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Abstract. We propose generic constructions of public-key encryption
schemes, satisfying key-dependent message (KDM) security for projec-
tions and different forms of key-leakage resilience, from CPA-secure private-
key encryption schemes with two main abstract properties: (1) a form of
(additive) homomorphism with respect to both plaintexts and random-
ness, and (2) reproducibility, providing a means for reusing encryption
randomness across independent secret keys. More precisely, our construc-
tion transforms a private-key scheme with the stated properties (and one
more mild condition) into a public-key one, providing:
– KDM-projection security, an extension of circular security, where the

adversary may also ask for encryptions of negated secret key bits;
– a (1− o(1)) resilience rate in the bounded-memory leakage model of

Akavia et al. (TCC 2009); and
– Auxiliary-input security against subexponentially-hard functions.

We introduce homomorphic weak pseudorandom functions, a homomor-
phic version of the weak PRFs proposed by Naor and Reingold (FOCS
’95) and use them to realize our base encryption scheme. We in turn
obtain homomorphic weak PRFs from homomorphic hash-proof systems
(HHPS). We also show how the base encryption scheme may be realized
using subgroup indistinguishability (implied, in particular, by quadratic
residuosity (QR) and decisional composite residuosity (DCR)). As corol-
laries of our results, we obtain (1) the first multiple-key projection-secure
bit-encryption scheme (as well as the first scheme with a (1 − o(1)) re-
silience rate) based solely on the HHPS assumption, and (2) a unifying
approach explaining the results of Boneh et al (CRYPTO ’08) and Brak-
erski and Goldwasser (CRYPTO ’10). Finally, by observing that Apple-
baum’s KDM amplification method (EUROCRYPT ’11) preserves both
types of leakage resilience, we obtain schemes providing at the same time
high leakage resilience and KDM security against any fixed polynomial-
sized circuit family.
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1 Introduction

A central goal in cryptography is to build a variety of cryptographic primitives
with a high degree of versatility from assumptions that are as general as possible.
Encryption in particular has been defined, starting with the seminal paper of
Goldwasser and Micali [23], with respect to successively strong models of security.
However, standard notions of encryption security (i.e., CPA and different forms
of CCA security [23,36,38,17]) fall short in certain applications, in particular,
where the adversary may obtain some side information about the internal secret
parameters (e.g., the secret key) of the scheme. This leakage of side information
may occur due to some unforeseen attacks on the scheme (side-channel attacks),
or more fundamentally, when encryption is used as a primitive in a complex
protocol which may inherently expose inside information. These observations
have led to the definition and realization of stronger notions of encryption secu-
rity, such as security against different forms of leakage [32,19,1,35,15,14,2,25,9],
and key-dependent message (KDM) security [7,27,8,5,4,9,31,3,10]. Our goal is to
construct schemes realizing these security properties from general assumptions.
Our results concern a basic model of leakage, known as the bounded-leakage
model [1] and a basic model of KDM security, known as projection security
(which is slightly stronger than circular security). We will also consider a model
of auxiliary-input security [15,14]. We first provide some background on these
models and then describe our results.

For all definitions below (unless otherwise stated) we assume we are encrypt-
ing the secret key (or functions thereof) bit-by-bit, i.e., the scheme is either bit
encryption, or there is a mapping from bits to two fixed plaintext messages.
KDM security. KDM security is defined with respect to a function family F :
informally, an encryption scheme (G,E,Dec) is F -KDM(1) secure if no adver-
sary can distinguish between two oracles, where the first one, on input f ∈ F ,
returns Epk(f(sk)) (for a random (pk, sk) chosen at the beginning), and the
second one, regardless of the input, returns an encryption of a fixed message. A
basic form of KDM(1) security is 1-circular security, allowing the adversary to
obtain encryptions of any bit of the secret key. Another basic notion is projec-
tion security, which also allows the adversary to obtain encryptions of negations
of secret key bits. KDM(1) security generalizes naturally to the case of multiple
pairs of keys, giving rise to the notion of F -KDM(n)-security, where in a system
with the pairs of keys (pk1, sk1), . . . , (pkn, skn) a chosen function f ∈ F comes
with an index j, and as a result f(sk1, . . . , skn) is encrypted under pkj . For ex-
ample, n-projection security allows the adversary to see encryptions of any bit
of any secret key or its negation under (possibly) any other public key.

KDM security was originally defined by Black et al. [7], who built a fully-
KDM -secure scheme (i.e., KDM-security with respect to all functions) in the
random oracle model. In [8] Boneh et al. gave the first construction in the stan-
dard model, based on the DDH assumption, of a public-key scheme that was
proved KDM(n) secure with respect to affine functions. This positive result led
to a series of subsequent works, focusing on building affine-KDM(n) security un-
der alternate specific assumptions (i.e., LPN/LWE [4], and QR/DCR and more
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generally subgroup indistinguishability (SG) assumptions [9]), and on developing
KDM-amplification methods for transforming schemes with basic forms of KDM
security into schemes with more sophisticated forms of KDM security [5,10,3].
These amplification methods in turn employ techniques such as garbled circuits
[5], randomized encoding of functions [3] and entropic-KDM security [10] to
enable KDM transformations. Most relevant to our work are the results of Ap-
plebaum [3], showing that, informally speaking, projection security is sufficient
to obtain KDM security with respect to any fixed circuit family whose size is
poly-bounded. Thus, a fundamental question regarding KDM security is to study
general assumptions sufficient for realizing projection security, which is one of
the main goals in our paper.

It turns out that realizing even 1-circular security for bit encryption is con-
siderably more difficult than the case where the secret-key space is a subset of
the plaintext space (so one can encrypt the whole key at once). In the latter
case, through simple modifications to the encryption algorithm, one can make
any CPA-secure scheme 1-circularly secure. Currently, the only constructions
that provide bitwise 1-circular security are those of [8,4,10], which are based
on specific assumptions. Also, it was shown in [41] that the implication that
“any CPA-secure bit encryption scheme is also 1-circularly secure” is not prov-
able using reductions that use both the adversary and the scheme in a blackbox
way.1 Moreover, under widely-believed assumptions, there exist CPA-secure bit-
encryption schemes that are not 1-circularly secure [41,30].

Leakage resilience. Akavia et al. [1] introduce the notion of encryption secu-
rity against bounded memory leakage, wherein an adversary (after seeing the
public key) may obtain arbitrary information about the secret key, of the form
f(sk) for adaptively chosen f , as long as the total number of bits leaked does
not exceed an a priori fixed quantity, `. (We refer to the fraction `/|sk| as the
resilience rate.) They showed that Regev’s scheme [39] and the identity based
encryption scheme of [20], both under the LWE assumption, provide resilience
rate O(1/polylog(|sk|)). Naor and Segev [35] showed how to obtain encryption
schemes resilient to high leakage lengths (but with low resilience rates) from
any hash-proof system [13] and how to obtain schemes with (1− o(1))-resilience
rates from d-linear assumptions; moreover, they showed that the circularly-secure
scheme of [8] provides a (1− o(1)) resilience rate. Brakerski and Goldwasser [9],
under the subgroup indistinguishability assumption, implied in turn by the QR
and DCR assumptions, showed how to obtain encryption schemes that are affine-
KDM secure, with a (1− o(1)) resilience rate.

Auxiliary-input security. In the auxiliary-input model [15,14] the adversary
is given some side information of the form h(pk, sk), and the goal is to guarantee
security as long as recovering sk from h(pk, sk) is sufficiently, computationally
hard. For public-key encryption Dodis et al. [14] build schemes based on LWE
and DDH (where their DDH-based scheme is a variant of [8]) secure against

1 Note that this is different from asking whether CPA-secure bit encryption implies
the existence of circularly-secure bit encryption.
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subexponentially-hard-to-invert functions. Brakerski and Goldwasser [9] present
schemes with the same level of auxiliary-input security under the subgroup in-
distinguishability assumption.

1.1 Our results (assumptions and constructions)

As pointed our earlier, the only constructions of circularly-secure/projection-
secure bit encryption (even 1-circular security) are based on specific assumptions
[8,4,9]. Moreover, the schemes of [8,9], referred to as BHHO and BG henceforth,
besides KDM security, also provide security against different forms of leakage (as
shown in [14,35,9]). Therefore, a natural question is whether there exist more
general constructions that encompass all these specific constructions.

We will try to answer these questions by building leakage-resilient, projection-
secure encryption schemes from CPA-secure private-key schemes with some spe-
cial properties, which we now informally describe. Then we will use this private-
key encryption abstraction as a stepping stone toward obtaining our results
under other primitives.

The first property is a generalized version of additive homomorphism, where
homomorphism is required to hold also with respect to randomness (let Hom
denote the associated function). The second property is what Bellare et al. [6]
call reproducibility, requiring that given a message m2, secret key sk2 and ci-
phertext c = Esk1(m1; r), where sk1, m1 and r are unknown, one can efficiently
obtain Esk2(m2; r), i.e., there is a way to efficiently transfer the randomness
from one encryption to another, provided the secret key for the second encryp-
tion is known.2 We denote this efficient computation by Rep(c,m2, sk2). Note
that if an encryption algorithm reveals its randomness in the clear, then repro-
ducibility is trivially satisfied, e.g., the standard way of building CPA-secure
private-key encryption from a pseudorandom function family F , defining en-
cryption as Esk(m) = (r, Fsk(r) ⊕m), provides reproducibility. In fact, we will
later use this idea to obtain our encryption primitive, based on the existence of
homomorphic weak pseudorandom functions. Note that for homomorphism, we
are assuming that the message and randomness spaces must form groups. For
technical reasons, we will also require the following property: from any encryp-
tion Esk(b; r), for unknown sk, b, r, one can obtain Esk(1; 0), i.e., the encryption
of bit 1 under key sk based on the identity element of the randomness group.3

We see this as a form of degenerate homomorphism.
We introduce a construction C (formalized in Section 3 and sketched in

Subsection 1.4) that transforms a private-key scheme with the stated properties
into a public-key one and show the following result.
Theorem (informal). Assume that E = (G,E,Dec,Hom,Rep) is a CPA-secure
private-key, bit-encryption scheme that is degenerate additively homomorphic

2 Both these conditions were used implicitly by Peikert and Waters as the main build-
ing blocks for their construction of lossy-trapdoor functions [37].

3 The actual assumption we need is substantially weaker. However, we leave it this way
for the sake of readability. In fact, under all concrete schemes we present, Esk(m; 0)
depends only on m and is independent of sk.
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and reproducible. Then the constructed scheme E ′ = C(E) is a public-key bit-
encryption scheme that satisfies the following properties.

– For any integer n, by appropriately choosing the system parameters, E ′ is
n-projection secure. (Formalized in Theorem 2)

– By appropriately choosing the system parameters, E ′ provides a (1− o(1))-
leakage resilience rate. (Formalized in Theorem 3)

– E ′ provides auxiliary-input leakage resilience against subexponentially-hard
functions. (Formalized in Theorem 6 and Remark 1)

We will also discuss generalizations of the above construction to the case the
base scheme is not bit-encryption.

1.2 Realizations

From homomorphic weak pseudorandom functions. Pseudorandom func-
tion families (PRFs) provide a convenient way of realizing reproducible CPA-
secure private-key encryption via the standard PRF-based encryption construc-
tion. Towards providing homomorphism for a PRF-based scheme, we call a func-
tion family homomorphic if both the domain and range of the underlying func-
tions form groups, and each function acts as a homomorphism. A standard PRF
cannot, however, be homomorphic since with high probability a truly random
function will not be homomorphic and an adversary with the power to (even)
nonadaptively query a function oracle may easily exploit this fact. To prevent
this type of attack, we work with weak PRFs, defined by Naor and Reingold
[34], which allow an adversary to see values of the function only on a sequence
of random inputs. Formally, fk is weakly pseudorandom if no adversary can dis-
tinguish between (d1, fk(d1)), . . . , (dp, fk(dp)) and (d1, r1), . . . , (dp, rp), where all
di’s and ri’s are chosen independently at random. As we see next, not only is the
notion of homomorphic weak PRFs meaningful, it is naturally realizable under
specific assumptions. We also note that the standard construction of private-key
encryption from a PRF, when applied to homomorphic weak PRFs, results in a
scheme that satisfies the properties we need from our base encryption primitive
(Lemma 4).

For a DDH-hard group G with o = |G|, define F = {fk : G → G}k∈Zo
by

fk(g) = gk. This function family was introduced and proved to be weakly pseudo-
random by Naor, Pinkas and Reingold [33]; the proof of weak pseudorandomness
uses standard techniques related to random-self-reducibility of DDH. The fact
that fk is homomorphic is clear. Interestingly, by plugging this PRF into our
general construction, we obtain a scheme which is a close variant of the BHHO
scheme. We also give a realization of weak homomorphic PRFs under homomor-
phic hash-proof systems (HHPS) [13]: here the PRF is simply the family of hash
functions on valid points (Theorem 4). A corollary of our results is the following.

Corollary. Under the HHPS assumption and for any integer n, there exists
a public-key encryption scheme that provides, at the same time, n-projection
security and a (1− o(1))-leakage resilience rate.



6 M. Hajiabadi, B.M. Kapron, V. Srinivasan

To the best of our knowledge, our results give the first HHPS-based en-
cryption scheme that provides (even individually) n-projection security and a
(1 − o(1))-leakage resilience rate. (See SubSection 1.4 for a comparison of our
results with those of the recent work of [42].) Naor and Segev [35] show how
to construct schemes with high tolerated leakage lengths (but low rates of leak-
age resilience) from any hash-proof system, and also how to obtain schemes
with (1 − o(1)) leakage-resilience rates from k-linear assumptions. Our results
can be thought of as complementing those of [35], by saying that if we add
homomorphism to a HPS, we obtain schemes with high resilience rates. Hazay
et al. [26] show how to obtain schemes withstanding high leakage lengths from
any CPA-secure public-key encryption (which is the minimal assumption). Their
construction, however, produces a scheme with low leakage-resilience rates, and
does not imply our leakage resilience result based on HHPS.

From Subgroup indistinguishability. We show how to instantiate our en-
cryption primitive under the the subgroup indistinguishability (SG) assump-
tion [9], of which QR and DCR are special cases (Lemma 5). Our current for-
mulation of homomorphic weak PRFs does not seem to be realizable under the
SG assumption. It is, however, possible to formulate a more relaxed version of
such PRFs, one that is still sufficient for realizing our encryption assumptions
and is also realizable under the SG assumption. We choose not to pursue this
direction since there is already an easy way to realize our encryption primitive
under the SG assumption.

We provide a summary of our results in Figure 1.

DDH,
d-linear

HHPS

DCR,
QR

Subgroup
IND

Homomor-
phic weak

PRFs

Reprod.,
Homo-

morphic
SKE

Projection-
secure

Leakage-
resilient

PKE

Fig. 1. Summary of results (dashed arrows indicate known implications)

1.3 KDM amplification and leakage resilience

We prove that Applebaum’s KDM amplification method [3] for obtaining KDM-
security for any fixed family of bounded circuits from projection security also
preserves both types of leakage resilience (Theorem 9). We were not, however,
able to show this for the KDM amplification methods of [5,10]. Applebaum’s
transformation has the key property that it only modifies the encryption and
decryption algorithms of the base scheme, by applying randomized encoding and



Circularly-Secure, Leakage-Resilient PKE 7

decoding, which are fixed mappings constructed based on the target function
family, inside the encryption and decryption algorithms. This property facili-
tates reducing leakage resilience and auxiliary input security of the constructed
scheme to the same requirements (i.e., with the same parameters) on the base
scheme. As a corollary, for any fixed bounded function family F and any in-
teger n, assuming the existence of private-key schemes with the stated proper-
ties, we obtain schemes that at the same time provide (1) F -KDM(n) security,
(2) a (1 − o(1))-leakage resilience rate, and (3) auxiliary-input security against
subexponentially-hard functions (Corollary 1).

1.4 Construction technique and further discussion

Construction and proof techniques. We now give a sketch of the construc-
tion, C, and proof techniques. Fix E = (G,E,D,Rep,Hom) to be a private-key
bit-encryption scheme that provides reproducibility and the generalized homo-
morphism condition. The latter, using additive notation, states the following
condition that Hom(Esk(b1; r1), Esk(b2; r2)) = Esk(b1 + b2; r1 + r2). (Note that
because of our additive notation our message space is Z2, and 0 is the identity
element of the randomness space.)

Under E ′ = C(E) = (G′, E′, D′), the secret key is a random string s ← {0, 1}l
(for some poly l) and the public key is a tuple of ciphertexts

pk = (Esk(0; r1), . . . , Esk(0; rl), Esk(0; s · r)),

where sk, r1, . . . , rl are generated randomly under E and and (·) denotes the in-
ner product of s and r = (r1, . . . , rl). In words, pk consists of l+1 E-encryptions
of zero, where the first l encryptions are produced independently, while the
randomness value used for the last encryption is a “subset-sum” of the previ-
ous ones based on s. To encrypt a bit b we sample sk′ ← G(1λ) and output
(Esk′(0; r1), . . . , Esk′(0; rl), Esk′(b; s · r)), which can be computed from pk by
applying Rep component-wise. To decrypt (c1, . . . , cl, cl+1) under s, we return 0
iff cl+1 = Homs(c1, . . . , cl), where Homs(c1, . . . , cl) “sums” those ciphertexts ci
where ski = 1. The correctness of decryption follows.

Some notes are in order. Firstly, under G′, the secret key of the old scheme,
sk, is used only to compute the encryptions needed to form pk. Roughly, the
fact that s is independent of sk underlies the circular security of E ′. Secondly,
E′ has the somewhat unusual property that it calls G, with the returned values
comprising all the randomness used in encryption.

As a warm-up we first discuss CPA security of E ′. Consider a malformed
public key pkmal with rl+1 chosen independently at random (instead of being
s · r). CPA security under pkmal reduces to showing (pkmal, c0) ≡c (pkmal, c1),
where ≡c denotes computational indistinguishability, and

cb = (Esk′(0; r1), . . . , Esk′(0; rl), Esk′(b; rl+1)

This in turn follows by appealing to the CPA security and reproducibility of E .
To complete the CPA-security proof, it would suffice to argue that a malformed
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public-key is indistinguishable from a valid one, which follows information the-
oretically (from the leftover hash lemma) if l is large enough. Below we extend
the arguments given here to argue about KDM and leakage-resilience security
of the scheme.
KDM security. A main idea used in the proof of 1-circular security (for sim-
plicity) is that if one possesses s, then the encryption of a bit b may be equiv-
alently computed as c = (c1, . . . , cl, Hom(ci1 , . . . , ciw , c

′)), where sk′ ← G(1λ),
cj ← Esk′(0) for 1 ≤ j ≤ l, (i1, . . . , iw) are the indices of nonzero bits of s and
c′ = Esk′(b; 0) (i.e., c′ is the encryption of b where the randomness value is fixed
to the group identity 0.) Now we consider an intermediate hybrid, W1, in which
to encrypt the hth bit of s, we return (c1, . . . , cl, Hom(ci1 , . . . , ciw , c

′)), where
now ch is an encryption of 1, but every other cj is an encryption of 0 (and c′

is an encryption of sh under the identity randomness). We will show that W1

provides a view computationally indistinguishable from the real view, W0; the
main idea is that any distinguisher between W0 and W1 can be reduced to an
adversary A that wins in a special vector-encryption game (performed under E),
in which A may adaptively issue fixed-length vectors of bits (of a certain form),
and in response to each vector query v, either v or the all-zero vector (depend-
ing on the challenge bit) is component-wise encrypted under a fresh secret key,
but by reusing randomness across each fixed component of vectors (that is the
ith component of each vector is always encrypted under a fixed random ri).
In Lemma 3 we show any A has a negligible advantage under this game, and
use this to prove the indistinguishability of W0 and W1. (It turns out this last
step also requires us to use degenerate homomorphism to compute Esk′(1; 0)
obliviously to sk′.) Having proved the indistinguishability of W0 and W1 we no-
tice that under W1 the reply to “encrypt the hth bit of s” is indeed formed as
(Esk′(0; r1), . . . , Esk′(0; rh−1), Esk′(1; rh), Esk′(0; rh+1), . . . , Esk′(0; rl), Esk(0; s ·
r)), and in particular is independent of s beyond s · r, which makes the rest of
the proof follow smoothly using ideas described for the CPA case.

The described techniques might be called simulated KDM encryptions, orig-
inally introduced in [8], used also in subsequent works [4,9], which show how to
simulate KDM responses under public information. The main challenge in our
setting is how to enable such properties under our general assumptions.
Leakage resilience. For simplicity, we first outline the idea of the proof for the
case of nonadaptive leakage resilience (that is, the function f is queried before
the public key being published). To argue about nonadaptive leakage resilience,
one has to show D0 ≡c D1, where Db = (pk, cb, f(s)), and

cb = (Esk′(0; r1), . . . , Esk′(0; rl), Esk′(b; s · r))

Now since f is chosen independently of pk, it is also independent of r, which
allows us to apply the average-case version of the leftover hash lemma [16] (con-
sidering the inner product acts as a universal hash function) to replace s · r with
a totally random rl+1; the rest of the proof follows from the fact that E allows
secure reuse of randomness. For the adaptive case, to handle the issue that f
depends on pk (and so we cannot apply random extraction directly), we use sim-
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ilar techniques to those used by [35]: we consider a hybrid D′b, which is similar to
Db, but in which the first l bits encrypted under sk′ are independently random
bits b1, . . . , bl (as opposed to zeros) and that the last bit is s · (b1, . . . , bl) + b.
By proving D′b ≡c Db, for both b ∈ {0, 1}, (essentially using reproducibility and
semantic security of E) we can now apply the generalized leftover hash lemma by
taking (b1, . . . , bl) as the seed, s as the source and considering that bi’s are chosen
independently of f and r; this allows us to replace s ·(b1, . . . , bl) with a uniformly
random bit, proving D′0 is statistically close to D′1. The leakage resilience proof
follows. The proof for the auxiliary-input case essentially follows the same line of
arguments, except for replacing randomness extraction with pseudorandomness
extraction [22]. We refer the reader to the full proof.

Final remarks. Instantiating the above construction using homomorphic weak
PRFs provides an improvement in efficiency, matching the same level of effi-
ciency as [8] if the base PRF (in turn) is instantiated under the corresponding
assumption. Technically, in this case, it would suffice to define the public key
to be (d1, . . . , dl, s · (d1, . . . , dl)), i.e., instead of putting the whole ciphertext in
each component, we only give the underlying randomness, which would have
been given out by the ciphertext itself in the clear. Also, to encrypt m under
pk = (d1, . . . , dl, dl+1), we simply output (Fsk(d1), . . . , Fsk(dl), Fsk(dl+1) + m),
where sk is a fresh PRF key.

While our results enable us to explain those of [8,9,35], regarding KDM se-
curity and leakage resilience of the BHHO and BG schemes, they suffer from the
same limitations as those of [9], in that, in order to achieve KDM(n) security, we
must choose the parameters of our constructed scheme based on n. Boneh et al.
[8] get around this dependency by using the random self-reducibility of DDH and
strong key-homomorphism properties of DDH-based schemes. Similar dependen-
cies for (even specific) non-DDH-based assumptions occur in other settings as
well, e.g., [11]. We leave it as an open problem to resolve this dependency. We
should also mention that the BHHO and BG schemes were proved affine-KDM
secure; under the current assumptions, we were not able to extend our results to
the affine-KDM setting. Finally, we note that just the fact that we can build a
CPA-secure (as opposed to KDM secure) public-key scheme from our private-key
assumptions is not unheard of since even weaker forms of homomorphism are
known to be sufficient to bridge this gap [40].

Comparison with [42]. Concurrently with our work, Wee [42] recently showed
that the original HHPS-based encryption scheme of Cramer and Shoup [13]
provides F -KDM(1) security, where F is a function class defined based on the
underlying hash functions. (Specifically, following notation in Subsection 6.2,
F = {fc,k : SK 7→ K}, where fc,k(sk) = Λsk(c) + k.) We note that the basic KDM
setting of [42] is different from ours in that we are concerned with KDM-security
with respect to bit-projections of the secret key. Nevertheless, by instantiat-
ing that framework under specific DDH/SG-based HHPSs, [42] obtains schemes
that are close variants of BHHO and BG. Moreover, the results of [42] also ex-
plain the bit-affine-security of BHHO and BG, while our results only explain
the projection security. On the other hand, we obtain HHPS-based schemes that
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are n-projection secure, while the results of [42] do not seem to extend to the
multiple-key setting (as noted there). Moreover, by using an encryption-based
primitive as our base assumptions, we are able to obtain generic constructions
under homomorphic weak PRFs, that is a weaker abstraction than the HHPS,
as we show.

Other related work. Choi and Wee [12] show how to construct lossy trapdoor
functions from homomorphic reproducible encryption by abstracting the matrix-
based construction of Peikert and Waters [37]. This shows one more application
of homomorphic weak PRFs as a general primitive. We mention, however, that
the main difference between our constructions and those of [37,12] is that in
[37,12] the trapdoor key of the constructed schemes consists of secret keys pro-
duced under the base scheme, while in our setting, the main challenge (and
novelty) is to come up with a construction whose encryption function still some-
how calls that of the base scheme (in order to inherit its security), but in such a
way that the secret keys of the base scheme are not included in the constructed
secret key.

2 Definitions

2.1 Standard Notation and Definitions

For a finite set S we use x← S to denote sampling x uniformly at random from
S and denote by US or U(S) the uniform distribution on S. If D is a distribution
then x ← D denotes choosing x according to D. We denote the support set of
a distribution D by Sup(D), and write x ∈ D to indicate x ∈ Sup(D). The
notions of computational indistinguishability and statistical indistinguishability
are standard. We use ≡c to refer to computational indistinguishability, ≡s to
statistical indistinguishability and ≡ to identity of two distributions. We use the
term PPT in this paper in the standard sense. We will often omit the adjec-
tive PPT/efficient when discussing functions – by default we assume all such
functions are efficient.

We denote the length of x ∈ {0, 1}∗ by |x| and the ith bit of x, for 1 ≤ i ≤ |x|,
by xi. We denote the n-th Cartesian power of a set S by Sn. We call f : N→ R
negligible if f(λ) < 1/P (λ), for any poly P and sufficiently large λ.

All groups are assumed to admit efficient group operations, and to be com-
mutative, but not necessarily cyclic, unless otherwise indicated.

2.2 Syntax of encryption schemes

We first start with some notation. We use A(a1, a2, . . . ; r) to denote the deter-
ministic output of randomized function A on inputs a1, a2, . . . and randomness
r, and use x← A(a1, a2, . . . ) to denote the distribution formed by first choosing
r uniformly at random and then outputting A(a1, a2, . . . ; r).

We assume that all cryptographic primitives (encryption, PRFs, etc) dis-
cussed in this paper, besides their usual algorithms, have a parameter-generation
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algorithm that produces public parameters (e.g., a group) used by all other al-
gorithms. In situations where we talk about generating many keys it should be
understood that all keys are sampled under the same public parameters, which
were generated randomly at the beginning. We now give the syntax of encryption
schemes.

A public-key encryption scheme E is given by algorithms (Param,G,E,Dec),
all taking as input a security parameter 1λ (that we make it explicit for Param
and G and implicit for other algorithms.) Param takes input 1λ, and outputs
a public parameter, par. The key-generation algorithm, takes 1λ and par and
outputs public/secret keys, (pk, sk)← G(1λ, par). The encryption algorithm E,
takes a public key pk, a plaintext m ∈Mλ (whereMλ is the plaintext space) and
randomness r ∈ Rλ (where Rλ is the randomness space), and deterministically
produces ciphertext c = Epk(b; r). Finally, the decryption algorithm takes a
secret key sk and ciphertext c, and deterministically outputs m = Decsk(c). For
correctness, we require, for every par ∈ Param(1λ), (pk, sk) ∈ G(1λ, param),
every m and c ∈ Epk(m), that Decsk(Epk(m)) = m. We typically use PKλ and
SKλ to refer to the public-key and secret-key spaces. Formally, (PKλ,SKλ) =
Sup(G(1λ)). We make the inclusion of Param implicit henceforth.

2.3 Key-dependent-message security

In this paper we consider encryption schemes, whose generated secret keys are
always bitstrings, but whose plaintext space may or may not be the single-bit
space, e.g., it may be a group space. For the latter case, in order to make the
notion of bitwise encryption of the secret key meaningful, we assume that a
fixed mapping ({0, 1} →Mλ) is already in place. In the following, when we say
Epk(b), where b is a bit, if E is a bit encryption algorithm, then we are encrypting
the actual bit b, and otherwise, we are encrypting the element that b is mapped
to. We now proceed to describe the notion of KDM(n) security for an arbitrary
encryption scheme E = (G,E,Dec) (bit encryption or otherwise).

Assume that F = {Fλ}λ∈N is an ensemble of sets of functions, where for each
f ∈ Fλ, it holds that f : SKnλ → {0, 1}.

We define F -KDM(n) security through the following F -KDM(n) game, played
between a challenger and an adversary. The challenger first chooses b← {0, 1},
generates (pk1, sk1), . . . , (pkn, skn) ← G(1λ), and gives pk1, . . . , pkn to the ad-
versary. The adversary A, given pki’s, can repeatedly and adaptively, for 1 ≤
i ≤ n, make queries of the form (i, f), where f ∈ Fλ, or of the form (i,m), where
m ∈Mλ, and in return,

– If b = 0, the challenger returns Epki(f(sk1, . . . , skn)) in response to (i, f)
and Epki(m) in response to (i,m); and

– If b = 1, the challenger returns Epki(0).

A finally outputs a bit b′. We define the F -KDM(n) advantage of A as

AdvF -KDM(n)

(A) = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| ,
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where the probabilities are computed over the coins of A and of the challenger.
We say that E is F -KDM(n)-secure if for any A in the above game, it holds

that AdvF -KDM(n)

(A) = negl.
Assume SKλ = {0, 1}l(λ) and let l = l(λ). For 1 ≤ i ≤ n and 1 ≤ j ≤ l,

define Seli,j : SKnλ 7→ {0, 1} to be the function that on input (sk1, . . . , skn)
returns the jth bit of ski. Similarly, define NSeli,j to be the function that on
input (sk1, . . . , skn) returns the negation of the jth bit of ski. Finally, define
Sλ = {Seli,j : 1 ≤ i ≤ n, 1 ≤ j ≤ l} and Ŝλ = {NSeli,j : 1 ≤ i ≤ n, 1 ≤ j ≤ l}.
We now give the following definitions.

– We call E n-circularly secure if E is F -KDM(n) secure, where Fλ = Sλ.
– We call E n-projection secure if E is F -KDM(n) secure for Fλ = Sλ ∪ Ŝλ.

Semantic security for private-key encryption. For a private-key encryption
scheme (G,E,Dec) it is convenient to work with the following definition of CPA
security. (1) The challenger chooses b← {0, 1} and private key sk ← G(1λ). (2)
The adversary submits a sequence of messages (m1, . . . ,mp), where p = p(λ)
is an arbitrary function. (3) The challenger returns (Esk(m1), . . . , Esk(mp)) if
b = 0, and (Esk(0), . . . , Esk(0)), otherwise. (4) The adversary returns a bit b′.
We define the CPA-security advantage of the adversary as

|Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| ,

and call the scheme CPA secure if all adversaries have negligible advantage.

2.4 Leakage resilience

We define the notion of leakage resilience. For £ = £(λ), we say that the public-
key encryption scheme E = (G,E,Dec) is £-length leakage resilient if, for any
adversary A, the £-leakage-advantage of A, Adv£-leak(A), defined via the fol-
lowing game, is negligible.

– Setup: The challenger generates (pk, sk)← G(1λ) and gives pk to A.
– Leakage queries: A sends function f : SKλ → {0, 1}∗ to the challenger,

where |f(sk)| ≤ £, and receives, in response, f(sk).
– Challenge: A submits (m0,m1) ∈ M2

λ, and the challenger, samples b ←
{0, 1}, and returns Epk(mb) to A. Finally, A returns an output bit b′.

We define Adv£-leak(A) = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| . We say that E is
r-rate leakage resilient (or has resilience rate r) if E is r · log |SK|-length leakage
resilient.

Finally, we note that restricting A in the above game to a single leakage
query is without loss of generality. In particular, the security definition does
not become stronger if A is allowed to adaptively make multiple leakage queries
provided that the total length of the bits leaked is bounded by £(λ). The proof
of this fact is straightforward; see [1] for a proof.
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2.5 Properties of the base scheme

We give the definitions of the main properties that we need from the base private-
key encryption scheme.

Definition 1. A private-key encryption scheme E = (G,E,Dec) provides re-
producibility (or is reproducible) if there is an efficient function Rep such that
for any sk, sk′ ∈ G(1λ), r ∈ Rλ and m1,m2 ∈Mλ,

Rep(Esk(m1; r),m2, sk
′) = Esk′(m2; r).

Definition 2. Let E = (G,E,Dec) be a private key encryption scheme where
both (Rλ,+) and (Mλ,+) form groups. Then E is additively homomorphic with
respect to plaintexts and randomness (PR-additively homomorphic) if there is
an efficient function Hom such that for every sk ∈ G(1λ), m1,m2 ∈ Mλ, and
r1, r2 ∈ Rλ,

Hom (Esk(m1; r1), Esk(m2; r2)) = Esk(m1 +m2; r1 + r2).

We extend the notation of Hom(·) to define Hom(c1, . . . , cm) in the straight-
forward way. For technical reasons, we also need the following condition: for
any sk, m, r and m′, given only m′ and Esk(m; r), we can form the ciphertext
Esk(m′, 0), where 0 denotes the identity element of Rλ. We sometimes refer to
this property as the degenerate condition.

Henceforth, when discussing encryption schemes, we will use “homomorphic” as
shorthand for “PR-additively homomorphic.”

3 Construction

We first fix some notation. Throughout this section we will be working with
additive notation for groups with 0 denoting the identity element. For g =
(g1, . . . , gp) ∈ Gp and b = (b1, . . . , bp) ∈ {0, 1}p we define b · g = b1 · g1 +
· · ·+ bp · gp ∈ G, where, 0 · g = 0, and for n ∈ N, we define n · g = g+ (n− 1) · g.

We present a generic construction that transforms a reproducible, homomor-
phic private-key encryption scheme into a public-key bit-encryption scheme. This
always produces a bit-encryption scheme even if the base scheme is not. In the
full version we show how to adjust the construction, to maintain the plaintext
space, at the cost of additional syntactic assumptions (which are satisfied by our
specific instantiations).

For simplicity, we present (and prove the security of) the bit-encryption con-
struction for the case where the base scheme is also bit encryption.

Let E = (G,E,Dec,Hom,Rep) be a CPA-secure private-key bit-encryption
scheme providing reproducibility (with the associated function Rep) and homo-
morphism (with the associated function Hom). Recall for homomorphism, both
the message space, {0, 1}, and the randomness space, Rλ, form groups, which
implies the plaintext group is just Z2. We now present the construction.
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Construction 1 (Single bit encryption): Let E = (G,E,Dec,Hom,Rep) be as
above and let l = l(λ) be a value that we instantiate later.

– Key generation G′: Choose the secret key as s← {0, 1}l and the public key as
(Esk(0; r1), . . . , Esk(0; rl), Esk(0; s · r)), where sk ← G(1λ), r1, . . . , rl ← Rλ
and r = (r1, . . . , rl).

– Encryption E′: To encrypt bit b under public key (c1, . . . , cl, cl+1), do the
following: choose sk′ ← G(1λ) and return (c′1, . . . , c

′
l, c
′
l+1), where c′i =

Rep(ci, 0, sk
′), for 1 ≤ i ≤ l, and c′l+1 = Rep(cl+1, b, sk

′).

– Decryption Dec′: To decrypt (c′1, . . . , c
′
l, c
′
l+1) under secret key s, letting (i1, . . . , iw)

be the indices of non-zero bits of s, output 0 if c′l+1 = Hom
(
c′i1 , . . . , c

′
iw

)
,

and 1 otherwise.

The completeness of the scheme follows immediately. A few comments are in
order. First, the encryption algorithm of the constructed scheme uses that of the
base scheme, but by reusing the randomness values of the ciphertexts given in
the public key. Second, the constructed decryption function does not need any
secret keys of the base scheme, e.g., sk, for its computation. Roughly, this is why
proving circular security for the constructed scheme should not be much harder
than proving CPA security. In our security proofs, we will rely on the fact that
we may use the homomorphism properties of the base primitive to form public
keys and encryptions in alternate, equivalent ways as described below.

Proposition 1 1. The public key may be computed as (c1, . . . , cl, cl+1), where
ci ← Esk(0), for 1 ≤ i ≤ l, and cl+1 = Hom (ci1 , . . . , ciw), where (i1, . . . , iw)
are the indices of non-zero bits of s.

2. Let s, sk′ and c′1, . . . , c
′
l be as in the definition of encryption in Construc-

tion 1. Then, c′l+1 may be computed as c′l+1 = Hom(ci1 , . . . , ciw , Esk′(b; 0)),
where (i1, . . . , iw) are the indices of non-zero bits of s.

4 Proof of projection security

In this section we give the proof of projection security of our constructed scheme.
This section is organized as follows. In Subsection 4.1 we reviews some facts
related to entropy which are needed by our proofs. In Subsection 4.2 we introduce
an intermediate lemma that will be used in the proofs of our main theorems.
Finally, in Subsection 4.3 we give the proof for projection security.

4.1 Information-theoretic tools

We denote the min-entropy of a distribution D by H∞(D), defined as H∞(D) =

mind∈D

[
log( 1

Pr[D=d] )
]
. We also need to work with the notion of average min

entropy, formalized by Dodis et al. [16], which measures the expected unpre-
dictability of X given a random value y of Y . Formally,

H̃∞(X|Y ) = − log
(
Ey←Y (2−H∞(X|Y=y))

)
= − log

(
Ey←Y (max

x
Pr[X = x|Y = y])

)
.
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A well-known fact about average-min entropy is a special form of the chain
rule, saying that conditioning on a random variable Y , the average min entropy
decreases by at most the logarithm of the support size of Y .

Lemma 1. ([16]) For any (X,Y, Z) it holds that H̃∞(X|Y,Z) ≥ H̃∞(X|Z) −
log |Sup(Y )|.

A family of functions {h : D → R}h∈H is called universal if for all x1, x2 ∈ D,
with x1 6= x2, it holds that

Pr
h←H

[h(x1) = h(x2)] ≤ 1

|R|
.

We typically denote a family of functions {h : D → R}h∈H as a single function
H : D×H → R, where H(d, h) = h(d). We have the following fact, showing that
universal hash functions are good average-case extractors.

Lemma 2. ([16]) If Ext : {0, 1}n × W → W ′ is a family of universal hash
functions, then for any pair of random variables (D,X), where D takes values
in {0, 1}n, it holds that

∆ ((Ext(D,S), S,X), (R,S,X)) ≤ 1/2

√
2−H̃∞(D|X)|W ′|,

where S is uniform over W , R is uniform over W ′ and ∆ denotes statistical
distance. We stress that S is independent of (D,X).

4.2 A Useful lemma

We begin by introducing a game that will be used in proving our main results.
Intuitively, the following experiment corresponds to a vector-encryption game,
in which an adversary may interactively issue vectors of bits (of certain forms) to
be encrypted, and each vector is component-wise encrypted under a fresh secret
key while reusing randomness across each fixed component of vectors.

The randomness-sharing (RS) Game. Let (G,E,Dec) be a private-key bit-
encryption scheme. As some notation, for l ∈ N, we let eli, for 1 ≤ i ≤ l,
be the the vector of size l which has 1 in the ith position and 0 everywhere
else, and e′

l
i, for 1 ≤ i ≤ l, be the vector of size l which has 1 in both its

ith position and last position, and 0 everywhere else. We let 0l be the all-0
vector of size l. Finally, for b = (b1, . . . , bl) and r = (r1, . . . , rl), we define
Esk(b; r) = (Esk(b1; r1), . . . , Esk(bl; rl)).

The game is parameterized over l = l(λ) and is played as follows.
The challenger chooses b ← {0, 1} and it samples r = (r1, . . . , rl) ← Rlλ.

Then the game proceeds as follows: the adversary repeatedly and adaptively
makes queries of the form e, for e ∈ {0l} ∪ {el1, . . . , ell} ∪ {e′

l
1, . . . , e

′l
l}, and in

response to each such query, the challenger samples sk ← G(1λ) (using fresh
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coins for each query) and returns Esk(e; r) if b = 0, and Esk(0l; r), otherwise.
Finally, the adversary outputs a bit b′ and its advantage is defined as:

Advp-rs (A) = Pr [b′ = 1 | b = 0]− Pr [b′ = 1 | b = 1] .

The following lemma is used extensively in our subsequent proofs.

Lemma 3. Assume E = (G,E,Dec,Rep) is a CPA-secure, private-key bit-
encryption scheme that provides reproducibility. For any polynomial functions
l(·), any adversary A in the l-RS game has a negligible advantage.

Proof. First, we introduce the following notation. For b = (b1, . . . , bl) and c =
(c1, . . . , cl), define

Rep(c,b, sk) = (Rep(c1, b1, sk), . . . , Rep(cl, bl, sk)) .

Assuming that A makes t = t(λ) queries q1, . . . ,qt we define the hybrid Wi, for
1 ≤ i ≤ t+ 1, as follows: first generate randomness vector r = (r1, . . . , rl)← Rl
and respond to queries as follows: in response to the j’th query, for 1 ≤ j < i,
generate skj ← G(1λ) and return Eskj (qj ; r) (i.e., encryption of the actual
vector); and in response to the w’th query, for w ≥ i, generate skw ← G(1λ)
and return Eskw(0l; r) (i.e., encryption of the all-zero vector). Note that W1 and
Wt+1 match exactly the view of the adversary produced under the the RS game
when b = 1 and b = 0, respectively. Thus, for the rest of the proof, we show how
to reduce an adversary that can distinguish between Wi and Wi+1, for some
1 ≤ i ≤ t, to an adversary against the CPA security game; the whole proof then
follows using a standard hybrid argument.

Assume that A′ can distinguish between Wi and Wi+1 with a non-negligible
advantage. Noting that Wi and Wi+1 only differ in the way that the answer
to the ith query is made, and that each query vector can take at most 2l + 1
different values, we guess the ith query vector (that is going to be issued by A′),
call the LOR-CPA oracle, which is parameterized over an unknown secret key, on
the guessed vector to receive c = (c1, . . . , cl), and start simulating A′ as follows:
in response to the j’th query, qj , for 1 ≤ j < i, we generate skj ← G(1λ) and
return Rep(c,qj , skj); in response to the ith query we return c (if our guess for
qi was incorrect, we stop and return a random bit); and in response to the w’th
query, qw, for w > i, we generate skw ← G(1λ) and return Rep(c,0l, skw). Now
it is easy to see that, if our guessing for the ith query was correct, depending
on whether the CPA-challenge bit was zero or one, the resulting experiment
matches exactly either Wi or Wi+1. This completes the proof. ut

4.3 Proof of projection security

We first give the proof of 1-projection security of our scheme, building on tech-
niques from [9], which in turn generalize the DDH-based techniques of [8].

Theorem 1. Let E = (G,E,Dec,Hom,Rep) be a CPA-secure private-key bit-
encryption scheme providing degenerate homomorphism and reproducibility.Then,
by taking l = l(λ) = ω(log λ) + log (|Rλ|), the scheme built in Construction 1 is
1-projection secure.
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Proof. To represent the 1-projection game more concisely, we denote:
– enc-secret(i) encrypt the ith bit of the secret key; and

– enc-secret(̄i) encrypt the negation of the ith bit of the secret key.
We introduce a series of hybrid games and show no adversary can distinguish be-
tween any two adjacent games. The first game corresponds to the real-encryption
circular-security game, while the last game is the one where we always encrypt
0. Letting xi be the adversary’s output in Game-i, we write Game-i ≡G Game-j
to indicate |Pr[xi = 1]− Pr[xj = 1]| = negl. In all these games, whenever we
write, say, sk′ ← G(1λ) we mean that sk′ is chosen freshly, so we may keep
using the same variable sk′ inside each game whenever we are producing a new
key. Let R = Rλ for the following discussion. Also, recall the notation Esk(b, r)
introduced in Subsection 4.2. Below we write ei as shorthand for eli.

Game-0: real encryption. This game provides the adversary with a view that is
identical to that under the projection security game in which the challenge bit
is zero. The identical view is produced by using the algorithm Hom to produce
the public key and to reply to encryption queries. (See Proposition 1.)

Generate r = (r1, . . . , rl) ← Rl and s ← {0, 1}l and let (i1, . . . , iw) be the
indices of nonzero bits of s. Then,

– the adversary is given (c1, . . . , cl, Hom(ci1 , . . . , ciw)) as the public key, where

(c1, . . . , cl) = Esk(0l; r)

and sk ← G(1λ).
– In response to enc-secret(i) we return (c′1, . . . , c

′
l, Hom(c′i1 , . . . , c

′
iw
, Esk′(si; 0))),

where

(c′1, . . . , c
′
l) = Esk′(0

l; r)

and sk′ ← G(1λ). Again we emphasize sk′ is chosen freshly for each query.
– In response to enc-secret(̄i) we return (c′′1 , . . . , c

′′
l , Hom(c′′i1 , . . . , c

′′
iw
, Esk′′(s̄i; 0))),

where

(c′′1 , . . . , c
′′
l ) = Esk′′(0

l; r)

and sk′′ ← G(1λ).

Game-1: In this game we handle key generation exactly as in Game-0, but we
reply to enc-secret queries in a special way. Formally, generate r = (r1, . . . , rl)←
Rl and s← {0, 1}l and let (i1, . . . , iw) be the indices of nonzero bits of s. Then,

– the adversary is given (c1, . . . , cl, Hom(ci1 , . . . , ciw)) as the public key, where
(c1, . . . , cl) = Esk(0l; r), for sk ← G(1λ).

– In response to enc-secret(i) we return (c′1, . . . , c
′
l, Hom(c′i1 , . . . , c

′
iw
, Esk′(si; 0))),

where (c′1, . . . , c
′
l) = Esk′(ei; r) and sk′ ← G(1λ).

– In response to enc-secret(̄i) we return (c′′1 , . . . , c
′′
l , Hom(c′′i1 , . . . , c

′′
iw
, Esk′′(s̄i; 0))),

where (c′′1 , . . . , c
′′
l ) = Esk′′(ei; r) and sk′′ ← G(1λ).
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We claim that the difference between Game-0 and Game-1 can be simu-
lated through the l-RS game. The reason is if we know s, then we can compute
Hom(c′i1 , . . . , c

′
iw
, Esk′(si; 0)) from (c′1, . . . , c

′
l) even if we do not have sk′: note

that here we are using the degenerate condition of the homomorphism prop-
erty. A similar argument holds with respect to c and c′′. Moreover, for every
1 ≤ j ≤ l, the ciphertexts cj , c

′
j and c′′j were formed under the same random-

ness. Thus, we can reduce any distinguisher betweenGame-0 and Game-1 to an
l-RS game adversary A as follows: A samples s← {0, 1}l and lets (i1, . . . , iw) be
the indices of nonzero bits of s; it calls its RS-oracle on 0l to receive (c1, . . . , cl)
and then returns (c1, . . . , cl, Hom(ci1 , . . . , ciw)) as the public key; it responds to
enc-secret(i) by first calling its oracle on ei to get (c′1, . . . , c

′
l) and then return-

ing (c′1, . . . , c
′
l, Hom(c′i1 , . . . , c

′
iw
, Esk′(si; 0))); it responds to enc-secret(̄i) in a

similar way. Thus, by Lemma 3 we obtain that Game-0 ≡G Game-1.
Finally, note that under this game, the distribution of the public key and the

distributions of responses to enc-secret(i)’s and to enc-secret(̄i)’s are:(
Esk(0l; r), Esk(0; rl+1)

)
public key

(Esk(ei; r), Esk′(0; rl+1)) enc-secret(i)

(Esk(ei; r), Esk′′(1; rl+1)) enc-secret(̄i), (1)

where sk, sk′, sk′′ ← G(1λ), s ← {0, 1}l and r = (r1, . . . , rl) ← Rl and rl+1 =
s · r. In particular, note that the bits of s never appear as a plaintext (under E)
in Equation 1, and the only place we use s is to form rl+1.

Game-2: This game proceeds exactly as in Game-1, except we now sample rl+1

independently of all other ri’s. Namely, we sample (r1, . . . , rl, rl+1) ← Rl+1

and run the game by forming the public key and responses to the adversary’s
queries exactly as in Equation 1. Notice that the entire game can be simulated
by only knowing (r1, . . . , rl, rl+1): we generate the public key and we answer
to enc-secret queries by sampling sk, sk′ and sk′′ on our own and forming the
outputs as spelled out by Equation 1. (Here we are exploiting the fact that
the bits of s never appear as a plaintext under E in Equation 1.) Thus, since
l = ω(log λ) + log (|R|) and the inner product is a family of universal hash
functions, by Lemma 2 (indeed by the Leftover Hash Lemma, which is a special
case of Lemma 2) we obtain that the statistical distance between (r, s · r) and a

tuple chosen uniformly at random from Rlλ is at most
√

1/2ω(log λ) = negl(λ),
and thus Game-1 ≡G Game-2.

Game-3: In this game we again sample rl+1 independently of other ri’s, but reply
to all queries as “encryptions” of zero. That is, we generate (r1, . . . , rl, rl+1) ←
Rl+1 and form the public key and responses to the adversary’s queries as follows:

(Esk(0; r1), . . . , Esk(0; rl), Esk(0; rl+1)) public key

(Esk′(0; r1), . . . , Esk′(0; rl), Esk′(0; rl+1)) response to all queries (2)

where, again, sk′ is sampled freshly for each query. Now using the fact that all
ri’s are sampled independently, and also that sk′ is generated using fresh coins
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each time, we obtain that any adversary that can distinguish between Game-2
and Game-3 can be reduced to break the (l + 1)-RS security of E (which is a
contradiction by Lemma (3)). Thus, Game-2 ≡G Game-3.

Game-4: In this game we change back the distributions of ri’s to the original, but
answer to all the adversary’s queries as encryptions of zero. That is, we generate
s← {0, 1}l, r = (r1, . . . , rl)← Rl, let rl+1 = s · r, and form the public key and
responses to the adversary’s queries as follows:

(Esk(0; r1), . . . , Esk(0; rl), Esk(0; rl+1)) public key

(Esk′(0; r1), . . . , Esk′(0; rl), Esk′(0; rl+1)) responses to all queries (3)

Now, similarly to our proof of Game-1 ≡G Game-2, since Game-3 and Game-4
differ only in the way that (r1, . . . , rl, rl+1) is generated, and again using the fact
that l = ω(log λ) + log (|R|), by applying Lemma 2, we conclude that Game-3
≡G Game-4. This completes the proof. ut

We give the statement of n-projection security below, and give the proof in
the full version [24].

Theorem 2. Let E = (G,E,Dec,Hom,Rep) be a CPA-secure private-key bit-
encryption scheme providing degenerate homomorphism and reproducibility. For
any constant c > 1, by taking l = n log (|Rλ|) + ω(log λ), the scheme built in
Construction 1 is n-projection secure.

5 Proof of leakage resilience

The following theorem shows the leakage resilience property of our scheme.

Theorem 3. Let E = (G,E,Dec,Hom,Rep) be a CPA-secure private-key bit-
encryption scheme providing degenerate homomorphism and reproducibility. Then,
the scheme built in Construction 1 is (l − log |Rλ| − u)-length leakage resilient,
for any u ∈ ω(log λ). Moreover, by taking l = ω(log |Rλ| + u), the constructed
scheme achieves a (1− o(1)) resilience rate.

Proof. We first show the second statement of the theorem, assuming the first
statement is true. Fix u ∈ ω(log λ). We know that the scheme provides (l −
log |Rλ| − u)-length leakage resilience, and so its resilience rate is

ω (log |Rλ|+ u)− log |Rλ| − u
ω(log |Rλ|+ u)

= 1− log |Rλ|+ u

ω(log |Rλ|+ u)
= 1− o(1). (4)

To prove the first statement, first we assume without loss of generality that
the adversary always outputs (0, 1) as its challenge query, since otherwise the
challenge ciphertext can be simulated by the adversary itself. We prove the first
statement through a series of games, where the first game matches the actual
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leakage game (under a fixed challenge bit b), and in the last game the view of
the adversary is independent of the challenge bit b. We conclude the proof by
showing that the views of the adversary under any two adjacent games under
the same b ∈ {0, 1} are computationally indistinguishable. Thus, fix b ∈ {0, 1}
for the rest of the proof. In all game below, we let f be the leakage query of the
adversary.

Game-0: In this game we reply to the adversary’s queries exactly as in the
actual leakage game, where the challenge bit is b. Thus, at the end of the game,
the view of the adversary is (c1, . . . , cl, cl+1, f(s), c′1, . . . , c

′
l, c
′
l+1), produced as

follows: s ← {0, 1}l, r = (r1, . . . , rl) ← Rlλ, rl+1 = s · r, sk ← G(1λ), sk′ ←
G(1λ), ci = Esk(0; ri), for 1 ≤ i ≤ l + 1, c′j = Esk′(0; rj), for 1 ≤ j ≤ l, and
c′l+1 = Esk′(b; rl+1).

Notice that the view of the adversary may identically be produced as

(c1, . . . , cl, c
′′
l+1, f(s), c′1, . . . , c

′
l, c
′′′
l+1), (5)

where all ci’s and c′i’s are produced as above, and c′′l+1 = Hom(ch1
, . . . , chw

)
and c′′′l+1 = Hom(c′h1

, . . . , c′hw
, Esk′(b; 0)) with (h1, . . . , hw) being the indices of

non-zero bits of s.

Game-1. In this game we generate the secret key, the public key and the response
to the leakage query exactly as in Game-0, but we reply to the encryption chal-
lenge query in a special way. Formally, choose s← {0, 1}l, r = (r1, . . . , rl)← Rlλ,
let (h1, . . . , hw) be the indices of non-zero bits of s, and

– form the public key as (c1, . . . , cl, c
′′
l+1), where sk ← G(1λ), ci = Esk(0; ri),

for 1 ≤ i ≤ l, and c′′l+1 = Hom(ch1
, . . . , chw

);
– reply to the the leakage query f with f(s);
– return (c′1, . . . , c

′
l, c
′′′
l+1) as the challenge ciphertext, where b = (b1, . . . , bl)←

{0, 1}l, sk′ ← G(1λ), c′j = Esk′(bj ; rj), for 1 ≤ j ≤ l, and

c′′′l+1 = Hom(c′h1
, . . . , c′hw

, Esk′(b; 0)).

To show Game-0 ≡G Game-1, note that both games can be simulated in
exactly the same way by only having D = (c1, . . . , cl, c

′
1, . . . , c

′
l) (see Equation

5); this can be done by sampling s by ourselves and forming c′′l+1 and c′′′l+1 from,
respectively, (c1, . . . , cl) and (c′1, . . . , c

′
l) by using the degenerate homomorphic

property of E . Further, since E is reproducible, in both games the distribution of
(c1, . . . , cl) can be generated from (c′1, . . . , c

′
l) alone. Now since the distributions

produced for (c′1, . . . , c
′
l) under the two games are computationally indistinguish-

able, which is followed by semantic security (recall that in Game-0, c′i’s are en-
cryptions of zeros and in Game-1, they are encryptions of the bits of b), we get
that the distributions produced for D under the two games are computationally
indistinguishable. Thus, we conclude Game-0 ≡G Game-1. Notice that, under
Game-1, the view of the adversary is(

Esk(0; r1), . . . , Esk(0; rl), Esk(0; s · r), f(s),

Esk′(b1; r1), . . . , Esk′(bl; rl), Esk′(bl+1 + b; s · r)
)
, (6)
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where bl+1 = s · b.

Game-2. This game runs exactly as in Game-1 (Equation 6), except that now
we generate bl+1 ← {0, 1}, i.e., independent of b = (b1, . . . , bl). First, notice that
both Game-1 and Game-2 can be simulated in exactly the same manner by only
having

Dis = (r, s · r,b, bl+1, f(s)). (7)

The only difference between Dis from Game-1 to Game-2 is that under Game-1
we set bl+1 = s · b, while in Game-2 we sample bl+1 freshly; the other parts of
Dis are generated in the same way under both games: that is, s ← {0, 1}l and
r = (r1, . . . , rl)← Rlλ. Thus, to show the indistinguishability between these two
games, it suffices to show that the distributions of Dis under the two games are
indistinguishable. We have,

H̃∞(s|r, s · r, f(s)) ≥ H̃∞(s|r, f(s))− log|Rλ|
= H̃∞(s|f(s))− log|Rλ|
≥ H∞(s)− l + log |Rλ|+ u− log|Rλ|
= u = ω(log λ).

Now, since r is independent of b, and also that f is independent of b (since
f is queried before seeing the challenge ciphertext) we may use Lemma 2 to
deduce that the distribution of Dis under Game-1 and Game-2 are statistically
indistinguishable. To apply Lemma 2, take D = s, S = b and X = (r, s ·r, f(s)).
Notice that Game-2 produces the same views for the adversary under b = 0 and
b = 1 (since bl+1 is chosen uniformly at random and hides the value of b), and
hence the proof is complete. ut

6 Realizations

We show how to realize our base encryption primitive under various number-
theoretic assumptions. In Subsection 6.1 we formulate an abstraction, called
homomorphic weak pseudorandom functions, and use them to realize our encryp-
tion primitive. Then in Subsection 6.2 we give realizations of such pseudorandom
functions using homomorphic hash-proof systems. Finally, in Subsection 6.3 we
show how to realize our encryption primitive under subgroup indistinguishably.

6.1 Realizations from homomorphic weak PRFs

We introduce the notion of homomorphic weak pseudorandom functions (PRFs),
which is a homomorphic version of the notion of weak PRFs, introduced by Naor
and Reingold [34].

Let K = {Kλ}λ∈N, D = {Dλ}λ∈N and R = {Rλ}λ∈N be ensembles of sets.
For each security parameter λ and each k ∈ Kλ we have an associated function
fk : Dλ → Rλ. We let Fλ = {fk | k ∈ Kλ} and F = {Fλ}λ∈N. The following is
the definition of weak pseudorandomness for a function family.
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Definition 3. [34] We call F a weak pseudorandom function family if for any
polynomial function p = p(λ), it holds that DS1 ≡c DS2, where

DS1 ≡ (d1, r1), . . . , (dp, rp)

DS2 ≡ (d1, fk(d1)), . . . , (dp, fk(dp)),

for k ← Kλ, d1, . . . , dp ← Dλ and r1, . . . , rp ← Rλ.4

Note that a PRF in the standard sense is trivially a weak PRF.
Let F be as above. We call F homomorphic if for every λ ∈ N, both Dλ and

Rλ are groups, and that for every k ∈ Kλ, the function fk is a homomorphism
from Dλ to Rλ.

Now we show that the standard method of constructing CPA-secure private-
key encryption from a PRF, when applied to a homomorphic weak PRF, results
in the kind of encryption primitive we need.

Lemma 4. Assuming the existence of a homomorphic weak pseudorandom func-
tion family, there exists a CPA-secure private-key encryption scheme which is
degenerately homomorphic and reproducible.

Proof. Let F be a homomorphic weak PRF with the associated set parameters
given above (i.e., Kλ, etc.). Construct E = (G,E,Dec), with plaintext space Rλ
and randomness spaces Dλ as follows: G(1λ) returns k ← Kλ; Ek(p1; d1) returns
(d1, fk(d1)+p1); and Deck(d, r) returns r−fk(d). CPA-security, homomorphism
and reproducibility of E are clear. Finally, note that since fk(0) = 0, we have
Ek(p; 0) = (0, p), which verifies the degenerate case of homomorphism. ut

6.2 Homomorphic hash-proof systems to homomorphic weak PRFs

We first review the notion of a homomorphic hash-proof system (HHPS), origi-
nally defined in [13]. Then we realize homomorphic weak PRFs using an HHPS.

A HHPS HHPS = (Param,Priv,Pub) is described as follows. The randomized
setup algorithm Param(·) takes as input a security parameter 1λ and outputs
public parameters HP = (C,Cv,W,K,SK,PK, µ : SK → PK,Λ : SK × C → K),
where, C is called the set of ciphertexts, Cv ⊆ C the set of valid ciphertexts, W
the set of witnesses, K the set of plaintexts, SK the set of secret keys and PK the
set of public keys. We should point out that all these aforementioned sets are
indeed descriptions of their actual sets. Each c ∈ Cv admits a witness w ∈W of
its membership in Cv, meaning that there exists a PPT relation R such that

c ∈ Cv ⇔ ∃w ∈W s.t. R(c,w) = 1.

We assume it is efficiently possible to generate a uniform element from Cv along
with a corresponding witness, and also to sample uniformly from SK and K.

4 The domain and the key spaces may themselves come with an associated distribution,
but we leave this point implicit for simplicity.
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The efficient private evaluation algorithm Priv takes as input sk ∈ SK and
c ∈ C, and deterministically computes Privsk(c) = Λ(sk, c). The efficient public
evaluation algorithm Pub, takes as input pk = µ(sk), c ∈ Cv and a witness w
for c, and deterministically computes Pubpk(c,wc) = Λ(sk, c). Finally, we require
HHPS to satisfy the following properties.

Subset membership: For every adversary A, given all the public parameters
of the scheme, it holds that

|Pr [A(cv) = 1]− Pr [A(cinv) = 1]| = negl(λ),

where, cv ← Cv, cinv ← C \ Cv and the probabilities are computed over the
random coins of the adversary and over the choices of cv and cinv, and also over
the choices of C and Cv, which are taken from the output of Param(1λ).

Smoothness: It holds that ∆ [(pk,Privsk(c), c) , (pk, k, c)] = negl(λ), where c←
C \ Cv, k← K, sk← SK and pk = µ(sk).

Homomorphism: (C,+), (Cv,+) and (K,+) admit groups (with efficient group
operations), and, for every sk, it holds that Λ(sk, ·) constitutes a homomorphism,
i.e., for every sk ∈ SK and c1, c2 ∈ C, it holds that,

Λ(sk, c1) + Λ(sk, c2) = Λ(sk, c1 + c2).
5

We now show how to construct a homomorphic weak PRF from a HHPS.

Theorem 4. Assuming the existence of a HHPS, there exists a homomorphic
weak PRF.

Proof. Assume that HHPS = (Param,Priv,Pub) is a HHPS. Let

HP = (C,Cv,W,K,SK,PK, µ : SK→ PK,Λ : SK× C→ K)

be the public parameters of HHPS produced by running Param. The tuple HP
will also be the public parameters of our PRF, F , constructed as follows. We set
Kλ = SK, Dλ = Cv and Rλ = K, and define fsk(c) = Λsk(c). We have that both
Cv and K admit groups and that fsk(c1) + fsk(c2) = fsk(c1 + c2), which implies
homomorphism for PRF F . To prove weak pseudorandomness for F we need to
show that, for any p = p(λ), it holds that DS ≡c DS ′, where

DS = (c1,Λsk(c1)), . . . , (cp,Λsk(cp))

DS ′ = (c1, k1), . . . , (cp, kp),

5 We remark that in many settings the homomorphism of Cv is implied by that of
C: Especially in the standard setting, where the set of valid ciphertexts is defined
as those, for which the value of Λ(sk, ·), for any sk is determined solely from the
ciphertexts itself and µ(sk). However, we put it as a separate condition just to be as
general as possible.
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for c1, . . . , cp ← Cv, k1, . . . , kp ← K and sk← SK. To this end, for 0 ≤ i ≤ p, we
define the hybrid DSi as follows.

DSi = ((c1,Λsk(c1)), . . . , (ci,Λsk(ci)), (ci+1, ki+1), . . . , (cp, kp)) , (8)

where c1, . . . , cp, k1, . . . , kp and sk are sampled as above. Note that DS ′ = DS0
and DS = DSp. Now to conclude the proof for each 0i we show DSi ≡c DSi+1.

Note that we have (pk, ci+1,Λsk(ci+1)) ≡c (pk, ci+1, ki+1). This follows by com-
bining the subset membership and smoothness properties of HHPS. Now we claim
that DSi = DSi+1 follows from the fact that was just given: to see this, given
(pk, ci+1, ∗), where ∗ either corresponds to Λsk(ci+1) or to ki+1, we form

((c1,Pubpk(c1,w1)) , . . . , (ci,Pubpk(ci,wi)) , (ci+1, ∗) , (ci+2, ki+2) , . . . , (cp, kp)) ,
(9)

where, for 1 ≤ j ≤ i, we sample cj ← Cv along with a witness wj , and sample
ci+2, . . . , cp ← Cv and ki+2, . . . , kp ← K. The distribution given in Equation 9
would either correspond to DSi or to DSi+1. ut

6.3 Realization under subgroup indistinguishability assumptions

For the sake of clarity, in this section we give an instantiation of our encryption
primitive based only on the quadratic residuosity assumption, which is a special
case of the subgroup indistinguishability (SG) assumption. We leave the general
SG-based instantiation to the full version [24].

We first start by reviewing the quadratic residuosity assumption. For an RSA
number N (i.e., N = pq, where p and q are distinct odd primes) we use QRN
to denote the subset of Z∗N consisting of quadratic residues modulo N , and let
JN denote the set of elements in Z∗N with Jacobi symbol one. Finally, we define
QNRN = JN \ QRN .

Assume that RSAGen(1λ) is a PPT algorithm that on input 1λ generates
a Blum integer N , i.e., N = pq with p and q being distinct primes satisfying
p, q ≡ 3 (mod 4). We stress here that we do not need RSAGen(1λ) to output the
factorization of N as well. We say that the quadratic residuosity (QR) problem
is hard under RSAGen if {N,U(QRN )}λ∈N is computationally indistinguishable
from {N,U(QNRN )}λ∈N, where N is generated according to RSAGen(1λ).

Theorem 5. Assuming the quadratic residuosity assumption holds for RSAGen
there exists a CPA-secure private-key bit encrypiton scheme that is both repro-
ducible and homomorphic.

Proof. We construct the private-key bit encryption scheme (G,E,Dec) as fol-
lows. The public parameter of the scheme is N ← RSAGen(1λ), and the plaintext
group and the randomness group of the scheme are, respectively, Z2 and QRN .
The components of the encryption scheme are defined as follows. (All computa-
tions, if not otherwise stated, are done modulo N .)

– G(1λ): Choose the secret key as x← ZN2 ;
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– Ex(b; g): return (g, (−1)bgx);
– Decx(g1, g2): return b ∈ {0, 1} if g2 = (−1)bgx1 .

We first verify the syntactic properties required of the scheme. Notice that
given an encryption (g, (−1)bgx1) (of an arbitrary bit b) under x1, we can effi-
ciently obtain the encryption of an arbitrary bit b1 under the same randomness,
g, relative to a secret key x2 by simply outputting (g, (−1)b1gx2). This veri-
fies the reproducibility property. As for homomorphism, from (g1, (−1)b1gx1 ) and
(g2, (−1)b2gx2 ), we can easily derive (g1g2, (−1)b1+b2(g1g2)x), which is the encryp-
tion of b1 + b2 under randomness g1g2 (relative to the same unknown secret key
x). Note that as the randomness group here is multiplicative, we will denote the
identity element by 1. We then have that Ex(b; 1) = (1, (−1)b), independently
of x. This verifies the degenerate case of homomorphism.

To show that the above scheme is CPA-secure, we need to show that for any
p = p(λ) and any sequence of bits (b1, . . . , bp), it holds that DS0 ≡c DS1, where

DS0 =

[
g1 g2 . . . gp

(−1)b1gx1 (−1)b2gx2 . . . (−1)bpgxp

]
, and (10)

DS1 =

[
g1 g2 . . . gp
gx1 gx2 . . . gxp

]
, (11)

for g1, . . . , gp ← QRN and x← ZN2 . The proof of the above indistinguishability
is standard. (See, e.g., [13,29] for a simple proof and also [9, Lemma 5.1] for a
stronger statement.) ut

7 Extensions

In this section we discuss some extensions and complementary results. In Subsec-
tion 7.1 we show that our constructed scheme provides auxiliary-input security.
In Subsection 7.2 we show that an existing KDM-amplification construction pre-
serves leakage resilience.

7.1 Auxiliary-input security

We first give the definitions related to auxiliary-input security.

Background. Let E = (G,E,Dec) be an encryption scheme with public-key,
secret-key and message spaces, respectively, PKλ, SKλ and Mλ. Throughout
this Section we use f to refer to a function with domain (PKλ,SKλ) and range
SKλ. We follow the notation of [9]. For E = (G,E,Dec) we define f -weak inver-
sion and f -strong inversion as follows. We say that f is ε-strongly-uninvertible
under E if for any adversary A, the probability that A outputs sk when given
(f(pk, sk), pk) is at most ε(λ), where the probability is taken over A’s random
coins and (pk, sk) ← G(1λ). Also, we say that f is ε-weakly-uninvertible un-
der E if for any adversary A, the probability that A outputs sk when given
f(pk, sk) is at most ε(λ), where the probability is taken over A’s random coins
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and (pk, sk)← G(1λ). Let Auxstε be the class of all ε-strongly-uninvertible func-
tions and Auxwkε be the class of all ε-weakly-uninvertible functions. Note that
Auxstε ⊆ Auxwkε .

We say that E is f -auxiliary-input secure if any adversary A has a negligible
advantage in the following game: A is given (pk, f(pk, sk)), where (pk, sk) ←
G(1λ); A submits (m0,m1) ∈ M2

λ; A receives Epk(mb), for b ← {0, 1}; finally,
A outputs bit b′, and achieves the following advantage

|Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| .

We say that E is ε-weakly-auxiliary-input secure (resp., ε-strongly-auxiliary-input
secure) if E is f -auxiliary-input secure for any f ∈ Auxstε (resp., Auxwkε ). We
say E is auxiliary-input secure against subexponentially-hard functions if for some
c > 0, E is 1/(2λ

c

)-strongly-auxiliary-input secure.
We now show that the encryption scheme produced by Construction 1 pro-

vides auxiliary-input security. We first consider weak-auxiliary-input security
and then discuss the extension to the strong-auxiliary case.

Theorem 6. Let E = (G,E,Dec,Hom,Rep) be a CPA-secure private-key bit-
encryption scheme providing degenerate homomorphism and reproducibility. Let
E ′ be the scheme constructed from E using Construction 1. For any poly-bounded
l = l(λ) and negligible function ε = ε(λ), it holds that E ′ is ε-weakly-auxiliary-
input secure.6

The proof of Theorem 6 follows similarly to that of Theorem 3, except for
one step, where we replace real-randomness extraction with pseudorandomness
extraction. We first give the following theorem, due to Goldreich and Levin [22],
where we follow the presentation of [14], adapted to the binary field.

Theorem 7. ([22]) Assume that l = l(λ) and h : {0, 1}l → {0, 1}∗ is a (possibly
randomized) function and D is a distinguisher, where

|Pr[D(b, b, h(s)) = 1]− Pr[D(b, b′, h(s)) = 1]| = δ(l), (12)

where s,b← {0, 1}l, b← {0, 1} and b′ = s · b. Then there exists an inverter A,
for which it holds that

Pr[A(y) = s] ∈ Ω(
δ3

l
), (13)

where s← {0, 1}l and y ← h(s).

We now give the proof of Theorem 6, using ideas from [14].

Proof. The proof follows by introducing Game-0, Game-1 and Game-2 exactly
as in the proof of Theorem 3 (except that now the function f is applied to both
the secret key and the public key), and deriving Game-0 ≡G Game-1 exactly as

6 In order for statement to be useful, it should hold that 1
2l
≤ ε, because otherwise

the statement will be vacuously true, as Auxstε = Auxwkε = ∅.
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in there. To prove Game-1 ≡G Game-2, however, we proceed as below. To prove
Game-1 ≡G Game-2, it suffices to show that

(b1, . . . , bl, bl+1,f(PK, s),

PK︷ ︸︸ ︷
Esk(0; r1), . . . , Esk(0; rl), Esk(0; rl+1)) ≡c (14)

(b1, . . . , bl, b
′
l+1, f(PK, s), Esk(0; r1), . . . , Esk(0; rl), Esk(0; rl+1)︸ ︷︷ ︸

PK

),

where s← {0, 1}l, b1, . . . , bl, bl+1 ← {0, 1}, b′l+1 = s·(b1, . . . , bl), r = (r1, . . . , rl)←
Rlλ, rl+1 = s · r and sk ← G(1λ). The fact that proving Equation 14 suffices to
conclude Game-1 ≡G Game-2 can easily be verified by considering the descrip-
tions of Game-1 and Game-2, taking into account the fact that the private-key
scheme is reproducible.

By the assumption of the theorem, we know that it is ε-hard to recover s
from (PK, f(PK, s)). Now Equation 14 follows from Theorem 7, by defining the
randomized function h(s) = (PK, f(PK, s)), where all the variables are sampled
as above. Formally, if there is an adversary that can distinguish between the
distributions in Equation 14 with a non-negligible probability, then there exists
an adversary that, with a non-negligible probability, recovers s from h(s) =
(PK, f(PK, s)), which is a contradiction to the first sentence of this paragraph.

Remark 1. As in previous work [14,9] we can prove strong auxiliary-input secu-
rity for E ′ with respect to subexponentially-hard functions by working with a
modification of Construction 1, letting (c1, . . . , cl) = (Esk(0; r1), . . . , Esk(0; rl))
be the public parameters of the scheme, and letting the public key be computed,
under secret key s, as Hom(ci1 , . . . , ciw), where (i1, . . . , iw) are the indices of
non-zero bits of s. Now since a public key under the new scheme has at most
l′ = |Rλ| different values we can obtain ε

l′ -strong auxiliary-input security from
ε-weak-auxiliary-input security. This last step follows since, for any scheme with
l′ different public keys, if recovering sk from f(pk, sk) is ε/l′-hard (i.e., succeeds
with a probability at most ε/l′), recovering sk from (f(pk, sk), pk) is ε-hard.
Finally, we mention that the proof of multiple-key circular security (Theorem 2)
extends to the setting above which contains public parameters.

7.2 KDM amplification

We show that Applebaum’s KDM-amplification method [3], which, informally
speaking, shows that projection security is sufficient for obtaining “rich-KDM”
security, preserves both types of leakage resilience. For simplicity, we focus on
the case of bit encryption and 1-KDM security.

As notation, we identify an efficiently computable function f = {fλ : {0, 1}l(λ) 7→
{0, 1}}λ∈N with an ensemble of circuits {cλ}λ∈N, and say that f has size p = p(λ)
if, for any λ, the circuit cλ has size at most p. We say an ensemble of sets of
functions F = {Fλ}λ∈N is p-bounded if for every λ and every f ∈ Fλ, f has size
p. The following theorem is a special case of the results of [3].
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Theorem 8. ([3]) Assume that F = {Fλ}λ is a fixed p-bounded ensemble of sets
of functions and E = (G,E,Dec) is a 1-projection-secure public-key encryption
scheme. The scheme E ′ = (G,E′, D′), constructed below, is F -KDM(1) secure:
E′pk(b) = Epk(Sim(b)) and D′sk(C) = Rec(Dsk(C)). Here Sim is a randomized
function and Rec is a deterministic function, both of which are constructed based
on F , through the procedure of randomized encoding of functions. The details
of Sim and Rec are not important for our analysis, bu we refer the reader to [3]
for further details.

Theorem 9. Let E and E ′ be as in Theorem 8. Then assuming that E is r-rate
leakage resilient (resp., ε-auxiliary input secure) then E ′ is r-rate leakage resilient
(resp., ε-auxiliary input secure).

Proof. This follows by noting that the constructed scheme E ′ has the same key
generation algorithm as that E . We consider the leakage resilience case; the proof
for the auxiliary-input case is entirely the same. Assume A′ wins against `-length
leakage resilience of E ′; we build A that breaks the `-length leakage resilience of
E ′ by simulating A′ as follows: A runs A′(pk), where pk is the public key that
A receives; when A′ sub,its the leakage query f , A makes the same query from
its oracle and gives f(sk) to A′; finally, when A′ submits (b0, b1), A submits
(Sim(b0), Sim(b1)) to its oracle and gives the returned ciphertext to A′. Thus,
A achieves the same advantage as A′ does, and the proof is complete. ut

We now obtain the following corollary, by combining Theorems 2, 3, 6 and 9.

Corollary 1. Assuming the existence of a CPA-secure private-key scheme with
reproducibility and degenerate homomorphism, for any poly p and any fixed p-
bounded function family F , there exists a scheme E ′ which (at the same time) (1)
is F -KDM secure, (2) achieves a (1− o(1)) resilience rate, and (3) is auxiliary-
input secure against subexponentially-hard functions.
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26. Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs. Leakage-
resilient cryptography from minimal assumptions. In Advances in Cryptology -
EUROCRYPT 2013.

27. Dennis Hofheinz and Dominique Unruh. Towards key-dependent message security
in the standard model. In Advances in Cryptology - EUROCRYPT 2008.

28. Yuval Ishai, editor. Theory of Cryptography - 8th Theory of Cryptography Confer-
ence, TCC 2011, Providence, RI, USA, March 28-30, 2011. Proceedings, volume
6597 of LNCS. Springer, 2011.

29. Eike Kiltz, Krzysztof Pietrzak, Martijn Stam, and Moti Yung. A new randomness
extraction paradigm for hybrid encryption. In Advances in Cryptology - EURO-
CRYPT 2009, volume 5479 of LNCS, pages 590–609. Springer, 2009.

30. Venkata Koppula, Kim Ramchen, and Brent Waters. Separations in circular secu-
rity for arbitrary length key cycles. In TCC 2015.

31. Tal Malkin, Isamu Teranishi, and Moti Yung. Efficient circuit-size independent
public key encryption with kdm security. In Advances in Cryptology – EURO-
CRYPT 2011, pages 507–526, 2011.

32. Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended
abstract). In Theory of Cryptography, TCC 2004, volume 2951 of LNCS, pages
278–296. Springer, 2004.

33. Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random func-
tions and kdcs. EUROCRYPT’99, pages 327–346, 1999.

34. Moni Naor and Omer Reingold. Synthesizers and their application to the parallel
construction of pseudo-random functions. J. Comput. Syst. Sci., 58(2), 1999.

35. Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. SIAM
J. Comput., 41(4):772–814, 2012.

36. Moni Naor and Moti Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In STOC 1990, pages 427–437, 1990.

37. Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications.
In Dwork [18], pages 187–196.

38. Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Advances in Cryptology - CRYPTO
1991, volume 576 of LNCS, pages 433–444. Springer, 1991.

39. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In STOC 2005, pages 84–93, 2005.

40. Ron Rothblum. Homomorphic encryption: From private-key to public-key. In Ishai
[28], pages 219–234.

41. Ron Rothblum. On the circular security of bit-encryption. In TCC, pages 579–598,
2013.

42. Hoeteck Wee. KDM-security via homomorphic smooth projective hashing. IACR
Cryptology ePrint Archive, 2015:721, 2015.


	On Generic Constructions of Circularly-Secure, Leakage-Resilient Public-Key Encryption Schemes
	Introduction
	Our results (assumptions and constructions)
	Realizations
	KDM amplification and leakage resilience
	Construction technique and further discussion

	Definitions
	Standard Notation and Definitions
	Syntax of encryption schemes
	Key-dependent-message security
	Leakage resilience
	Properties of the base scheme

	Construction
	Proof of projection security
	Information-theoretic tools
	A Useful lemma
	Proof of projection security

	Proof of leakage resilience
	Realizations
	Realizations from homomorphic weak PRFs
	Homomorphic hash-proof systems to homomorphic weak PRFs
	Realization under subgroup indistinguishability assumptions

	Extensions
	Auxiliary-input security
	KDM amplification

	Acknowledgments


