schemes that are secure against semi-honest adversaries.

We prove this theorem with the following two propositions.

Proposition 3. If DFSS = (Setup,KGensig,KGenev, Sig,EvalF ,Vf) is an un-
forgeable delegatable signature scheme and C = (Commit,Open) is a commit-
ment scheme which is binding, then the interactive signature scheme BS =
(KGBS, 〈S,U〉 ,VfBS) as de�ned above is unforgeable.

Proof. Assume there is an e�cient algorithm A that forges a signature for
BS. We use A to construct an e�cient adversary B against the unforgeabil-
ity of DFSS. First, B receives (pp, pksig) from the Initialize algorithm of the
UnfI challenger. Then it calls Query[KGenS]() to receive an evaluator key pair
(skev, pkev), sets pkBS := (pp, pksig, pkev, skev) and simulates A(pkBS). Whenever
A interacts with its signature oracle with a (blinded) message ci, then B calls
Query[Sign](pkev, f, ci) and returns the resulting signature σi to A.

Eventually, A stops, outputting k+1 message-signature pairs (m∗i , σ
∗
i) after

k successful interactive signing procedures, B chooses one of them at random
and outputs it as a (possible) forgery.

For the analysis observe that the functionality FC only applies the Open
algorithm to the signed message and only if f = 1 has been set. So for every
signature σi thatA received, only one application of EvalF is allowed and only the
Open algorithm can be applied. Since C is a binding commitment scheme, every
commitment can only be opened to a unique message, except for a negligible
error probability. However, this means that one of the signatures σ∗i must be a
forgery for DFSS as it is either a signature on a new message, or an evaluation
of a function that has not been allowed (and thus is not in the transitive hull
F∗ of any message that has been signed via Query[Sign]).

If A constructs a forgery, B chooses the right message-signature pair (m∗i , σ
∗
i)

with probability at least 1
k , so the probability that B constructs a forgery is at

least 1
k times the probability that A constructs a forgery.

Remark. Note that f is necessary to ensure that EvalF is only called once,
otherwise there is a simple attack against the scheme: The adversary A picks a
message m and computes (c1, o1) ← Commit(m). Then A computes (c2, o2) ←
Commit(c1) and sends c2 to the signer. Upon receiving a signature σc2 , the

16

Game G0
−−KGBS −−
001 (msk, pp)← Setup(λ)

002 (sksig, pksig)← KGensig(pp,msk)

003 (skev, pkev)← KGenev(pp,msk)

004 (skBS, pkBS)← (sksig, (pp, pksig, pkev, skev))

−−find−−
005 (m0,m1, state)← A(find, skBS, pkBS)

006 b← {0, 1}
− −issue−−

007 (state, σcb , σc1−b)← A(issue, state)〈·,Ub〉1,〈·,U1−b〉1

− where Ub computes −
008 (cb, ob)← Commit(mb)

− and U1−b computes −
009 (c1−b, o1−b)← Commit(m1−b)

− unblind−
010 σm0 ← EvalF (pp, skev, pksig, o0, c0, pkev, σc0)

011 σm1 ← EvalF (pp, skev, pksig, o1, c1, pkev, σc1)

012 if σm0 = ⊥ ∨ σm1 = ⊥ then

013 (σm0 , σm1) := (⊥,⊥)
−−guess−−
014 b∗ ← A(quess, state, σm0 , σm1)

Game G1
110 σm0 ← Sig(pp, sksig, pkev, 0,m0, pkev)

111 σm1 ← Sig(pp, sksig, pkev, 0,m1, pkev)

Game G2
208 (cx, ox)← Commit(0n)

209 (cy, oy)← Commit(0n)

Fig. 5. The games for our proof for Proposition 4

algorithm A uses EvalF to get a signature on c1 = Open(c2, o2). Now A uses
EvalF again to derive a signature on m = Open(c1, o1) and it outputs both
signatures. Since A outputs two valid message-signature pairs (with two distinct
messages) after one successful interaction it breaks the unforgeability of BS.

Proposition 4. If DFSS = (Setup,KGensig,KGenev,Sig,EvalF ,Vf) is a private
delegatable signature scheme and C = (Commit,Open) is a commitment scheme
which is hiding, then the interactive signature scheme BS = (KGBS, 〈S,U〉 ,VfBS)
as de�ned above is blind.

Proof. We show this proposition via a game-based proof. We start with the
original game BlindBSS∗(λ) for blindness and modify it until we reach a game in
which the adversary can not observe any information that might help him in
guessing the bit b.

In the following proof, as well as in subsequent proofs, we assign a number
to each line where the �rst digit marks the game and the remaining digits the
line in this game (e.g., 234 marks the 34th line of game 2). All lines that are not
explicitly stated are as they were de�ned in the last game that de�ned them.
We refer to Figure 5 for a description of the games.

Game G0 ⇒Game G1: Since DFSS is private, we can create new signatures
instead of calling EvalF on the signature of A.

Claim. Game G0 and Game G1 are computationally indistinguishable.

Proof. Assume there is an e�cient, malicious signer A, which is able to dis-
tinguish both games. We show how to use A to build a distinguisher B that
breaks the privacy property of DFSS. The algorithm B simulates Game G0, but
instead of calling EvalF in lines 10 and 11, it respectively queries Query[Sign-F]
((pkev,⊥), (pkev, o0), 1, c0, σc0) and Query[Sign-F]((pkev,⊥), (pkev, o1), 1, c1, σc1).

17

If A distinguishes Game G0 and Game G1 with probability noticeably larger
than 1

2 , then B breaks the privacy property of DFSS by guessing the bit b of the
challenger for CFA with probability noticeably larger than 1

2 .

Game G1 ⇒Game G2: InGame G1 the signature of the adversary is not used
anymore and thus the commitment is not opened anymore. Consequently we
can replace the commitments by commitments to zero.

Claim. Game G1 and Game G2 are computationally indistinguishable.

Proof. This follows from the hiding property of the commitment scheme. If there
is an e�cient, malicious signer A, which is able to distinguish the two games,
then we can use it to break the hiding property of C.

In Game G2 the bit b is never used. The commitments and all signatures
are completely independent of b. Thus, the probability that A guesses b∗ =
b in Game G2 is exactly 1

2 . Since the games are (pairwise) computationally
indistinguishable, the proposition holds.

Combining Theorem 2 and the impossibility result of [35] (which is based on the
work of Barak and Mahmoody [7]), we obtain the following result.

Corollary 1. (Delegatable) functional signature schemes that are unforgeable
and private against insider adversaries cannot be build from one-way permuta-
tions in a black-box way.

Remark. Since this construction did not use the delegation property of the del-
egatable functional signature scheme, it should be possible to construct blind
signatures from functional signatures, as de�ned by [15]. A DFS that is unforge-
able and private against outsider adversaries is not ruled out by this corollary.
Exploring whether the impossibility also holds in this case would be interesting.

5 Bounded DFS From Trapdoor Permutations

In this section we construct a bounded delegatable functional signature scheme
DFSS as de�ned in Section 2.1, where we put an a-priori bound on the num-
ber of evaluations. Our construction is based on (regular) unforgeable signature
schemes, a public-key encryption scheme, and a non-interactive zero-knowledge
proof system. It is well known that these primitives can be constructed from
(doubly enhanced) trapdoor permutations. Formal de�nition of the underlying
primitives can be found in the extended edition of this paper [6].

5.1 Our scheme

Our construction follows the encrypt and proof strategy and is completely gen-
eral with respect to e�ciently computable functionalities F with the exception

18

Setup(1λ) :

CRS← KGenNIZK(1
λ)

(mskS , ppS)← SetupS(1
λ)

(mskE , ppE)← SetupE(1
λ)

(d̃k, ẽk)← KGenE(ppE ,mskE)

pp := (CRS, ppS , ppE , ẽk)

msk := (mskS ,mskE)

output (pp,msk)

KGensig(pp,msk) :

parse pp = (CRS, ppS , ppE , ẽk)

parse msk = (mskS ,mskE)

(sskS , vkS)← KGenS(ppS ,mskS)

pksig := vkS

sksig := (sskS , pksig)

output (sksig, pksig)

KGenev(pp,msk) :

parse pp = (CRS, ppS , ppE , ẽk)

parse msk = (mskS ,mskE)

(sskF , vkF)← KGenS(ppS ,mskS)

(dk, ek)← KGenE(ppE ,mskE)

skev := (sskF , dk)

pkev := (vkF , ek)

output (skev, pkev)

Sig(pp, sksig, pkev, (f, k),m) :

parse pp = (CRS, ppS , ppE , ẽk)

parse pkev = (vkF , ek)

parse sksig = (sskS , pksig))

hk := (f,m, pkev, k)

σk ← SigS(ppS , sskS , hk; rS)

sk ← EncE(ppE , ẽk, (σk, hk); rsk)

For i ∈ {0, . . . , n} \ {k}

σi := 0|σk|

hi := (0`f (λ), 0`m(λ), 0|pkev|, 0)

si ← EncE(ppE , ẽk, (σi, hi); rsi)

d← EncE(ppE , ek, (f, k, σk); rd)

S := (s0, . . . , sn)

x = (pp, pksig, pkev, S, d,m)

ω = (f, n, rd)

with ωn = (rS , k) and

xn = (pp− S, ppE , pksig, pkev,
S,m,CRS, f, σ)

Π ← PNIZK(CRS, x, ω)

σ := (S, d,Π)

output σ

Vf(pp, pksig, pkev,m, σ) :

parse pp = (CRS, ppS , ppE , ẽk)

parse pksig = (vkS , ẽk)

parse pkev = (vkF , ek)

parse σ = (S, d,Π)

x := (ppS , ppE , pksig, pkev, S, d,m,CRS)

b← VfNIZK(CRS, x,Π)

output b

EvalF (pp, skev, pksig, α,m, pk
′
ev, σ) :

parse pp = (CRS, ppS , ppE , ẽk)

parse skev = (sskF , dk)

parse pk′ev = (vk′F , ek
′)

parse σ = (S, d,Π)

(f, i, σi)← DecE(ppE , dk, d)

x = (pp, pksig, pkev, S, d,m)

if pkev = (vkF , ek) belongs to skev

∧ VfNIZK;Zi(CRS, x,Π) = 1

(f̂ , m̂) := F(λ, f, α, pk′ev,m)

hi−1 := (f̂ , m̂, pk′ev, i− 1)

σ̂i−1 ← SigS(ppS , sskF , hi−1; rS)

si−1 ← EncE(ppE , ẽk, (σ̂i−1, hi−1); rs)

d← EncE(ppE , ek
′, (f̂ , i− 1, σ̂i−1); rd)

x̂ = (pp, pksig, pk
′
ev, S, d, m̂)

ω = (f̂ , i− 1, rd)

with ωi−1 = (rS , Π, pkev,m, f, α),

xi−1 = (ppS , ppE , pksig, pk
′
ev,

S, m̂,CRS, f̂ , σ̂i−1)

Π̂ ← PNIZK(CRS, x, ω)

σ̂ := (S, d,Π)

output σ̂

else

output ⊥

Fig. 6. Construction of a DFSS

that F may allow only for up to n applications of EvalF . We let the signer choose
how many applications he allows by de�ning f as a tuple (f ′, k) ∈ Pf×{0, . . . , n}.
We achieve the strong notion of privacy under chosen function attack (CFA) ac-
cording to De�nition 4 by applying the following idea : If the signer choses a
number of k possible applications of EvalF , we still create n+1 encryptions, but
place the encryption a signature on m at the k+ 1th position (and only encryp-
tions of zero-strings at the other positions). The evaluators �ll up the encryptions
from the kth position to the �rst one. Although each evaluator receives infor-
mation from his predecessor in the chain of delegations (the �rst evaluator will
know, that the signature originates from the signer), even the second evaluator
in the chain will be unable to �nd out more than its predecessor and the number
of applications of EvalF that are still allowed. Figure 6 shows the construction
in more detail.

19

Given a signature scheme S = (SetupS ,KGenS , SigS ,VfS) with a simple
key generation algorithm and with signatures of equal length, an encryption
scheme E = (SetupE ,KGenE ,EncE ,DecE) and a zero-knowledge scheme NIZK =
(KGenNIZK, PNIZK,VfNIZK) for languages in NP we construct a delegatable func-
tional signature scheme DFSS as follows: We de�ne a recursive class of lan-
guages Li, where Ln : xn = (ppS , ppE , pksig, pkev, S,m,CRS, f, σ) ∈ Ln means

that there exists a witness ωn = (r, k) such that pksig = (vkS , ẽk) ∧ sk =

EncE(ppE , ẽk, (σ, (f,m, pkev, k)); r) ∧ VfS(ppS , vkS , (f,m, pkev, k), σ) = 1 and
where Li for 0 ≤ i < n : xi = (ppS , ppE , pksig, pkev, S,m,CRS, f, σ) ∈ Li if

there exists a witness ωi = (r,Π, pk′ev,m
′, f ′, α) s.t. pksig = (vkS , ẽk) and

∧ si = EncE(ppE , ẽk, (σ, (f,m, pkev, k)); r) ∧ VfS(ppS , vk
′, (f,m, pkev, k), σ) = 1

∧ x′ := (ppS , ppE , pksig, pk
′
ev, S

′,m′,CRS, f ′) ∧ S = S′ {s′i := si}
∧ pk′ev = (vk′, ·) ∧ (f,m) = F(λ, f ′, α, pk′ev,m′)
∧

(
VfNIZKi+1

(CRS, x′) = 1 ∨ VfNIZKn
(CRS, x′) = 1

)
.

The signer proves that x = (pp = (CRS, ppS , ppE), pksig, pkev = (vkF , ek), S,
d,m) ∈ L, where L contains tuples for which there exists a witness ω = (f, i, rd)
such that VfNIZKi(CRS, (ppS , ppE , pksig, pkev, S,m,CRS, f, σ)) = 1
∧ d← EncE(ppE , ek, (f, i, σ); rd).

5.2 Security

Concerning security, we show the following theorem.

Theorem 3. If E is a public key encryption scheme that is secure against chosen
ciphertext attacks (CCA-2), S a length preserving unforgeable signature scheme
with a simple key generation, and NIZK is a sound non-interactive proof scheme
that is zero knowledge, the construction presented in this section is unforgeable
against outsider and (strong) insider attacks and secure against chosen function
attacks (CFA) against outsiders and (strong) insiders

Proof. The theorem follows directly from Lemma 1 and Lemma 2.

Lemma 1. If E is a public key encryption scheme, S a length preserving un-
forgeable signature scheme with a simple key generation (i.e., not requiring a
master secret key), and NIZK is a sound non-interactive proof scheme, then the
construction DFSS presented in Section 5 is unforgeable against outsider and
(strong) insider attacks according to De�nition 3.

Given an adversary A that breaks the unforgeability of our construction we
construct an e�cient adversary B that breaks the underlying signature scheme.

Proof. By Proposition 1 it su�ces to show unforgeability against an S-Insider
adversary. Assume towards contradiction that DFSS is not unforgeable against
strong insider attacks. Then there exists an e�cient adversary A := AS-Insider

20

that makes at most p(λ) many steps for a polynomial p and that wins the game
Unf(DFSS,F ,AS-Insider, λ), formalized in De�nition 3, with non-negligible proba-
bility. SinceAmakes at most p(λ)many steps,A invokes the oracle Query[KgenP]
at most p(λ) many times. We show how to build an adversary B that runs A in a
black-box way in order to break the unforgeability of S with non-negligible prob-
ability. In the following we denote the values and the oracles that the challenger
C from the game Unf(S,B, λ) provides to B with the index C.

The algorithm B, upon receiving as input a tuple (ppC , vkC) from InitializeC ,
simulates a challenger for the game Unf(DFSS,F ,A, λ). First, the algorithm B
generates the public parameters and the master public/private key-pair, com-
puting (ppE ,mskE)← SetupE(1

λ),CRS← KGenNIZK(1
λ)and setting pp := (CRS,

ppC , ppE),msk := (ε,mskE). Subsequently, B computes (d̃k, ẽk) ← KGenE(ppE ,
mskE), (skS , vkS)← KGenS(ppC , ε) and sets pksig := vkS .

The algorithm B embeds its own challenge key vkC in a randomly chosen
position z ∈ {0, . . . , p(λ)}; if z = 0, then B replaces vkS by vkC . Finally, B runs
a black-box simulation of A on input (pp, pksig), where pksig = vkS or pksig =
vkC , depending on z and B simulates the four oracles Query[Sign],Query[Trans],
Query[KGenP] and Query[Finalize]. The inputs of these oracles are provided by A
upon calling them and are thus sent to B. The algorithm B handles the oracle
queries from A as follows:

Query[KGenP](): The algorithm B answers the ith invocation of Query[KgenP]
as follows. First, B generates a key pair for encryption and decryption
(dk, ek)← KGenE(ppE ,mskE). Then it behaves di�erently depending on i:
If i = z, then B sends vkC to A. Otherwise, B generates a new key-pair
(skev, pkev)← KGenS(ppC , ε), stores this pair, and sends pkev to A.

Query[Sign](pk∗ev, f, g,m): If z 6= 0, the algorithm B computes all necessary val-
ues locally exactly as a challenger for Unf(DFSS,F ,A, λ) would. For com-
puting the values locally, B needs to know pp (publicly known), sksig =
(sskS , vkS) (generated by B since z 6= 0) and the values pk∗ev, f and m (pro-
vided to B by A).
If z = 0, this local computation is not possible since B replaced vkS with vkC .
Thus, the algorithm B sets hk := (f,m, pkev, k) and invokes Query[Sig]C(hk).
It sets σk to the output of the challenger and otherwise proceeds as above.

Query[Eval](pk∗ev, α,m,pk
′
ev, σ): Parse pk∗ev = (vk, ek). B behaves di�erently

depending on the value of vk.
If the key pk∗ev is a key for which B knows a secret key (in particular it
does not contain the challenge key vkC), B computes all necessary values
locally exactly as a challenger for Unf(DFSS,F ,A, λ) would. For computing
the values locally, B needs to know pp (publicly known), a value for sk∗ev
corresponding to pk∗ev (discussed below), pksig (known to B) and the values

for α,m, pk′ev and σ (provided byA). There are four cases for sk∗ev. If pk
∗
ev was

output by Query[KGenP] (and since vk 6= vkC , this was not the z
th invocation

of Query[KGenP]), B has generated the value sk∗ev = (sskF , dk) itself. The
same applies if pk∗ev was output by Query[KGenS]. If pk∗ev was registered by
A via Query[RegKey], B uses the corresponding (registered) key sk∗ev. If none

21

of the three cases applies, then the key pk∗ev is unknown and B returns ⊥
instead.
If the key pk∗ev is the key in which B has embedded its own challenge key
(vk = vkC), a corresponding value sskF (the �rst part of the secret key sk∗ev
corresponding to pk∗ev) is not known to B. This key is necessary to sign the

value h = (f̂ , m̂, pk′ev, k − 1). Thus, instead of computing a signature with
some key sskF , B calls its own oracle Query[Sig]C(h) and otherwise proceeds
as above.

Finalize(m∗, σ∗,pk∗ev): Eventually,A invokes Finalize on a tuple (m∗, σ∗, pk∗ev),
then B parses σ∗ = (S, d, π) with S = (s0, . . . , sn+1). Now, the algorithm B
checks the validity of the signature computing Vf(pp, pksig, pk

∗
ev,m

∗, σ∗). If
the veri�cation algorithm outputs 0, then B stops. Otherwise B decrypts all
signatures (σi, hi) := DecE(ppE , d̃k, si). B tries to �nd a pair (σx, hx) that
veri�es under the key vkC and that has not been sent to Query[Sign]C by B,
, then B sends (hx, σx) to its own FinalizeC oracle. Otherwise it halts.

Claim. The algorithm B perfectly simulates a challenger for Unf(DFSS,F ,A, λ).

Proof (for Claim 5.2). We investigate the simulation of all oracles and local
computations.

Simulation of Initialize: Observe that by construction and by the fact that S
the values pp and msk are identically distributed to values for pp and msk
generated by a challenger for Unf(DFSS,F ,A, λ). Thus, the keys generated
out of them are also identically distributed. If z 6= 0 then B uses only pp
and msk to compute the keys (sksig, pksig) and thus they are identically
distributed as keys (sksig, pksig) generated by Unf(DFSS,F ,A, λ).
If z = 0, then B replaces the veri�cation vkS of the signer with the veri�cation
key vkC of the challenger. However, since S does not require a master secret
key, the key vkC is identically distributed as the key vkS . Moreover, B does
not use the corresponding signing key sskS in any way and queries its own
signing oracle instead.

Simulation of Query[KGenP]: On any but the zth invocation, B perfectly sim-
ulates a challenger for Unf(DFSS,F ,A, λ) and computes a new key pair based
on pp and msk. As pp and msk are identically distributed as for a challenger,
the resulting keys are also identically distributed.
On the zth invocation, however, B replaces the veri�cation key vkF with
the veri�cation key vkC of the challenger. However, since S does not require
a master secret key , the key vkC is identically distributed as the key vkS .
Moreover, B does not use the corresponding signing key sskF in any way and
queries its own signing oracle instead.

Simulation of Query[KGenS]: B uses the values pp and msk that are identi-
cally distributed to the corresponding values of a challenger for Unf(DFSS,F ,
A, λ). On them it performs a perfect simulation of Query[KGenS]. Thus, the
resulting keys have the same distribution as the keys output by Query[KGenS]
of the challenger.

Simulation of Query[RegKey]: This oracle does not return an answer.

22

proc Finalize(m∗, σ∗, pk∗ev) :

if ∃(f, g,m, pkev, ·) ∈ Q, s.t.pkev ∈ KA ∧m
∗ ∈ F∗(λ, (f,m))

or (·, ·,m∗, ·, ·) ∈ Q
output 0

else

retrieve (pp, pksig)

parse pp = (CRS, ppS , ppE , ẽk);σ
∗ = (S, d,Π)

parse pksig = (vkS , ẽk); pk
∗
ev = (vkF , ek)

x := (ppS , ppE , pksig, pk
∗
ev, S, d,m

∗,CRS)

b← VfNIZK(CRS, x,Π)

output b

Fig. 7. A simulated version of Finalize for our construction DFSS

Simulation of Query[Sign] and Query[Eval]: B perfectly simulates these or-
acles as long as it does not have to create a signature with the key corre-
sponding to vkC . However, in these cases B calls its own signature oracle.
Since the keys are identically distributed, this still is a perfect simulation.

Since all messages that B sends to A are identically distributed to the mes-
sages that Unf(DFSS,F ,A, λ) sends to A, the algorithm B perfectly simulates a
challenger for Unf(DFSS,F ,A, λ).

Claim. Whenever A produces a forgery, then with probability at least 1
p(λ)+1 B

also produces a forgery.

Proof (Proof of Claim 5.2). First we show the following statement: Whenever A
produces a forgery (m∗, σ∗, pk∗ev), then σ

∗ is of the form σ∗ = (S, d, π). Moreover,
S = (s0, . . . , sn+1) contains the encryption sx of a signature σx such that:

� σx veri�es for a message mx under a key vk∗

� vk∗ either equals pksig or that has been sent to A as an answer to an oracle
query Query[KGenP]

� mx a message that has not been sent to Query[Sign] or achieved as result of
Query[Eval].

Assume that A invokes Finalize with (m∗, σ∗, pk∗ev) such that (m∗, σ∗, pk∗ev)
constitutes a forgery for DFSS. Technically: If our algorithm B would simulate
the Finalize algorithm (as in Figure 7), it would output 1.4

If Finalize would output 1, (·,m∗, ·, ·) /∈ Q. This especially means that σ∗ can
not be output of Query[Sign] or Query[Eval]. Moreover, there was no query to
Query[Sign](pk′ev, f,m) for an adversary key pk′ev such thatm

∗ is in the transitive

4 Note that simulating Finalize is not necessarily possible in polynomial time, which
is of no concern, since B does not simulate Finalize.

23

hull F∗(λ, (f,m)). Also, there was no query to Query[Eval](pkev, α,m, pk
′
ev, σ

′)
for an adversary key pk′ev such that f was extracted from σ′ and such that m∗

is in the transitive hull F∗(λ, (f ′,m′)) for (f ′,m′) := F(λ, f, α, pk′ev,m).
If the NIZK Π veri�es then there is a signature that veri�es under pksig

and that marks the start of the delegation chain. Let σk be this signature for a
value hk = (f,m, pkev, k). The NIZK makes sure that m∗ is in the transitive hull
F∗(λ, (f,m)) and that all transformations are legitimized by the previous ones
(depending on the intermediate α's).

We distinguish the following cases:

i = 0: There was no call to Query[Sig] with parameters (pkev, (f, k),m). Thus, B
never sent hk to Query[Sig]C . and thus, S contains a signature σx = σk that
veri�es with pksig for the message hk.

0 < i < k: There was a call to Query[Sig] with parameters (pkev, (f, k),m). And
for all 0 < j ≤ i there was a call to Query[Eval] with parameters (pkevj , αj ,mj ,

pk′evj , σ
′
j), such that hk−j = (fj ,mj , pk

′
evj , k− j) with (fj ,mj) = F(λ, fj−1,

αj , pk
′
evj ,mj−1), but there was no call to Query[Eval] with parameters (pkevi,

αi,mi, pk
′
evi, σ

′
i), such that hk−i = (fi,mi, pk

′
evi, k − i) with (fi,mi) =

F(λ, fi−1, αi, pk′evi,mi−1), where f0 = f and m0 = m.
Thus, B never sent hi to Query[Sig]C and thus, σi and hi ful�ll our claim.

i = k: There was a call to Query[Sig] with parameters (pkev, (f, k),m). And for
all 0 < j ≤ k there was a call to Query[Eval] with parameters (pkevj , αj , βj ,mj ,

pk′evj , σ
′
j), such that hk−j = (fj ,mj , pk

′
evj , k− j) with (fj ,mj) = F(λ, fj−1,

αj , pk
′
evj ,mj−1. The NIZK makes sure that at most k transformations of the

original message exist. Thus, all transformations have been done via calls to
Query[Eval], which means that (m∗, σ∗, pk∗ev) is not a forgery.

Thus, each forgery of A constitutes a forgery of a signature σx that veri�es
with a key vk∗ that either equals pksig or a key that has been given toA as answer
to an oracle query Query[KGenP]. Note that if, by chance, vk∗ = vkC , then σx is a
valid forgery for the message hx. By Claim 5.2, B performs a perfect simulation
of a challenger for Unf(DFSS,F ,A, λ) (from A's point of view), independent of
the value z that B has chosen in the beginning. As vkC is randomly placed in
the set of possible honest keys (p(λ) many), B produces a forgery for vkC with
probability at least 1

p(λ)+1 .

For the analysis of the success of B let us assume that A produces a forgery
with a non-negligible probability. However, by Claim 5.2, whenever A produces
a forgery, there is a chance of 1

p(λ)+1 that B will produce a forgery. Since A is

assumed to succeed with a non-negligible probability, B will also succeed with a
non-negligible probability, losing a polynomial factor of p(λ) + 1. Since B is an
e�cient algorithm, this concludes the proof.

Lemma 2. If E is a public key encryption scheme that is secure against cho-
sen ciphertext attacks (CCA-2), and the interactive proof scheme NIZK is zero
knowledge, then the construction DFSS presented in Section 5 is secure against
chosen function attacks (CFA) as in De�nition 4.

24

Game G0
−−Initialize −−
001 b := 0

−−Setup −−

002 CRS← KGenNIZK(1
λ)

003 (mskS , ppS)← SetupS(1
λ)

004 (mskE , ppE)← SetupE(1
λ)

005 (d̃k, ẽk)← KGenE(ppE ,mskE)

006 pp := (CRS, ppS , ppE , ẽk)

007msk := (mskS ,mskE)

−−KGensig −−
008 (sskS , vkS)← KGenS(ppS ,mskS)

009 pksig := vkS

010 sksig := (sskS , pksig)

− output of (pp, sksig, pksig) to A−

011 c← AOpp,msk,ssks
1 (pp, pksig)

−−Query[Sign-F] −−
012 parse c = ([pkev, α]

t
0, t,m0, σ0)

013 if (·, pkev[t]) /∈ KC out := ⊥
014 if Vf(pp, pksig, pkev[0],m0, σ0) 6= 1

then output ⊥
015 if ¬∃sk∗ev. (sk∗ev, pkev[0]) ∈ KC

then output ⊥
016 extract (f0, k) from σ0 using sk

∗
ev

017 for i ∈ {1, . . . , t}
018 if ¬∃sk∗ev = (sskF , dk). (sk

∗
ev, pkev[i− 1]) ∈ KF

019 out := ⊥
020 (fi,mi) := F(λ, fi−1, α, pkev[i],mi−1)

021 qi := (pp, sk∗ev, pksig, α[i],mi−1, pkev[i], σi−1)

022 parse pkev[i] = (vkF , ek)

023 parse σi−1 = (S, d,Π)

024 (fi−1, j, ςj)← DecE(ppE , dk, d)

025 x = (pp, pksig, pkev[i− 1], S, d,mi−1)

026 if VfNIZK;Zj (CRS, x,Π) = 1

027 hj−1 := (fi,mi, pkev[i], j − 1)

028 ς̂j−1 ← SigS(ppS , sskF , hj−1; rS)

029 sj−1 ← EncE(ppE , ẽk, (ς̂j−1, hj−1); rs)

030 d̂← EncE(ppE , ek, (fi, j − 1, ςj−1); rd)

031 x̂ = (pp, pksig, pkev[i], S, d̂,mi)

032 ω = (fi, j − 1, rd)

033 with ωj−1 = (ςj−1, rS , Π, pkev[i− 1],

mi−1, fi−1, α[i],)

034 Π̂ ← PNIZK(CRS, x, ω)

035 σi := (S, d̂, Π̂),

036 else

037 σi := ⊥
038 if σt 6= ⊥
039 hk−t := (ft,mt, pkev[t], k − t)
040 ςk−t ← SigS(ppS , sskS , hk−t; rS)

041 sk−t ← EncE(ppE , ẽk, (ςk−t, hk−t); rsk−t)

042 For j ∈ {0, . . . , n} \ {k − t}

043 ςj := 0|ςk−t|

044 hj := (0`p(λ), 0`m(λ), 0|pkev [t]|, 0)

045 sj ← EncE(ppE , ẽk, (ςj , hj); rsi)

046 d← EncE(ppE , ek, (ft, k − t, ςk−t; rd))
047 S := (s0, . . . , sn)

048 x := (pp, pksig, pkev[t], S, d,mt)

049 ω := (ft, n, rd)

050 with ωk−t := (ςk−t, rS , k − t)
051 Π ← P(CRS, x, ω)
052 σ := (S, d,Π)

053 else

054 σ := σt

055 if out 6= ⊥ then out := σ

056 b∗ ← A2(out)

Fig. 8. De�nition of Game G0 for Section 5.2

For showing this lemma we will �rst give a game-based proof for an adver-
sary that only uses the oracle Query[Sign-F] once. We proceed using a hybrid
argument that shows that the existence of a successful adversary that makes
polynomially many calls to Query[Sign-F] implies the existence of a successful
adversary that only makes one call.

Proof. Let DFSS = (Setup,KGensig,KGenev, Sig,EvalF ,Vf) be our construction
for functionalities F and G. Assume towards contradiction that DFSS is not
secure against chosen function attacks against a strong insider. Then there exists
an e�cient adversary AS-Insider that wins the game CFA(DFSS,F ,AS-Insider, λ)
from De�nition 4 with non negligible advantage. For simplicity we will write A
for AS-Insider in this proof.

25

Claim. If A invokes the challenge oracle Query[Sign-F] at most once, then the
advantage of A is negligible.

Proof (Proof for Claim 5.2). The challenger uses the uniformly distributed value
b only when Query[Sign-F] is called. Thus, if A does not call Query[Sign-F], the
advantage of A is 0.

For the case that A calls Query[Sign-F] exactly once, we show the claim via a
series of indistinguishable games that start with a game where b = 0 and end with
a game b = 1. Our proof shows that all intermediate games are indistinguishable.

Let Game G0 be the original game from De�nition 4 where b = 0, as de�ned
in Figure 8. As by our claim A calls Query[Sign-F] only once we will simplify
the notation of the game by making the call to Query[Sign-F] explicit. Moreover
we make the invokation of Initialize explicit as we will modify it in the following
games. The oracles that A can access (aside from Query[Sign-F]) are as they are
formalized in De�nition 4. As before, we annotate each line with the game (�rst
digit) and the line within the game (remaining digits).

Game G1
102 (CRS, state)← S0(1λ)
134 Π̂ ← S1(state, x)
151Π ← S1(state, x)

Game G2
229 sj−1 ← EncE(ppE , ẽk,

(0|ςj−1|, (0`p(λ), 0`m(λ), 0|pkev [t]|, 0)); rs)

230 d̂← EncE(ppE , ek, (0
|ft|, 0, 0|ςj−1|); rd)

241 sk−t ← EncE(ppE , ẽk,

(0|ςk−t|, (0`p(λ), 0`m(λ), 0|pkev [t]|, 0); rsk−t
)

246 d← EncE(ppE , ek, (0
|ft|, 0, 0|ςk−t|); rd)

Game G3
301 b := 1

338 if false

Game G4
429 sj−1 ← EncE(ppE , ẽk, (ςj−1, hj−1); rs)

430 d̂← EncE(ppE , ek, (ft, j − 1, ςj−1); rd)

Game G5
501 CRS← KGenNIZK(1

λ)

534Π ← P(CRS, x, ω)

Game G0 ⇒Game G1: Since NIZK is zero knowledge, there exists an e�-
cient simulator S = (S0,S1). In Game G1, Initialize calls this simulator
S0 to compute the common reference string CRS, instead of the algorithm
SetupNIZK. The simulator is allowed to keep state from S0 to S1. Moreover,
in Query[Sign-F] we call S1 to simulate the proof Π instead of computing it
by calling the prover P.

Claim. Game G0 and Game G1 are computationally indistinguishable.

Proof. The indistinguishability follows from the fact that NIZK is zero knowl-
edge. If a PPT distinguisher could distinguish between Game G0 and Game G1,
we could construct an e�cient distinguisher for NIZK.

Game G1 ⇒Game G2: The game Game G2 is identical to Game G1 except
for the fact that now S and d contain only descriptions of zero-strings: we
put encryptions of zero strings in all sj for j ∈ {0, . . . , n} instead of leaving
an encryption of a signature ςk−t together with its message hk−t at position

26

k − t and in an encryption of a zero string in d instead of an encryption of
ςk−t together with ft and k − t.
To compensate for the loss of information in d, we store the tuple (ft, k −
t, ςk−t) together with the (supposed) ciphertext d. Whenever Query[Eval] is
called and within the call one of the ciphertexts d is placed, we look up
the values (ft, k − t, ςk−t) instead of decrypting d. The same applies to the
decryption in line 22 of our game.

Claim. Game G1 and Game G2 are computationally indistinguishable.

Proof. If the games could be distinguished by a PPT distinguisher, then we
could construct an e�cient distinguisher that breaks the CCA-2 security of E .
We distinguish two cases:

� The simulator S = (S0,S1) behaves di�erently. Although the simulatability
of the NIZK only is de�ned for valid statements x ∈ LR, a simulator that can
distinguish with a non-negligible probability between a �normal� S or d (as
in Game G1) and an S or d that consists only of encryptions of zero-strings
(as in Game G2) can also be used to break the CCA-2 security of E .

� The adversary distinguishes the games. If the adversary is able to distinguish
Game G1 and Game G2 with a non-negligible probability, it can be used to
break the CCA-2 security of E .

Thus, Game G1 and Game G2 are computationally indistinguishable.

Game G2 ⇒Game G3: InGame G3, the bit b is set to 1 instead of 0. However,
b is never used explicitly in the game. Moreover we always use the signature
generated by EvalF (from line 33) instead of the fresh signature (from line
50).

Claim. Game G2 and Game G3 are computationally indistinguishable.

Proof. In both cases S and d are encryptions of zero strings (under the same
keys) and in both cases Π is a proof generated by S1 for the same statement
x = (pp, pksig, pkev[t], S, d,mt). Since S1 does not receive a witness, the proofs
are based on the same arguments.

Game G3 ⇒Game G4: The game Game G4 is identical to Game G3 except
for the fact that S and d are �normal� encryptions again (not encryptions of
zero strings).

Claim. Game G3 and Game G4 are computationally indistinguishable.

Proof. The same argument as for Game G1 and Game G2 applies here. If the
games could be distinguished, we could construct an e�cient distinguisher for
the encryption scheme.

Note that we do not need to revert the encryptions in lines 39 and 44 as they
are within the �if false�-block.

27

Game G4 ⇒Game G5: In Game G5 we replace the simulator S = (S0,S1)
with the original SetupNIZK and P algorithms again.

Claim. Game G4 and Game G5 are computationally indistinguishable.

Proof. As for Claim 5.2, the indistinguishability again follows from the fact
that NIZK is zero knowledge. If a PPT distinguisher could distinguish between
Game G4 and Game G5, we could construct an e�cient distinguisher for NIZK.

As we have shown, the games Game G0 and Game G5 are computation-
ally indistinguishable. However, Game G0 perfectly models the case, where an
adversary plays against a challenger for CFA when b = 0, whereas Game G5
perfectly models the case, where an adversary plays against a challenger for CFA
when b = 1. Since the games are (pairwise) computationally distinguishable, the
cases are also computationally indistinguishable and thus the advantage of A is
negligible. This concludes the proof for Claim 5.2

Via hybrid argument we reduce the case in which the adversary might make
polynomially many calls to Query[Sign-F] to the case of Claim 5.2 where the
adversary makes at most one call to Query[Sign-F]. We can simulate the calls
to Query[Sign-F] both for b = 0 and for b = 1 using the oracle access to Sig and
to EvalF .

Acknowledgments. We would like the Marc Fischlin, Özgür Dagdelen, and Sebas-
tian Gajek for the helpful discussions and their encouragement to submit our work.
We also thank the reviewers for the valuable comments. This work was supported
by the German Federal Ministry of Education and Research (BMBF) through fund-
ing for the Center for IT-Security, Privacy and Accountability (CISPA � www.cispa-

security.org) and the project PROMISE. Moreover, it was supported by the Initia-
tive for Excellence of the German federal and state governments through funding for
the Saarbrücken Graduate School of Computer Science and the DFG MMCI Cluster of
Excellence. Part of this work was also supported by the German research foundation
(DFG) through funding for the collaborative research center 1223. Dominique Schröder
was also supported by an Intel Early Career Faculty Honor Program Award.

References

1. T. Acar and L. Nguyen. Revocation for delegatable anonymous credentials. In ,
PKC 2011, volume 6571 of LNCS, pages 423�440. Springer, Heidelberg, Mar. 2011.

2. J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, a. shelat, and B. Waters.
Computing on authenticated data. In , TCC 2012, volume 7194 of LNCS, pages
1�20. Springer, Heidelberg, Mar. 2012.

3. G. Ateniese, D. H. Chou, B. de Medeiros, and G. Tsudik. Sanitizable signatures.
In , ESORICS 2005, volume 3679 of LNCS, pages 159�177. Springer, Heidelberg,
Sept. 2005.

4. N. Attrapadung, B. Libert, and T. Peters. Computing on authenticated data: New
privacy de�nitions and constructions. In Advances in Cryptology�ASIACRYPT

2012, pages 367�385. Springer, 2012.

28

5. N. Attrapadung, B. Libert, and T. Peters. E�cient completely context-hiding
quotable and linearly homomorphic signatures. In Public-Key Cryptography�PKC

2013, pages 386�404. Springer, 2013.
6. M. Backes, S. Meiser, and D. Schröder. Delegatable functional signatures. Cryp-

tology ePrint Archive, Report 2013/408, 2013. http://eprint.iacr.org/.
7. B. Barak and M. Mahmoody-Ghidary. Lower bounds on signatures from symmetric

primitives. In 48th FOCS, pages 680�688. IEEE Computer Society Press, Oct.
2007.

8. L. Bauer, L. Jia, and D. Sharma. Constraining credential usage in logic-based ac-
cess control. In Computer Security Foundations Symposium, 2010. CSF'10. IEEE

23st., pages 154�168. IEEE Computer Society, 2010.
9. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and

H. Shacham. Randomizable proofs and delegatable anonymous credentials. In ,
CRYPTO 2009, volume 5677 of LNCS, pages 108�125. Springer, Heidelberg, Aug.
2009.

10. M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. P-signatures and
noninteractive anonymous credentials. In , TCC 2008, volume 4948 of LNCS,
pages 356�374. Springer, Heidelberg, Mar. 2008.

11. M. Bellare and G. Fuchsbauer. Policy-based signatures. In Public-Key

Cryptography�PKC 2014, pages 520�537. Springer, 2014.
12. M. Bellare and P. Rogaway. The security of triple encryption and a framework for

code-based game-playing proofs. In , EUROCRYPT 2006, volume 4004 of LNCS,
pages 409�426. Springer, Heidelberg, May / June 2006.

13. D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions.
In , EUROCRYPT 2011, volume 6632 of LNCS, pages 149�168. Springer, Heidel-
berg, May 2011.

14. D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary �elds
and new tools for lattice-based signatures. In , PKC 2011, volume 6571 of LNCS,
pages 1�16. Springer, Heidelberg, Mar. 2011.

15. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom
functions, 2014.

16. S. Brands. Restrictive blinding of secret-key certi�cates. In , EUROCRYPT'95,
volume 921 of LNCS, pages 231�247. Springer, Heidelberg, May 1995.

17. S. A. Brands. Rethinking public key infrastructures and digital certi�cates: building

in privacy. The MIT Press, 2000.
18. C. Brzuska, H. Busch, Ö. Dagdelen, M. Fischlin, M. Franz, S. Katzenbeisser,

M. Manulis, C. Onete, A. Peter, B. Poettering, and D. Schröder. Redactable
signatures for tree-structured data: De�nitions and constructions. In , ACNS 10,
volume 6123 of LNCS, pages 87�104. Springer, Heidelberg, June 2010.

19. C. Brzuska, M. Fischlin, A. Lehmann, and D. Schröder. Unlinkability of sanitiz-
able signatures. In , PKC 2010, volume 6056 of LNCS, pages 444�461. Springer,
Heidelberg, May 2010.

20. J. Camenisch and T. Groÿ. E�cient attributes for anonymous credentials. In ,
ACM CCS 08, pages 345�356. ACM Press, Oct. 2008.

21. J. Camenisch and A. Lysyanskaya. An e�cient system for non-transferable anony-
mous credentials with optional anonymity revocation. In , EUROCRYPT 2001,
volume 2045 of LNCS, pages 93�118. Springer, Heidelberg, May 2001.

22. J. Camenisch and A. Lysyanskaya. A signature scheme with e�cient protocols. In
, SCN 02, volume 2576 of LNCS, pages 268�289. Springer, Heidelberg, Sept. 2003.

29

http://eprint.iacr.org/

23. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In , CRYPTO 2004, volume 3152 of LNCS, pages 56�72.
Springer, Heidelberg, Aug. 2004.

24. D. Catalano. Homomorphic signatures and message authentication codes. In Se-

curity and Cryptography for Networks - 9th International Conference, SCN 2014,

Amal�, Italy, September 3-5, 2014. Proceedings, pages 514�519, 2014.
25. D. Catalano, D. Fiore, and B. Warinschi. Homomorphic signatures with e�cient

veri�cation for polynomial functions. In Advances in Cryptology�CRYPTO 2014,
pages 371�389. Springer, 2014.

26. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Succinct malleable
NIZKs and an application to compact shu�es. In , TCC 2013, volume 7785 of
LNCS, pages 100�119. Springer, Heidelberg, Mar. 2013.

27. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable signatures:
New de�nitions and delegatable anonymous credentials. pages 199�213, 2014.

28. S. E. Coull, M. Green, and S. Hohenberger. Controlling access to an oblivious
database using stateful anonymous credentials. In , PKC 2009, volume 5443 of
LNCS, pages 501�520. Springer, Heidelberg, Mar. 2009.

29. D. M. Freeman. Improved security for linearly homomorphic signatures: A generic
framework. In , PKC 2012, volume 7293 of LNCS, pages 697�714. Springer, Hei-
delberg, May 2012.

30. G. Fuchsbauer and D. Pointcheval. Anonymous proxy signatures. In , SCN 08,
volume 5229 of LNCS, pages 201�217. Springer, Heidelberg, Sept. 2008.

31. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281�
308, 1988.

32. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281�
308, Apr. 1988.

33. R. Johnson, D. Molnar, D. X. Song, and D. Wagner. Homomorphic signature
schemes. In , CT-RSA 2002, volume 2271 of LNCS, pages 244�262. Springer,
Heidelberg, Feb. 2002.

34. J. Katz, D. Schröder, and A. Yerukhimovich. Impossibility of blind signatures
from one-way permutations. In , TCC 2011, volume 6597 of LNCS, pages 615�
629. Springer, Heidelberg, Mar. 2011.

35. J. Katz, D. Schröder, and A. Yerukhimovich. Impossibility of blind signatures from
one-way permutations. In Theory of Cryptography, pages 615�629. Springer, 2011.

36. B. Libert, T. Peters, M. Joye, and M. Yung. Linearly homomorphic structure-
preserving signatures and their applications. Des. Codes Cryptography, 77(2-
3):441�477, 2015.

37. K. Miyazaki and G. Hanaoka. Invisibly sanitizable digital signature scheme. IE-

ICE Transactions on Fundamentals of Electronics, Communications and Computer

Sciences, 91(1):392�402, 2008.
38. R. Steinfeld, L. Bull, and Y. Zheng. Content extraction signatures. In , ICISC 01,

volume 2288 of LNCS, pages 285�304. Springer, Heidelberg, Dec. 2002.

30

	Delegatable Functional Signatures

