
Improved Algorithms for the Approximate
k-List Problem in Euclidean Norm

Gottfried Herold, Elena Kirshanova

Faculty of Mathematics
Horst Görtz Institute for IT-Security

Ruhr University Bochum
{gottfried.herold, elena.kirshanova}@rub.de

Abstract. We present an algorithm for the approximate k-List problem
for the Euclidean distance that improves upon the Bai-Laarhoven-Stehlé
(BLS) algorithm from ANTS’16. The improvement stems from the ob-
servation that almost all the solutions to the approximate k-List problem
form a particular configuration in n-dimensional space. Due to special
properties of configurations, it is much easier to verify whether a k-tuple
forms a configuration rather than checking whether it gives a solution
to the k-List problem. Thus, phrasing the k-List problem as a problem
of finding such configurations immediately gives a better algorithm. Fur-
thermore, the search for configurations can be sped up using techniques
from Locality-Sensitive Hashing (LSH). Stated in terms of configuration-
search, our LSH-like algorithm offers a broader picture on previous LSH
algorithms.
For the Shortest Vector Problem, our configuration-search algorithm re-
sults in an exponential improvement for memory-efficient sieving algo-
rithms. For k = 3, it allows us to bring down the complexity of the
BLS sieve algorithm on an n-dimensional lattice from 20.4812n+o(n) to
20.3962n+o(n) with the same space requirement 20.1887n+o(n). Note that
our algorithm beats the Gauss Sieve algorithm with time resp. space
of 20.415n+o(n) resp. 20.208n+o(n), while being easy to implement. Using
LSH techniques, we can further reduce the time complexity down to
20.3717n+o(n) while retaining a memory complexity of 20.1887n+o(n).

1 Introduction

The k-List problem is defined as follows: given k lists L1, . . . , Lk of elements from
a set X, find k-tuples (x1, . . . , xk) ∈ L1 × . . . × Lk that satisfy some condition
C. For example, Wagner [19] considers X ⊂ {0, 1}n, and a tuple (x1, . . . , xk) is
a solution if x1 ⊕ . . .⊕ xn = 0n. In this form, the problem has found numerous
applications in cryptography [14] and learning theory [6].

For `2-norm conditions with X ⊂ Rn and k = 2, the task of finding pairs
(x1,x2) ∈ L1 × L2, s.t. ‖x1 + x2‖ < min{‖x1‖, ‖x2‖}, is at the heart of cer-
tain algorithms for the Shortest Vector Problem (SVP). Such algorithms, called
sieving algorithms ([1], [17]), are asymptotically the fastest SVP solvers known
so far.

Sieving algorithms look at pairs of lattice vectors that sum up to a short(er)
vector. Once enough such sums are found, repeat the search by combining these
shorter vectors into even shorter ones and so on. It is not difficult to see that in
order to find even one pair where the sum is shorter than both the summands, we
need an exponential number of lattice vectors, so the memory requirement is ex-
ponential. In practice, due to the large memory-requirement, sieving algorithms
are outperformed by the asymptotically slower Kannan enumeration [10].

Naturally, the question arises whether one can reduce the constant in the
exponent of the memory complexity of sieving algorithms at the expense of
running time. An affirmative answer is obtained in the recently proposed k-list
sieving by Bai, Laarhoven, and Stehlé [4] (BLS, for short). For constant k, they
present an algorithm that, given input lists L1, . . . , Lk of elements from the n-
sphere Sn with radius 1, outputs k-tuples with the property ‖x1 + . . .+xn‖ < 1.
They provide the running time and memory-complexities for k = 3, 4.

We improve and generalize upon the BLS k-list algorithm. Our results are
as follows:

1. We present an algorithm that on input L1, . . . , Lk ⊂ Sn, outputs k-tuples
(x1, . . . ,xk),∈ L1 × . . .× Lk, s.t. all pairs (xi,xj) in a tuple satisfy certain
inner product constraints. We call this problem the Configuration problem
(Def. 3).

2. We give a concentration result on the distribution of scalar products of
x1, . . .xk ∈ Sn (Thms. 1 and 2), which implies that finding vectors that
sum to a shorter vector can be reduced to the above Configuration problem.

3. By working out the properties of the aforementioned distribution, we prove
the conjectured formula (Eq. (3.2) from [4]) on the input list-sizes (Thm. 3),
s.t. we can expect a constant success probability for sieving. We provide
closed formulas for the running times for both algorithms: BLS and our
Alg. 1 (Thm. 4). Alg. 1 achieves an exponential speed-up compared the BLS
algorithm.

4. To further reduce the running time of our algorithm, we introduce the so-
called Configuration Extension Algorithm (Alg. 2). It has an effect similar
to Locality-Sensitive Hashing as it shrinks the lists in a helpful way. This
is a natural generalization of LSH to our framework of configurations. We
briefly explain how to combine Alg. 1 and the Configuration Extension in
Sect. 7. A complete description can be found in the full version.

Roadmap. Sect. 2 gives basic notations and states the problem we consider in
this work. Sect. 3 introduces configurations – a novel tool that aids the analysis
in succeeding Sect. 4 and 5 where we present our algorithm for the k-List problem
and prove its running time. Our generalization of Locality Sensitive Hashing –
Configuration Extension – is described in Sect. 6 and its application to the k-
list problem in Sect. 7. We conclude with experimental results confirming our
analysis in Sect. 8. We defer some of the proofs and details on the Configuration
Extension Algorithm to the appendices as these are not necessary to understand
the main part.

2

2 Preliminaries

Notations. We denote by Sn ⊂ Rn+1 the n-dimensional unit sphere. We use
soft-O notation to denote running times: T = Õ(2cn) means that we suppress
subexponential factors. We use sub-indices Ok(.) in the O-notation to stress that
the asymptotic result holds for k fixed. For any set x1, . . . ,xk of vectors in some
Rn, the Gram matrix C ∈ Rk×k is given by the set of pairwise scalar products.
It is a complete invariant of the x1, . . . ,xk up to simultaneous rotation and
reflection of all xi’s. For such matrices C ∈ Rk×k and I ⊂ {1, . . . , k}, we write
C[I] for the appropriate |I| × |I|-submatrix with rows and columns from I.

As we consider distances wrt. the `2-norm, the approximate k-List problem
we consider in this work is the following computational problem:

Definition 1 (Approximate k-List problem). Let 0 < t <
√
k. Assume

we are given k lists L1, . . . , Lk of equal exponential size, whose entries are iid.
uniformly chosen vectors from the n-sphere Sn. The task is to output an 1−o(1)-
fraction of all solutions, where solutions are k-tuples x1 ∈ L1, . . . ,xk ∈ Lk
satisfying ‖x1 + · · ·+ xk‖2 ≤ t2.

We consider the case where t, k are constant and the input lists are of size cn

for some constant c > 1. We are interested in the asymptotic complexity for
n → ∞. To simplify the exposition, we pretend that we can compute with real
numbers; all our algorithms work with sufficiently precise approximations (pos-
sibly losing an o(1)-fraction of solutions due to rounding). This does not affect
the asymptotics. Note that the problem becomes trivial for t >

√
k, since all but

an 1− o(1)-fraction of k-tuples from L1 × · · · × Lk satisfy ‖x1 + . . .+ xk‖2 ≈ k
(random xi ∈ Sn are almost orthogonal with high probability, cf. Thm. 1). In

the case t >
√
k, we need to ask that ‖x1 + . . .+ xk‖2 ≥ t2 to get a meaningful

problem. Then all our results apply to the case t >
√
k as well.

In our definition, we allow to drop a o(1)-fraction of solutions, which is fine
for the sieving applications. In fact, we will propose an algorithm that drops
an exponentially small fraction of solutions and our asymptotic improvement
compared to BLS crucially relies on dropping more solutions than BLS. For this
reason, we are only interested in the case where the expected number of solutions
is exponential.

Relation to the approximate Shortest Vector Problem. The main incentive to look
at the approximate k-List problem (as in Def. 1) is its straightforward application
to the so-called sieving algorithms for the shortest vector problem (SVP) on
an n-dimensional lattice (see Sect. 7.2 for a more comprehensive discussion).
The complexity of these sieving algorithms is completely determined by the
complexity of an approximate k-List solver called as main subroutine. So one
can instantiate a lattice sieving algorithm using an approximate k-List solver
(the ability to choose k allows a memory-efficient instantiations of such a solver).
This is observed and fully explained in [4]. For k = 3, the running time for the
SVP algorithm presented in [4] is 20.4812n+o(n) requiring 20.1887n+o(n) memory.
Running our Alg. 1 instead as a k-List solver within the SVP sieving, one obtains

3

a running time of 20.3962n+o(n) with the same memory complexity 20.1887n+o(n).
As explained in Sect. 7.2, we can reduce the running time even further down
to 20.3717n+o(n) with no asymptotic increase in memory by using a combination
of Alg. 1 and the LSH-like Configuration Extension Algorithm. This combined
algorithm is fully described in the full version of the paper.

In the applications to sieving, we have t = 1 and actually look for solutions
‖±x1 ± · · · ± xk‖ ≤ 1 with arbitrary signs. This is clearly equivalent by consid-
ering the above problem separately for each of the 2k = O(1) choices of signs.
Further, the lists L1, . . . , Lk can actually be equal. Our algorithm works for this
case as well. In these settings, some obvious optimizations are possible, but they
do not affect the asymptotics.

Our methods are also applicable to lists of different sizes, but we stick to the
case of equal list sizes to simplify the formulas for the running times.

3 Configurations

Whether a given k-tuple x1, . . . ,xk is a solution to the approximate k-List prob-
lem is invariant under simultaneous rotations/reflections of all xi and we want
to look at k-tuples up to such symmetry by what we call configurations of points.
As we are concerned with the `2-norm, a complete invariant of k-tuples up to
symmetry is given by the set of pairwise scalar products and we define configu-
rations for this norm:

Definition 2 (Configuration). The configuration C = Conf(x1, . . . ,xk) of k
points x1, . . . ,xk ∈ Sn is defined as the Gram matrix Ci,j = 〈xi , xj〉.

Clearly, the configuration of the k-tuple x1, . . . ,xk determines the length of the
sum ‖

∑
i xi‖: ∥∥∑

i

xi
∥∥2 =

∑
i,j

〈xi , xj〉 = k + 2
∑
i<j

〈xi , xj〉. (1)

We denote by

C = {C ∈ Rk×k | C symmetric positive semi-definite, Ci,i = 1 ∀i},

C≤t = {C ∈ C |
∑

i,j
Ci,j ≤ t2} ⊂ C

the spaces of all possible configurations resp. those which give a length of at
most t. The spaces C and C≤t are compact and convex. For fixed k, it is helpful
from an algorithmic point of view to think of C as a finite set: for any ε > 0, we
can cover C by finitely many ε-balls, so we can efficiently enumerate C .

In the context of the approximate k-List problem with target length t, a
k-tuple x1, . . . ,xk is a solution iff Conf(x1, . . . ,xk) ∈ C≤t. For that reason, we
call a configuration in C≤t good. An obvious way to solve the approximate k-List
problem is to enumerate over all good configurations and solve the following
k-List configuration problem:

4

Definition 3 (Configuration problem). On input k exponentially-sized lists
L1, . . . , Lk of vectors from Sn, a target configuration C ∈ C and some ε > 0, the
task is to output all k-tuples x1 ∈ L1, . . . ,xk ∈ Lk, such that |〈xi ,xj〉−Cij | ≤ ε
for all i, j. Such k-tuples are called solutions to the problem.

Remark 1. Due to 〈xi ,xj〉 taking real values, it does not make sense to ask for
exact equality to C, but rather we introduce some ε > 0. We shorthand write
C ≈ε C ′ for |Ci,j − C ′i,j | ≤ ε. Formally, our analysis will show that for fixed

ε > 0, we obtain running times and list sizes of the form Õε(2(c+f(ε))n) for some
unspecified continuous f with lim

ε→0
f(ε) = 0. Letting ε→ 0 sufficiently slowly, we

absorb f(ε) into the Õ(.)-notation and omit it.

As opposed to the approximate k-List problem, being a solution to the k-List
configuration problem is a locally checkable property[12]: it is a conjunction of
conditions involving only pairs xi,xj . It is this and the following observation
that we leverage to improve on the results of [4].

It turns out that the configurations attained by the solutions to the approxi-
mate k-List problem are concentrated around a single good configuration, which
is the good configuration with the highest amount of symmetry. So in fact, we
only need to solve the configuration problem for this particular good configura-
tion. The following theorem describes the distribution of configurations:

Theorem 1. Let x1, . . . ,xk ∈ Sn be independent, uniformly distributed on the
n-sphere, n > k. Then the configuration C = C(x1, . . . ,xk) follows a distribution
µC on C with density given by

µC = Wn,k · det(C)
1
2 (n−k)dC = Õk

(
det(C)

n
2

)
dC ,

where Wn,k = π−
k(k−1)

4

∏k−1
i=0

Γ (n+1
2)

Γ (n+1−i
2)

= Ok
(
n

k(k−1)
4

)
is a normalization con-

stant that only depends on n and k. Here, the reference measure dC is given by
dC = dC1,2 · · · dC(k−1),k (i.e. the Lebesgue measure in a natural parametriza-
tion).

Proof. We derive this by an approximate normalization of the so-called Wishart
distribution[20]. Observe that we can sample C ← µC in the following way:
We sample x1, . . . ,xk ∈ Rn+1 iid from spherical n + 1-dimensional Gaussians,
such that the direction of each xi is uniform over Sn. Note that the lengths of
the xi are not normalized to 1. Then we set Ai,j := 〈xi , xj〉. Finally, normalize

to Ci,j :=
Ai,j√
Ai,iAj,j

.

The joint distribution of the Ai,j is (by definition) given by the so-called
Wishart distribution.[20] Its density for n+ 1 > k − 1 is known to be

ρWishart =
e−

1
2 TrA · det(A)

n+1−k−1
2

2
(n+1)k

2 π
k(k−1)

4

∏k−1
i=0 Γ (n+1−i

2)
dA (2)

5

where the reference density dA is given by dA =
∏
i≤j dAi,j . We refer to [8] for

a relatively simple computation of that density. Consider the change of variables
on Rk(k+1)/2 given by

Φ
(
A1,1, A2,2, . . . , Ak,k, A1,2, . . . , Ak−1,k

)
=
(
A1,1, A2,2, . . . , Ak,k,

A1,2√
A1,1A2,2

, . . . ,
Ak,k−1√

Ak−1,k−1Ak,k

)
,

i.e. we map the Ai,j ’s to Ci,j ’s while keeping the Ai,i’s to make the transformation
bijective almost everywhere. The Jacobian DΦ of Φ is a triangular matrix and
its determinant is easily seen to be∣∣det

(
DΦ
)∣∣ =

∏
i

1√
Ai,i

k−1 .

Further, note that A = TCT , where T is a diagonal matrix with diagonal√
A1,1, . . . ,

√
Ak,k. In particular, det(A) = det(C)·

∏
iAi,i. Consequently, we can

transform the Wishart density into
(
A1,1, . . . , Ak,k, C1,2, . . . , Ck−1,k

)
-coordinates

as

ρWishart =
e−

1
2

∑
i Ai,i det(C)

n−k
2

∏
iA

n−k
2

i,i

2
(n+1)k

2 π
k(k−1)

4

∏k−1
i=0 Γ (n−i+1

2)

∏
i

√
Ai,i

k−1∏
i

dAi,i
∏
i<j

dCi,j .

The desired µC is obtained from ρWishart by integrating out dA1,1dA2,2 · · · dAk,k.

We can immediately see that µC takes the form µC = Wn,k det(C)
n−k

2 dC for
some constants Wn,k. We compute Wn,k as

Wn,k =

∫
· · ·
∫

A1,1 Ak,k

e−
1
2

∑
i Ai,i

∏
iA

n−k
2

i,i

2
(n+1)k

2 π
k(k−1)

4

∏k−1
i=0 Γ (n−i+1

2)

∏
i

√
Ai,i

k−1∏
i

dAi,i

=
1

2
(n+1)k

2 π
k(k−1)

4

∏k−1
i=0 Γ (n−i+1

2)

(∫ +∞

A1,1=0

A
n−1
2

1,1 e−
1
2A1,1 dA1,1

)k
=

2
(n+1)k

2

2
(n+1)k

2 π
k(k−1)

4

∏k−1
i=0 Γ (n−i+1

2)

(∫ +∞

A1,1=0

(A1,1

2

)n+1
2 −1e−

1
2A1,1 1

2dA1,1

)k
=

1

π
k(k−1)

4

∏k−1
i=0 Γ (n−i+1

2)

(∫ +∞

x=0

x
n+1
2 −1e−x dx

)k
=

Γ (n+1
2)k

π
k(k−1)

4

∏k−1
i=0 Γ (n−i+1

2)
.

Finally, note that as a consequence of Stirling’s formula, we have Γ (n+z)
Γ (n) =

Oz(nz) for any fixed z and n→∞. From this, we get

Wn,k =
Γ (n+1

2)k

π
k(k−1)

4

∏k−1
i=0 Γ (n−i+1

2)
= Ok

(
n
∑k−1

i=0
i
2

)
= Ok

(
n

k(k−1)
4

)
.

6

The configurations C that we care about the most have the highest amount of
symmetry. We call a configuration C balanced if Ci,j = Ci′,j′ for all i 6= j, i′ 6= j′.
To compute the determinant det(C) for such balanced configurations, we have
the following lemma:

Lemma 1.

Let C =

 1 a a ... a
a 1 a ... a
a a 1 ... a

...
...

...
a a a ... 1

 ∈ Rk×k.

Then det(C) = (1− a)k−1(1 + (k − 1)a).

Proof. We have C = (1−a) ·1k +a ·1 ·1t, where 1 ∈ Rk×1 is an all-ones vector.
Sylvester’s Determinant Theorem[2] gives

det(C) = (1− a)k det
(
1k + a

1−a1 · 1t
)

= (1− a)k det
(
11 + a

1−a1t · 1
)

= (1− a)k(1 + a
1−ak) = (1− a)k−1(1 + (k − 1)a).

For fixed k and C, the probability density Õ
(
det(C)

n
2

)
of µC is exponential in

n. Since C ∈ C can only vary in a compact space, taking integrals will asymp-
totically pick the maximum value: in particular, we have for the probability that
a uniformly random k-tuple x1, . . . ,xk is good:∫

C good

µC = Õ
(

max
C good

det(C)
n
2

)
. (3)

We now compute this maximum.

Theorem 2. Let 0 < t <
√
k be some target length and consider the subset

C≤t ⊂ C of good configurations for target length at most t. Then det(C) attains
its unique maximum over C≤t at the balanced configuration CBal,t, defined by

Ci,j = t2−k
k2−k for all i 6= j with maximal value

det(C)max = det(CBal,t) =
t2

k

(k2 − t2
k2 − k

)k−1
.

In particular, for t = 1, this gives Ci,j = − 1
k and det(C)max = (k+1)k−1

kk
.

Consequently, for any fixed k and any fixed ε > 0, the probability that a randomly
chosen solution to the approximate k-List problem is ε-close to CBal,t converges
exponentially fast to 1 as n→∞.

Proof. It suffices to show that C is balanced at the maximum, i.e. that all Ci,j
with i 6= j are equal. Then computing the actual values is straightforward from
(1) and Lemma 1. Assume k ≥ 3, as there is nothing to show otherwise.

For the proof, it is convenient to replace the conditions Ci,i = 1 for all i by the
(weaker) condition Tr(C) = k. Let C ′≤t denote the set of all symmetric, positive

semi-definite C ∈ Rk×k with Tr(C) = k and
∑
i,j Ci,j ≤ t2. We maximize det(C)

over C ′≤t and our proof will show that Ci,i = 1 is satisfied at the maximum.

7

Let C ∈ C ′≤t. Since C is symmetric, positive semi-definite, there exists an
orthonormal basis v1, . . . ,vk of eigenvectors with eigenvalues 0 ≤ λ1 ≤ . . . ≤ λk.

Clearly,
∑
i λi = Tr(C) = k and our objective det(C) is given by det(C) =∏

i λi. We can write
∑
i,j Ci,j as 1tC1 for an all-ones vector 1. We will show

that if det(C) is maximal, then 1 is an eigenvector of C. Since

t2 ≥ 1tC1 ≥ λ1‖1‖2 = kλ1, (4)

for the smallest eigenvalue λ1 of C, we have λ1 ≤ t2

k < 1. For fixed λ1, maxi-

mizing det(C) = λ1 ·
∏k
i=2 λi under

∑k
i=2 λi = k − λ1 gives (via the Arithmetic

Mean-Geometric Mean Inequality)

det(C) ≤ λ1
(k − λ1
k − 1

)k−1
.

The derivative of the right-hand side wrt. λ1 is k(1−λ1)
k−1

(
k−λ1

k−1
)k−2

> 0, so we can

bound it by plugging in the maximal λ1 = t2

k :

det(C) ≤ λ1
(k − λ1
k − 1

)k−1
≤ t2

k

(k − t2

k

k − 1

)k−1
=
t2

k

(k2 − t
k2 − k

)k−1
(5)

The inequalities (5) are satisfied with equality iff λ2 = . . . = λk and λ1 = t2

k .

In this case, we can compute the value of λ2 as λ2 = k2−t2
k(k−1) from Tr(C) = k.

The condition λ1 = t2

k means that (4) is satisfied with equality, which implies
that 1 is an eigenvector with eigenvalue λ1. So wlog. v1 = 1√

k
1. Since the vi’s

are orthonormal, we have 1k =
∑
i vivi

t, where 1k is the k × k identity matrix.
Since we can write C as C =

∑
i λivivi

t, we obtain

C =
∑
i

λivivi
t = (λ1 − λ2)v1v1

t + λ2

k∑
i=1

vivi
t =

λ1 − λ2
k

11t + λ2 · 1k,

for det(C) maximal. From C = λ1−λ2

k 11t + λ2 · 1k, we see that all diagonal

entries of C are equal to λ2 + λ1−λ2

k and the off-diagonal entries are all equal to
λ1−λ2

k . So all Ci,i are equal with Ci,i = 1, because Tr(C) = k, and C is balanced.

For the case t >
√
k, and C≤t replaced by C≥t, the statement can be proven

analogously. Note that we need to consider the largest eigenvalue rather than
the smallest in the proof. We remark that for t = 1, the condition 〈xi , xj〉 =
Ci,j = − 1

k for all i 6= j is equivalent to saying that x1, . . . ,xk are k points of
a regular k + 1-simplex whose center is the origin. The missing k + 1th point of
the simplex is −

∑
i xi, i.e. the negative of the sum (see Fig. (1)).

A corollary of our concentration result is the following formula for the ex-
pected size of the output lists in the approximate k-List problem.

8

x1

x3

0

x2

-x1-x2-x3

Fig. 1: A regular tetrahedron (3−simplex) represents a balanced configuration
for k = 3.

Corollary 1. Let k, t be fixed. Then the expected number of solutions to the
approximate k-List problem with input lists of length |L| is

E[#solutions] = Õ
(
|L|k

(t2
k

(k2 − t2
k2 − k

)k−1)n
2

)
. (6)

Proof. By Thms. 2 and 1, the probability that any k-tuple is a solution is given
by Õ(det(CBal,t)

n
2). The claim follows immediately.

In particular, this allows us to prove the following conjecture of [4]:

Theorem 3. Let k be fixed and t = 1. If in the approximate k-List problem, the
length |L| of each input list is equal to the expected length of the output list, then

|L| = Õ
((

k
k

k−1

k+1

)n
2
)
.

Proof. This follows from simple algebraic manipulation of (6).

Our concentration result shows that it is enough to solve the configuration
problem for CBal,t.

Corollary 2. Let k, t be fixed. Then the approximate k-List problem with target
length t can be solved in essentially the same time as the k-List configuration
problem with target configuration CBal,t for any fixed ε > 0.

Proof. On input L1, . . . , Lk, solve the k-List configuration problem with target
configuration CBal,t. Restrict to those solutions whose sum has length at most t.
By Thm. 2, this will find all but an exponentially small fraction of solutions to
the approximate k-List problem. Since we only need to output a 1−o(1)-fraction
of the solutions, this solves the problem.

4 Algorithm

In this section we present our algorithm for the Configuration problem (Def. 3).
On input it receives k lists L1, . . . , Lk, a target configuration C in the form of a

9

Gram matrix Ci,j = 〈xi ,xj〉 ∈ Rk×k and a small ε > 0. The algorithm proceeds
as follows: it picks an x1 ∈ L1 and filters all the remaining lists with respect to
the values 〈x1 ,xi〉 for all 2 ≤ i ≤ k. More precisely, xi ∈ Li ‘survives’ the filter if

|〈x1 , xi〉 − C1,i| ≤ ε. We put such an xi into L
(1)
i (the superscript indicates how

many filters were applied to the original list Li). On this step, all the k-tuples of

the form (x1,x2, . . . ,xk) ∈ {x1}×L(1)
2 × . . .×L

(1)
k with a fixed first component

x1 partially match the target configuration: all scalar products involving x1 are

as desired. In addition, the lists L
(1)
i become much shorter than the original ones.

Next, we choose an x2 ∈ L
(1)
2 and create smaller lists L

(2)
i from L

(1)
i by

filtering out all the xi ∈ L
(1)
i that do not satisfy |〈x2 , xi〉 − C2,i| ≤ ε for all

3 ≤ i ≤ k. A tuple of the form (x1,x2,x3, . . . ,xk) ∈ {x1}×{x2}×L(2)
3 ×. . .×L

(2)
k

satisfies the target configuration Ci,j for i = 1, 2. We proceed with this list-
filtering strategy until we have fixed all xi for 1 ≤ i ≤ k. We output all such
k-tuples. Note that our algorithm becomes the trivial brute-force algorithm once
we are down to 2 lists to be processed. As soon as we have fixed x1, . . . ,xk−2
and created L

(k−2)
k−1 , L

(k−2)
k , our algorithm iterates over L

(k−2)
k−1 and checks the

scalar product with every element from L
(k−2)
k .

Our algorithm is detailed in Alg. 1 and illustrated in Fig. (2a).

Algorithm 1 k-List for the Configuration Problem

Input: L1, . . . , Lk – lists of vectors from Sn. Ci,j = 〈xi , xj〉 ∈ Rk×k – Gram matrix.
ε > 0.
Output: Lout – list of k-tuples x1 ∈ L1, . . . ,xk ∈ Lk, s.t. |〈xi , xj〉 − Cij | ≤ ε, for all
i, j.

1: Lout ← {}
2: for all x1 ∈ L1 do
3: for all j = 2 . . . k do
4: L

(1)
j ← Filter(x1, Lj , C1,j , ε)

5: for all x2 ∈ L(1)
2 do

6: for all j = 3 . . . k do
7: L

(2)
j ← Filter(x2, L

(1)
j , C2,j , ε)

8:
. . .

9: for all xk ∈ L(k−1)
k do

10: Lout ← Lout ∪ {(x1, . . .xk)}
11: return Lout

1: function Filter(x, L, c, ε)
2: L′ ← {}
3: for all x′ ∈ L do
4: if |〈x , x′〉 − c| ≤ ε then
5: L′ ← L′ ∪ {x′}
6: return L′

10

L1 L2 L3
. . . Lk

x1

Filter Filter Filter

L
(1)
2 L

(1)
3

. . . L
(1)
k

x2

Filter Filter

L
(2)
3 L

(2)
k

(a) Pictorial representation of Alg. 1.
At level i, a filter receives as input xi

and a vector xj from L
(i−1)
j (for the in-

put lists, L = L(0)). xj passes through
the filter if |〈xi , xj〉 − Ci,j | ≤ ε, in

which case it is added to L
(i)
j . The con-

figuration C is a global parameter.

L1 L2 L3
. . . Lk

x1

Filter

L
(1)
2

. . .

x2

Filter ...

L
(2)
3

(b) The k-List algorithm given in [4]. The
main difference is that a filter receives as
inputs xi and a vector xj ∈ Lj , as opposed

to xj ∈ L(i−1)
j . Technically, in [4], xi sur-

vives the filter if |〈xi ,x1 + . . .+xi−1〉| ≥ ci
for some predefined ci. Due to our concen-
tration results, this description is equiva-
lent to the one given in [4] in the sense
that the returned solutions are (up to a sub-
exponential fraction) the same.

Fig. 2: k-List Algorithms for the Configuration Problem. Left: Our Alg. 1. Right:
k-tuple sieve algorithm of [4]

11

5 Analysis

In this section we analyze the complexity of Alg. 1 for the Configuration problem.
First, we should mention that the memory complexity is completely determined
by the input list-sizes |Li| (remember that we restrict to constant k) and it does
not change the asymptotics when we apply k filters. In practice, all intermediate

lists L
(j)
i can be implemented by storing pointers to the elements of the original

lists.
In the following, we compute the expected sizes of filtered lists L

(j)
i and estab-

lish the expected running time of Alg. 1. Since our algorithm has an exponential
running time of 2cn for some c = Θ(1), we are interested in determining c (which
depends on k) and we ignore polynomial factors, e.g. we do not take into account
time spent for computing inner products.

Theorem 4. Let k be fixed. Alg. 1 given as input k lists L1, . . . , Lk ⊂ Sn of
the same size |L|, a target balanced configuration CBal,t ∈ Rk×k, a target length
0 < t <

√
k, and ε > 0, outputs the list Lout of solutions to the Configuration

problem. The expected running time of Alg. 1 is

T = Õ
(
|L| · max

1≤i≤k−1
|L|i · (k2 − t2)i

(k2 − k)i+1
·
((k2 − k + (i− 1)(t2 − k))2

k2 − k + (i− 2)(t2 − k)

)n
2
)
. (7)

In particular, for t = 1 and |Lout| = |L| it holds that

T = Õ
((k 1

k−1

k + 1
· max
1≤i≤k−1

k
i

k−1 · (k − i+ 1)2

k − i+ 2

)n
2

)
. (8)

Remark 2. In the proof below we also show that the expected running time of
the k-List algorithm presented in [4] is (see also Fig. (3) for a comparison) for
t = 1, |Lout| = |L|

TBLS = Õ
((k

k
k−1

(k + 1)2
· max
1≤i≤k−1

(
k

i
k−1 · (k − i+ 1)

))n
2
)
. (9)

Corollary 3. For k = 3, t = 1, and |L| = |Lout| (the most interesting setting
for SVP), Alg. 1 has running time

T = 20.3962n+o(n), (10)

requiring |L| = 20.1887n+o(n) memory.

Proof (Proof of Thm. 4). The correctness of the algorithm is straightforward: let
us associate the lists L(i) with a level i where i indicates the number of filtering

steps applied to L (we identify the input lists with the 0th level: Li = L
(0)
i).

So for executing the filtering for the ith time, we choose an xi ∈ L
(i−1)
i that

satisfies the condition |〈xi , xi−1〉 − Ci,i−1| ≤ ε (for a fixed xi−1) and append to

12

Fig. 3: Running exponents scaled
by 1/n for the target length t = 1.
For k = 2, both algorithms are
the Nguyen-Vidick sieve [18] with
log(T)/n = 0.415 (naive brute-
force over two lists). For k = 3,
Algorithm 1 achieves log(T)/n =
0.3962.

a previously obtained (i−1)-tuple (x1, . . . ,xi−1). Thus on the last level, we put
into Lout a k-tuple (x1, . . . ,xk) that is a solution to the Configuration problem.

Let us first estimate the size of the list L
(i−1)
i output by the filtering process

applied to the list L
(i−2)
i for i > 1 (i.e. the left-most lists on Fig. (2a)). Recall

that all elements xi ∈ L(i−1)
i satisfy |〈xi , xj〉 − Ci,j | ≤ ε, 1 ≤ j ≤ i − 1. Then

the total number of i-tuples (x1,x2, . . . ,xi) ∈ L1×L(1)
2 × . . .×L

(i−1)
i considered

by the algorithm is determined by the probability that in a random i-tuple, all
pairs (xj ,xj′), 1 ≤ j, j′ ≤ i satisfy the inner product constraints given by Cj,j′ .
This probability is given by Thm. 1 and since the input lists are of the same size
|L|, we have1

|L1| · |L(1)
2 | · . . . |L

(i−1)
i | = |L|i · det(C[1 . . . i])

n
2 , (11)

where det(C[1 . . . i]) denotes the i-th principal minor of C. Using (11) for two
consecutive values of i and dividing, we obtain

|L(i)
i+1| = |L| ·

(det(C[1 . . . i+ 1]

det(C[1 . . . i])

)n
2

. (12)

Note that these expected list sizes can be smaller than 1. This should be thought
of as the inverse probability that the list is not empty. Since we target a balanced
configuration CBal,t, the entries of the input Gram matrix are specified by Thm. 2
and, hence, we compute the determinants in the above quotient by applying

Lemma 1 for a = tk−k
k2−k . Again, from the shape of the Gram matrix CBal,t and

the equal-sized input lists, it follows that the filtered list on each level are of

the same size: |L(i)
i+1| = |L(i)

i+2| = . . . = |L(i)
k |. Therefore, for all filtering levels

0 ≤ j ≤ k − 1 and for all j + 1 ≤ i ≤ k,∣∣L(j)
i

∣∣ = |L| ·
(k2 − t2
k2 − k

· k2 − k + j(t2 − k)

k2 − k + (j − 1)(t2 − k)

)n
2

. (13)

1 Throughout this proof, the equations that involve list-sizes |L| and running time T

are assumed to have Õ(·) on the right-hand side. We omit it for clarity.

13

Now let us discuss the running time. Clearly, the running time of Alg. 1 is (up
to subexponential factors in n)

T = |L(0)
1 | · (|L

(0)
2 |+ |L

(1)
2 | · (|L

(1)
3 |+ |L

(2)
3 | · (. . . · (|L

(k−2)
k |+ |L(k−1)

k |))).

Multiplying out and observing that |L(k−2)
k | > |L(k−1)

k |, so we may ignore the
very last term, we deduce that the total running time is (up to subexponential
factors) given by

T = |L| · max
1≤i≤k−1

|L(i−1)| ·
i−1∏
j=1

|L(j)|, (14)

where |L(j)| is the size of any filtered list on level j (so we omit the subscripts).
Consider the value imax of i where the maximum is attained in the above for-
mula. The meaning of imax is that the total cost over all loops to create the

lists L
(imax)
j is dominating the running time. At this level, the lists L

(imax)
j become

small enough such that iterating over them (i.e. creation of L
(imax+1)
j) does not

contribute asymptotically. Plugging in Eqns. (11) and (12) into (14), we obtain

T = |L| · max
1≤i≤k−1

|L|i
((detC[1 . . . i])2

detC[1 . . . (i− 1)]

)n
2

. (15)

Using Lemma 1, we obtain the desired expression for the running time.
For the case t = 1 and |Lout| = |L|, the result of Thm. 3 on the size of the

input lists |L| yields a compact formula for the filtered lists:

∣∣L(j)
i

∣∣ =
(
k

1
k−1 · k − j

k − j + 1

)n
2
. (16)

Plugging this into either (14) or (15), the running time stated in (8) easily
follows.

It remains to show the complexity of the BLS algorithm [4], claimed in
Rmk. 2. We do not give a complete description of the algorithm but illustrate it
in Fig. (2b). We change the presentation of the algorithm to our configuration
setting: in the original description, a vector xi survives the filter if it satisfies
|〈xi , x1 + . . .+ xi−1〉| ≥ ci for a predefined ci (a sequence (c1, . . . , ck−1) ∈ Rk−1
is given as input to the BLS algorithm). Our concentration result (Thm. 1) also
applies here and the condition |〈xi , x1 + . . .+ xi−1〉| ≥ ci is equivalent to a
pairwise constraint on the 〈xi , xj〉 up to losing an exponentially small fraction
of solutions. The optimal sequence of ci’s corresponds to the balanced configura-
tion CBal,t derived in Thm. 2. Indeed, Table 1 in [4] corresponds exactly to CBal,t

for t = 1. So we may rephrase their filtering where instead of shrinking the list
Li by taking inner products with the sum x1 + . . .+xi−1, we filter Li gradually
by considering 〈xi , xj〉 for 1 ≤ j ≤ i− 1.

It follows that the filtered lists L(i) on level i are of the same size (in lead-
ing order) for both our and BLS algorithms. In particular, Eq. (12) holds for
the expected list-sizes of the BLS algorithm. The crucial difference lies in the

14

construction of these lists. To construct the list L
(i−1)
i in BLS, the filtering pro-

cedure is applied not to L
(i−2)
i , but to a (larger) input-list Li. Hence, the running

time is (cf. (14)), ignoring subexponential factors

TBLS = |L1| · (|L2|+ |L(1)
2 | · (|L3|+ |L(2)

3 | · (. . . · (|Lk|+ |L
(k−1)
k |)))

= |L|2 · max
1≤i≤k−1

·
i−1∏
j=1

|L(j)|.

The result follows after substituting (16) into the above product.

6 Configuration Extension

For k = 2, the asymptotically best algorithm with running time T =
(
3
2

)n
2

for t = 1 is due to [5], using techniques from Locally Sensitive Hashing. We
generalize this to what we call Configuration Extension. To explain the LSH
technique, consider the (equivalent) approximate 2-List problem with t = 1,
where we want to bound the norm of the difference ‖x1 − x2‖2 ≤ 1 rather
than the sum, i.e. we want to find points that are close. The basic idea is to
choose a family of hash functions H , such that for h ∈ H , the probability
that h(x1) = h(x2) is large if x1 and x2 are close, and small if they are far
apart. Using such an h ∈ H , we can bucket our lists according to h and then
only look for pairs x1,x2 that collide under h. Repeat with several h ∈ H
as appropriate to find all/most solutions. We may view such an h ∈ H as a
collection of preimages Dh,z = h−1(z) and the algorithm first determines which
elements x1,x2 are in some given Dh,z (filtering the list using Dh,z) and then
searches for solutions only among those. Note that, conceptually, we only really
need the Dh,z and not the functions h. Indeed, there is actually no need for the
Dh,z to be a partition of Sn for given h, and h need not even exist. Rather, we
may have an arbitrary collection of sets D(r), with r belonging to some index set.
The existence of functions h would help in efficiency when filtering. However, [5]
(and also [16], stated for the `1-norm) give a technique to efficiently construct
and apply filters D(r) without such an h in an amortized way.

The natural choice for D(r) is to choose all points with distance at most d
for some d > 0 from some reference point v(r) (that is typically not from any
Li). This way, a random pair x1,x2 ∈ D(r) has a higher chance to be close to
each other than uniformly random points x1,x2 ∈ Sn. Notationally, let us call (a
description of) D(r) together with the filtered lists an instance, where 1 ≤ r ≤ R
and R is the number of instances.

In our situation, we look for small sums rather than small differences. The
above translates to asking that x1 is close to v(r) and that x2 is far apart from
v(r) (or, equivalently, that x2 is close to −v(r)). In general, one may (for k > 2)

consider not just a single v(r) but rather several related v
(r)
1 , . . . ,v

(r)
m . So an

instance consists of m points v
(r)
1 , . . . ,v

(r)
m and shrunk lists L

′(r)
i where L

′(r)
i ⊂ Li

is obtained by taking those xi ∈ Li that have some prescribed distances di,j

15

to v
(r)
j . Note that the di,j may depend on i and so need not treat the lists

symmetrically. As a consequence, it does no longer make sense to think of this
technique in terms of hash collisions in our setting.

We organize all the distances between v’s and x’s that occur into a single
matrix C (i.e. a configuration) that governs the distances between v’s and x’s:
the 〈vj ,vj′〉-entries of C describe the relation between the v’s and the 〈xi ,vj〉-
entries of C describe the di,j . The 〈xi , xi′〉-entries come from the approximate

k-List problem we want to solve. While not relevant for constructing actual v
(r)
j ’s

and L
′(r)
i ’s, the 〈xi ,xi′〉-entries are needed to choose the number R of instances.

For our applications to sieving, the elements from the input list Li may
possibly be not uniform from all of Sn due to previous processing of the lists.
Rather, the elements xi from Li have some prescribed distance di,j to (known)
vj ’s: e.g. in Alg. 1, we fix x1 ∈ L1 that we use to filter the remaining k− 1 lists;
we model this by taking x1 as one of the vj ’s (and reducing k by 1). Another
possibility is that we use configuration extension on lists that are the output of
a previous application of configuration extension.

In general, we consider “old” points vj and wish to create “new” points v`,
so we have actually three different types of rows/columns in C, corresponding
to the list elements, old and new points.

Definition 4 (Configuration Extension). Consider a configuration matrix
C. We consider C as being indexed by disjoint sets Ilists, Iold, Inew. Here, |Ilists| =
k corresponds to the input lists, |Iold| = mold corresponds to the “old” points,
|Inew| = mnew corresponds to the “new” points. We denote appropriate square
submatrices by C[Ilists] etc. By configuration extension, we mean an algorithm
ConfExt that takes as input k exponentially large lists Li ⊂ Sn for i ∈ Ilists,
mold “old” points vj ∈ Sn, j ∈ Iold and the matrix C. Assume that each input
list separately satisfies the given configuration constraints wrt. the old points:
Conf(xi, (vj)j∈Iold) ≈ C[i, Iold] for i ∈ Ilists, xi ∈ Li.

It outputs R instances, where each instance consists of mnew points v`, ` ∈
Inew and shrunk lists L′i ⊂ Li, where Conf((vj)j∈Iold , (v`)`∈Inew) ≈ C[Iold, Inew]
and each x′i ∈ L′i satisfies

Conf(x′i, (vj)j∈Iold , (v`)`∈Iold) ≈ C[i, Iold, Inew].

The instances are output one-by-one in a streaming fashion. This is important,
since the total size of the output usually exceeds the amount of available memory.

The naive way to implement configuration extension is as follows: indepen-
dently for each instance, sample uniform v`’s conditioned on the given con-
straints and then make a single pass over each input list Li to construct L′i. This

would require Õ(maxi |Li| · R) time. However, using the block coding / stripe
techniques of [5,16], one can do much better. The central observation is that if
we subdivide the coordinates into blocks, then a configuration constraint on all
coordinates is (up to losing a subexponential fraction of solutions) equivalent to
independent configuration constraints on each block. The basic idea is then to

16

construct the v`’s in a block-wise fashion such that an exponential number of
instances have the same v`’s on a block of coordinates. We can then amortize
the construction of the L′i’s among such instances, since we can first construct
some intermediate L′′i ⊂ Li that is compatible with the v`’s on the shared block
of coordinates. To actually construct L′i ⊂ L′′i , we only need to pass over L′′i
rather than Li. Of course, this foregos independence of the v`’s across different
instances, but one can show that they are still independent enough to ensure
that we will find most solutions if the number of instances is large enough.

Adapting these techniques of [5,16] to our framework is straightforward, but
extremely technical. We work out the details in the full version of the paper.

A rough summary of the properties of our Configuration Extension Algorithm
ConfExt (see the full version for a proof) is given by the following:

Theorem 5. Use notation as in Def. 4. Assume that C, k,mold,mnew do not
depend on n. Then our algorithm ConfExt, given as input C, k,mold,mnew, old
points vj and exponentially large lists L1, . . . , Lk of points from Sn, outputs

R = Õ
(

det(C[Iold, Inew]) · det(C[Ilists, Iold])

det(C[Ilists, Iold, Inew]) · det(C[Iold])

)n
2

(17)

instances, where each output instance consists of mnew points v` and sublists
L′i ⊂ Li. In each such output instance, the new points (v`)`∈Inew are chosen
uniformly conditioned on the constraints (but not independent across instances).
Consider solution k-tuples, i.e. xi ∈ Li with Conf((xi)i∈Ilists) ≈ C[Ilists]. With
overwhelming probability, for every solution k-tuple (xi)i∈Ilists , there exists at
least one instance such that all xi ∈ L′i for this instance, so we retain all so-
lutions. Assume further that the elements from the input lists Li, i ∈ Ilists are
iid uniformly distributed conditioned on the configuration Conf(xi, (vj)j∈Iold) for
xi ∈ Li, which is assumed to be compatible with C. Then the expected size of the
output lists per instance is given by

E[|L′i|] = |Li| · Õ
((

det(C[i, Iold, Inew]) · det(C[Iold])

det(C[Iold, Inew]) · det(C[i, Iold])

)n/2)
.

Assume that all these expected output list sizes are exponentially increasing in
n (rather than decreasing). Then the running time of the algorithm is given by

Õ(R·maxi E[|L′i|]) (essentially the size of the output) and the memory complexity

is given by Õ(maxi |Li|) (essentially the size of the input).

7 Improved k-List Algorithm with Configuration
Extension

Now we explain how to use the Configuration Extension Algorithmwithin the
k-List algorithm Alg. 1 to sp eed-up the search for configurations. In fact, there
is a whole family of algorithms obtained by combining Filter from Alg. 1 and the

17

configuration extension algorithm ConfExt. The combined algorithm is given in
Alg. 2.

Recall that Alg. 1 takes as inputs k lists L1, . . . , Lk of equal size and processes

the lists in several levels (cf. Fig. 2a). The lists L
(i)
j for j ≥ i at the ith level

(where the input lists correspond to the 0th level) are obtained by brute-forcing

over xi ∈ L(i−1)
i and running Filter on L

(i−1)
j and xi.

We can use ConfExt in the following way: before using Filter on L
(i−1)
j , we

run ConfExt to create R instances with smaller sublists L
′(i−1)
j ⊂ L

(i−1)
j . We

then apply Filter to each of these L
′(i−1)
j rather than to L

(i−1)
j . The advantage

is that for a given instance, the L
′(i−1)
j are dependent (over the choice of j), so

we expect a higher chance to find solutions.

In principle, one can use ConfExt on any level, i.e. we alternate between using
ConfExt and Filter. Note that the xi’s that we brute-force over in order to apply
Filter become “old” vj ’s in the context of the following applications of ConfExt.

It turns out that among the variety of potential combinations of Filter and
ConfExt, some are more promising than others. From the analysis of Alg. 1, we
know that the running time is dominated by the cost of filtering (appropriately
multiplied by the number of times we need to filter) to create lists at some
level imax. The value of imax can be deduced from Eq. (14), where the individual

contribution |L| · |L(i−1)| ·
∏i−1
j=1|L(j)| in that formula exactly corresponds to the

total cost of creating all lists at the i-th level.

It makes sense to use ConfExt to reduce the cost of filtering at this critical

level. This means that we use ConfExt on the lists L
(imax−1)
j , j ≥ imax− 1. Let us

choose mnew = 1 new point v`. The lists L
(imax−1)
j are already reduced by enforc-

ing configuration constraints with x1 ∈ L1, . . . ,ximax−1 ∈ Limax−1 from previous
applications of Filter. This means that the x1, . . . ,ximax−1 take the role of “old”
vj ’s in ConfExt. The configuration Cext ∈ R(k+1)×(k+1) for ConfExt is obtained
as follows: The Cext[Ilists, Iold]-part is given by the target configuration. The rest
(which means the last row/column corresponding to the single “new” point)
can be chosen freely and is subject to optimization. Note that the optimization
problem does not depend on n.

This approach is taken in Alg. 2. Note that for levels below imax, it does not
matter whether we continue to use our Filter approach or just brute-force: if
imax = k, there are no levels below. If imax < k, the lists are small from this level
downward and brute-force becomes cheap enough not to affect the asymptotics.

Let us focus on the case where the input list sizes are the same as the output
list sizes, which is the relevant case for applications to Shortest Vector sieving.
It turns out (numerically) that in this case, the approach taken by Alg. 2 is
optimal for most values of k. The reason is as follows: Let T be the contribution
to the running time of Alg. 1 from level imax, which is asymptotically the same as
the total running time. The second-largest contribution, denoted T ′ comes from
level imax− 1. The improvement in running time from using ConfExt to reduce T
decreases with k and is typically not enough to push it below T ′. Consequently,

18

using ConfExt between other levels will not help. We also observed that choosing
mnew = 1 was usually optimal for k up to 10. Exceptions to these observations
occur when T and T ′ are very close (this happens, e.g. for k = 6) or when k is
small and the benefit from using ConfExt is large (i.e. k = 3).

Since the case k = 3 is particularly interesting for the Shortest Vector sieving
(see Sect. 7.2), we present the 3-List algorithm separately in Sect. 7.1.

Algorithm 2 k-List with Configuration Extension

Input: L1, . . . , Lk – input lists. C ∈ Rk×k – target configuration. ε > 0 – measure of closeness.
Output: Lout – list of k-tuples x1 ∈ L1, . . . ,xk ∈ Lk, s.t. |〈xi , xj〉 − Cij | ≤ ε, for all i, j.

1: imax, C
ext = Preprocess(k, Ci,j ∈ Rk×k)

2: Lout ← {}
3: for all x1 ∈ L1 do
4: L

(1)
j ← Filter(x1, Lj , C1,j , ε) . j = 2, . . . , k

. . .

5: for all ximax−1 ∈ L(imax−2)
imax−1 do

6: L
(imax−1)
j ← Filter(ximax−1, L

imax−2
j , Cimax−1,j , ε) . j = imax, . . . , k

7: Iold ← {1, . . . , imax− 1}, Ilists ← {imax, . . . , k}, Inew ← {k + 1}.
8: mold ← imax− 1, k′ ← k + 1− imax,mnew ← 1.
9: vj ← xj for j ∈ Iold.

10: Call ConfExt(n, k′,mold,mnew, C
ext, L

(imax−1)
imax

, . . . , L
(imax−1)
k , (vj)j∈Iold , ε)

11: for all output instances w, L
′(imax−1)
imax

, . . . , L
′(imax−1)
k do . Output is

streamed
12: for all ximax

∈ L′(imax−1)
j do

13: L
(imax)
j ←Filter(ximax

, L
′(imax−1)
j , Cimax,j , ε) . j = imax + 1 . . . k

14: Brute-force over L
(imax)
j to obtain ximax+1, . . . ,xk compatible with C

15: Lout ← Lout ∪ {(x1, . . . ,xk)}
16: return Lout

1: procedure Preprocess(k, C ∈ Rk×k)
2: Determine imax using Eq. (14)
3: Set Cext[{1, . . . , k}]← C.
4: Determine optimal Cext

i,k+1 = Cext
k+1,i by numerical optimization.

5: return imax, C
ext ∈ R(k+1)×(k+1)

1: function Filter(x, L, c, ε): See Algorithm 1

7.1 Improved 3-List Algorithm

The case k = 3 stands out from the above discussion as one can achieve a faster
algorithm running the Configuration Extension Algorithm on two points v1,v2.
This case is also interesting in applications to lattice sieving, so we detail on it
below.

19

From Eq. (14) we have imax = 2, or more precisely, the running time of the

3-List algorithm (without Configuration Extension) is T = |L1| · |L(1)
2 | · |L

(1)
3 |.

So we start shrinking the lists right from the beginning which corresponds to
mold = 0. For the balance configuration as the target, we have C[Ilists] = −1/3 on
the off-diagonals. With the help of an optimization solver, we obtain the optimal
values for 〈xi , vj〉 for i = {1, 2, 3} and j = {1, 2}, and for 〈v1 , v2〉 (there are 7
values to optimize for), so the input to the Configuration Extension Algorithm
is determined. The target configuration is of the form

C =

1 −1/3 −1/3 0.47 −0.15
−1/3 1 −1/3 −0.17 0.26
−1/3 −1/3 1 −0.19 −0.14
0.47 −0.17 −0.19 1 −0.26
−0.15 0.26 −0.14 −0.26 1

 (18)

and the number of instances is given by R = Õ(1.4038n) according to (17). The
algorithm runs in a streamed fashion: the lists L′1, L

′
2, L
′
3 in line 2 of Alg. 3 are

obtained instance by instance and, hence, lines 3 to 9 are repeated R times.

Algorithm 3 3-List with Configuration Extension

Input: L1, L2, L3 – input lists of vectors from Sn, |L| = 20.1887n+o(n)

C ∈ R5×5 as in Eq. (18), ρ = 1.4038, ε > 0
Output: Lout ⊂ L1 × L2 × L3, s.t. |〈xi , xj〉 − Cij | ≤ ε, for all 1 ≤ i, j ≤ 3.

1: Lout ← {}
2: L′1, L

′
2, L
′
3 ← ConfExt(k = 3,mold = 0,mnew = 2, C ∈ R5×5, ε, L1, L2, L3,

(n1, . . . , nt))

3: for all x1 ∈ L′1 do
4: L

(1)
2 ← Filter(x1, L

′
2,−1/3, ε)

5: L
(1)
3 ← Filter(x1, L

′
3,−1/3, ε)

6: for all x2 ∈ L(1)
2 do

7: for all x3 ∈ L(1)
3 do

8: if |〈x2 , x3〉+ 1/3| ≤ ε then
9: Lout ← (x1,x2,x3)

10: return Lout

1: function Filter(x, L, c, ε): See Algorithm 1

From Thm. 3, it follows that if the input lists satisfy |L| = 20.1887n+o(n), then
we expect |Lout| = |L|. Also from Eq. (8), it follows that the 3-List Algorithm 1
(i.e. without combining with the Configuration Extension Algorithm) has run-
ning time of 20.3962n+o(n). The above Alg. 3 brings it down to 20.3717n+o(n).

20

7.2 Application to the Shortest Vector Problem

In this section we briefly discuss how certain shortest vector algorithms can
benefit from our improvement for the approximate k-List problem. We start by
stating the approximate shortest vector problem.

On input, we are given a full-rank lattice L(B) described by a matrix B ∈
Rn×n (with polynomially-sized entries) whose columns correspond to basis vec-
tors, and some constant c ≥ 1. The task is to output a nonzero lattice vector
x ∈ L(B), s.t. ‖x‖ ≤ cλ1(B) where λ1(B) denotes the length of the short-
est nonzero vector in L(B). x is a solution to the approximate shortest vector
problem.

The AKS sieving algorithm (introduced by Ajtai, Kumar, and Sivakumar
in [1]) is currently the best (heuristic) algorithm for the approximate shortest
vector problem: for an n-dimensional lattice, the running time and memory are
of order 2n. Sieving algorithms have two flavours: the Nguyen-Vidick sieve [18]
and the Gauss sieve [17]. Both make polynomial in n number of calls to the
approximate 2-List solver. Without LSH-techniques, the running time both the
Nguyen-Vidick and the Gauss sieve is the running time of the approximate 2-List
algorithm: 20.415n+o(n) with 20.208n+o(n) memory. Using our 3-List Algorithm 1
instead, the running time can be reduced to 20.3962n+o(n) (with only 20.1887n+o(n)

memory) introducing essentially no polynomial overhead. Using Algorithm 3, we
achieve even better asymptotics: 20.3717n+o(n), but it might be too involved for
practical speed-ups due very large polynomial overhead for too little exponential
gain in realistic dimensions.

Now we describe the Nguyen-Vidick sieve that uses a k-List solver as a main
subroutine (see [4] for a more formal description). We start by sampling lattice-
vectors x ∈ L(B) ∩ Bn(2O(n) · λ1(B)), where Bn(R) denotes an n-dimensional
ball of radius R. This can be done using, for example, Klein’s nearest plane
procedure [11]. In the k-List Nguyen-Vidick for k > 2, we sample many such
lattice-vectors, put them in a list L, and search for k-tuples x1, . . . ,xk ∈ L ×
. . .×L s.t. ‖x1+. . .+xk‖ ≤ γ ·max1≤i≤k xi for some γ < 1. The sum x1+. . .+xk
is put into Lout. The size of L is chosen in a way to guarantee that |L| ≈ |Lout|.
The search for short k-tuples is repeated over the list Lout. Note that since
with each new iteration we obtain vectors that are shorter by a constant factor
γ, starting with 2O(n) approximation to the shortest vector (this property is
guaranteed by Klein’s sampling algorithm applied to an LLL-reduced basis), we
need only linear in n iterations to find the desired x ∈ L(B).

Naturally, we would like to apply our approximate k-List algorithm to k
copies of the list L to implement the search for short sums. Indeed, we can do so
by making a commonly used assumption: we assume the lattice-vectors we put
into the lists lie uniformly on a spherical shell (on a very thin shell, essentially
a sphere). The heuristic here is that it does not affect the behaviour of the
algorithm. Intuitively, the discreteness of a lattice should not be “visible” to the
algorithm (at least not until we find the approximate shortest vector).

We conclude by noting that our improved k-List Algorithm can as well be
used within the Gauss sieve, which is known to perform faster in practice than

21

the Nguyen-Vidick sieve. An iteration of the original 2-Gauss sieve as described
in [17], searches for pairs (p,v), s.t. ‖p + v‖ < max{‖p‖, ‖v‖}, where p ∈ L(B)
is fixed, v ∈ L ⊂ L(B), and p 6= v. Once such a pair is found and ‖p‖ > ‖v‖, we
set p′ ← p+ v and proceed with the search over (p′,v), otherwise if ‖p‖ < ‖v‖,
we delete v ∈ L and store the sum p+ v as p-input point for the next iteration.
Once no pair is found, we add p′ to L. On the next iteration, the search is
repeated with another p which is obtained either by reducing some deleted v ∈ L
before, or by sampling from L(B). The idea is to keep only those vectors in L
that cannot form a pair with a shorter sum. Bai, Laarhoven, and Stehlé in
[4], generalize it to k-Gauss sieve by keeping only those vectors in L that do
not form a shorter k-sum. In the language of configuration search, we look for
configurations (p,v1, . . . ,vk−1) ∈ {p}×L× . . .×L where the first point is fixed,
so we apply our Alg. 1 on k − 1 (identical) lists.

Unfortunately, applying LSH / configuration extension-techniques for the
Gauss Sieve is much more involved than for the Nguyen-Vidick Sieve. For k = 2,
[13] applies LSH techniques, but this requires an exponential increase in memory
(which runs counter to our goal). We do not know whether these techniques
extend to our setting. At any rate, since the gain from LSH / Configuration
Extension techniques decreases with k (with the biggest jump from k = 2 to
k = 3, while the overhead increases, gaining a practical speed-up from LSH /
Configuration Extension within the Gauss sieve for k ≥ 3 seems unrealistic.

Open questions. We present all our algorithms for a fixed k, and in the analysis,
we suppress all the prefactors (in running time and list-sizes) for fixed k in
the Ok(.) notation. Taking a closer look at how these factors depend on k, we
notice (see, for example, the expression for Wn,k in Thm. 1) that exponents of
the polynomial prefactors depend on k. It prevents us from discussing the case
k → ∞, which is an interesting question especially in light of SVP. Another
similar question is the optimal choice of ε and how it affects the pre-factors.

8 Experimental results

We implement the 3-Gauss sieve algorithm in collaboration with S. Bai [3].
The implementation is based on the program developed by Bai, Laarhoven, and
Stehlé in [4], making the approaches comparable.

Lattice bases are generated by the SVP challenge generator [7]. It produces
a lattice generated by the columns of the matrix

B =

 p x1 ... xn−1

0 1 ... 0
...

...
. . .

...
0 0 ... 1

,
where p is a large prime, and xi < p for all i. Lattices of this type are random
in the sense of Goldstein and Mayer [9].

For all the dimensions except 80, the bases are preprocessed with BKZ reduc-
tion of block-size 20. For n = 80, the block-size is 30. For our input lattices, we

22

2-sieve BLS 3-sieve
Alg. 1 for k = 3

ε = 0.0 ε = 0.015 ε = 0.3 ε = 0.4

n T , |L| T , |L| T , |L| T , |L| T , |L| T , |L|

60 1.38e3, 13257 1.02e4, 4936 1.32e3, 7763 1.26e3, 7386 1.26e3, 6751 1.08e3, 6296

62 2.88e3, 19193 1.62e4, 6239 2.8e3, 10356 3.1e3, 9386 1.8e3, 8583 2.2e3, 8436

64 8.64e3, 24178 5.5e4, 8369 5.7e3, 13573 3.6e3, 12369 3.36e3, 11142 4.0e4, 10934

66 1.75e4, 31707 9.66e4, 10853 1.5e4, 17810 1.38e4, 16039 9.1e3, 14822 1.2e4, 14428

68 3.95e4, 43160 2.3e5, 14270 2.34e4, 24135 2.0e4, 21327 1.68e4, 19640 1.86e4, 18355

70 6.4e4, 58083 6.2e5, 19484 6.21e4, 32168 3.48e5, 26954 3.3e4, 25307 3.42e4, 24420

72 2.67e5, 77984 1.2e6, 25034 7.6e4, 40671 7.2e4, 37091 6.16e4, 34063 6.35e4, 34032

74 3.45e5, 106654 — 2.28e5, 54198 2.08e5, 47951 2.02e5, 43661 2.03e5, 40882

76 4.67e5, 142397 — 3.58e5, 71431 2.92e5, 64620 2.42e5, 56587 2.53e5, 54848

78 9.3e5, 188905 — — — 4.6e5, 74610 4.8e5, 70494

80 — — — — 9.47e5, 98169 9.9e5, 98094

Table 1: Experimental results for k-tuple Gauss sieve. The running times T are
given in seconds, |L| is the maximal size of the list L. ε is the approximation pa-
rameter for the subroutine Filter of Alg. 1. The best running-time per dimension
is type-set bold.

do not know their minimum λ1. The algorithm terminates when it finds many
linearly dependent triples (v1,v2,v3). We set a counter for such an event and
terminate the algorithm once this counter goes over a pre-defined threshold. The
intuition behind this idea is straightforward: at some point the list L will contain
very short basis-vectors and the remaining list-vectors will be their linear com-
binations. Trying to reduced the latter will ultimately produce the zero-vector.
The same termination condition was already used in [15], where the authors
experimentally determine a threshold of such “zero-sum” triples.

Up to n = 64, the experiments are repeated 5 times (i.e. on 5 random lattices),
for the dimensions less than 80, 3 times. For the running times and the list-sizes
presented in the table below, the average is taken. For n = 80, the experiment
was performed once.

Our tests confirm a noticeable speed-up of the 3-Gauss sieve when our Con-
figuration Search Algorithm 1 is used. Moreover, as the analysis suggests (see
Fig. 3), our algorithm outperforms the naive 2-Gauss sieve while using much less
memory. The results can be found in Table 1.

23

Another interesting aspect of the algorithm is the list-sizes when compared
with BLS. Despite the fact that, asymptotically, the size of the list |L| is the
same for our and for the BLS algorithms, in practice our algorithm requires a
longer list (cf. the right numbers in each column). This is due to the fact that
we filter out a larger fraction of solutions. Also notice that increasing ε – the
approximation to the target configuration, we achieve an additional speed-up.
This becomes obvious once we look at the Filter procedure: allowing for a smaller
inner-product throws away less vectors, which in turn results in a shorter list L.
For the range of dimensions we consider, we experimentally found ε = 0.3 to be
a good choice.

Acknowledgments. We would like to thank the authors of [4], Shi Bai, Damien
Stehlé, and Thijs Laarhoven for constructive discussions.

Elena Kirshanova was supported by UbiCrypt, the research training group
1817/1 funded by the DFG. Gottfried Herold was funded by ERC grant 307952
(acronym FSC).

References

1. M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice
vector problem. In Proceedings of STOC, pages 601–610, 2001.

2. A. G. Akritas, E. K. Akritas, and G. I. Malaschonok. Sybolic computation, new
trends and developments various proofs of sylvester’s (determinant) identity. Math-
ematics and Computers in Simulation, 42(4):585 – 593, 1996.

3. S. Bai, August 2016. Personal Communication.

4. S. Bai, T. Laarhoven, and D. Stehlé. Tuple Lattice Sieving. In ANTS-XII (to
appear), 2016.

5. A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. In R. Krauthgamer, editor,
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 10–24.
SIAM, 2016.

6. A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM, pages 506–519, 2003.

7. S. Challenge. SVP challenge generator. http://latticechallenge.org/

svp-challenge.

8. M. Ghosh and B. K. Sinha. A simple derivation of the wishart distribution. The
American Statistician, 56(2):100–101, 2002.

9. D. Goldstein and A. Mayer. On the equidistribution of hecke points. Forum
Mathematicum, 15(3):165–189, 01 2006.

10. R. Kannan. Improved algorithms for integer programming and related lattice
problems. In Proceedings of STOC, pages 193–206, 1983.

11. P. Klein. Finding the closest lattice vector when it’s unusually close. In Proceedings
of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2000, pages 937–941, 2000.

12. O. Kupferman, Y. Lustig, and M. Y. Vardi. On Locally Checkable Properties, pages
302–316. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

24

http://latticechallenge.org/svp-challenge
http://latticechallenge.org/svp-challenge

13. T. Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive
hashing. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part I,
volume 9215 of LNCS, pages 3–22, Santa Barbara, CA, USA, Aug. 16–20, 2015.
Springer, Heidelberg, Germany.

14. V. Lyubashevsky. On random high density subset sums. In APPROX-RANDOM,
LNCS 3624, pages 378–389, 2005.

15. A. Mariano, T. Laarhoven, and C. Bischof. Parallel (probable) lock-free hash
sieve: A practical sieving algorithm for the svp. In 44th International Conference
on Parallel Processing (ICPP), pages 590–599, September 2015.

16. A. May and I. Ozerov. On computing nearest neighbors with applications to
decoding of binary linear codes. In E. Oswald and M. Fischlin, editors, EU-
ROCRYPT 2015, Part I, volume 9056 of LNCS, pages 203–228, Sofia, Bulgaria,
Apr. 26–30, 2015. Springer, Heidelberg, Germany.

17. D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest
vector problem. In Proceedings of the Twenty-first Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2010, pages 1468–1480, 2010.

18. P. Q. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are
practical. In Journal of Mathematical Cryptology, volume 2, pages 181–207, 2008.

19. D. Wagner. Generalized birthday problem. In Proceedings of CRYPTO 2002,
LNCS 2442, pages 288–304, 2002.

20. J. Wishart. The generalized product moment distribution in samples from a normal
multivariate population. Biometrika, 20A(1-2):32–52, 1928.

25

	Improved Algorithms for the Approximate k-List Problem in Euclidean Norm

