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Abstract. Adaptively secure Multi-Party Computation (MPC) is an
essential and fundamental notion in cryptography. In this work, we con-
struct Universally Composable (UC) MPC protocols that are adaptively
secure against all-but-one corruptions based on LWE. Our protocols have
a constant number of rounds and communication complexity dependant
only on the length of the inputs and outputs (it is independent of the
circuit size).
Such protocols were only known assuming an honest majority. Proto-
cols in the dishonest majority setting, such as the work of Ishai et al.
(CRYPTO 2008), require communication complexity proportional to the
circuit size. In addition, constant-round adaptively secure protocols as-
suming dishonest majority are known to be impossible in the stand-alone
setting with black-box proofs of security in the plain model. Here, we
solve the problem in the UC setting using a set-up assumption which
was shown necessary in order to achieve dishonest majority.
The problem of constructing adaptively secure constant-round MPC pro-
tocols against arbitrary corruptions is considered a notorious hard prob-
lem. A recent line of works based on indistinguishability obfuscation
construct such protocols with near-optimal number of rounds against
arbitrary corruptions. However, based on standard assumptions, adap-
tively secure protocols secure against even just all-but-one corruptions
with near-optimal number of rounds are not known. However, in this
work we provide a three-round solution based only on LWE and NIZK
secure against all-but-one corruptions.
In addition, Asharov et al. (EUROCRYPT 2012) and more recently
Mukherjee and Wichs (ePrint 2015) presented constant-round protocols
based on LWE which are secure only in the presence of static adversaries.
Assuming NIZK and LWE their static protocols run in two rounds where
the latter one is only based on a common random string. Assuming adap-
tively secure UC NIZK, proposed by Groth et al. (ACM 2012), and LWE
as mentioned above our adaptive protocols run in three rounds.
Our protocols are constructed based on a special type of cryptosystem
we call equivocal FHE from LWE. We also build adaptively secure UC
commitments and UC zero-knowledge proofs (of knowledge) from LWE.
Moreover, in the decryption phase using an AMD code mechanism we
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avoid the use of ZK and achieve communication complexity that does
not scale with the decryption circuit.

1 Introduction

Secure multi-party computation is an extremely strong and important tool for
making distributed computing more secure. General solutions to the problem
allows us to carry out any desired computation among a set of players, without
compromising, the privacy of their inputs or the correctness of the outputs. This
should even hold if some of the players have been corrupted by an adversary. An
important issue in this connection is how the adversary chooses which players
to target. In the static model, the adversary must choose who to corrupt before
the protocol starts. A more general and also more realistic model is adaptive
corruption where the adversary may corrupt new players during the protocol.

Of course efficiency of the protocol is also important, and important mea-
sures in this respect are the number of rounds we need to do, as well as the
communication complexity (the total number of bits sent). Obviously, achieving
a constant number of rounds and small communication complexity, while still
getting the best possible security, is an important research goal.

Unconditionally secure protocols such as [BGW88] are typically adaptively
secure. But these protocols are not constant round, and it is a major open
problem if it is even possible to have unconditional security and constant number
of rounds for secure computation of any function, see [DNP15] for a detailed
discussion.

If we are willing to make computational assumptions, we can achieve constant
round protocols, the first example of this is Yao’s garbled circuits for two players,
but on the other hand this does not give us adaptive security. Another class of
protocols based on Fully Homomorphic Encryption (FHE) also naturally leads
to constant round protocols, where we can tolerate that a majority of players are
corrupted. Here we also get low communication complexity, that depends only on
the lenght of inputs and outputs. But again, these protocols achieve only static
security (see for instance [Gen09,AJLA+12,LTV12]). More recently, the work
of Mukherjee and Wichs [MW15] achieve a two-round static protocol assuming
LWE and NIZK where additionally the protocol only assumes a random reference
string (as opposed to being sampled form a specific distribution).

We can in fact get adaptive security in the computational setting, as shown
in [CFGN96] by introducing the notion of Non-Commiting Encryption (NCE).
Moreover, in [DN03], adaptive security was obtained as well, but much more
efficiently using additively homomorphic encryption. However, neither [CFGN96]
nor [DN03] run in a constant number of rounds.

If we assume honest majority we can get both constant round and adaptive
security but the communication complexity will be propositional to the size of the
evaluated circuit. This was shown in several papers [DI05,DI06,DIK+08,IPS08].
The idea here is to use an unconditionally secure protocol to compute, for in-
stance, a Yao garbled circuit, that is then used to compute the desired function
in a constant number of rounds. Since the computation leading to the Yao circuit



is easy to parallelise, this can be constant round as well and we inherit adaptive
security from the unconditionally secure “preprocessing”. On the other hand, as
mentioned this requires communication that is proportional to the size of cir-
cuit to be securely evaluated. One may apply the IPS compiler to one of these
protocols to get a solution for dishonest majority. This preserves the adaptive
security and the constant number of rounds, but unfortunately also preserves
the dependence of the communication complexity on the circuit size. Therefore,
the question becomes:

Is it possible to construct constant round MPC protocols secure against
an adaptive adversary that may corrupt all but one parties with commu-
nication complexity independent of the circuit size?

1.1 Contributions

We answer this in the affirmative. More specifically, we achieve an adaptive
UC-secure protocol that tolerates corruption of n− 1 of the n players with UC
secure composition with protocols secure against n−1 corruptions. Our protocol
requires a constant number of rounds and its communication complexity depends
only on the length of inputs and outputs (and the security parameter), and not
on the size of the evaluated circuit and the decryption circuit. The protocol is
secure if the LWE problem is hard. Moreover, we do not consider the weaker
model of secure erasures.

Theorem 1 (informal). Assuming hardness of LWE, we show that arbitrary
functions can be UC-securely computed in the presence of adaptive, active cor-
ruption of all-but-one parties within a constant number of rounds.

Assuming adaptively secure UC NIZK, proposed by Groth et al. [GOS12],
and LWE our adaptive protocols run in three rounds.

Theorem 2 (informal). Assuming hardness of LWE and the existence of adap-
tively secure UC NIZK, we show that arbitrary functions can be UC-securely
computed in the presence of adaptive, active corruption of all-but-one parties in
three rounds of broadcast.

In our construction we assume a broadcast channel where encryption is per-
formed using what we call Equivocal FHE, a notion weaker than non-commiting
encryption, presented in Section 3 which can be of independent interest. For
example, using our equivocal scheme we also build adaptively secure UC com-
mitment and UC zero-knowledge proofs (of knowledge) based on hardness of
LWE (see Section 4).

Last but not least, in the standard ZK-based decryption used by approaches
based on FHE, all the parties need to append a ZK proof , to prove that they
decrypted correctly, whose communication complexity grows with the size of the
decryption circuit. In this work using an AMD code mechanism [CDF+08] we
avoid the use of ZK and achieve communication complexity that does not scale
with the decryption circuit. In particular, the total communication complexity of
the decryption phase of our concrete protocol is O(n2λ) where λ is the security
parameter.



1.2 Technical Difficulties and New Ideas

To construct our adaptively secure protocol, we start from the well known blue-
print for FHE-based MPC: players encrypt their inputs under a common public
key, evaluate the desired function locally and then jointly decrypt the result.
This is possible under an appropriate set-up assumption, which is always needed
for UC security and dishonest majority. Namely, we assume that a public key
has been distributed, and players have been given shares of the corresponding
secret key.

This approach has been used before and usually leads to static security.
One reason for this is that encryptions are usually committing, so we are in
trouble if the sender of a ciphertext is corrupted later. This can be solved using
a cryptosystem with equivocal properties and this would mean that the input
and the evaluation phase of the protocol can be simulated, even for adaptive
corruptions. Players need, of course, to prove that they know the inputs they
contribute, but this can be done once we construct constant round adaptively
secure UC commitment and ZK proofs from LWE.

An important tool we would like to get in order to achieve constant-round
adaptively secure MPC protocols may be a Fully Homomorphic Encryption
(FHE) scheme with equivocal properties.

Starting point – Fully Homomorphic NCE. It is tempting to consider a
generic solution from FHE and Non-Commiting Encryption (NCE). In particu-
lar, in such a hypothetical construction, the secret key would be a secret key for
an FHE scheme, the public key an FHE encryption of the NCE secret key and
the NCE public key. Encryption would be performed using the NCE, and homo-
morphic evaluation and decryption would be performed as expected. However,
there are fundamental caveats with this approach.

It does not seem to buy us any efficiency at all. In particular, NCE schemes
are interactive, in that the receiver must send fresh (public-)key material for
each new message to be encrypted. There is even a result by Nielsen saying that
this is inherent for NCE [Nie02]. It will be hard for an interactive scheme to
fit the above suggestion. Indeed, the public key material would run out after
encrypting some number of inputs. Therefore, in generic NCE the public-key
cannot be reused, and has to be updated for each new message. Moreover, one
may go around this issue by having an NCE public-key for each party where the
FHE encryption in the public key will include all the public keys. However, such
a solution is highly inefficient since it is not the number of parties that matter
but the amount of data to be encrypted. The amount of public-key material has
to be proportional to size of the plaintext data. For instance, if only a constant
number of parties had input, but a lot of, we would have a significant problem.

Another suggestion is to always regenerate this setup afresh using a constant
round adaptive protocol prior to each new execution. This might work but un-
fortunately set-up data are considered reasonable if its size does not depend on
the function to be computed (otherwise we are in the preprocessing model which
is a completely different ball game). Hence, one would in fact always need this
key regeneration step per execution.



It turns out that the motivation of considering NCE in this context is very
weak.

Our approach − Starting afresh. Towards minimising the above caveat we
propose a scheme we call Equivocal FHE. An equivocal FHE scheme is a fully
homomorphic encryption scheme with additional properties. Most importantly,
it is possible to generate “fake” public keys that look like normal keys but where
encryption leads to ciphertexts that contain no information on the plaintext.
This is similar to the known notion of meaningful/meaningless keys, but in
addition we want that fake public keys come with a trapdoor that allows to
“explain” (equivocate) a ciphertext as an encryption of any desired plaintext.
This is similar to (but not the same as) what is required for NCE: for NCE one
needs to equivocate a ciphertext even if the decryption key is also given (say, by
corrupting the receiver), here we only need to give the adversary valid looking
randomness for the encryption. In order to achieve such a cryptosystem the
main properties we require from an FHE scheme is formula privacy, invertible
sampling and homomorphishm over the randomness. Given this, we managed to
obtain the required equivocation directly with much less overhead compared to
a possible NCE solution.

We give a concrete instantiation of equivocal FHE based on LWE, starting
from the FHE scheme by Brakerski et al. [BV11].

Adaptive UC commitments and ZK from LWE. A second tool we need
is constant-round UC-secure commitments and zero-knowledge proofs. For the
commitments we start from a basic construction appeared in [CLOS02], which
was originally based on claw-free trapdoor permutations (CFTP). We show that
it can be instantiated based on LWE (which is not known to imply CFTP).
Zero-knowledge then follows quite easily from known techniques.

Achieving a simulatable protocol. A harder problem is how to simulate
the output phase in which ciphertexts containing the outputs are decrypted. In
the simulation we cannot expect that these ciphertexts are correctly formed and
hold the actual outputs, so the simulator needs to “cheat”. However, each player
holds a share of the secret key which we have to give to the adversary if he is
corrupted. If this happens after some executions of the decryption protocol, we
(the simulator) may already be committed to this share. It is therefore not clear
how the simulator can achieve the desired decryption results by adjusting the
shares of the secret key. To get around this, we adapt an idea from Damg̊ard and
Nielsen [DN03], who proposed an adaptively secure protocol based on additively
homomorphic threshold encryption but in the honest majority scenario. The
idea is to add a step to the protocol where each ciphertext is re-randomised
just before decryption. This gives the simulator a chance to cheat and turn
the ciphertext into one that contains the correct result, and one can therefore
simulate the decryption without having to modify the shares of the secret key.
The re-randomisation from [DN03] only works for honest majority, we show a
different method that works for dishonest majority and augment our Equivocal
FHE scheme with the ciphertext randomisation property to achieve our goal.



General purpose Equivocal FHE. We mention for completeness that there
is also a more generic approach which will give us adaptive security based only on
our Equivocal FHE: namely, we follow the same blueprint as before, with input,
evaluation and output phases. However, we implement the verification of cipher-
texts in the input phase and the decryptions in the output phase using generic
adaptively secure MPC a la [CLOS02,IPS08]. This way, the communication and
the number of rounds do not depend on the size of circuit to be computed
securely. However, it would not be genuinely constant round, and the communi-
cation complexity would depend on the circuits computing the encryption and
decryption functions of the underlying cryptosystem. Hence, unlike our proto-
col, any such solution would have communication complexity proportional to
the Boolean circuit complexity of the decryption function (which seems inherent
since one needs Yao garbling underneath). We measure the round and commu-
nication complexity of such a possible solution based on the IPS compiler. The
bottom line is that using IPS generically would yield a larger (constant) number
of rounds (20-30 rounds) and worse dependence on the security parameter. A
concise estimate can be found in Appendix A. Clearly the above estimate should
be taken with large grains of salt. We have tried to be optimistic on the part of
IPS, to not give our concrete protocol an unfair advantage. Thus, actual numbers
could be larger. On the other hand, we propose a three-round solution.

AMD code solution to replace ZK. However, contrary to the above generic
IPS solution, our approach allows for significant optimization of the decryption as
follows. Instead of using ZK proofs to prove that the player’s evaluation shares to
the decryption phase are correct, we change the evaluation phase of the protocol.
In particular, instead of having ciphertexts containing the desired output z, the
evaluation phase computes encryptions containing a codeword c = (z, α) in
an algebraic manipulation detection code, where z is the data and α is the
key/randomness. In the decryption stage, players commit to their decryption
shares (recall that we have UC commitment available), and then all shares are
opened. If decryption fails, or decoding the codeword fails, we abort, else we
output the decoded z. If z and α are thought of as elements in a (large) finite
field, then the codeword can just be (z, α, αz). According to our optimization,
the communication complexity of our protocol is not only independent of the
the size of the evaluated circuit but also independent of the circuit size of the
decryption circuit.

Impossibility results? In the following we mention two impossibility results
which apply to adaptively secure MPC and mention why they do not apply in
our setting.

Motivated by ruling out one possible approach to achieving adaptive security,
Katz et al. [KTZ13] showed that FHE with security against adaptive corruption
of the receiver is impossible. In our setting, we distribute the private key of an
FHE scheme among n parties; since we allow only n − 1 of the parties to be
corrupted, the impossibility result from [KTZ13] does not apply. Note that if an
FHE scheme is to be of use in MPC, it seems to be necessary that the players
are able to decrypt, if not by themselves, then at least by collaborating. But if



corruption of all n players was allowed, the adversary would necessarily learn all
secret keys, and then the impossibility result from [KTZ13] would apply. This
suggests that our result with n− 1 corruptions is the best we can achieve based
only on FHE.

We note that in [GS12], adaptive security in constant number of rounds in
the plain model was obtained using a non-blackbox proof in the stand-alone
setting. Also a solution with a blackbox proof was shown to be impossible, but
this does not, of course, apply to our case, where we go for UC security, and
therefore require a set-up assumption.

Security against arbitrary corruptions: Round complexity of all known
adaptively secure protocols secure against n corruptions grows (see, e.g. [CLOS02],
[KO04,GS12,DMRV13]) linearly in the depth of the evaluated circuit. Recent
independent works [GP15,CGP15,DKR15], have been shown that MPC proto-
cols with security against n corruptions in a constant number of rounds can be
achieved using indistinguishability obfuscation (IO) [GGH+13].

While the above results on constant round MPC using IO are exciting, the
focus of this work is to avoid indistinguishability obfuscation altogether and to
achieve adaptive security against corruption of n − 1 of the n players, (with
communication complexity depended only on the length of inputs and outputs
and not on the size of the circuit to be computed securely), using simpler tools
with simple standard assumptions involving them. In particular, our construction
only requires FHE based on the hardness of LWE and avoids the use of IO which
also incurs a cost in efficiency. Also as we have already mentioned, our result
with n− 1 corruptions is the best we can achieve based only on FHE.

Roadmap. In section 3 we define our Equivocal fully homomorphic encryp-
tion scheme and its properties. A concrete instantiation based on the scheme of
[BV11] is given in the full version. In Section 4 we give our construction for UC
commitments and ZKPoK. Next in Section 5, we proceed by presenting our MPC
protocol. The simulator and the security proof of our protocol can be found in
the full version. In Section 6 we show how AMD codes can be used in order to
avoid the use of ZK.

2 Notation

Throughout the paper λ ∈ N will denote the security parameter. We use d← D
to denote the process of sampling d from the distribution D or, if D is a set, a
uniform choice from it. We say that a function f : N→ R is negligible if ∀c ∃nc
s.t. if n > nc then f(n) < n−c. We will use negl(·) to denote an unspecified
negligible function. We often use [n] to denote the set {1, ..., n}. We write �
and � to denote operations over encrypted data including multiplication of a
ciphertext with a non encrypted string. If D1 and D2 are two distributions, then
we denote that they are statistically close by D1 ≈s D2; we denote that they
are computationally indistinguishable by D1 ≈c D2; and we denote that they
are identical by D1 ≡ D2. For a randomized algorithm A, we use a← A(x; r) to
denote running A on input x and uniformly random bits r ∈ {0, 1}∗, producing
output a.



Invertible Sampling [OPW11]: We recall the notion of invertible sampling, which
is closely connected to adaptive security in simulation models where erasures
are not allowed. We say that an algorithm A with input space X has invertible
sampling if there exists a PPT inverting algorithm, denoted by InvA, such that
for all input x ∈ X, the outputs of the following two experiments are either
computationally, or statistically indistinguishable:

y ← A(x, r) y ← A(x, r)
r′ ← InvA(y, x)

Return (x, y, r) Return (x, y, r′)

3 Equivocal Fully Homomorphic Encryption Scheme

We start by recalling the notions of (fully) homomorphic encryption. Next we
define the new notion of Equivocal FHE and we specify the properties needed
for such an instantiation. We give a concrete instantiation of our Equicocal
FHE scheme from the LWE assumption, based on Brakerski and Vaikutanathan
[BV11] FHE scheme, in the full version.

3.1 Homomorphic Encryption

A homomorphic encryption scheme HE = (KeyGen,Enc,Eval,Dec) is a quadru-
ple of PPT algorithms. In this work, the message space M of the encryption
schemes will be some (modulo 2) ring, and the functions to be evaluated will
be represented as arithmetic circuits over this ring, composed of addition and
multiplication gates. The syntax of these algorithms is given as follows.

– K ey-Generation. The algorithm KeyGen, on input the security parameter
1λ, outputs (pk, sk)← KeyGen(1λ), where pk is a public encryption key and
sk is a secret decryption key.

– Encryption. The algorithm Enc, on input pk and a message m ∈M , outputs
a ciphertext ct← Encpk(m).

– Decryption. The algorithm Dec on input sk and a ciphertext ct, outputs a
message m̃← Decsk(ct).

– H omomorphic-Evaluation. The algorithm Eval, on input pk, an arithmetic
circuit ckt, and a tuple of ` ciphertexts (ct1, . . . , ct`), outputs a ciphertext
ct′ ← Evalpk

(
ckt(ct1, . . . , ct`)

)
.

We note that we can treat the evaluation key as a part of the public key. The
security notion needed in this work is security against chosen plaintext attacks
(IND-CPA security), defined as follows.

Definition 1 (IND-CPA security). A scheme HE is IND-CPA secure if for
any PPT adversary A it holds that:

AdvCPAHE [λ] := |Pr[A(pk,Encpk(0)) = 1]− Pr[A(pk,Encpk(1)) = 1]| = negl(λ),

where, (pk, sk)← KeyGen(1λ).



3.2 Fully Homomorphic Encryption

A scheme HE is fully homomorphic if it is both compact and homomorphic with
respect to a class of circuits. More formally:

Definition 2 (Fully homomorphic encryption). A homomorphic encryp-
tion scheme FHE = (KeyGen,Enc,Eval,Dec) is fully homomorphic if it satisfies
the following properties:

1. Homomorphism: Let C = {Cλ}λ∈N be the set of all polynomial sized arith-
metic circuits. (sk, pk)← KeyGen(1λ), ∀ckt ∈ Cλ, ∀(m1, . . . ,m`) ∈M ` where
` = `(λ), ∀(ct1, . . . , ct`) where cti ← Encpk(mi), it holds that:

Pr[Decsk(Evalpk(ckt, ct1, . . . , ct`)) 6= ckt(m1, . . . ,m`)] = negl(λ)

2. Compactness: There exists a polynomial µ = µ(λ) such that the output length
of Eval is at most µ bits long regardless of the input circuit ckt and the number
of its inputs.

3.3 Equivocal Fully Homomorphic Encryption Scheme

Our Equivocal fully homomorphic encryption scheme consists of a tuple (KeyGen,
KeyGen∗,QEnc,Rand,Eval,Dec,Equiv) of algorithms where the syntax of the pro-
cedures (KeyGen,QEnc,Eval,Dec) is defined as in the above FHE scheme. Our
scheme is augmented with two algorithms (KeyGen∗,Equiv) used for equivoca-
tion. Jumping ahead, in this paper we are interested in building adaptively se-
cure n-party protocols generically using an equivocal QFHE scheme and gain
in terms of round and communication efficiency. Two extra properties needed
for the MPC purpose, are distributed decryption and ciphertext randomisation
where the latter one guarantees simulatable decryption 3. If the purpose of our
Equivocal scheme is not MPC then these properties are not required, see Section
4 for QFHE based UC commitment schemes. In the sequel, we will use blue color
to stress whether a part is relevant to the ciphertext randomisation property.

Definition 3 (Equivocal fully homomorphic encryption). An Equivocal
fully homomorphic encryption scheme QFHE = (KeyGen,KeyGen∗,QEnc,Rand,
Eval,Dec,Equiv) with message space M is made up of the following PPT algo-
rithms:

– (KeyGen,QEnc,Eval,Dec) is an FHE scheme with the same syntax as in sec-
tion 3.1.

– The Equivocal key generation algorithm KeyGen∗(1λ), outputs an equivocal

public-key secret-key pair (P̃K, S̃K).

– The Equivocation algorithm Equiv(P̃K, S̃K, ct, rct,m), given P̃K, S̃K, a plain-
text m, a ciphertext ct and random coins rct, outputs a value e in the ran-
domness space.

3 Ciphertext randomisation is needed in order to force the output in the simulation.



– The Ciphertext Randomisation algorithm Rand(ct, ct′1, . . . , ct′n), given ci-
phertexts ct, ct′1, . . . , ct′n generated by the procedure QEnc outputs a ciphertext
CT.
We require the following properties:

1. Indistinguishability of equivocal keys. We say that the scheme has in-

distinguishability of equivocal keys if the distributions of PK and P̃K
are computationally indistinguishable, where (PK, ·) ← KeyGen(1λ) and

(P̃K, ·)← KeyGen∗(1λ).
2. Indistinguishability of equivocation. Let Drand(1λ) denote the distribu-

tion of randomness used by QEnc. Let O(P̃K,m) and O′(P̃K, S̃K,m) be
the following oracles:

Let O(P̃K,m) : Let O′(P̃K, S̃K,m) :
rct ← Drand(1λ) rct ← Drand(1λ)
ct = QEnc

P̃K
, (m; rct) ct = QEnc

P̃K
(m̃; rct)

e = Equiv(P̃K, S̃K, ct, rct,m)

Output (P̃K, ct, rct) Output (P̃K, ct, e)

There exists m̃ ∈ M such that for any PPT adversary A with oracle

access to O(P̃K, ·) and O′(P̃K, S̃K, ·) the following holds.

∣∣∣∣∣Pr

[
(P̃K, S̃K)← KeyGen∗(1λ)

1← AO(P̃K,·)

]
− Pr

[
(P̃K, S̃K)← KeyGen∗(1λ)

1← AO
′(P̃K,S̃K,·)

] ∣∣∣∣∣ ≤ negl(λ)

3. Ciphertext Randomisation. Let PK be the public key used in the proce-
dure QEnc for generating ciphertexts ct, ct′1 . . . ct′n from the plaintexts
m,m′1, . . . ,m

′
n ∈ M , respectevely. If Pr[Decsk(ct) = m] = 1 − negl(λ)

and for all i ∈ [n], Pr[Decsk(ct′i) = m′i] = 1− negl(λ) then it holds that

Pr[Decsk(Rand(ct, ct′1 . . . ct′n)) = m] = 1− negl(λ).

On the other hand, let P̃K be the public key used in the procedure QEnc
for generating ciphertexts ct, ct′1 . . . ct′n, respectevely. If Pr[Decsk(ct) =
m] = 1 − negl(λ) and for all i ∈ [n], Pr[Decsk(ct′i) = m′i] = 1 − negl(λ)
then it holds that

Pr[Decsk(Rand(ct, ct′1 . . . ct′n)) = m′1 + . . .+m′n] = 1− negl(λ).

In the sequel for simplicity of exposition, we call the ciphertexts ct′1 . . . ct′n
redundant in case they are generated by QEncPK and non− redundant if they
are generated by QEnc

P̃K
. Analogously, we call the ciphetext ct non− redundant

or redundant if it is generated by QEncPK or QEnc
P̃K

, respectively 4.
In order to construct our equivocal QFHE scheme we use the following special

FHE scheme with some additional properties.

4 By the ciphertext randomisation property, the reader can think of the redundant

messages as encryptions of zeros.



Definition 4. [Special fully homomorphic encryption] We call a fully homomor-
phic encryption scheme FHE = (KeyGen,Enc,Eval,Dec) a special FHE scheme,
if it is IND-CPA secure and satisfies the following properties: Let Drand(1λ)
denote the distribution of randomness used by Enc.

1. Additive homomorphism over random coins: ∀r1, r2 ∈ Supp(Drand(1λ)) and
∀m ∈M , it holds that

(
m�Encpk(0; r1)

)
�Encpk(0; r2) = Encpk(0;m·r1+r2).

2. E-Hiding: There exists D′rand(1λ) such that ∀m ∈ M , if rblind ← Drand(1λ)
and rK ← D′rand(1λ) then the distribution of (rblind−m · rK) is statistically
close to Drand(1λ). 5

3. Invertible Sampling: The distribution Drand(1λ), has invertible sampling via
the algorithm InvDrand

.

Recall that we defined an invertible sampler of an algorithm A in Section 2 as
an algorithm InvA that takes as inputs the input x and output y with consistent
random coins. In our case, x = 1λ and y is a sample from the range of Drand.
Next, in Figure 1, we show how to build an equivocal FHE scheme using a
special FHE scheme. The high level intuition is as follows. In order to achieve
equivocality we modify an FHE scheme satisfying the properties of Definition
4 as follows: The public key contains an encryption of 1 and an encryption of
0. More specifically, PK = (pk,K = Encpk(1), R = Encpk(0)) where pk is the
public key of an FHE scheme. An encryption of a message m in the real world is
computed using K as (m�K � Encpk(0)) and encryption for re-randomisation is
computed using R as (z�R � Encpk(0)) for a random value z. In the simulation,
the values encrypted in K and R are switched, in particular, K = Encpk(0) and
R = Encpk(1). Therefore, normal encryption leads to encryption of 0 with the
guarantee of equivocation. However, encryption for re-randomisation actually
encrypts non-zero values i.e., z, in order to force the output.

Theorem 3. Let FHE be a special fully homomorphic encryption scheme. Then
QFHE = (KeyGen,KeyGen∗,QEnc,Rand,Eval,Dec,Equiv) in Figure 1 is an equiv-
ocal QFHE scheme.

Proof. Indistinguishability of equivocal keys. Let (PK,SK) ← KeyGen(1λ) and

(P̃K, S̃K) ← KeyGen∗(1λ), then the indistinguishability of the two pairs of
public keys follows from the IND-CPA security of the FHE scheme.

5 Intuitively, E-Hiding can be argued in the same way as formula privacy for some
FHE schemes. This requires dwarfing in the sense that rblind should be large enough
to dwarf mrK where Drand(1λ) and D′rand(1λ) are Gaussian distributions. Hence,
rK ← D′rand(1λ) and rblind ← Drand(1λ) such that the noise of Drand(1λ) is super-
polynomially larger than the noise of D′rand(1λ).



QFHE

Let FHE = (KeyGenFHE,Enc,Eval,Dec) be a special fully homomorphic en-
cryption scheme. QFHE = (KeyGen,KeyGen∗,QEnc,Eval,Rand,Dec,Equiv) is
defined as follows:

KeyGen(1λ):

1. (pk, sk)← KeyGenFHE(1λ).
2. K = Encpk(1; rK) where rK ← D′rand(1λ) and R = Encpk(0; rR) where

rR ← D′rand(1λ)
3. Return as public key PK = (pk,K,R) and secret key SK = sk.a

KeyGen∗(1λ):

1. (pk, sk)← KeyGenFHE(1λ).

2. K̃ = Encpk(0; rK̃) where rK̃ ← D′rand(1λ) and R̃ = Encpk(1; rR̃) where

rR̃ ← D′rand(1λ).

3. Return as public key P̃K = (pk, K̃, R̃) and secret key S̃K = (sk, rK̃ , rR̃).

QEncPK(b,m) :

1. Compute ctblind = Encpk(0; rblind) where rblind ← Drand(1λ).
2. If b 6∈ {0, 1} then output ⊥.
3. If b = 0 then output ct = (m�K) � ctblind otherwise

output ct = (m�R) � ctblind.

QEncP̃K(b, m̃) :

1. Compute c̃t
blind

= Encpk(0; r̃blind) where r̃blind ← Drand(1λ).
2. If b 6∈ {0, 1} then output ⊥.

3. If b = 0 then output c̃t = (m̃� K̃) � c̃t
blind

otherwise

output c̃t = (m̃� R̃) � c̃t
blind

.

Equiv(b, P̃K, S̃K, c̃t, r̃blind,m, m̃):

1. If b = 0 compute rblind := r̃blind + (m̃−m) · rK̃ otherwise

rblind := r̃blind + (m̃−m) · rR̃
2. Run rstate ← InvDrand(rblind) and output rstate.

Rand(ct, ct′1 . . . , ct′n) : Output CT = ct � ct′1 � . . .� ct′n.
Procedures (Eval,Dec) are as defined in normal FHE schemes.

a Note that procedure Dec, given sk, runs as in normal FHE schemes (see Section
3.1), so there is no need to provide rK in SK. We also enhance the notation
of QEnc to include a bit b which indicates whether the encryption is performed
using the key K or R, respectively. In addition, the plaintext m̃ is usually set to
zero.

Fig. 1. Description of QFHE scheme

Indistinguishability of equivocation. Without loss of generality, we will show that
indistinguishability of equivocation holds for m̃ = 0. Let A be an adversary
that breaks indistinguishability of equivocation; then we construct a PPT
algorithm R such that RA breaks E-hiding. R simulates the oracle for every
query mi as follows. R invokes A and receives some message mi and forwards
it to the E-hiding challenger. Next it receives the challenge rcti and computes



cti = QEnc
P̃K

(0,mi; rcti) and forwards (rcti , cti) to A and outputs whatever

A does. Now, if rcti ← Drand(1λ) then cti ← QEnc
P̃K

(0,mi; rcti), namely,
the view of A follows the distribution which corresponds to the left game
in Definition 3 of indistinguishability of equivocation. On the other hand,

if rcti = (rblindi − mi · rK̃); then cti = (mi � K̃) � Encpk(0; rblindi − mi ·
rK̃) = Encpk(0; rblindi ) = QEnc

P̃K
(0, 0; rblindi ) which implies that in this case

the view of A follows the distribution of the right game in Definition 3
of indistinguishability of equivocation. This means that the distinguishing
advantage of R is the same as that of A which leads to a contradiction.

Ciphertext Randomisation. The algorithm Rand adds the ciphertexts (ct, ct′1, . . . ,
ct′n). If ct is a ciphertext generated by QEncPK for b = 0 and (ct′1 . . . ct′n) are
ciphertexts generated by QEncPK for b = 1 then

Pr[Decsk(Rand(ct, ct′1 . . . ct′n)) = m] = 1− negl(λ)

since it is easy to see that the ciphertexts (ct′1 . . . ct′n) contain encryptions
of zeros due to the fact that R = Encpk(0). An analogous argument holds
for ct and ct′1 . . . ct′n generated by QEnc

P̃K
for b = 0 and b = 1, respectively,

since in this case the ciphertext ct contain an encryption of a zero (because

in this case K̃ = Encpk(0)) and ciphertexts (ct′1 . . . ct′n) contain encryptions

of the corresponding m′i since R̃ = Encpk(1).
ut

Distributed Decryption: As we mentioned above, we need distributed decryp-
tion to implement our MPC protocol. To this end, we assume that the common
public key pk has been set up where the secret key sk has been secret-shared
among the players in such a way that they can collaborate to decrypt. Notice
that some setup assumption is always required to show UC security in the dis-
honest majority setting. Roughly, we assume that a functionality is available
which generates a key pair and secret-shares the secret key among the players
using a secret-sharing scheme that is assumed to be given as part of the specifi-
cation of the cryptosystem. Since we allow corruption of all but one player, the
maximal unqualified sets must be all sets of n − 1 players. We point out that
we could make a weaker set-up assumption, such as a common reference string,
and using a general UC secure multiparty computation protocol for the common
reference string model to implement the above functionality. While this may not
be very efficient, one only needs to run this protocol once in the life-time of the
system. The properties needed for the distributed decryption and its protocol
are specified later.

4 UC Adaptive Commitments and ZKPoK from LWE

Commitment schemes that satisfy both equivocality and extractability form use-
ful tools in achieving adaptive security. In this section, we show how using a
QFHE scheme, one can build equivocal and extractable commitments. Having
realized a QFHE scheme based on the LWE assumption, we consequently get
equivocal and extractable commitments assuming the hardness of LWE. Note



that such commitments based on LWE can be of independent interest. We remark
that any encryption scheme that satisfies the properties specified in Definition
4 would have sufficed for our purposes in this section – the multiplicative homo-
morphic property of our QFHE scheme will not be of use here; however, since
we are using our commitment scheme as a tool in our adaptive MPC protocol
based on LWE, we use the same QFHE scheme in our commitment scheme too.

Since we are interested in UC security against adaptive adversaries, our com-
mitment scheme is in the CRS model. The scheme must satisfy the following two
properties, polynomial equivocality and simulation extractability. The former
guarantees that the simulator S needs to be able to produce polynomially many
equivocal commitments using the same CRS. More specifically, S can open the
equivocal commitments to any value of its choice and give consistent random-
ness to adversary A. The latter property says that the simulator S needs to be
able to extract the contents of any valid commitment generated by adversary
A, even after A obtains polynomially many equivocal commitments generated
by S. Note that there is only an apparent conflict between equivocality and
the binding property and between the extractability and the hiding property, as
the simulator is endowed with additional power (trapdoors) in comparison with
the parties in the real world execution. In the following we elaborate how our
commitment scheme satisfies the above properties.

Our construction. Equivocation in our scheme is achieved via QFHE. In par-
ticular, the commitment algorithm is the algorithm QEnc, defined in Figure 1.
In order to add extractability we must enhance our scheme in such a way that
we do not sacrifice equivocality. A failed attempt is to include a public key for
an encryption scheme secure against CCA2 attacks in the CRS. In this case,
the committer will send an encryption of the decommitment information along
with the commitment itself. Then, as the simulator has the associated decryp-
tion key, it can decrypt the decommitment information and hence extract the
committed value from any adversarially prepared commitment. However, notice
that such an encryption is binding even to the simulator, so equivocality cannot
be achieved.

The solution to the problem is to send the commitment along with two
pseudorandom ciphertexts. One ciphertext is an encryption of the decommitment
information and the other ciphertext is a uniformly random string. In this way,
the simulator can encrypt both decommitment values and later show that it only
knows the decryption to one and that the other was uniformly chosen.

For the security of our construction, the encryption scheme used to encrypt
the decommitment information has to be a CCA2-secure encryption scheme with
the property that any produced ciphertext is pseudorandom and has determin-
istic decryption. To this end, the CCA2 encryption scheme of Micciancio and
Peikert [MP12] based on LWE satisfies the above properties. They obtain their
result via relatively generic assumptions using either strongly unforgeable one-
time signatures [DDN00], or a message authentication code and a weak form of
commitment [BCHK07]. The first assumption does not yield pseudorandom ci-
phertexts, thus another encryption producing pseudorandom ciphertexts on top



of the scheme of [MP12] could have been used, resulting in a double encryp-
tion scheme. However, it turns out that their construction with the latter set of
assumptions has pseudorandom ciphertexts.

The reader might have observed that this bears some resemblance with the
trick used in the seminal work of [CLOS02], referred to as CLOS hereafter, to
achieve extractability. Their scheme is based on enhanced trapdoor permuta-
tions, also needed in order to get double encryption CCA2 security. Moreover,
in order to build equivocal commitments they need an NP reduction to graph
Hamiltonicity since the CRS of their commitment scheme consists of a graph
G sampled from a distribution such that it is computationally hard to tell if G
has a Hamiltonian cycle. Interestingly, the CLOS commitment scheme does not
give an instantiation based on LWE and to begin with, there are no known trap-
door permutations based on LWE. On the other hand, assuming the hardness
of LWE, we propose an extractable and equivocal commitment with no need of
an NP reduction, leading to a huge improvement in efficiency.

More formally, given a QFHE = (KeyGen,KeyGen∗,QEnc,Eval,Dec,Equiv) 6

scheme, a CCA2-secure scheme ECCA with encryption algorithm ENCCCA based
on LWE [MP12], with the property that any ciphertext is pseudorandom and has
deterministic decryption, we construct the following equivocal and extractable
UC bit-commitment scheme ΠCom. For simplicity of exposition, we will use ECCA

in a black box manner. We note that the scheme naturally extends to a setting
where commitments are defined over strings instead of just bits.

Common Reference String: The CRS consists of the public key (PK) of the
QFHE scheme and the public key for the encryption scheme ENCCCA.

Commit Phase:

1. On input (Commit, sid, ssid, Pi, Pj , b) where b ∈ {0, 1}, party Pi com-
putes z = QEncPK(b; r) where r ← Drand(1λ). Next, Pi computes Cb =
ENCCCA(Pi, Pj , sid, ssid, r; s) using random coins s, and sets C1−b to a
random string of length |Cb|. Then, Pi records (sid, ssid, Pj , r, s, b), and
sends c = (sid, ssid, Pi, z, C0, C1) to Pj .

2. Pj receives and records c, and outputs (Receipt, sid, ssid, Pi, Pj). Pj ig-
nores any later commit messages from Pi with the same (sid, ssid).

Reveal Phase:

1. On input (Reveal, sid, ssid), party Pi retrieves (sid, ssid, Pj , r, s, b) and
sends (sid, ssid, r, s, b) to Pj .

2. Upon receiving (sid, ssid, r, s, b) from Pi, Pj checks that it has a tuple
(sid, ssid, Pi, z, C0, C1). If yes, then it checks that z = QEncPK(b; r) and
that Cb = ENCCCA(Pi, Pj , sid, ssid, r; s). If both these checks succeed,
then Pj outputs (Reveal, sid, ssid, Pi, Pj , b). Otherwise, it ignores the
message.

Proposition 1. Assuming hardness of LWE, Protocol ΠCom UC realizes FMCom

in the FCRS-hybrid model.

6 Algorithms QEnc′,Rand are not necessary for the construction of UC Commitments.



The above commitment scheme UC realizes the multi-session ideal commit-
ment functionality FMCom, described in Figure 2, which reuses the public string
for multiple commitments. The proof can be found in the full version. Next,
we show how our UC commitment scheme serves towards the realization of a
commit-and-prove functionality FCom-ZK based on LWE.

Functionality FMCom

The functionality FMCom runs with parties P1, . . . , Pn and an adversary S. It
proceeds as follows:

Commit Phase:
Upon receiving a message (Commit, sid, ssid, Pi, Pj , b) from Pi, where
b ∈ {0, 1}, record the tuple (ssid, Pi, Pj , b) and send the message
(Receipt, sid, ssid, Pi, Pj) to Pj and S. Ignore any future commit messages with
the same ssid from Pi to Pj .

Prove Phase:
Upon receiving a message (Reveal, sid, ssid) from Pi: If a tuple (ssid, Pi, Pj , b)
was previously recorded, then send the message (Reveal, sid, ssid, Pi, Pj , b) to
Pj and S. Otherwise, ignore.

Fig. 2. The ideal functionality FMCom.

4.1 Adaptive UC ZKPoK from LWE

Our UC commitment scheme serves towards the realization of a commit-and-
prove functionality FCom-ZK based on LWE. Such a functionality is generic and
hence is quite useful – it allows a party to prove NP statements relative to
its commitment value in the setting where parties commit to their inputs but
they never decommit. The functionality FCom-ZK is presented in Figure 3 and is
comprised of two phases. In the first phase, a party commits to a specific value. In
the second phase, this party proves NP statements in zero-knowledge relative to
the committed value. It allows the committer to commit to multiple secret values
wi, and then have the relation R depend on all these values in a single proof. In
addition, the committer may ask to prove multiple statements with respect to the
same set of secret values. Hence, once a committer gives a new (Commit, sid, w)
command, FCom-ZK adds the current w to the already existing list w of committed
values. Then, on receiving a (Proof, sid,R, x) request, FCom-ZK evaluates R on
x and the current list w.

Using the power of the UC commitment scheme we constructed in Section
4, we show how it can be used to first construct UC Zero-Knowledge protocols
from LWE. Canetti and Fischlin [CF01, Theorem 5], show that in the FCom-
hybrid model there exists a 3-round protocol that securely realizes FZK with
respect to any NP relation without any computational assumptions. Using the
composition theorem and [CF01, Theorem 5], we can instantate FCom with the
UC commitment protocol from LWE (see Section 4) in the CRS model and
realize FZK from LWE. Also, as it is noted by [CF01] we can replace FCom by
the functionality FMCom.



We next obtain a protocol for UC realizing functionality FCom-ZK in the FZK-
hybrid model, in the presence of adaptive adversaries. In [CLOS02, Proposition
7.2], a protocol for UC realizing FCom-ZK in the FZK-hybrid model, based on
any one-way function is proposed. To guarantee security against adaptive adver-
saries, they need equivocal and extractable commitments which they instantiate
assuming the existence of enhanced trapdoor permutations. Using [CLOS02,
Proposition 7.2] we can get such an instantiation assuming the hardness of LWE
via our extractable and equivocal commitment scheme described above and in-
stantiation of the FZK functionality from LWE.

Functionality FCom-ZK

The functionality FCom-ZK runs with parties P1, . . . , Pn and an adversary S. It
proceeds as follows:

Commit Phase:
Upon receiving a message (Commit, sid, cid,P, w)a from Pi where P is a set of
parties and w ∈ {0, 1}∗, append the value w to the existing list w, record P, and
send the message (Receipt, sid, cid, Pi,P) to the parties in P and S. (Initially,
the list w is empty. Also, if a commit message has already been received, then
check that the recorded set of parties is P. If it is a different set, then ignore
this message.)

Prove Phase:
Upon receiving a message (Prover, sid,R, x) from Pi, where x ∈ {0, 1}poly(k),
compute R(x,w) : If R(x,w) = 1, then send the message (Proof, sid,R, x) to
the parties in P and S. Otherwise, ignore.

a Note that in the protocol we use one command for two cid’s. In particular we use
cid1 to commit to the encrypted value and cid2 to commit to the randomness
used for the corresponding encryption

Fig. 3. Ideal functionality FCom-ZK.

5 Our Protocol

Since we established all the primitives needed we are ready to present our MPC
protocol. Our protocol is based on any equivocal QFHE scheme which comes
together with a statistically secure distributed function sharing scheme. In ad-
dition, the protocol assumes access to the FCom-ZK functionality which we build
from any equivocal QFHE, see Section 4. In Figure 4 we describe our protocol
ΠMPC realizing the functionality FAMPC in Figure 6, in the (Fbroadcast,FKey-Dist,
FCom-ZK)-hybrid model. The functionality FKey-Dist is described in Figure 5 and
the functionality FCom-ZK is described in Figure 3.

During the Load phase, players encrypt their inputs xi under a common
public key PK and give a ZKPoK. In the evaluation phase, players evaluate the
desired function locally and obtain the ciphertext enc(z). In the output phase
they jointly decrypt the result calling the decryption protocol ΠDDec together
with the ciphertext randomisation technique as is abstracted by the algorithm
Rand of the QFHE, see Section 3.



Protocol ΠMPC

Protocol ΠMPC uses an equivocal QFHE = (KeyGen,KeyGen∗,QEnc,
Rand,Eval,Dec,Equiv) scheme and runs in the (Fbroadcast

a,FKey-Dist,FCom-ZK)-
hybrid model with parties (P1, . . . , Pn). It proceeds as follows:

Initialize:
On input (init, 1λ) from all parties, invoke the functionalities Fbroadcast,
FKey-Dist and FCom-ZK. The invocation of FKey-Dist results in every party Pi
receiving

(
(PK, c1, . . . , cn), (ski, ri)

)
.

Load:
To encrypt its input xi, Pi does the following:
– Pi computes Xi = QEncPK(0, xi; rxi), where rxi ← Drand(1λ), and broad-

casts Xi via Fbroadcast.
– For i 6= j, Pi sends (Commit, sid, cid1, cid2, Pi, Pj , xi, rxi) to
FCom-ZK. At this point all other parties Pj receive message
(Receipt, sid, cid1, cid2, Pi, Pj) from FCom-ZK.

– For j 6= i, Pi sends (Prover, sid, (cid1, cid2),Req, Xi) to FCom-ZK for the
relation

Req = {((PK, Xi), (xi, rxi)) : Xi = QEncPK(0, xi; rxi)}

whereupon Pj receives (Proof, sid, Pi,Req, (PK, Xi)).
– If all the proofs are accepted then the parties define enc(xi) = Xi, otherwise

output ⊥.
Evaluation Phase:

Let ckt be the arithmetic circuit to be computed on inputs (x1, . . . , xn) by
n parties. Every party executes the deterministic algorithm Eval and obtains
enc(z)← Evalpk(ckt, enc(x1), . . . , enc(xn)).

Output Phase:

– Pi generates yi ← Drand(1λ) and Loads it into variable enc(yi) via QEncPK
for b = 0. Let cid1 and cid2 be the identifiers of the commitment phase of
this Load.

– Pi computes ẽnc(yi) = QEncPK(1, yi; r̃yi), where r̃yi ← Drand(1λ), and

broadcasts ẽnc(yi) via Fbroadcast.
Next, for j 6= i party Pi sends (Commit, sid, cid3, Pi, Pj , r̃yi) to FCom-ZK and

(Prover, sid, (cid1, cid3),Req, ẽnc(yi)) to FCom-ZK, where cid1 is the identi-
fier of the commitment phase of the Load of the above Step 1, where Pi
commits to yi.

– Let J be the set of indices of Pj ’s having defined enc(yi) and ẽnc(yi). Then

compute CT = Rand(enc(z), {ẽnc(yi)}i∈J).
– Every party Pi runs ΠDDec

b with the rest of the parties to decrypt CT.

a Since we have (potential) dishonest majority, note that we cannot guarantee
termination. For a concrete implementation of the broadcast functionality we
refer to [DPSZ12].

b The protocol ΠDDec is described in Subsetion 5.1 and Figure 7.

Fig. 4. ΠMPC Protocol.



In the protocol ΠDDec parties use ZK to prove that their evaluation shares are
correct. However, as discussed in the introduction we optimise the output phase
avoiding the expensive use of ZK proofs to prove that the player’s evaluation
shares to the decryption protocol are correct, changing the evaluation phase of
the protocol and avoiding the ZK proofs. For details see Section 6.

Functionality FKey-Dist

The functionality FKey-Dist runs with parties P1, . . . , Pn and is parameterized
by a statistically hiding commitment scheme with commitment function Com.
It proceeds as follows:

Generate:
On input (init, 1λ) from all honest parties, run KeyGen(1λ) of the QFHE scheme
and obtain PK, SK and then additively secret-share sk to obtain (sk1, . . . , skn).
1. For i = 1, . . . , n, commits to the share ski by computing ci = Com(ski; ri)

where ri ← Drand(1λ).
2. In a round specified by the adversary, output

(
(PK, c1, . . . , cn), (ski, ri)

)
to

Pi.
Incorrect inputs:

If in the first round an honest party inputs a non-trivial value and does not
input init, abort. Moreover, abort if an honest party inputs init twice or any
other value than init.

Fig. 5. Ideal functionality FKey-Dist.

Functionality FAMPC

The functionality FAMPC runs with parties P1, . . . , Pn and an adversary S and
is parametrised by an arithmetic circuit ckt. It proceeds as follows.

Initialize:
On input (init, 1λ) from all parties, the functionality generates a random FHE
key (SK,PK). It outputs PK to all parties.

Load Phase:
On input (Input, Pi, varid , x) from Pi and (Input, Pi, varid , ?) from all other
parties, with varid a fresh identifier, the functionality stores (varid , x)
and outputs (cid, varid ,Defined) to all parties. If Pi is corrupted before
(cid, varid ,Defined) is output, and if the adversary outputs (cid, varid ,Fail),
then output (cid, varid ,Fail) to all parties.

Evaluation Phase:
On input (Evaluation, varid1, . . . , varidn, varidn+1) from all parties (if
varid1, . . . , varidn are present in memory and varidn+1 is not), the functionality
retrieves (varid1, x1), . . . ,(varidn, xn) and stores (varidn+1, ckt(x1, . . . , xn)).

Output Phase:
On input (Output, varidn+1) from all honest parties (if varidn+1 is present in
memory), the functionality retrieves (varidn+1, x) and outputs it to the environ-
ment. If the environment inputs OK then x is output to all players. Otherwise
⊥ is output to all players.

Fig. 6. Ideal functionality for Arithmetic MPC.



5.1 Distributed Function Evaluation

In order to achieve distributed decryption, we assume, as a set up assumption,
that a common public key pk has been set up where the secret key sk has
been secret-shared between n parties in such a way that they can compute
their corresponding decryption evaluation shares and then collaborate to decrypt
while the sk is kept secret. We also need to enforce honest computation of the
evaluation shares of a ciphertext. Commitments to the shares of the secret key
are also made public, along with pk. Using these commitments, when parties
are distributedly decrypting a ciphertext, they can then prove (via FCom-ZK)
that the evaluation shares were computed honestly using the secret-key shares
initially delegated to them.

To this end, the functionality FKey-Dist generates a key pair (pk, sk)7 and
secret-shares the secret key sk among the players using a secret-sharing scheme
that is assumed to be given as part of the specification of the cryptosystem. The
validity of the evaluation shares is tested inside the protocol ΠDDec calling the
functionality FCom-ZK. In order to describe our protocol ΠDDec, we next define
the following distributed sharing scheme.

Definition 5. We call (ShareSK,ShareEval,Combine) a distributed function shar-
ing scheme for an encryption scheme (KeyGenFHE,Enc,Dec), with construction
threshold c and privacy threshold t, if for a triple (ShareSK,
ShareEval,Combine) of PPT algorithms the following hold:

Key sharing: The algorithm ShareSK on input (pk, sk) ← KeyGenFHE(1λ) and
a construction threshold c, outputs a tuple (sk1, . . . , skn)← ShareSK(sk).

Evaluation sharing: The evaluation function ShareEval on input (pk, ski) and
a ciphertext Encpk(z), outputs an evaluation share

evi = ShareEval(pk, ski,Encpk(z); revi)

for i ∈ [n] where revi ← Drand(1λ).

Share combining: The algorithm Combine on input correctly computed evalu-
ation shares {evi}i∈[n] of the same ciphertext Encpk(z), constructs the output
Decsk(Encpk(z)) = Combine({evi}i∈[n]).

For our purposes, the construction threshold c = n and the corruption thresh-
old t = n − 1. In Figure 7, we describe our protocol ΠDDec, parameterized by
(ShareSK,ShareEval,Combine).

7 In the description of our protocol we choose to explicitly refer to the keys (pk, sk)
since it helps in the description of the decryption protocol.



Protocol ΠDDec

The protocol runs in the (Fbroadcast,FKey-Dist,FCom-ZK)-hybrid model with
parties P1, . . . , Pn and it is parametrized by (ShareEval,Combine), as defined
in Definition 5. It proceeds as follows:

Key Sharing: On input (init, 1λ) from all parties, invoke the functionalities
Fbroadcast,FKey-Dist and FCom-ZK. The invocation of FKey-Dist results in every
party Pi receiving

(
(PK, c1, . . . , cn), (ski, ri)

)
.

Evaluation Sharing:
1. For i 6= j, Pi samples revi ← Drand(1λ) and sends

(Commit, sid, cid, Pi, Pj , revi) to FCom-ZK. At this point all other parties
Pj receive message (Receipt, sid, Pi, Pj) from FCom-ZK.

2. Party Pi, on input ciphertext CT, computes its evaluation share evi ←
ShareEval(PK, ski,CT; revi) and broadcasts evi via Fbroadcast.

3. For j 6= i, Pi sends (Prover, sid, Pi, Pj ,Reval, (ci,PK, enc(z), evi)) to
FCom-ZK for the relation

Reval = {((ci,PK,CT, evi), (ski, ri, revi)) : ci = Com(ski; ri)∧

evi = ShareEval(PK, ski,CT; revi)}
where Com is the commitment scheme used in FKey-Dist.

4. For i 6= j, Pj sends the message (Proof, sid,Reval, (ci,PK,CT, evi)).
Share Combining: If any party Pi outputs reject for a proof given by any party

Pj , then output Abort. Otherwise, output Combine({evi}i∈[n]).

A concrete instantiation of the protocol ΠDDec based on LWE is given in the full
version.

Fig. 7. Distributed decryption protocol.

Theorem 4. Let QFHE = (KeyGen,KeyGen∗,QEnc,Eval,Rand,Dec,Equiv) be
an equivocal fully homomorphic encryption scheme; let it be associated with
a distributed function sharing scheme (ShareSK,ShareEval,Combine). Then the
constant-round protocol ΠMPC UC-securely realises the ideal functionality FAMPC

in the (Fbroadcast,FKey-Dist,FCom-ZK)-hybrid model with computational security
against any adaptive, active adversary corrupting at most all-but-one parties.

For the proof of Theorem 4 see the full version. Replacing UC ZK with UC
NIZK yields a three-round protocol.

High level idea of the security proof. Our simulator uses the properties
of the QFHE scheme such as the indistingusability of equivocation, according to
Definition 3. Furthermore, as we discussed in Section 1, the simulator will not
be able to cheat in the distributed decryption protocol by decrypting a given
ciphertext to any desired value. The key setup for the decryption protocol fixes
the shares of the private key even in the simulation. Thus, a ciphertext can only
be decrypted to the value it actually contains. Of course, when decrypting the
outputs, the correct results should be produced both in simulation and real life,
and so we have a problem since all ciphertexts in the simulation generated with



respect to the honest parties will contain encryptions of 0. For this issue we
use the ciphertext randomisation property. Notice that the ciphertext ct in the
ciphertext randomization property as per Definition 3 corresponds to the real
output enc(z) of the protocol ΠMPC and the ciphertexts ct′1, . . . , ct′n correspond

to the ciphertexts {ẽnc(yi)}i∈J . In the real-world the ciphertexts {ẽnc(yi)}i∈J
are redundant. On the other hand, in the ideal-world the final ciphertext CT

decrypts to a value contributed only by the ciphertexts {ẽnc(yi)}i∈J . In this case

we will call the ciphertexts {ẽnc(yi)}i∈J non− redundant. This implies that an
honest execution of the Output stage is not possible with the ciphertexts of

{ẽnc(yi)}i∈J being non− redundant. Analogously, the ciphertext enc(z) can be
either redundant or non− redundant. In other words, it is pertinent that before
we get to a hybrid where the Output stage is performed honestly, we need a

hybrid where {ẽnc(yi)}i∈J turn to redundant ciphertexts. However, with both

ciphertexts {ẽnc(yi)}i∈J and enc(z) redundant, we can not hope to get the final
output CT to decrypt to the actual output value. Thus, even before turning

{ẽnc(yi)}i∈J to redundant ciphertexts, we need a hybrid where we can cheat
in the final decryption. That is, we first need to have a hybrid that, instead
of running the distributed decryption protocol, runs what we abstract as the
simulator for the distributed decryption. Moreover, we also based on the semantic
security of the FHE scheme in interchangeably switching the keys K and R to
encryptions of 0 and 1, respectively. A full proof is given in the full version.

6 On the Communication Complexity of Distributed
Decryption

Our protocol as described in Section 5 assumes that the QFHE scheme comes
with a semi-honest secure distributed decryption protocol: from the ciphertext
and shares of the secret key players can compute decryption shares which, if cor-
rect, allow the reconstruction of the plaintext. We then augment the distributed
decryption with ZK proofs so that players prove that their contributions to the
decryption are correct. This solution has communication complexity proportional
to the circuit complexity of the decryption function.

However, our approach allows for a significant optimization of the decryption
procedure compared to generic solutions. More specifically, we tweak our proto-
col ΠMPC such that the communication complexity of the decryption becomes
independent of its circuit complexity.

To this end, we modify the evaluation phase of our protocol presented in
Section 5. Note that our original protocol allows us to securely compute any
(randomized) function. In particular, any randomized function allows the parties
to encrypt randomized shares and then add up them together. Therefore, instead
of computing the original function, we compute a new function, which for each
output z of the original function also outputs α and w = αz where α is randomly
chosen in some large field, and where the multiplication αz also takes place in
that field. Of course if we can compute this function securely then we can also
compute the original function securely. Observe that this new function comes



along with an extra property which allows to check if the output is correct or
not based on whether w = αz.

In order to incorporate the above, the modification to the protocol is as
follows. Instead of having a single ciphertext enc(z) containing z, we will have
two extra ciphertexts, namely enc(α) and enc(w). The ciphertext enc(α) is com-
puted as follows. Each party randomly selects a one-time ai and encrypts it
according to the Load phase of our protocol ΠMPC in Figure 5. Once each party
has loaded and broadcasted enc(ai), each party computes enc(α) = enc(a1) �
. . .� enc(an) and enc(w) = enc(α)� enc(z). Thus, instead of calling the output
phase of our protocol only on input enc(z) we call it on three different cipher-
texts enc(z), enc(α), enc(w). This means that now the decryption protocol will
generate three sets of evaluation shares.

The modification in the decryption protocol is as follows. Before we first
broadcast the shares and then we prove in ZK that they were correct. Instead,
we are not going to broadcast all the evaluation shares immediately due to the
adversary who may see the contributions from the honest parties to α before his
broadcast enabling him to forge. We need to guarantee that the adversary cannot
forge the output by making sure that he should output his share before he sees
α. In order to avoid the above complication, we first commit to the evaluation
shares and then we open them. In particular, all players compute their evaluation
shares for z, α and w and commit to them. If opening fails or if the decrypted
values do not satisfy αz = w, we abort. This solution avoids the use of ZK
proofs yielding a solution which is independent of the circuit complexity of the
decryption.

Since there is an encryption of α available, the new aspect in the proof is
to show that this does not help the adversary to learn α unless he can break
CPA security. We can argue this in the proof in the full version where we turn
the ciphertext enc(z) to redundant. Therefore, the same proof still applies but
instead we will have three redundant ciphetexts enc(αz), enc(α), enc(w). In this
hybrid the outputs cannot be forged since the ciphertext enc(α) is redundant

and it does not contain information about α. Thus, an advesary that he cannot
forge he cannot distinguish in the real world and break CPA-security.
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A Performance of General Solution based on the IPS
Compiler

The following should be taken with large grains of salt. We have tried to be
optimistic on the part of the IPS compiler, to not give our concrete protocol an
unfair advantage. Thus, actual numbers could be larger.

We estimate that using the best known outer and inner protocols in the IPS
compiler, one invocation of IPS would require 10 − 15 rounds. For the generic
suggestion one needs two invocations, one to generate key material for NCE
(see below) and one for decryption. On top of that one needs a few rounds
for distributing inputs and proving knowledge of them in ZK or NIZK. So we
estimate at least 30 rounds for the complete protocol.

The computation and communication overhead is even harder to estimate.
We looked at communication since that is a lower bound on computation and
made a crude estimate that equates statistical and computational security pa-
rameters. To do the FHE decryption generically, one needs to write it as a binary
circuit, say of size s and then use the IPS compiler. For n players and security
parameter λ, we get communication Ω(n4λ2s) where s depends on the FHE
scheme but can be expected to be at least quadratic in λ. This is based on a
very optimistic assumption on what the outer protocol can do while also mini-
mizing the number of rounds. If this is not true, then such a protocol yields an
Ω(n6λ3s) overhead.

In comparison the total communication of the decryption phase of our con-
crete protocol is O(n2λ). We used the IPS paper and there are likely ways to
optimize, but it does seem that the difference is very significant nevertheless.


