
Leakage-Resilient Public-Key Encryption from
Obfuscation

Dana Dachman-Soled1?, S. Dov Gordon2??, Feng-Hao Liu3? ? ?, Adam O’Neill4, and
Hong-Sheng Zhou5

1 University of Maryland, danadach@ece.umd.edu
2 George Mason University, crypto@dovgordon.com
3 Florida Atlantic University, fenghao.liu@fau.edu

4 Georgetown University, adam@cs.georgetown.edu
5 Virginia Commonwealth University, hszhou@vcu.edu

Abstract. The literature on leakage-resilient cryptography contains various leak-
age models that provide different levels of security. In this work, we consider
the bounded leakage and the continual leakage models. In the bounded leakage
model (Akavia et al. – TCC 2009), it is assumed that there is a fixed upper bound
L on the number of bits the attacker may leak on the secret key in the entire
lifetime of the scheme. Alternatively, in the continual leakage model (Brakerski
et al. – FOCS 2010, Dodis et al. – FOCS 2010), the lifetime of a cryptographic
scheme is divided into “time periods” between which the scheme’s secret key
is updated. Furthermore, in its attack the adversary is allowed to obtain some
bounded amount of leakage on the current secret key during each time period.
In the continual leakage model, a challenging problem has been to provide se-
curity against leakage on key updates, that is, leakage that is a function not only
of the current secret key but also the randomness used to update it. We propose
a new, modular approach to overcome this problem. Namely, we present a com-
piler that transforms any public-key encryption or signature scheme that achieves
a slight strengthening of continual leakage resilience, which we call consecu-
tive continual leakage resilience, to one that is continual leakage resilient with
leakage on key updates, assuming indistinguishability obfuscation (Barak et al.
– CRYPTO 2001, Garg et al. – FOCS 2013). Under the stronger assumption of
public-coin differing-inputs obfuscation (Ishai et al. – TCC 2015) the leakage
rate tolerated by our compiled scheme is essentially as good as that of the start-
ing scheme. Our compiler is obtained by making a new connection between the
problems of leakage on key updates and so-called “sender-deniable” encryption
(Canetti et al. – CRYPTO 1997). In particular, our compiler adapts and opti-
mizes recent techniques of Sahai and Waters (STOC 2014) that make any en-
cryption scheme sender-deniable. We then show that prior continual leakage re-
silient schemes can be upgraded to security against consecutive continual leakage
without introducing new assumptions.

? This work was done in part while the author was visiting the Simons Institute for the Theory of
Computing, supported by the Simons Foundation and by the DIMACS/Simons Collaboration
in Cryptography through NSF grant #CNS-1523467.

?? This work was done when the author was a research scientist at Applied Communication Sci-
ences.

? ? ? This work was done when the author was a postdoc at the University of Maryland.

In the bounded leakage model, we develop an entirely new approach to con-
structing leakage-resilient encryption from obfuscation directly, based upon the
public-key encryption scheme from iO and punctured pseudorandom functions
due to Sahai and Waters (STOC 2014). In particular, we achieve (1) leakage-
resilient public key encryption tolerating L bits of leakage for any L from iO
and one-way functions, (2) leakage-resilient public key encryption with optimal
leakage rate of 1 − o(1) based on public-coin differing-inputs obfuscation and
collision-resistant hash functions.

1 Introduction

1.1 Background and Motivation

In recent years, researchers have uncovered a variety of ways to capture cryptographic
keys through side-channel attacks: physical measurements, such as execution time,
power consumption, and even sound waves generated by the processor. This has prompted
cryptographers to build models for these attacks and to construct leakage resilient
schemes that remain secure in the face of such attacks. Of course, if the adversary
can leak the entire secret key, security becomes impossible, and so the bounded leakage
model was introduced (cf. [1,22,19,4]). Here, it is assumed that there is a fixed upper
bound, L on the number of bits the attacker may leak, regardless of the parameters of
the scheme, or, alternatively, it is assumed that the attacker is allowed to leak L = λ·|sk|
total number of bits, where the amount of leakage increases as the size of the secret key
increases. Various works constructed public key encryption and signature schemes with
optimal leakage rate of λ = 1 − o(1), from specific assumptions (cf. [22,4]). Hazay et
al. [17] constructed a leakage resilient public key encryption scheme in this model, as-
suming only the existence of some standard public key encryption scheme; the tradeoff
is that they tolerate a leakage rate of only O(log(κ)/|sk|), where |sk| is the size of the
secret key when using security parameter κ.

Surprisingly, it is possible to do better; an interesting strengthening of the model
— the continual leakage model6 — allows the adversary to request unbounded leakage.
This model was introduced by Brakerski et al. [5] and Dodis et al. [11], who constructed
continual-leakage resilient (CLR) public-key encryption and signature schemes. Intu-
itively, the CLR model divides the lifetime of the attack, which may be unbounded, into
time periods and: (1) allows the adversary to obtain the output of a “bounded” leakage
function in each time period, and (2) allows the secret key (but not the public key!) to
be updated between time periods. So, while the adversary’s leakage in each round is
bounded, the total leakage is unbounded.

Note that the algorithm used by any CLR scheme to update the current secret key
to the next one must be randomized, since otherwise the adversary can obtain some fu-
ture secret key, bit-by-bit, via its leakage in each time period. While the CLR schemes

6 Here “continual” refers to the fact that the total amount of leakage obtained by the adversary
is unbounded. Additionally, the model is more accurately called the continual memory leak-
age model to contrast with schemes constructed under an assumption that “only computation
leaks” [21].

2

of [5,11] were able to tolerate a remarkable 1 − o(1) leakage rate (the ratio of the al-
lowed number of bits leaked per time period to the length of the secret key) handling
leakage during the update procedure itself — that is, produced as a function of the ran-
domness used by the update algorithm as well as the current secret key — proved to be
much more challenging. The first substantial progress on this problem of “leakage on
key updates” was made by Lewko et al. [20], with their techniques being considerably
refined and generalized by Dodis et al. [12]. In particular, they give encryption and sig-
nature schemes that are CLR with leakage on key updates tolerating a constant leakage
rate, using “dual-system” techniques (cf. [24]) in bilinear groups.

1.2 Overview of Our Results

Our first main contribution is to show how to compile any public-key encryption or
signature scheme that satisfies a slight strengthening of CLR (which we call “consec-
utive” CLR or 2CLR) without leakage on key updates to one that is CLR with leakage
on key updates. Our compiler is based on a new connection we make between the prob-
lems of leakage on key updates and “sender-deniability” [6] for encryption schemes. In
particular, our compiler uses program obfuscation — either indistinguishability obfus-
cation (iO) [2,14] or the public-coin differing-inputs obfuscation [18]7 — and adapts
and extends techniques recently developed by Sahai and Waters [23] to achieve sender-
deniable encryption. This demonstrates the applicability of the techniques of [23] to
other seemingly unrelated contexts.8 We then show that the existing CLR encryption
scheme of Brakerski et al. [5] can be extended to meet the stronger notion of 2CLR that
we require for our compiler. Additionally, we show all our results carry over to signa-
tures as well. In particular, we show that 2CLR PKE implies 2CLR signatures (via the
intermediate notion of CLR “one-way relations” of Dodis et al. [11]), and observe that
our compiler also upgrades 2CLR signatures to ones that are CLR with leak on updates.

Our second main contributions concerns constructions of leakage-resilient public-
key encryption directly from obfuscation. In particular, we show that the approach of
Sahai and Waters to achieve public-key encryption from iO and punctured pseudo-
random functions [23] can be extended to achieve leakage-resilience in the bounded-
leakage model. Specifically, we achieve (1) leakage-resilient public key encryption
tolerating L bits of leakage for any L from iO and one-way functions, (2) leakage-
resilient public key encryption with optimal leakage rate of 1 − o(1) based on public-
coin differing-inputs obfuscation and collision-resistant hash functions. Extending these
constructions to continual leakage-resilience (without introducing additional assump-
tions) is an interesting open problem.

In summary, we provide a thorough study of the connection between program ob-
fuscation and leakage resilience. We define a new notion of leakage-resilience (2CLR),

7 To the best of our knowledge, no impossibility results are known for public-coin differing-
inputs obfuscation. Indeed, the impossibility results of Garg et al. [15] do not apply to this
setting.

8 We note that the techniques of [23] have been shown useful in adaptively secure two-party and
multiparty computation [16,7,9] and “only computation leaks” (OCL) circuits without trusted
hardware [10]. We note that this work precedes the work of [9].

3

and demonstrate new constructions of 2CLR secure encryption and signature schemes
from program obfuscation. Also using program obfuscation, we construct a compiler
that lifts 2CLR-secure schemes to CLR with leakage on updates; together with our
new constructions, this provides a unified and modular method for constructing CLR
with leakage on key updates. Under appropriate assumptions (namely, the ones used by
Brakerski et al. [5] in their construction), this approach allows us to achieve a leakage
rate of 1/4−o(1), a large improvement over prior work, where the best leakage rate was
1/258− o(1) [20]. Our result nearly matches the trivial upper-bound of 1/2− o(1).9 In
the bounded leakage model, we show that it is possible to achieve optimal-rate leakage-
resilient public key encryption from obfuscation and generic assumptions. As we have
mentioned above, Hazay et al. [17] constructed leakage resilient public key encryption
in this model from a far weaker generic assumption, albeit with a far worse leakage rate.
In addition to offering a tradeoff between the strength of the assumption and the leak-
age rate, the value of our result in the bounded leakage model is that it provides direct
insight into the connection between program obfuscation and leakage resilience. We are
hopeful that our techniques might lead to future improvements in the continual-leakage
models.

1.3 Details and Techniques

Part I: The Leak-on-Update Compiler. As described above, in the model of continual
leakage-resilience (CLR) [5,11] for public-key encryption or signature schemes, the
secret key can be updated periodically (according to some algorithm Update) and the
adversary can obtain bounded leakage between any two updates. Our compiler applies
to schemes that satisfy a slight strengthening of CLR we call consecutive CLR, where
the adversary can obtain bounded leakage as a joint function of any two consecutive
keys. More formally, let sk0, sk1, sk2, . . . , skt, . . . be the secret keys at each time pe-
riod, where ski = Update(ski−1, ri), and each ri denotes fresh random coins used at
that round. For leakage functions f1, . . . , ft, . . . (chosen adaptively by the adversary),
consider the following two leakage models:
(1) For consecutive CLR (2CLR), the adversary obtains leakage

f1(sk0, sk1), f2(sk1, sk2), . . . , ft(skt−1, skt),

(2) For CLR with leakage on key updates, the adversary obtains leakage

f1(sk0, r1), f2(sk1, r2), . . . , ft(skt−1, rt),

Our compiler from 2CLR to CLR with leakage on key updates produces a slightly
different Update algorithm for the compiled scheme depending on whether we as-
sume indistinguishability-obfuscation (iO) [2,14] or public-coin differing-inputs obfus-
cation [18]. In both cases, if we start with an underlying scheme that is consecutive

9 Unlike the case of CLR without leakage on key updates, observe that any scheme that is CLR
with leakage on key updates can leak at most 1/2 · |sk|-bits per time period, since otherwise
the adversary can recover an entire secret key. As a consequence, the optimal leakage rate for a
scheme that is CLR with leakage on key updates is at most 1/2·|sk|

|sk|+|rup| < 1/2, where |sk| is the
secret key length and |rup| is the length of the randomness needed by the update algorithm.

4

two-key CLR while allowing µ-bits of leakage, then our compiled scheme is CLR with
leakage on key updates with leakage rate

µ

|sk|+ |rup|
,

where |rup| is the length of the randomness required by Update. When using iO, we ob-
tain |rup| = 6|sk|, where |sk| is the secret key length for the underlying 2CLR scheme,
whereas using public-coin differing-input obfuscation we obtain |rup| = |sk|. Thus:

– Assuming iO, the compiled scheme is CLR with leakage on key updates with leak-
age rate µ

7·|sk| .
– Assuming public-coin differing-input obfuscation, the compiled scheme is CLR

with leakage on key updates with leakage rate µ
2·|sk| .

Thus, if the underlying 2CLR scheme tolerates the optimal number of bits of leakage
(≈ 1/2 · |sk|), then our resulting public-coin differing-inputs based scheme achieves
leakage rate 1/4− o(1).

Our compiler is obtained by adapting and extending the techniques developed by [23]
to achieve sender-deniable PKE from any PKE scheme. In sender-deniable PKE, a
sender, given a ciphertext and any message, is able to produce coins that make it ap-
pear that the ciphertext is an encryption of that message. Intuitively, the connection we
make to leakage on key updates is that the simulator in the security proof faces a sim-
ilar predicament to the coerced sender in the case of deniable encryption; it needs to
come up with some randomness that “explains” a current secret key as the update of an
old one. Our compiler makes any two such keys explainable in a way that is similar to
how Sahai and Waters make any ciphertext and message explainable. Intuitively, this
is done by “encoding” a secret key in the explained randomness in a special way that
can be detected only by the (obfuscated) Update algorithm. Once detected, the Update
algorithm outputs the encoded secret key, instead of running the normal procedure.

However, in our context, naı̈vely applying their techniques would result in the ran-
domness required by our Update algorithm being very long, which, as described above,
affects the leakage rate of our resulting CLR scheme with leakage on key updates in
a crucial way (we would not even be able to get a constant leakage rate). We decrease
the length of this randomness in two steps. First, we note that the sender-deniable en-
cryption scheme of Sahai and Waters encrypts a message bit-by-bit and “explains” each
message-bit individually. This appears to be necessary in their context in order to allow
the adversary to choose its challenge messages adaptively depending on the public key.
For our setting, this is not the case, since the secret key is chosen honestly (not by the
adversary), so “non-adaptive” security is in fact sufficient in our context and we can
“explain” a secret key all at once.This gets us to |rup| = 6 · |sk| and thus 1/14 − o(1)
leakage rate assuming the underlying 2CLR scheme can tolerate the optimal leakage.
Second, we observe that by switching assumptions from iO to the public-coin differing-
inputs obfuscation we can replace some instances of sk in the explained randomness
with its value under a collision-resistant hash, which gets us to |rup| = sk and thus
1/4− o(1) leakage rate in this case.

A natural question is whether the upper bound of 1/2− o(1) leakage rate for CLR
with leakage on key updates, can be attained via our techniques (if at all). We leave this

5

as an intriguing open question, but note that the only way to do so would be to further
decrease |rup| so that |rup| < |sk|.

Part II: Constructions against Two-key Consecutive Continual Leakage. We revisit the
existing CLR public-key encryption scheme of [5] and show that a suitable modification
of it achieves 2CLR10 with optimal 1/4− o(1) leakage rate11, under the same assump-
tion used by [5] to achieve optimal leakage rate in the basic CLR setting (namely
the symmetric external Diffie-Hellman (SXDH) assumption in bilinear groups; smaller
leakage rates can be obtained under weaker assumptions). Our main technical tool here
is a new generalization of the Crooked Leftover Hash Lemma [13,3] that generalizes the
result of [5], which shows that “random subspaces are leakage resilient,” showing that
random subspaces are in fact resilient to “consecutive leakage.” Our claim also leads to
a simpler analysis of the scheme than appears in [5].

Finally, we also show (via techniques from learning theory) that 2CLR public-key
encryption generically implies 2CLR one-way relations. Via a transformation of Dodis
et al. [11], this then yields 2CLR signatures with the same leakage rate as the starting
encryption scheme. Therefore, all the above results translate to the signature setting as
well. We also show a direct approach to constructing 2CLR one-way relations follow-
ing [11] based on the SXDH assumption in bilinear groups, although we are not able to
achieve as good of a leakage rate this way (only 1/8− o(1)).

Part III: Exploring the relationship between bounded leakage resilience and obfusca-
tion. Note that, interestingly, even the strong notion of VBB obfuscation does not im-
mediately lead to constructions of leakage resilient public-key encryption. In particular,
if we replace the secret key of a public key encryption scheme with a VBB obfusca-
tion of the decryption algorithm, it is not clear that we gain anything: E.g., the VBB
obfuscation may output a circuit of size |C|, where only

√
|C| number of the gates

are ”meaningful” and the remaining gates are simply ”dummy” gates, in which case
we cannot hope to get a leakage bound better than L =

√
|C|, and a leakage rate of

1/
√
|C|. Nevertheless, we are able to show that the PKE scheme of Sahai and Waters

(SW) [23], which is built from iO and “punctured pseudorandom functions (PRFs),”
can naturally be made leakage resilient. To give some brief intuition, a ciphertext in
our construction is of the form (r, w,Ext(PRF(k; r), w) ⊕ m), where Ext is a strong
extractor, r and w are random values12, and the PRF key k is embedded in obfuscated
programs that are used in both encryption and decryption. In the security proof, we
“puncture” the key k at the challenge point, t∗, and hardcode the mapping t∗ → y,
where y = PRF(k; t∗), in order to preserve the input/output behavior. As in SW, we
switch the mapping to t∗ → y∗ for a random y∗ via security of the puncturable PRF.

10 Note that [5] also constructs such a signature scheme, but, as discussed below, such a signature
scheme can in fact be generically obtained, and therefore for simplicity we do not consider
their direct construction here.

11 In the 2CLR model, the maximum amount of leakage is roughly 1/2 · |sk|, so the optimal rate
is roughly 1/2·|sk|

|sk|+|sk| = 1/4.
12 Technically, we actually use pseudo-random value r, just as SW do. We omit this here to make

the explanation a little more clear.

6

But now observe we have that the min-entropy of y∗ is high even after leakage, so the
output of the extractor is close to uniform. To achieve optimal leakage rate, we further
modify the scheme to separate t∗ → y∗ from the obfuscated program and store only an
encryption of t∗ → y∗ in the secret key.

2 Compiler from 2CLR to Leakage on Key Updates

In this section, we present a compiler that upgrades any scheme for public key en-
cryption (PKE), digital signature (SIG), or one-way relation (OWR) that is consecutive
two-key leakage resilient, into one that is secure against leak on update. We first intro-
duce a notion of explainable update transformation, which is a generalization of the
idea of universal deniable encryption by Sahai and Waters [23]. We show how to use
such a transformation to upgrade a scheme (PKE, SIG, or OWR) that is secure in the
consecutive two-key leakage model to one that is secure in the leak-on-update model
(Section 2.2). Finally, we show two instantiations of the explainable update transfor-
mation: one based on indistinguishability obfuscation, and the other on differing-inputs
obfuscation (Section 2.3). For clarity of exposition, the following sections will focus on
constructions of PKE, but we remark that the same results can be translated to SIG and
OWR.

2.1 Consecutive Continual Leakage Resilience (2CLR)

In this section, we present a new notion of consecutive continual leakage resilience
for public-key encryption (PKE). We remark that this notion can be easily extended to
different cases, such as signatures, leakage resilient one-way relations [11]. We only
present the PKE version for simplicity and concreteness. Let κ denote the security pa-
rameter, and µ be the leakage bound between two updates. Let PKE = {Gen,Enc,Dec,Update}
be an encryption scheme with update.

Setup Phase. The game begins with a setup phase. The challenger calls PKE.Gen(1κ)
to create the initial secret key sk0 and public key pk. It gives pk to the attacker. No
leakage is allowed in this phase.

Query Phase. The attacker specifies an efficiently computable leakage function f1,
whose output is at most µ bits. The challenger updates the secret key (changing it
from sk0 to sk1), and then gives the attacker f1(sk0, sk1). The attacker then repeats
this a polynomial number of times, each time supplying an efficiently computable
leakage function fi whose output is at most µ bits. Each time, the challenger updates
the secret key from ski−1 to ski according to Update(·), and gives the attacker
fi(ski−1, ski).

Challenge Phase. The attacker chooses two messages m0, m1 which it gives to the
challenger. The challenger chooses a random bit b ∈ {0, 1}, encryptsmb, and gives
the resulting ciphertext to the attacker. The attacker then outputs a guess b′ for b.
The attacker wins the game if b = b′. We define the advantage of the attacker in
this game as | 12 − Pr[b′ = b]|.

7

Definition 1 (Continual Consecutive Leakage Resilience). We say a public-key en-
cryption scheme is µ-leakage resilient against consecutive continual leakage (or µ-
2CLR) if any probabilistic polynomial time attacker only has a negligible advantage
(negligible in κ) in the above game.

2.2 Explainable Key-Update Transformation

Now we introduce a notion of explainable key-update transformation, and show how it
can be used to upgrade security of a PKE scheme from 2CLR to CLR with leakage on
key updates. Informally, an encryption scheme has an “explainable” update procedure
if given both ski−1 and ski = Update(ski−1, ri), there is an efficient way to come up
with some explained random coins r̂i such that no adversary can distinguish the real
coins ri from the explained coins r̂i. Intuitively, this gives a way to handle leakage on
random coins given just leakage on two consecutive keys.

We start with any encryption scheme PKE that has some key update procedure, and
we introduce a transformation that produces a scheme PKE′ with an explainable key
update procedure.

Definition 2 (Explainable Key Update Transformation). Let PKE = PKE.{Gen,Enc,
Dec,Update} be an encryption scheme with key update. An explainable key update
transformation for PKE is a PPT algorithm TransformGen that takes input security
parameter 1κ, an update circuit CUpdate (that implements the key update algorithm
PKE.Update(1κ, ·; ·)), a public key pk of PKE, and outputs two programsPupdate,Pexplain

with the following syntax:
Let (pk, sk) be a pair of public and secret keys of the encryption scheme

– Pupdate takes inputs sk, random coins r, and Pupdate(sk; r) outputs a updated secret
key sk′;

– Pexplain takes inputs (sk, sk′), random coins v̄, and Pexplain(sk, sk
′; v̄) outputs a

string r.

Given a public key pk, we define Πpk =
⋃poly(κ)
j=0 Πj , where Π0 = {sk : (pk, sk) ∈

PKE.Gen}, Πi = {sk : ∃sk′ ∈ Πi−1, sk ∈ Update(sk′)} for i = 1, 2, . . . ,poly(κ). In
words, Πpk is the set of all secret keys sk such that either (pk, sk) is in the support of
PKE.Gen or sk can be obtained by the update procedure Update (up to polynomially
many times) with an initial (pk, sk′) ∈ PKE.Gen.

We say the transformation is secure if:

(a) For any pk, all sk ∈ Πpk, any Pupdate ∈ TransformGen(1κ,PKE.Update, pk), the
following two distributions are statistically close: {Pupdate(sk)} ≈ {PKE.Update(sk)}.
Note that the circuit Pupdate and the update algorithm PKE.Update might have dif-
ferent spaces for random coins, but the distributions can still be statistically close.

(b) For any public key pk and secret key sk ∈ Πpk, the following two distributions are
computationally indistinguishable:

{(Pupdate,Pexplain, pk, sk, u)} ≈ {(Pupdate,Pexplain, pk, sk, e)},

8

where (Pupdate,Pexplain)← TransformGen(1κ,PKE.Update, pk), u← Upoly(κ), sk
′ =

Pupdate(sk;u),
e← Pexplain(sk, sk

′), and Upoly(κ) denotes the uniform distribution over a polyno-
mial number of bits.

Let PKE = PKE.{Gen,Enc,Dec,Update} be a public key encryption scheme and
TransformGen be an explainable key update transformation for PKE as above. We de-
fine the following transformed scheme PKE′ = PKE′.{Gen,Enc,Dec,Update} as fol-
lows:

– PKE′.Gen(1κ): compute (pk, sk)← PKE.Gen(1κ).
Then compute (Pupdate,Pexplain)← TransformGen(1κ,PKE.Update, pk).
Finally, output pk′ = (pk,Pupdate,Pexplain) and sk′ = sk.

– PKE′.Enc(pk′,m): parse pk′ = (pk,Pupdate,Pexplain). Then output c← PKE.Enc(pk,m).
– PKE′.Dec(sk′, c): output m = PKE.Dec(sk′, c).
– PKE′.Update(sk′): sample sk′′ ← Pupdate(sk

′) and overwrite the old key, i.e.
sk′ := sk′′.

Then we are able to show the following theorem for the upgraded scheme PKE′.

Theorem 1. Let PKE = PKE.{Gen,Enc,Dec,Update} be a public key encryption
scheme that is µ-2CLR (without leakage on update), and TransformGen a secure ex-
plainable key update transformation for PKE. Then the transformed scheme PKE′ =
PKE′.{Gen,Enc,Dec,Update} described above is µ-CLR with leakage on key updates.

Proof. Assume towards contradiction that there is a PPT adversaryA and a non-negligible
ε(·) such that for infinitely many values of κ, AdvA,PKE′ ≥ ε(κ) in the leak-on-update
model. Then we show that there exists B that breaks the security of the underlying PKE
(in the consecutive two-key leakage model) with probability ε(κ) − negl(κ). This is a
contradiction.

For notionally simplicity, we will use AdvA,PKE′ to denote the advantage of the
adversary A attacking the scheme PKE′ (according to leak-on-update attacks), and
AdvB,PKE to denote the advantage of the adversary B attacking the scheme PKE (ac-
cording to consecutive two-key leakage attacks).

We define B in the following way: B internally instantiatesA and participates exter-
nally in a continual consecutive two-key leakage experiment on public key encryption
scheme PKE′. Specifically, B does the following:

– Upon receiving pk∗ externally, B runs
(Pupdate,Pexplain)← TransformGen(1κ,PKE.Update, pk∗). Note that by the prop-
erties of the transformation, this can be done given only pk∗.B sets pk′ = (pk∗,Pupdate,
Pexplain) to be the public key for the PKE′ scheme and forwards pk′ to A.

– When A asks for a leakage query f(sk′i−1, ri), B asks for the following leakage
query on (ski−1, ski): f ′(ski−1, ski) = f(ski−1,Pexplain(ski−1, ski)) and forwards
the response to A. Note that the output lengths of f and f ′ are the same.

– At some point A submits m0,m1 and B forwards them to its external experiment.
– Upon receiving the challenge ciphertext c∗,B forwards it toA and outputs whatever
A outputs.

9

Now we would like to analyze the advantage of B. It is easy to see that B has the
same advantage asA, however there is a subtlety such thatA does not necessarily have
advantage ε(κ): the simulation of leakage queries provided by B is not identical to the
distribution in the real game thatA would expect. Recall that in the security experiment
of the scheme PKE′, the secret keys are updated according to Pupdate. In the above
experiment (where B set up), the secret keys were updated using the Update externally,
and the random coins were simulated by the Pexplain algorithm.

Our goal is to show that actually A has essentially the same advantage in this mod-
ified experiment as in the original experiment. We show this by the following lemma:

Lemma 1. For any polynomial n, the following two distributions are computationally
indistinguishable.

D1 ≡ (Pupdate,Pexplain, pk, sk0, r1, sk1, . . . , skn−1, rn, skn) ≈
D2 ≡ (Pupdate,Pexplain, pk, sk0, r̂1, ŝk1, . . . , ŝkn−1, r̂n, ŝkn),

where the initial pk, sk0 and TransformGen(1κ, pk) are sampled identically in both
experiment; in D1 ski+1 = Pupdate(ski; ri+1), and ri+1’s are uniformly random; in
D2, ŝki+1 ← Update(ŝki), r̂i+1 ← Pexplain(ŝki, ŝki+1). (Note ŝk0 = sk0).

Proof. To show the lemma, we consider the following hybrids: for i ∈ [n] define

H(i) = (Pupdate,Pexplain, pk, sk0, r̂1, ŝk1, . . . , ŝki−1, ri, ski, ri+1, ski+1, ri+2, . . . , skn),

where the experiment is identical to D2 for up to ŝki−1. Then it samples a uniformly
random ri, sets ski = Pupdate(ŝki−1; ri), and proceeds as D1.

H(i.5) = (Pupdate,Pexplain, pk, sk0, r̂1, ŝk1, . . . , ŝki−1, r̂i, ski, ri+1, ski+1, ri+2, . . . , skn),

where the experiment is identical to H(i) for up to ŝki−1, and then it samples ski ←
Pupdate(ŝki−1), and r̂i ← Pexplain(ŝki−1, ski). The experiment is identical to D1 for the
rest.

Then we establish the following lemmas, and the lemma follows directly.

Lemma 2. For i ∈ [n− 1], H(i.5) is statistically close to H(i+1).

Lemma 3. For i ∈ [n], H(i) is computationally indistinguishable from H(i.5).

This first lemma follows directly from the property (a) of Definition 2. We now
prove Lemma 3.

Proof. Suppose there exists a (polysized) distinguisher D that distinguishes H(i) from
H(i.5) with non-negligible probability, then there exist pk∗, sk∗, and anotherD′ that can
break the property (b).

From the definition of the experiments, we know that Pupdate,Pexplain are indepen-
dent of the public key and the first i secret keys, i.e. p = (pk, sk0, ŝk1, . . . , ŝki−1). By
an average argument, there exists a fixed

p∗ = (pk∗, sk∗0, ŝk
∗
1, . . . , ŝk

∗
i−1)

10

such that D can distinguish H(i) from H(i.5) conditioned on p∗ with non-negligible
probability (the probability is over the randomness of the rest experiment). Then we
are going to argue that there exist a polysized distinguisher D′, a key pair pk′, sk′ such
that D′ can distinguish (Pupdate,Pexplain, pk

′, sk′, u) from (Pupdate,Pexplain, pk
′, sk′, e)

where u is from the uniform distribution, sk′′ = Pupdate(sk
′;u), and e← Pexplain(sk

′, sk′′).
Let pk′ = pk∗, sk′ = ŝk

∗
i−1, and we define D′ (with the prefix p∗ hardwired) who

on the challenge input (Pupdate,Pexplain, pk
′, sk′, z) does the following:

– For j ∈ [i− 1], D′ samples r̂j = Pexplain(sk
∗
j−1, sk

∗
j).

– Set ski−1 = sk′ and ri = z, ski = Pupdate(ski−1, z).
– For j ≥ i + 1, D′ samples rj from the uniform distribution and sets skj =
Pupdate(skj−1; rj).

– Finally,D′ outputsD(Pupdate,Pexplain, pk
′, sk∗0, r̂1, sk

∗
1, . . . , ski−1, ri, ski, ri+1, . . . , skn).

Clearly, if the challenge z was sampled according to uniformly random (as u), then
D′ will output according to D(H(i)|p∗). On the other hand, suppose it was sampled
according toPexplain (as e), thenD′ will output according toD(Hi.5|p∗). This completes
the proof of the lemma.

Remark. The non-uniform argument above is not necessary. We present in this way for
simplicity. The uniform reduction can be obtained using a standard Markov type argu-
ment, which we omit here.

Now, we are ready to analyze the advantage of B (and A). Denote AdvA,PKE′;D as
the advantage ofA in the experiment where the leakage queries are answered according
to the distribution D. By assumption, we know that AdvA,PKE′;D1

= ε(κ), and by
definition the leakage queries are answered according to D1. By the above lemma,
we know that |AdvA,PKE′;D1

− AdvA,PKE′;D2
| ≤ negl(κ), otherwise D1 and D2 are

distinguishable. Thus, we know AdvA,PKE′;D2
≥ ε(κ)−negl(κ). It is not hard to see that

AdvB,PKE = AdvA,PKE′;D2
, since B answers A’s the leakage queries exactly according

the distribution D2. Thus, AdvB,PKE ≥ ε(κ) − negl(κ), which is a contradiction. This
completes the proof of the theorem.

2.3 Instantiations via Obfuscation

In this section, we show how to build an explainable key update transformation from
program obfuscation. Our best parameters are achieved using public-coin differing-
inputs obfuscation [18] (rather than the weaker indistinguishability obfuscation (iO) [2,14]),
so we present this version here.

Let PKE = (Gen,Enc,Dec,Update) be a public-key encryption scheme (or a sig-
nature scheme with algorithms Verify,Sign) with key-update, and diO be a public-coin
differing-inputs obfuscator (for some class defined later). Let κ be a security parameter.
Let Lsk be the length of secret keys in PKE and Lr be the length of randomness used
by Update. For ease of notation, we suppress the dependence of these lengths on κ.
We note that in the 2CLR case, it is without loss of generality to assume Lr << Lsk,
because we can always use pseudorandom coins (e.g. the output of a PRG) to do the

11

update. Since only the two consecutive keys are leaked (not the randomness, e.g. the
seed to the PRG), the update with the pseudorandom coins remains secure, assuming
the PRG is secure.

Let H be a family of public-coin collision resistant hash functions, as well as a
family of (2κ, ε)-good unseeded extractors13, mapping 2Lsk + 2κ bits to κ bits. Let
F1 and F2 be families of puncturable pseudo-random functions, where F1 has input
length 2Lsk + 3κ bits and output length Lr bits, and it is as well an (Lr + κ,ε)-good
unseeded extractor; F2 has input length κ and output length Lsk + 2κ. Here |u1| = κ
and |u2| = Lsk + 2κ, |r′| = 2κ.

Define the algorithm TransformGen(1κ, pk) that on input the security parameter, a
public key pk and a circuit that implements PKE.Update(·) as follows:

– TransformGen samplesK1,K2 as keys for the puncturable PRF as above, and h←
H. Let P1 be the program as Figure 1, and P2 as Figure 2.

– Then it samplesPupdate ← diO(P1), andPexplain ← diO(P2). It outputs (Pupdate,Pexplain).

Internal (hardcoded) state: Public key pk, keys K1, K2, and h.

On input secret key sk1; randomness u = (u1, u2).

– If F2(K2, u1) ⊕ u2 = (sk2, r
′) for (proper length) strings sk2, r

′ and u1 =
h(sk1, sk2, r

′), then output sk2.
– Else let x = F1(K1, (sk1, u)). Output sk2 = PKE.Update(pk, sk1;x).

Fig. 1. Program Update

Internal (hardcoded) state: key K2.

On input secret keys sk1, sk2; randomness r ∈ {0, 1}κ

– Set u1 = h(sk1, sk2, r). Set u2 = F2(K2, u1)⊕ (sk2, r). Output e = (u1, u2).

Fig. 2. Program Explain

Then we can establish the following theorem.

Theorem 2. Let PKE be any public key encryption scheme with key update. Assume
diO is a secure public-coin differing-inputs indistinguishable obfuscator for the cir-
cuits required by the construction, F1, F2 are puncturable pseudorandom functions
with the additional properties stated above, and H is a family of public-coin collision
resistant hash function with the extraction property as above. Then the transformation
TransformGen defined above is a secure explainable update transformation for PKE as
defined in Definition 2.
13 The extractor outputs a distribution that is ε close to the uniform distribution if the source

has min-entropy 2κ. Here we set ε to be some negligible. The hash function is chosen from a
family of functions, and once chosen, it is a deterministic function.

12

Proof. Recall we need to demonstrate that for any public key pk∗ and secret key sk∗ ∈
Πpk, the following two distributions are computationally indistinguishable:

{(Pupdate,Pexplain, pk
∗, sk∗, u∗)} ≈ {(Pupdate,Pexplain, pk

∗, sk∗, e∗)},

where these values are generated by
1. (Pupdate,Pexplain)← TransformGen(1κ,PKE.Update, pk∗),
2. u∗ = (u∗1, u

∗
2)← {0, 1}Lsk+3κ,

3. Set x∗ = F1(K1, sk
∗||u∗), sk′ = Pupdate(sk

∗;u∗). Then choose uniformly ran-
dom r∗ of length κ, and set e∗1 = h(sk∗, sk′, r∗) and e∗2 = F2(K2, e

∗
1)⊕ (sk′, r∗).

We prove this through the following sequence of hybrid steps.

Hybrid 1: In this hybrid step, we change Step 3 of the above challenge. Instead of
computing sk′ = Pupdate(sk

∗;u∗), we compute sk′ = PKE.Update(pk∗, sk∗;x∗):

1. (Pupdate,Pexplain)← TransformGen(1κ,PKE.Update, pk∗),
2. u∗ = (u∗1, u

∗
2)← {0, 1}Lsk+3κ,

3. Set x∗ = F1(K1, sk
∗||u∗), sk′ = PKE.Update(pk∗, sk∗;x∗), and choose uni-

formly random r∗ of length κ. Then, e∗1 = h(sk∗, sk′, r∗) and e∗2 = F2(K2, e
∗
1)⊕

(sk′, r∗).

Note that the only time in which this changes the experiment is when the values (u∗1, u
∗
2)←

{0, 1}2Lsk+3κ happen to satisfyF2(K2, u
∗
1)⊕u∗2 = (sk′, r′) such that u∗1 = h(sk∗, sk′, r′).

For any fixed u∗1, sk
∗, sk′, and a random u2∗ , we know the marginal probability of r′

is still uniform given u∗1, sk
∗, sk′. Therefore, we have Pru2∗[h(sk∗, sk′, r′) = u∗1] =

Prr′ [h(sk∗, sk′, r′) = u∗1] < 2−κ + ε. This is because h is a (2κ, ε)-extractor, so the
output of h is ε-close to uniform over {0, 1}κ, and a uniform distribution hits a particular
string with probability 2−κ. Since we set ε to be some negligible, the two distributions
are only different with the negligible quantity.

Hybrid 2: In this hybrid step, we modify the program in Figure 1, puncturing key
K1 at points {sk1||u∗} and {sk1||e∗}, and adding a line of code at the beginning of
the program to ensure that the PRF is never evaluated at these two points. See Figure
3. We claim that with overwhelming probability over the choice of u∗, this modified
program has identical input/output as the program that was used in Hybrid 1 (Figure
1). Note that on input (sk∗, e∗) the output of the original program was already sk′

as defined in Hybrid 1, so the outputs of the two programs are identical on this in-
put. (This follows because e∗ anyway encodes sk′, so when the “Else if” statement
is triggered in the program of Figure 1, the output is sk′.) As long as u∗1 and u∗2 do
not have the property that u∗1 = h(sk∗, F2(K2, u

∗
1) ⊕ u∗2), then the programs have

identical output on input (sk∗, u∗) as well. (This follows because sk′ is defined as
sk′ = Pupdate(sk

∗;F1(K1, sk
∗||u∗)) in the challenge game, which is also the output

of the program in Figure 1 when u∗1 and u∗2 fail this condition.) As we argued in Hy-
brid 1, with very high probability, u∗ does not have this property. (We stress that u∗

is fixed before we construct the obfuscated program described in Figure 3, so with
overwhelming probability over the choice of u∗, the two programs have identical input
output behavior.) Indistinguishability of Hybrids 1 and 2 follows from the security of
the obfuscation.

13

Internal (hardcoded) state: Public key pk∗, keys K̃1 =
PRF.Punct(K1, {sk∗||u∗}, {sk∗||e∗}), K2, sk′ (as defined in Hybrid 1) and h.

On input secret key sk1; randomness u = (u1, u2).

– If (sk1, u) = (sk∗, u∗) or (sk1, u) = (sk∗, e∗) output the value sk′.
– Else If F2(K2;u1)⊕ u2 = (sk2, r

′) such that u1 = h(sk1, sk2, r
′), then output sk2.

– Else let x = F1(K̃1, sk1||u). Output sk2 = PKE.Update(pk∗, sk1;x).

Fig. 3. Program Update, as used in Hybrid 2

Hybrid 3: In this Hybrid we change the challenge game to use truly random x∗ when
computing sk′ = PKE.Update(pk∗, sk∗;x∗), (instead of x∗ = F1(K1; sk∗||u∗)). Se-
curity holds by a reduction to the pseudo-randomness of F1 at the punctured point
(sk∗, u∗). More specifically, given an adversary A that distinguishes Hybrid 2 from
Hybrid 3 on values pk∗, sk∗, we describe an reduction B that attacks the security of the
puncturable PRF, F1. B generates u∗ at random and submits (sk∗, u∗) to his challenger.
He receives K̃1 = PRF.Punct(K1, {sk∗||u∗}), and a value x∗ as a challenge. B com-
putes sk′ = PKE.Update(pk∗, sk∗;x∗), chooses r∗ at random, and computes e∗ as in
the original challenge game. He creates Pupdate using K̃1 and sampling K2 honestly.
The same K2 is used for creating Pexplain. B obfuscates both circuits, which completes
the simulation of A’s view.

Hybrid 4: In this hybrid, we puncture K2 at both u∗1 and e∗1, and modify the Update
program to output appropriate hardcoded values on these inputs. (See Figures 4.) To
prove that Hybrids 3 and 4 are indistinguishable, we rely on security of public-coin
differing-inputs obfuscation and public-coin collision resistant hash function. In partic-
ular, we will show that suppose the Hybrids are distinguishable, then we can break the
security of the collision resistant hash function.

Consider the following sampler Samp(1κ) : outputs C0, C1 as the two update pro-
grams as in Hybrids 3 and 4 respectively; and it outputs an auxiliary input aux =
(pk∗, sk∗, sk′, u∗, e∗,K2, h, r

∗) sampled as in the both hybrids. Note that aux includes
all the random coins of the sampler. Suppose there exists a distinguisher D for the two
hybrids, then there exists a distinguished D′ that distinguishes (diO(C0), aux) from
(diO(C1), aux). This is because given the challenge input, D′ can complete the rest of
the experiment either according to Hybrid 3 or Hybrid 4. Then by security of the diO,
we know there exists an adversary (extractor) B that given (C0, C1, aux) finds an input
such that C0 and C1 evaluate differently. However, this contradicting the security of the
public-coin collision resistant hash function. We establish this by the following lemma.

Lemma 4. Assume h is sampled from a family of public-coin collision resistant hash
function, (and (2κ, ε)-extracting) as above. Then for any PPT adversary, the probability
is negligible to find a differing input given (C0, C1, aux) as above.

Proof. By examining the two circuits, we observe that the differing inputs have the
following two forms: (s̄k, u∗1, ū2) such that u∗1 = h(s̄k, F2(K2;u∗1) ⊕ ū2), (s̄k, ū2) 6=
(sk∗, u∗2); or (s̄k, e∗1, ē2) such that e∗1 = h(s̄k, F2(K2; e∗1) ⊕ ē2), (s̄k, ē2) 6= (sk∗, e∗2).
This is because they will run enter the first Else IF in Hybrid 3 (Figure 3), but will

14

enter the modified line (the first Else IF) in Hybrid 4 (Figure 4). We argue that both
cases happen with negligible probability; otherwise security of the hash function can be
broken.

For the first case, we observe that the collision resistance and (2κ, ε) extracting
guarantee that the probability of finding an pre-image of a random value u∗1 is small,
even given aux; otherwise there is an adversary who can break collision resistance.
For the second case, we know that e∗1 = h(sk∗, sk′, r∗) = h(s̄k, F2(K2; e∗1) ⊕ ē2) =
h(s̄k, e∗2 ⊕ (sk′, r∗)⊕ ē2). Since we know that (s̄k, ē2) 6= (sk∗, e∗2), we find a collision,
which again remains hard even given aux.

Thus, suppose there exists a differing-input finder A, we can define an adversary
B to break the collision resistant hash function: on input h, B simulates the sampler
Samp with the h. Then it runs A to find a differing input. Then according to the above
argument, either of the two cases will lead to finding a collision.

Internal (hardcoded) state: Public key pk∗, keys K̃1 =
PRF.Punct(K1, {sk∗||u∗}, {sk∗||e∗}), K̃2 = PRF.Punct(K2, {u∗1}, {e∗1}), sk′ (as
defined in Hybrid 3) and h.

On input secret key sk1; randomness u = (u1, u2).

– If (sk1, u) = (sk∗, u∗) or (sk1, u) = (sk∗, e∗) output value sk′.
– Else If u1 = u∗1 or u1 = e∗1, let x = F1(K̃1, sk1||u). Output sk2 =
PKE.Update(pk∗, sk1;x).

– Else
– If F2(K2;u1)⊕ u2 = (sk2, r

′) such that u1 = h(sk1, sk2, r
′), then output sk2.

– Else let x = F1(K̃1, sk1||u). Output sk2 = PKE.Update(pk∗, sk1;x).

Fig. 4. Program Update, as used in Hybrid 4

Hybrid 5: In this hybrid, we puncture K2 at both u∗1 and e∗1, and modify the Explain
program to output appropriate hardcoded values on these inputs. (See Figures 5.) Sim-
ilar to the argument for the previous hybrids, we argue that Hybrids 4 and 5 are indis-
tinguishable by security of the public-coin differing-inputs obfuscation and public-coin
collision resistant hash function. Consider a sampler Samp(1κ) : outputs C0, C1 as the
two explain programs as in Hybrids 4 and 5 respectively; and it outputs an auxiliary in-
put aux = (pk∗, sk∗, sk′, u∗, e∗, K̃2, h, r

∗) sampled as in the both hybrids (note that aux
includes all the random coins of the sampler). Similar to the above argument: suppose
there exists a distinguisherD that distinguishers Hybrids 4 and 5, then we can construct
a distinguisher D′ that distinguishes (diO(C0), aux) from (diO(C1), aux). This is be-
cause given the challenging input, D′ can simulate the hybrids. Then by security of the
diO, there exists an adversary (extractor) B that can find differing inputs. Now we want
to argue that suppose the h comes from a public-coin collision resistant hash family,
then no PPT adversary can find differing inputs. This leads to a contradiction.

15

Lemma 5. Assume h is sampled from a family of public-coin collision resistant hash
function, (and (2κ, ε)-extracting) as above. Then for any PPT adversary, the probability
is negligible to find a differing input given (C0, C1, aux) as above.

Proof. The proof is almost identical to that of Lemma 4. We omit the details.

Internal (hardcoded) state: key K̃2 = PRF.Punct(K2, {u∗1}, {e∗1}), u∗, e∗.

On input secret keys sk1, sk2; randomness r ∈ {0, 1}κ

– If u∗1 = h(sk1, sk2, r), output u∗. Else If e∗1 = h(sk1, sk2, r), output e∗.
– Else, set u1 = h(sk1, sk2, r). Set u2 = F2(K2, u1)⊕ (sk2, r). Output e = (u1, u2).

Fig. 5. Program Explain, as used in Hybrid 5

Hybrid 6: In this hybrid, we change both e∗1 and e∗2 to uniformly random. Hybrids 5 and
6 are indistinguishable by the security of the puncturable PRF F2, and by the fact that h
is (2κ, ε)-extracting. Clearly in this hybrid, the distributions of {(Pupdate,Pexplain, pk

∗, sk∗, u∗)}
and {(Pupdate,Pexplain, pk

∗, sk∗, e∗)} are identical. From the indistinguishable argu-
ments that the original game and Hybrid 6 are indistinguishable, we can argue that
the distributions in the original game are indistinguishable. This concludes the proof.

3 2CLR from “Leakage Resilient Subspaces”

We show that the PKE scheme of Brakerski et al. [5] (BKKV), which has been proven
CLR, can achieve 2CLR (with a slight adjustment in the scheme’s parameters). We note
that our focus on PKE here is justified by the fact that we show generically in the full
version [8] that any CLR (resp. 2CLR) PKE scheme implies a CLR “one-way relation”
(OWR) [11]; to the best of our knowledge, such an implication was not previously
known. Therefore, by the results of Dodis et al. [11], this translates all our results about
PKE to the signature setting as well. In the full version [8] of the paper, we show that
the approach of Dodis et al. [11] for constructing CLR OWRs can be extended to 2CLR
one-way relations, but we achieve weaker parameters this way.

Recall that in the work [5], to prove that their scheme is CLR, they show “random
subspaces are leakage resilient”. In particular, they show that for a random subspace
X , the statistical difference between

(
X, f(v)

)
and

(
X, f(u)

)
is negligible, where f

is an arbitrary length-bounded function, v is a random point in the subspace, and u is
a random point in the whole space. Then by a simple hybrid argument, they show that(
X, f1(v0), f2(v1), . . . , ft(vt−1)

)
and

(
X, f1(u0), f2(u1), . . . , ft(ut−1)

)
are indistin-

guishable, where f1, . . . , ft are arbitrary and adaptively chosen length-bounded func-
tions , v0, v1, . . . , vt−1 are independent random points in the subspace, and u0, u1, . . . , ut−1
are independent random points in the whole space. This lemma plays the core role in
their proof.

16

In order to show that their scheme satisfies the 2CLR security, we consider random
subspaces under “consecutive” leakage. That is, we want to show:(
X, f1(v0, v1), f2(v1, v2), . . . , ft(vt−1, vt)

)
≈
(
X, f1(u0, u1), f2(u1, u2), . . . , ft(ut−1, ut)

)
,

for arbitrary and adaptively chosen fi’s, i.e. each fi can be chosen after seeing the pre-
vious leakage values f1, . . . , fi−1. However, this does not follow by a hybrid argument
of
(
X, f(v)

)
≈
(
X, f(u)

)
, because in the 2CLR case each point is leaked twice. It is

not clear how to embed a challenging instance of (X, f(z)) into the larger experiment
while still being able to simulate the rest.

To handle this technical issue, we establish a new lemma showing random sub-
spaces are “consecutive” leakage resilient. With the lemma and a hybrid argument, we
can show that the above experiments are indistinguishable. Then we show how to use
this fact to prove that the scheme of BKKV is 2CLR.

Lemma 6. Let t, n, `, d ∈ N, n ≥ ` ≥ 3d, and q be a prime. Let (A,X) ← Zt×nq ×
Zn×`q such that A ·X = 0, T, T ′ ← Rkd(Z`×dq), U ← Zn×dq such that A · U = 0, (i.e.
U is a random matrix in Ker(A)), and f : Zt×nq × Zn×2dq → W be any function14 .
Then we have:

∆
((
A,X, f(A,XT,XT ′), XT ′

)
,
(
A,X, f

(
A,U,XT ′

)
, XT ′

))
≤ ε,

as long as |W | ≤ (1− 1/q) · q`−3d+1 · ε2.

Proof. We will actually prove something stronger, namely we will prove, under the
assumptions of the Lemma 6, that

∆
((
A,X, f(A,X · T,X · T ′), X · T ′, T ′

)
,
(
A,X, f(A,U,X · T ′), X · T ′, T ′

))
≤ 1

2

√
3|W |

(1− 1/q)q`−3d+1
< ε .

Note that this implies the Lemma by solving for ε, after noting that ignoring the last
component in each tuple can only decrease statistical difference.

For the proof, we will apply Lemma 7 as follows. We will take hash functionH to be
H : Zn×`q ×Z`×dq → Zn×dq where HK(D) = KD (matrix multiplication), and take the
set Z to be Zn×`q ×Z`×dq . Next we take random variable K to be uniform on Zn×`q (de-
noted as the matrix X), D to be uniform on Rkd(Z`×dq), and finally Z = (A,XT ′, T ′)

where A is uniform conditioned on AX = 0, T ′ ∈ Rkd(Z`×dq) is independent uniform.
We define U|Z as the uniform distribution such that AU = 0. This also means that U is
a random matrix in the kernel of A.

It remains to prove under these settings that

Pr [(D,D′, Z) ∈ BAD] ≤ 1

(1− 1/q)q`−3d+1

14 Note: Rk denotes rank. Here we use n as the dimension (different from [5] who used m) to
avoid overloading notation.

17

with BAD defined as in Lemma 7. For this let us consider

∆
(
(HK|Z (T1), HK|Z (T2)), (U|Z , U

′
|Z)
)

where Z = (A,XT ′, T ′) as defined above. The above statistical distance is zero as long
as the outcomes of T1, T2, T ′ are all linearly independent. This is so because ` ≥ 3d.
Now, by a standard formula the probability that T1, T2, T ′ have a linear dependency is
bounded by 1

(1−1/q)q`−3d+1 , and we are done.

We note that this lemma is slightly different that the original lemma in the work [5]:
the leakage function considered here also takes in a public matrix A, which is used as
the public key in the system. We observe that both our work and [5] need this version
of the lemma to prove security of the encryption scheme.

We actually prove Lemma 6 as a consequence of a new generalization of the Crooked
Leftover Hash Lemma (LHL) [13,3] we introduce (to handle hash functions that are
only pairwise independent if some bad event does not happen), as follows.

Lemma 7. Let H : K × D → R be a hash function and (K,Z) be joint random vari-
ables over (K,Z) for the set K and some set Z . Define the following set

BAD =
{(
d, d′, z

)
∈ D ×D ×Z : ∆

(
(HK|Z=z

(d), HK|Z=z
(d′)), (U|Z=z, U

′
|Z=z)

)
> 0
}
,

(1)

where U|Z=z, U
′
|Z=z denote two independent uniform distributions overR conditioned

on Z = z, and K|Z=z is the conditional distribution of K given Z = z. We note that
R might depend on z, so when we describe a uniform distribution over R, we need to
specify the condition Z = z.

SupposeD andD′ are i.i.d. random variables overD, (K,Z) are random variables
over K × Z satisfying Pr [(D,D′, Z) ∈ BAD] ≤ ε′. Then for any set S and function
f : R×Z → S it holds that

∆((K,Z, f(HK(D), Z)), (K,Z, f(U|Z , Z))) ≤ 1

2

√
3ε′ |S| .

Proof. The proof is an extension of the proof of the Crooked LHL given in [3]. First,
using Cauchy-Schwarz and Jensen’s inequality we have

∆((K,Z, f(HK(D), Z)), (K,Z, f(U|Z , Z)))

5
1

2

√√√√|S|Ek,z [∑
s

(Pr [f(Hk(D), z) = s]− Pr
[
f(U|Z=z, z) = s

]
)2

]
,

where U|Z=z is uniform on R conditioned on Z = z, and the expectation is over
(k, z) drawn from (K,Z). Thus, to complete the proof it suffices to prove the following
lemma.

Lemma 8.

Ek,z

[∑
s

(
Pr [f(Hk(D), z) = s]− Pr

[
f(U|Z=z, z) = s

])2]
≤ 3ε′ . (2)

18

Proof. By the linearity of expectation, we can express Equation 2 as:

Ek,z
∑
s

Pr [f(Hk(D), z) = s]
2−2Ek,z

∑
s

Pr [f(Hk(D), z) = s]Pr
[
f(U|Z=z, z) = s

]
+ EzCol(f(U|Z=z, z)), (3)

whereU|Z=z is uniform onR conditioned onZ = z, and Col is the collision probability
of its input random variable. Note that since f(U|Z=z, z) is independent of k, we can
drop it in the third term. In the following, we are going to calculate bounds for the first
two terms.

For any s ∈ S, we can write Pr [f(Hk(D), z) = s] =
∑
d Pr [D = d]δf(Hk(d),z),s

where δa,b is 1 if a = b and 0 otherwise, and thus∑
s

Pr [f(Hk(D), z) = s]
2

=
∑
d,d′

Pr [D = d]Pr [D = d′]δf(Hk(d),z),f(Hk(d′),z) .

So we have

Ek,z
∑
s

Pr [f(Hk(D), z) = s]
2

= Ek,z

∑
d,d′

Pr [D = d]Pr [D = d′]δf(Hk(d),z),f(Hk(d′),z)

= Ez

∑
d,d′

Pr [D = d]Pr [D = d′]Ek
[
δf(Hk(d),z),f(Hk(d′),z)

]
≤

∑
z,d,d′ /∈BAD

Pr [Z = z]Pr [D = d]Pr [D = d′]Ek
[
δf(Hk(d),z),f(Hk(d′),z)

]
+ ε′

= Ez
[
Col(f(U|Z=z, z))

]
+ ε′, (4)

where BAD is defined as in equation (1) from Lemma 7. The inequality holds because,
by our definition of BAD, if (z, d, d′) /∈ BAD, (Hk(d), Hk(d′)) are distributed exactly
as two uniformly chosen elements (conditioned on Z = z), and because Pr[(z, d, d′) ∈
BAD] ≤ ε′.

By a similar calculation, we have:

Ek,z
∑
s

Pr [f(Hk(D), z) = s]Pr
[
f(U|Z=z, z) = s

]
≥ Ez

[
Col(f(U|Z=z, z))

]
−ε′ .

(5)
For the same reason, Hk(D) is uniformly random except for the bad event, whose
probability is bounded by ε′.

Putting things together, the inequality in Equation 2 follows immediately by plug-
ging the bounds in Equations 4 and 5. This concludes the proof.

Here we describe the BKKV encryption scheme, and show it is 2CLR-secure. We
begin by presenting the main scheme in BKKV, which uses the weaker linear assump-
tion, but achieves a worse leakage rate (that can tolerate roughly 1/8 · |sk| − o(κ)).
In that work [5], it is also pointed out that under the stronger SXDH assumption, the

19

rate can be improved to tolerate roughly 1/4 · |sk| − o(k), with essentially the same
proof. The same argument also holds in the 2CLR setting. To avoid repetition, we just
describe the original scheme in BKKV, and prove that it is actually 2CLR under the
linear assumption.

– Parameters. Let G,GT be two groups of prime order p such that there exists a
bilinear map e : G × G → GT . Let g be a generator of G (and so e(g, g) is a
generator of GT). An additional parameter ` ≥ 7 is polynomial in the security
parameter. (Setting different ` will enable a tradeoff between efficiency and the
rate of tolerable leakage). For the scheme to be secure, we require that the linear
assumption holds in the group G, which implies that the size of the group must be
super-polynomial, i.e. p = κω(1).

– Key-generation. The algorithm samples A ← Z2×`
p , and Y ← Ker2(A), i.e. Y ∈

Z`×2p can be viewed as two random (linearly independent) points in the kernel of
A. Then it sets pk = gA, sk = gY . Note that since A is known, Y can be sampled
efficiently.

– Key-update. Given a secret key gY ∈ G`×2, the algorithm samplesR← Rk2(Z2×2
p)

and then sets sk′ = gY ·R.
– Encryption. Given a public key pk = gA, to encrypt 0, it samples a random r ∈ Z2

p

and outputs c = gr
T ·A. To encrypt 1, it just outputs c = gu

T

where u ← Z`p is a
uniformly random vector.

– Decryption. Given a ciphertext c = gv
T

and a secret key sk = gY , the algorithm
computes e(g, g)v

T ·Y . If the result is e(g, g)0, then it outputs 0; otherwise 1.

Then we are able to achieve the following theorem:

Theorem 3. Under the linear assumption, for every ` ≥ 7, the encryption scheme
scheme above is µ-bit leakage resilient against two-key continual and consecutive leak-
age, where µ = (`−6)·log p

2 −ω(κ). Note that the leakage rate would be µ
|sk|+|sk| ≈ 1/8,

as ` is chosen sufficiently large.

Proof. The theorem follows directly from the following lemma:

Lemma 9. For any t ∈ poly(κ), r ← Z2
p, A ← Z2×`

p , random Y ∈ Ker2(A), and
polynomial sized functions f1, f2, . . . , ft where each fi : Z`×2p × Z`×2p → {0, 1}µ
and can be adaptively chosen (i.e. fi can be chosen after seeing the leakage values of
f1, . . . , fi−1), the following two distributions, D0 and D1, are computationally indis-
tinguishable:

D0 = (g, gA, gr
T ·A, f1(sk0, sk1), . . . ft(skt−1, skt))

D1 = (g, gA, gu, f1(sk0, sk1), . . . ft(skt−1, skt)),

where sk0 = gY and ski+1 = (ski)
Ri for Ri a random 2 by 2 matrix of rank 2.

Basically, the distributionD0 is the view of the adversary when given an encryption
of 0 as the challenge ciphertext and continual leakage of the secret keys; D1 is the
same except the challenge ciphertext is an encryption of 1. Our goal is to show that no
polynomial sized adversary can distinguish between them.

We show the lemma in the following steps:

20

1. We first consider two modified experiment D′0 and D′1 where in these experiments,
all the secret keys are sampled independently, i.e. sk′i+1 ← Ker2(A). In other
words, instead of using a rotation of the current secret key, the update procedure
resamples two random (linearly independent) points in the kernel of A. Denote
D′b = (g, gA, gz, f1(sk′0, sk

′
1), . . . ft(sk

′
t−1, sk

′
t)) for gz is sampled either from

gr
T ·A or gu depending on b ∈ {0, 1}. Intuitively, the operations are computed

in the exponent, so the adversary cannot distinguish between the modified experi-
ments from the original ones. We formally prove this using the linear assumption.

2. Then we consider the following modified experiments: for b ∈ {0, 1}, define

D′′b = (g, gA, gz, f1(gu0 , gu1), f2(gu1 , gu2), · · · , ft(gut−1 , gut)),

where the distribution samples a random X ∈ Z`×(`−3)p such that A ·X = 0; then
it samples each ui = X · Ti for Ti ← Rk2(Z(`−3)×2

p); finally it samples z either as
rT · A or uniformly random as in D′b. We then show that D′′b is indistinguishable
from D′b using the new geometric lemma.

3. Finally, we show that D′′0 ≈ D′′1 under the linear assumption.

To implement the approach just described, we establish the following lemmas.

Lemma 10. For both b ∈ {0, 1}, Db is computationally indistinguishable from D′b.

To show this lemma, we first establish a lemma:

Lemma 11. Under the linear assumption, (g, gA, gY , gY ·U) ≈ (g, gA, gY , gY
′
), where

A← Z2×`
p , Y, Y ′ Ker2(A), and U ← Rk2(Z2×2

p).

Suppose there exists a distinguisher A that breaks the above statement with non-
negligible probability, then we can construct B that can break the linear assumption
(the matrix form). In particular, B distinguishes (g, gC , gC·U) from (g, gC , gC

′
) where

C and C ′ are two independent and uniformly random samples from Z(`−2)×2
p , and U

is uniformly random matrix from Z2×2
p . Note that when p = κω(1) (this is required by

the linear assumption), then with overwhelming probability, (C||C ′) is a rank 4 matrix,
and (C||C · U) is a rank 2 matrix. The linear assumption is that no polynomial time
adversary can distinguish the two distributions when given in the exponent.
B does the following on input (g, gC , gZ), where Z is either C · U or a uniformly

random matrix C ′:

– B samples a random rank 2 matrix A ∈ Z2×`
p . Then B computes an arbitrary basis

of Ker(A) (note that Ker(A) = {v ∈ Z`p : A · v = 0}), denoted as X . By the
rank-nullity theorem (see any linear algebra textbook), the dimension of Ker(A)

plus Rk(A) is `. So we know that X ∈ Z`×(`−2)p , i.e. X contains (` − 2) vectors
that are linearly independent.

– B computes gX·C and gX·Z . This can be done efficiently given (gC , gZ) and X in
the clear.

– B outputs A(g, gA, gX·C , gX·Z).

21

We observe that when p = κω(1), the distribution of A is statistically close to a
random matrix, and U is statistically close to a random rank 2 matrix. Then it is not hard
to see that gX·C is identically distributed to gY , and gX·Z is distributed as g(X·C)·U if
Z = C ·U , and otherwise as gY

′
. So B can break the linear assumption with probability

essentially the same as that of A. This completes the proof of the lemma.
Then Lemma 10 can be proven using the lemma via a standard hybrid argument.

We show that D0 ≈ D′0 and the other one can be shown by the same argument. For
i ∈ [t+ 1], define hybrids Hi as the experiment as D0 except the first i secret keys are
sampled independently, as D′0; the rest are sampled according to rotations, as D0. It is
not hard to see that H1 = D0, Ht+1 = D′0, and Hi ≈ Hi+1 using the lemma. The
argument is obvious and standard, so we omit the detail.

Then we recall the modified distribution D′′b : for b ∈ {0, 1},

D′′b = (g, gA, gz, f1(gu0 , gu1), f2(gu1 , gu2), · · · , ft(gut−1 , gut)),

where the distribution samples a random X ∈ Z`×(`−2)p such that A · X = 0; then it
samples each ui = X · Ti for Ti ← Rk2(Z(`−2)×2

p), and z is sampled either rT · A or
uniformly random. We then establish the following lemma.

Lemma 12. For b ∈ {0, 1}, D′b is computationally indistinguishable from D′′b .

We prove the lemma using another hybrid argument. We prove that D′0 ≈ D′′0 , and
the other follows from the same argument. We define hybrids Qi for i ∈ [t] where in
Qi, the first i secret keys (the exponents) are sampled randomly from Ker2(A) (as D′0),
and the rest secret keys (the exponents) are sampled asX ·T (asD′′0). Clearly,Q0 = D′′0
and Qt+1 = D′0. Then we want to show that Qi is indistinguishable from Qi+1 using
the extended geometric lemma (Lemma 6).

For any i ∈ [t + 1], we argue that suppose there exists an (even unbounded) ad-
versary that distinguishes Qi from Qi+1 with probability better than ε, then there exist
a leakage function L and an adversary B such that B can distinguish

(
A,X,L(A,X ·

T,X ·T ′), X · T ′
)

from
(
A,X,L(A,U,X · T ′), X · T ′

)
in Lemma 6 with probability

better than ε − negl(κ) (dimensions will be set later). We will set the parameters of
Lemma 6 such that the two distributions have negligible statistical difference; thus ε
can be at most a negligible quantity.

Now we formally set the dimensions: let X be a random matrix in Z`×(`−3); T, T ′

be two random rank 2 matrices in Z(`−3)×2
p , i.e. Rk2

(
Z(`−3)×2
p

)
; L : Z`×2p × Z`×2p →

{0, 1}2µ; recall that 2µ = (` − 6) · log p − ω(κ), and thus |L| ≤ p`−6 · κ−ω(1). By
Lemma 6, for any (even computationally unbounded) L, we have

∆
((
A,X,L(A,X · T,X · T ′), X · T ′

)
,
(
A,X,L(A,U,X · T ′), X · T ′

))
< κ−ω(1) = negl(κ).

Let g be a random generator ofG, and ω is some randomness chosen uniformly. We
define a particular function L∗, with g, ω hardwired, as follows: L∗(A,w, v) on input
A,w, v does the following:

22

– It first samples Y0, . . . , Yi−1 ← Ker2(A), using the random coins ω. Then it sets
skj = gYj for j ∈ [i− 1].

– It simulates the leakage functions, adaptively, obtains the values
f1(sk0, sk1), . . . , fi−1(ski−2, ski−1), and obtains the next leakage function fi.

– It computes fi(ski−1, gw), and then obtains the next leakage function fi+1.
– Finally it outputs fi(ski−1, gw)||fi+1(gw, gv).

Recall that fi, fi+1 are two leakage functions with µ bits of output, so L∗ has 2µ
bits of output. Now we construct the adversary B as follows:

– Let g be the random generator, ω be the random coins as stated above, and L∗ be
the function defined above. Then B gets input (A,X,L∗(A,Z,X · T ′), X · T ′)
where Z is either uniformly random or X · T .

– B samples Y0, . . . , Yi−1 ← Ker2(A), using the random coins ω. Then it sets
skj = gYj for j ∈ [i − 1]. We note that the secret keys (in the first i − 1 rounds)
are consistent with the values used in the leakage function for they use the same
randomness ω.

– B sets ski+2 = gX·T
′
.

– B samples Ti+3, . . . , Tt+1 ← Rk2(Z(`−3)×2
p) and sets skj = gX·Tj for j ∈ {i +

3, . . . , t+ 1}.
– B outputs A

(
gA, gz, f1(sk0, sk1), f2(sk1, sk2), · · · , fi−1(ski−2, ski−1), L∗(Z,X ·

T ′), fi+2(ski+2, sk
′
i+3), . . . , ft(sk

′
t, sk

′
t+1)

)
.

Then it is not hard to see that if Z comes from the distributionXT , then the simula-
tion of B and L∗ distributes as Qi, and otherwise Qi−1. Thus, suppose suppose A can
distinguish Qi from Qi+1 with non-negligible probability ε, then B can distinguish the
two distributions with a non-negligible probability. This contradicts Lemma 6.

Finally, we show that D′′0 is computationally indistinguishable from D′′1 under the
linear assumption.

Lemma 13. Under the linear assumption, the distributions D′′0 and D′′1 are computa-
tionally indistinguishable.

We use the same argument as the work [5]. In particular, we will prove that sup-
pose there exists an adversary A that distinguishes D′′0 from D′′1 , then there exists an
adversary B that distinguishes the distributions {gC : C ← Z3×3

p } and {gC : C ←
Rk2(Z3×3

p)}. We assume that the second distribution samples two random rows, and
then sets the third row as a random linear combination of the first two rows. As argued
in the work [5], this assumption is without loss of generality.

Now we describe the adversary B. B on input gC does the following.

– B samples a random matrix X ← Z`×(`−3)p , and a random matrix B ← Z3×`
p such

that B ·X = 0.
– B computes gCB , and sets its first two rows as gA and the last row as gz .
– B samples T1, . . . , Tt ← Rk2(Z(`−3)×2

p), and sets ski = gXTi for i ∈ [t].
– B outputs A(g, gA, gz, f1(sk0, sk1), . . . , ft(skt−1, skt)).

23

As argued in the work [5], if C is uniformly random, then (A, z) is distributed uni-
formly as D′′1 . If C is of rank 2, then (A, z) is distributed as (A, rTA) for some random
r ∈ Z2

p as D′′0 . Thus, suppose A can distinguish D′′0 from D′′1 with non-negligible
probability, then B breaks the linear assumption with non-negligible probability.

Lemma 9 (D0 ≈ D1) follows directly from Lemmas 10, 12, and 13. This suffices
to prove the theorem. We present the proofs of Lemmas 10, 12, and 13.

4 Bounded leakage-resilient encryption schemes from Obfuscation

We show that by modifying the Sahai-Waters (SW) public key encryption scheme [23]
in two simple ways, the scheme already becomes non-trivially leakage resilient in the
one-time, bounded setting. Recall that in this setting, the adversary, after seeing the
public key and before seeing the challenge ciphertext, may request a single leakage
query of length L bits. We require that semantic security hold, even given this leakage.

Our scheme can tolerate an arbitrary amount of one-time leakage. Specifically, for
any L = L(κ) = poly(κ), we can obtain a scheme which is L-leakage resilient by
setting the parameter ρ in Figure 6 depending on L. However, our leakage rate is not
optimal, since the size of the secret key sk, grows with L. In the full version [8] of the
paper, we will show how to further modify the construction to achieve optimal leakage
rate.

On a high-level, we modify SW in the following ways: (1) Instead of following the
general paradigm of encrypting a message m by xoring with the output of a PRF, we
first apply a strong randomness extractor Ext to the output of the PRF and then xor
with the message m; (2) We modify the secret key of the new scheme to be an iO of
the underlying decryption circuit. Recall that in SW, decryption essentially consists of
evaluating a puncturable PRF. In our scheme, sk consists of an iO of the puncturable
PRF, padded with poly(L) bits.

We show that, even given L bits of leakage, the attacker cannot distinguish Ext(y)
from random, where y is the output of the PRF on a fixed input t∗. This will be sufficient
to prove security. We proceed by a sequence of hybrids: First, we switch sk to be an
obfuscation of a circuit which has a PRF key punctured at t∗ and a point function
t∗ → y hardcoded. On input t 6= t∗, the punctured PRF is used to compute the output,
whereas on input t∗, the point function is used. Since the circuits compute the same
function and—due to appropriate padding—they are both the same size, security of
the iO implies that an adversary cannot distinguish the two scenarios. Next, just as in
SW, we switch from t∗ → y to t∗ → y∗, where y∗ is uniformly random of length
L + Lmsg + 2 log(1/ε) bits; here we rely on the security of the punctured PRF. Now,
observe that since y∗ is uniform and since Ext is a strong extractor for inputs of min-
entropy Lmsg + 2 log(1/ε) and output length Lmsg, Ext(y∗) looks random, even under
L bits of leakage.

The informal theorem statement is below. We present the formal theorem and proof
in the full version.

Theorem 4 (Informal.). Under appropriate assumptions, E isL-leakage resilient against
one-time key leakage where L = ρ− 2 log(1/ε)− Lmsg.

24

Encryption Scheme E = (E .Gen, E .Enc, E .Dec)

Key Generation: (pk, sk0)← E .Gen(1κ)
Compute k ← PRF.Gen(1κ), where PRF : {0, 1}κ ×{0, 1}ρ → {0, 1}ρ. Let Ck be the
circuit described in Figure 7, and let CEnc ← iO(Ck).
Let Ck,κ+ρ be the circuit described in Figure 8, and let CDec ← iO(Ck,κ+ρ).
Output pk = (CEnc) and sk = (CDec).

Encryption: c← E .Enc(pk,m)
On input message m ∈ {0, 1}Lmsg , sample r ← {0, 1}κ, w ← {0, 1}d, and output
c = (G(r), w,Ext(CEnc(r), w) ⊕ m), where PRG G : {0, 1}κ → {0, 1}ρ, and Ext :
{0, 1}ρ × {0, 1}d → {0, 1}Lmsg .

Decryption: m̂← E .Dec(sk, c)
On input ciphertext c = (t, w, v), compute y := CDec(t).
If y 6= ⊥, output m̂ = Ext(y, w)⊕ v. Otherwise, output m̂ = ⊥.

Fig. 6. The one-time, bounded leakage encryption scheme, E .

Internal (hardcoded) state: k.

On input: r

– Output z = PRF.Eval(k,G(r)), where G is the same PRG used in E .Enc.

Fig. 7. This program Ck is obfuscated using iO and placed in the public key to be used for
encryption.

Internal (hardcoded) state: k.

On input: t

– Output z = PRF.Eval(k, t).

Fig. 8. The circuit above is padded with poly(κ+ ρ) dummy gates to obtain the circuit Ck,κ+ρ.
Ck,κ+ρ is then obfuscated using iO and placed in the secret key.

References

1. A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryptog-
raphy against memory attacks. In O. Reingold, editor, TCC 2009, volume 5444 of LNCS,
pages 474–495. Springer, Mar. 2009.

2. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On
the (im)possibility of obfuscating programs. Journal of the ACM, 59(2):6, 2012.

3. A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption,
and efficient constructions without random oracles. In D. Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 335–359. Springer, Aug. 2008.

4. E. Boyle, G. Segev, and D. Wichs. Fully leakage-resilient signatures. In K. G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 89–108. Springer, May 2011.

5. Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Overcoming the hole in the bucket:
Public-key cryptography resilient to continual memory leakage. In 51st FOCS, pages 501–
510. IEEE Computer Society Press, Oct. 2010.

25

6. R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In B. S. Kaliski Jr.,
editor, CRYPTO’97, volume 1294 of LNCS, pages 90–104. Springer, Aug. 1997.

7. R. Canetti, S. Goldwasser, and O. Poburinnaya. Adaptively secure two-party computation
from indistinguishability obfuscation. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part
II, volume 9015 of LNCS, pages 557–585. Springer, Mar. 2015.

8. D. Dachman-Soled, S. D. Gordon, F.-H. Liu, A. O’Neill, and H.-S. Zhou. Leakage-resilient
public-key encryption from obfuscation. 2016. Full version.

9. D. Dachman-Soled, J. Katz, and V. Rao. Adaptively secure, universally composable, multi-
party computation in constant rounds. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part
II, volume 9015 of LNCS, pages 586–613. Springer, Mar. 2015.

10. D. Dachman-Soled, F.-H. Liu, and H.-S. Zhou. Leakage-resilient circuits revisited - optimal
number of computing components without leak-free hardware. In E. Oswald and M. Fischlin,
editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 131–158. Springer, Apr.
2015.

11. Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Cryptography against continuous
memory attacks. In 51st FOCS, pages 511–520. IEEE Computer Society Press, Oct. 2010.

12. Y. Dodis, A. B. Lewko, B. Waters, and D. Wichs. Storing secrets on continually leaky
devices. In R. Ostrovsky, editor, 52nd FOCS, pages 688–697. IEEE Computer Society Press,
Oct. 2011.

13. Y. Dodis and A. Smith. Correcting errors without leaking partial information. In H. N.
Gabow and R. Fagin, editors, 37th ACM STOC, pages 654–663. ACM Press, May 2005.

14. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistin-
guishability obfuscation and functional encryption for all circuits. In 54th FOCS, pages
40–49. IEEE Computer Society Press, Oct. 2013.

15. S. Garg, C. Gentry, S. Halevi, and D. Wichs. On the implausibility of differing-inputs obfus-
cation and extractable witness encryption with auxiliary input. In J. A. Garay and R. Gen-
naro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 518–535. Springer, Aug.
2014.

16. S. Garg and A. Polychroniadou. Two-round adaptively secure MPC from indistinguishability
obfuscation. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS,
pages 614–637. Springer, Mar. 2015.

17. C. Hazay, A. López-Alt, H. Wee, and D. Wichs. Leakage-resilient cryptography from min-
imal assumptions. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 160–176. Springer, May 2013.

18. Y. Ishai, O. Pandey, and A. Sahai. Public-coin differing-inputs obfuscation and its applica-
tions. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages
668–697. Springer, Mar. 2015.

19. J. Katz and V. Vaikuntanathan. Signature schemes with bounded leakage resilience. In
M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 703–720. Springer, Dec.
2009.

20. A. B. Lewko, M. Lewko, and B. Waters. How to leak on key updates. In L. Fortnow and
S. P. Vadhan, editors, 43rd ACM STOC, pages 725–734. ACM Press, June 2011.

21. S. Micali and L. Reyzin. Physically observable cryptography (extended abstract). In M. Naor,
editor, TCC 2004, volume 2951 of LNCS, pages 278–296. Springer, Feb. 2004.

22. M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In S. Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 18–35. Springer, Aug. 2009.

23. A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In D. B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press, May / June
2014.

26

24. B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 619–636.
Springer, Aug. 2009.

27

	Leakage-Resilient Public-Key Encryption from Obfuscation

