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Abstract. The key exchange protocol that establishes initial shared se-
crets in the handshake of the Signal end-to-end encrypted messaging
protocol has several important characteristics: (1) it runs asynchronously
(without both parties needing to be simultaneously online), (2) it pro-
vides implicit mutual authentication while retaining deniability (tran-
scripts cannot be used to prove either party participated in the protocol),
and (3) it retains security even if some keys are compromised (forward
secrecy and beyond). All of these properties emerge from clever use of
the highly flexible Diffie–Hellman protocol.
While quantum-resistant key encapsulation mechanisms (KEMs) can re-
place Diffie–Hellman key exchange in some settings, there is no replace-
ment for the Signal handshake solely from KEMs that achieves all three
aforementioned properties, in part due to the inherent asymmetry of
KEM operations. In this paper, we show how to construct asynchronous
deniable key exchange by combining KEMs and designated verifier sig-
nature (DVS) schemes, matching the characteristics of Signal. There are
several candidates for post-quantum DVS schemes, either direct con-
structions or via ring signatures. This yields a template for an efficient
post-quantum realization of the Signal handshake with the same asyn-
chronicity and security properties as the original Signal protocol.

Keywords: authenticated key exchange · deniability · asynchronous ·
Signal protocol · post-quantum · designated verifier signatures

1 Introduction

The Signal protocol [67,66], designed by Marlinspike and Perrin, has enabled
mass adoption of end-to-end encrypted messaging in consumer applications such
as WhatsApp, Signal, Facebook Messenger, Skype, and more. From a crypto-
graphic perspective, the Signal protocol consists of an initial handshake and key
exchange (called “X3DH” [67], a simplified version of which is shown in Figure 1),
asymmetric and symmetric key exchange “ratchets” that establish new keys for
every new chat message sent (called the “double ratchet” algorithm [66]), and
symmetric authenticated encryption for application data. Each of these compo-
nents contributes to Signal’s interesting and useful security features:
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Alice Bob
gb, gs, gy

Bob’s pre-key bundle

ga

Alice’s pre-key bundle
x←$ Zq

gx

K ← KDF(gas‖gxb‖gxs‖gxy) K ← KDF(gas‖gxb‖gxs‖gxy)

Fig. 1. Simplified version of Signal’s X3DH handshake.
Long-term keys a and b; semi-static key s; ephemeral keys x and y.

– Implicit mutual authentication in the handshake: The session key K estab-
lished in the handshake can only be computed by the intended peer. This
comes from the terms involving the long-term secret keys a and b in Fig-
ure 1.

– Forward secrecy in the handshake: The session key K established in the hand-
shake remains secret even if long-term keys are later compromised. This comes
from the terms involving the ephemeral keys x and y in Figure 1.

– Offline deniability of the handshake: A judge seeing a transcript of an hon-
est communication session cannot be convinced that a particular party was
actually involved in the session. This comes from the use of Diffie–Hellman
for authentication rather than signatures; all of the DH shared secrets input
to the key derivation function in Figure 1 could have been computed unilat-
erally either by Alice or by Bob (e.g., both Alice and Bob can compute gas,
using a and s respectively). We provide a new formalization of deniability
reflecting the specification of Signal more closely. We discuss the differences
between the deniability notions in Section 3 and in more detail in the full
version. While a formal proof that X3DH fulfills our new notion is not known
to the authors, we expect it to hold without any additional assumptions. See
[81] for a detailed analysis of the deniability of X3DH with respect to the
deniability notion of [29].

– Asynchronicity : The two communicating parties need never be online simul-
taneously, and can leave packets at an untrusted relay server until the other
party comes back online. The handshake is made asynchronous by allowing
each party to upload a pre-key bundle to an untrusted server in advance,
consisting of long-term, medium-term, and ephemeral public keys, and an
initiator can start sending text messages before their peer comes online. The
restrictions on communication flow in an asynchronous protocol are weaker
than those of non-interactive key exchange [41].

– Forward secrecy and post-compromise security [22] in long-lived conversa-
tions: Keys are updated using a new DH key exchange with each chat mes-
sage via the asymmetric ratchet, enabling secrecy of past and future messages
after a compromise.
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1.1 Making Signal Post-quantum

Since the Diffie–Hellman problem upon which much of Signal relies is not secure
against quantum adversaries, it is important to have a post-quantum alternative
available.

The symmetric ratchet and authenticated encryption components of Signal
are built on symmetric primitives, and thus are not in immediate danger from
quantum algorithms. The asymmetric ratchet was phrased by Marlinspike and
Perrin [66] and analyzed by Cohn-Gordon, Cremers, Dowling, Garratt, and Ste-
bila [21] in terms of Diffie–Hellman. Alwen, Coretti, and Dodis [1] generalized it
into a primitive called continuous key agreement that can be built from KEMs,
yielding post-quantum security. Hence, our focus in the rest of this paper is on
the handshake.

The post-quantum primitives to be standardized by the United States Na-
tional Institute of Standards and Technology (NIST) post-quantum standard-
ization project are signatures and key encapsulation mechanisms (KEMs), so
these would be most preferable to employ. It is certainly possible to generically
construct an authenticated key exchange protocol from signatures and KEMs,
but it is not possible to use only KEMs and signatures in a generic way to
create a post-quantum replacement for Signal with all of the properties listed
above. Suppose one tried to use KEMs instead of Diffie–Hellman in Figure 1.
Recall that, to use a KEM for key exchange, one party uses the key generation
algorithm to create a public-key/secret-key pair and transmits the public key
to their peer; the peer encapsulates against that public key, producing a cipher-
text and a shared secret, then transmits the ciphertext, which the first party
decapsulates using their secret key to compute the shared secret. In the Signal
handshake, one could try using KEM public keys to replace the Diffie–Hellman
shares in Alice and Bob’s pre-key bundles. We can still obtain ephemeral key
exchange (by having Alice encapsulate against Bob’s ephemeral public key) and
implicit Bob-to-Alice authentication (by having Alice encapsulate against Bob’s
long-term public key). However, we cannot obtain Alice-to-Bob authentication
using KEMs without adding an extra flow: Bob cannot produce a ciphertext
for Alice to decapsulate without knowing Alice’s public key first, so he cannot
asynchronously produce a pre-key bundle for Alice to immediately use. This
highlights the difference between DH and KEMs: in DH, both parties’ shares
are objects of the same type and can be generated independently, but in generic
KEMs, public keys and ciphertexts are in principle objects of differing types and
a ciphertext is generated with respect to a given public key. To obtain Alice-to-
Bob authentication without adding an extra communication round, Alice could
of course produce a signature for Bob to verify, but this undermines deniability.

The problem, in a nutshell, is to create an asynchronous deniable authenti-
cated key exchange protocol that can be instantiated in the post-quantum setting,
preferably with an efficient construction based on standardized primitives or at
least cryptographic assumptions used in standardized primitives.
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1.2 Options for PQ Asynchronous DAKE

There are several examples of authenticated key exchange protocols built generi-
cally from KEMs which have the potential for deniability [12,11,42,27,75] but do
not have the desired asynchronicity property for reasons similar to the discussion
above.

One post-quantum option that avoids the problem with KEMs described
above is to use CSIDH [20], a primitive based on supersingular isogenies that
yields a commutative group action which enables non-interactive key exchange.
CSIDH could be used to achieve implicit Alice-to-Bob authentication while main-
taining asynchronicity and deniability; indeed several key exchange protocols
from CSIDH have been proposed [26,52]. Unfortunately, there are several rea-
sons CSIDH may not be a fully satisfactory solution: it is much more compu-
tationally expensive than most other forms of post-quantum cryptography, and
there is ongoing debate about the security of its concrete parameters [69,10].

Most other post-quantum assumptions used in KEMs, including SIDH [50]
and learning-with-errors (LWE) [72], are insecure against key reuse attacks with-
out additional protection such as the Fujisaki–Okamoto transform [43] that
leaves them unable to be used for non-interactive key exchange (since the ci-
phertext must be generated with respect to a given public key). There have
been several attempts at SIDH-based non-interactive key exchange which have
ended up being insecure [2,36,31,32], and one attempt relying on an additional
novel assumption [9] the security of which is unknown.

Brendel, Fischlin, Günther, Janson, and Stebila [15] previously considered the
question of building a post-quantum version of the Signal handshake, highlight-
ing many of these problems. They proposed decomposing the three operations
of a KEM into a 4-operation “split KEM”, and showed how a Signal-like hand-
shake could be built from a split KEM meeting a suitably strong security notion.
They showed how CSIDH and LWE could be used to build split KEMs meet-
ing a weaker security notion, but these constructions did not achieve the strong
security notion required for their Signal-like handshake, effectively leaving the
overall problem unsolved.

Unger and Goldberg [79,80] also consider deniable authenticated key ex-
change (DAKE) protocols for secure messaging. Their protocol permits the op-
tional use of a PQ KEM for ephemeral key exchange to achieve forward secrecy
against future-quantum adversaries. To achieve deniability, they employ ring
signatures with classical security and further rely on dual receiver encryption,
which does not yet appear to have a PQ instantiation in the literature. Observe
that their formalization of deniability is given in the UC model.

The recent work by Hashimoto, Katsumata, Kwiatkowski, and Prest [46] is
closest to ours. Their core protocol is meant to replace the Signal handshake
based on (post-quantum) KEMs and signatures. It achieves security against ex-
posure of long-term keys and session state and a weaker deniability level. Unlike
Signal (and our proposed protocol), it does however not provide security against
randomness exposure and lacks support for semi-static keys to mitigate the ex-
haustion of ephemeral pre-keys. Hashimoto et al. provide an implementation
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Alice Bob
pkKEMB , pkDVSB , epkKEMB

Bob’s pre-key bundle

pkDVSA

Alice’s pre-key bundle

(K1, c1)←$ KEM1.Encaps(pk
KEM
B )

(K2, c2)←$ KEM2.Encaps(epk
KEM
B )

σ←$ DVS.Sign(skDVSA , pkDVSB , transcript)
c1, c2, σ

DVS.Vrfy(pkDVSA , pkDVSB , transcript, σ)

K1 ← KEM1.Decaps(skKEMB , c1)

K2 ← KEM2.Decaps(eskKEMB , c2)
K ← KDF(K1‖K2, transcript) K ← KDF(K1‖K2, transcript)

Fig. 2. Our core asynchronous DAKE protocol, combining static and ephemeral key
encapsulation schemes KEM1 and KEM2, and a designated verifier signature DVS (top);
and the corresponding Fake algorithm to forge a transcript for deniability (bottom).

for their weakly-deniable protocol and further discuss two additional variants
achieving stronger deniability. The second protocol achieves deniability against
semi-honest adversaries based on ring signatures, while their third protocol addi-
tionally uses non-interactive zero-knowledge arguments and strong knowledge-
type assumptions for plaintext-aware [4] KEMs to achieve deniability against
malicious adversaries.

Dobson and Galbraith [30] recently proposed using SIDH key exchange to
replace the DH key exchange in the (slightly modified) X3DH protocol. Even
though SIDH is in general insecure against adaptive attacks, Dobson and Gal-
braith show that carefully adding a zero-knowledge proof enables them to prove
that the long-term SIDH public keys are generated honestly. In order to prove
deniability, they require strong knowledge-type assumptions following [81].

1.3 Our Contributions

We show how to construct an asynchronous deniable authenticated key exchange
protocol generically from designated verifier signature schemes and key encap-
sulation mechanisms.

Introduced by Jakobsson, Sako, and Impagliazzo [49], a designated verifier
signature (DVS) scheme allows a signer to convince a chosen recipient, called
the designated verifier, of the authenticity of a message, but in such a way that
the designated verifier cannot convince any other party of the authenticity. In
a DVS scheme, both the signer and the verifier have a public-key/secret-key
pair; signing requires both the signer’s secret key and the verifier’s public key,
and verification uses both parties’ public keys. To achieve the non-transferability
property (called “source hiding”), a DVS scheme is accompanied by an additional
simulation algorithm with which the designated verifier can, using its own secret
key, construct a signature indistinguishable from one generated by the signer.

Asynchronous DAKE construction. We combine a DVS with a KEM to achieve
an asynchronous deniable authenticated key exchange as shown in Figure 2. As
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expected, Bob-to-Alice authentication comes from an implicitly authenticated
key exchange in which Alice encapsulates to Bob’s long-term KEM key (KEM1

with long-term public key pkKEMB and ciphertext c1 in Figure 2), and forward
secrecy comes from a key exchange using an ephemeral KEM key (KEM2 with
public key epkKEMB and ciphertext c2). Alice-to-Bob authentication comes from
Alice using the designated verifier signature scheme to sign a transcript with Bob
as the designated verifier; she can obtain Bob’s DVS verification key (pkDVSB ) from
his pre-key bundle. Since the source hiding property of the DVS scheme enables
Bob to also have created a valid-looking signature from Alice with himself as the
designated verifier, the transcript of the key exchange protocol could have been
constructed by either Alice or Bob, yielding the desired deniability property.

Deniability. We model the informal deniability requirement from the Signal spec-
ification [67, §4.4] through a new deniability notion (for asynchronous DAKE)
capturing the following scenario: Alice wants to convince a judge that a certain
conversation took place between her and Bob. Hence, Alice gives the correspond-
ing transcript to the judge. The judge may coerce Alice and Bob to give up their
secret keys (e.g., by law). Under these circumstances, the judge should not be
able to tell if this transcript stems from a real conversation or if Alice faked the
transcript on her own without Bob’s interaction. On the one hand, our new no-
tion is weaker than the definition of [29] in the sense that we limit Alice to stick
to the protocol description (i.e., be semi-honest) and allow the use of a secret
key for faking a transcript. On the other hand, our new notion is stronger in the
sense that we allow the judge to know all secret keys. On a more technical note,
we provide a game-based definition while [29] uses the simulation paradigm. In
a nutshell, a strength of our notion is that it provides deniability against pow-
erful judges that can compromise secret keys of users. A consequence of our
new, incomparable deniability definition is that we can achieve it without strong
knowledge assumptions needed for X3DH [81] and in the work of Hashimoto et
al. [46,47]; we conjecture both protocols can likewise be shown to be deniable
wrt. our definition without such assumptions.

Post-quantum designated verifier signatures. To achieve our goal of post-quantum
asynchronous DAKE, we thus need a post-quantum designated verifier signa-
ture scheme. While there is a long line of research on DVS schemes from pre-
quantum assumptions (including [49,74,55,77,59,84,16,25]), comparatively little
is available in the literature on post-quantum DVS schemes. An isogeny-based
DVS scheme was proposed in [78] but is insecure due to key reuse attacks iden-
tified in [44]. There are several lattice-based DVS schemes which may fit the
bill [82,83,68,57,87], but these have not received much scrutiny in the main-
stream cryptographic literature; we summarize this literature in Section 2.1.
These lattice-based DVS schemes are direct constructions not based on any
NIST candidates, so they would require their own thorough analysis.

DVS from ring signatures. Rather than constructing DVS schemes directly, it
is possible to use a ring signature scheme [73] as a designated verifier signature
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scheme. In a ring signature scheme, one signer can sign a message intended to
verify under a ring of public keys, only one of which is theirs; yet no one should
be able to determine which signer produced such a signature. Following ideas
sketched in [73,6], we show in Section 2.2 how to use a 2-user ring signature
scheme to build a DVS scheme: the ring used by the signer consists of the public
keys of themselves and the one designated verifier. There are several candidates
for post-quantum ring signatures whose properties we discuss in Section 2.2.

In a concurrent update to their work, Hashimoto et al. have shown the re-
verse, i.e., constructing a ring signature scheme from a DVS scheme [47] (which
is the full version of [46]). Hence, in the 2-user case ring signatures and DVS are
equivalent under the security notions put forward in this paper.

Given this equivalence, observe that our core asynchronous DAKE proto-
col (Figure 2) is indeed similar to the second construction of [46]. While our
construction sends the DVS signature as is, their construction employs a ring
signature that is masked with the output of a PRF evaluation.

Application to the Signal handshake. We present a version of the Signal X3DH
handshake which we call SPQR—Signal in a Post-Quantum Regime—based on
our asynchronous DAKE design that uses KEMs and a designed verifier sig-
nature scheme. We show that the SPQR handshake achieves strong (“maximal-
exposure”) session key security in a variant of the security model of [21] covering
compromises of long- and medium-term keys and ephemeral randomness, as well
as deniability.

Outline of the paper. Section 2 focuses on the security properties of designated
verifier schemes and how to construct these in a post-quantum setting, includ-
ing existing direct constructions as well as via ring signatures; the full version
of this paper [14] gives a discussion of our failed attempts at constructing DVS
from chameleon hash functions in an earlier version of this work. In Section 3
we present a security model for key exchange that captures session key indistin-
guishability with implicit mutual authentication and weak forward secrecy, as
well as offline deniability. In Section 4 we show that our core asynchronous de-
niable authenticated key exchange protocol from Figure 2 fulfills these security
notions; in particular, offline deniability is based on the source hiding property
of the DVS scheme. In Section 5 we introduce a complete post-quantum version
of the Signal handshake that extends our core protocol to include additional
components present in the Signal handshake (e.g., semi-static keys); we provide
a security model and proof of session key indistinguishability and deniability
for the full protocol in the full version [14]. In Section 6, we conclude with a
discussion of the results and some limitations.

1.4 Notation

To sample an element x uniformly at random from a set S (or a distribution on
an underlying set) we write x←$ S. For deterministic algorithms A we denote
by y ← A(x) the execution of A on input x with output y. Similarly, y←$ A(x)
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denotes the probabilistic execution of A, and y ← A(x; r) the deterministic exe-
cution of a probabilistic algorithm A with its random coins fixed to r. Adversaries
are typically denoted by A and we write AOracle to indicate that A has access
to the oracle Oracle. Adversaries can have local quantum computation power
but their oracle access and outputs are still classical. For an integer n, we de-
note by [n] the set {1, . . . , n}. Double square brackets J·K that enclose a boolean
statement return the bit 1 if the statement is true, and 0 otherwise.

2 Designated Verifier Signatures

Designated verifier signature (DVS) schemes were introduced by Jakobsson,
Sako, and Impagliazzo [49]. Their goal is for a signer to convince a chosen re-
cipient (the “designated verifier”) that a message is authentic but in such a way
that the designated verifier cannot convince any other party of the authenticity
of the message4. This property is typically modeled by requiring that the desig-
nated verifier can efficiently simulate signatures that are indistinguishable from
signatures produced by the signer.

Definition 1. A designated verifier signature scheme (DVS) is a tuple of algo-
rithms DVS = (SKGen,VKGen,Sign,Vrfy,Sim) along with a message space M.

– SKGen() $→ (pkS , skS): A probabilistic key generation algorithm that outputs
a public-/secret-key pair for the signer.

– VKGen() $→ (pkD, skD): A probabilistic key generation algorithm that outputs
a public-/secret-key pair for the verifier.

– Sign(skS , pkD,m) $→ σ: A probabilistic signing algorithm that uses a signer
secret key skS to produce a signature σ for a message m ∈M for a designated
verifier with public key pkD.

– Vrfy(pkS , pkD,m, σ)→ true/false: A deterministic verification algorithm that
checks a message m and signature σ against a signer public key pkS and
verifier public key pkD.

– Sim(pkS , skD,m) $→ σ: A probabilistic signature simulation algorithm that
uses the verifier’s secret key skD to produce a signature σ on message m for
signer public key pkS.

A DVS scheme DVS is correct, if, for any honestly generated key pairs (pkS , skS),
(pkD, skD) and every message m ∈M, it holds that Pr[Vrfy(pkS , pkD,m,Sign(skS ,
pkD,m)) = true] = 1.

We follow Laguillaumie and Vergnaud [55] in defining separate key generation
algorithms for signers and designated verifiers; in some cases these two algorithms
may be identical.

A long line of research has scrutinized the security of DVS schemes in different
settings, e.g. strong DVS schemes, including [49,74,55,77,59,84,16,25]. For the

4In contrast, a strong DVS scheme allows only the designated verifier to verify a
signature by requiring the verifier’s secret key as input to the verification algorithm.
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GufDVS(A):

1 Q← ∅
2 L ← ∅
3 (pkS , skS)←$ DVS.SKGen()

4 (pkD, skD)←$ DVS.VKGen()

5 for i ∈ [n]

6 (pki, ski)←$ DVS.VKGen()

7 L ← L ∪ {(pki, ski)}
8 (m∗, σ∗)←$ASign(pkS , pkD,L)

9 d← DVS.Vrfy(pkS , pkD,m
∗, σ∗)

10 return Jd = true ∧ m∗ /∈ QK

Sign(pk,m):

11 if pk = pkD
12 Q← Q ∪ {m}
13 else if (pk, ·) /∈ L
14 return ⊥
15 σ←$ DVS.Sign(skS , pk,m)

16 return σ

GsrchidDVS (A):

1 (pkS , skS)←$ DVS.SKGen()

2 (pkD, skD)←$ DVS.VKGen()

3 b←$ {0, 1}
4 b′←$AChall(pkS , skS , pkD, skD)

5 return Jb′ = bK

Chall(m):

6 if b = 0

7 σ←$ DVS.Sign(skS , pkD,m)

8 else

9 σ←$ DVS.Sim(pkS , skD,m)

10 return σ

Fig. 3. Unforgeability (top) and source hiding (bottom) of a designated verifier sig-
nature scheme DVS.

purpose of this paper, it suffices to define the security notions of unforgeability
and source hiding. Unforgeability for DVS schemes is similar to that for standard
signature schemes, providing the adversary with a signing oracle and asking it
to forge a signature on a (fresh) message of its choice. Prior work restricts the
signing oracle to the challenge designated verifier key. In contrast, and to account
for settings where a signer’s key is used with many other users’ verifier keys (cf.
Section 4), we allow the adversary to pick the designated verifier key to be used
in the signing oracle from a set of additional, honestly generated key pairs.

Definition 2. A designated verifier signature scheme DVS is (t, ε, n,QS)-unforgeable
if, for any adversary A with running time at most t, having access to n addi-
tional DVS verifier key pairs beyond the challenge keys, and making at most QS
queries to the Sign oracle, we have that AdvufDVS(A) = Pr

[
GufDVS(A) = 1

]
≤ ε,

where GufDVS(A) is as in Figure 3.

The second property we consider is called source hiding [55], demanding that
it should be infeasible for an adversary to determine whether a given signature
has been generated by the signer (using Sign) or by the designated verifier (using
Sim), even if the adversary learns the secret keys of both parties.

Definition 3. A designated verifier signature scheme DVS is (t, ε,QCh)-source
hiding if, for any adversary A with running time at most t and making at most
QCh to the Chall oracle, we have that AdvsrchidDVS (A) =

∣∣Pr
[
GsrchidDVS (A) = 1

]
− 1

2

∣∣ ≤
ε, where GsrchidDVS (A) is defined in Figure 3.

The property of source hiding also appears under different terms in the lit-
erature such as the designated verifier property [49,74], non-transferability [77],
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source deniable [40], untransferability [16], and recently off-the-record [25]. While
all these definitions share the intuition that the sender can blame another party
(in particular, the designated receiver) as the originator of a signature, they
vary in the adversary capabilities, i.e., whether the adversary is unbounded or
whether it gets access to the secret keys.

2.1 Post-quantum DVS Schemes: Prior Work

For this work, we are interested in DVS constructions that promise post-quantum
security. Despite the long line of research on DVS schemes, there are only a few
candidate post-quantum constructions available in the literature; furthermore,
most of those have not received much scrutiny in the mainstream cryptographic
literature. In the following, we summarize prior direct constructions before turn-
ing to generic constructions from ring signatures in Section 2.2.

An isogeny-based strong DVS scheme was proposed by Sun, Tian, and Wang [78]
which turned out to be insecure due to key reuse attacks identified by Galbraith,
Petit, Shani, and Ti [44].

Wang, Hu, and Wang [82] construct a strong DVS scheme directly from
lattice assumptions (LWE and SIS) by combining the Bonsai tree lattice trapdoor
of [19] with the GPV lattice-based signature scheme [45]; a subsequent paper of
theirs [83] extends this to the identity-based setting.

Noh and Jeong [68] improve on [82,83] by giving direct constructions from
lattices that can be proven without relying on random oracles; they do so by
replacing the random oracle with a chameleon hash function.

Li, Liu, and Yang [57] construct a universal DVS scheme directly from ideal
lattice assumptions (ring-SIS) by combining a ring version of the GPV signature
scheme [64] with a ring chameleon hash function [35] and adding a Fiat–Shamir-
with-aborts technique [62,63].

Zhang, Liu, Tang, and Tian [87] also give a universal DVS constructed di-
rectly from SIS by adapting the Lyubashevsky signature scheme [63].

2.2 Building Post-quantum DVS Schemes from Ring Signatures

We now turn to building DVS schemes generically from ring signatures, show
which properties are required to obtain a post-quantum-secure instantiation and
evaluate several ring signature candidates. Our constructions draws from the idea
sketched in [73,6], with syntax and security closely following the exposition of
Bender, Katz, and Morselli [6].

Definition 4. A ring signature scheme is a tuple of algorithms Ring = (KGen,
Sign,Vrfy) along with a message space M.

– KGen() $→ (pk, sk): A probabilistic key generation algorithm that outputs a
public-/secret-key pair.

– Sign(sks,m,R) $→ σ: A probabilistic signing algorithm that uses a secret key
sks to produce a signature σ for a message m ∈M w.r.t. to a list of distinct
public keys R, where (pks, sks) is an honestly generated key pair and pks ∈ R.
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– Vrfy(R,m, σ)→ true/false: A deterministic verification algorithm that checks
a message m and signature σ against a ring R.

A 2-user ring signature is a ring signature fixed to rings of size 2. A ring signature
scheme Ring is correct, if, for honestly generated key pairs {(pki, ski)}ni=1, any
s ∈ [n], and any message m ∈M, it holds that Pr[Vrfy({pki}ni=1,m,Sign(sks,m,
{(pki)}ni=1)) = true] = 1.

The unforgeability and anonymity property we require for ring signatures
are subtly different from prior literature. Like in the unforgeability notion w.r.t.
insider corruption defined in [6], we consider an unforgeability adversary with
access to a corruption oracle Corr. However, our unforgeability adversary is
limited to rings consisting of honestly generated public keys for both its final
forgery as well as the queries to the signing oracle (like the unforgeability against
chosen-subring attacks defined in [6]). It is easy to see that unforgeability w.r.t.
insider corruption implies our unforgeability notion. Herranz [48] informally dis-
cusses a similar notion.

Definition 5. A ring signature scheme Ring is (t, ε, n,QS , QCo)-unforgeable
w.r.t. honest-ring insider corruption if, for any adversary A with running time
at most t, having access to n public keys, and making at most QS queries to the
Sign oracle and QCo queries to the Corr oracle, we have that AdvufRing(A) =

Pr
[
GufRing(A) = 1

]
≤ ε, where GufRing(A) is as in Figure 4.

We consider an anonymity notion based on anonymity against full key ex-
posure [6]. The first difference is that we directly give all secret keys to the
adversary instead of providing a signing and a corruption oracle to the adver-
sary, where the latter in [6] returns the key generation randomness. The other
difference is that we parameterize the game in the number of queries QCh al-
lowed to the challenge oracle. As a result, anonymity against full key exposure
implies our anonymity notion with QCh = 1. Similarly, the anonymity notions
of [60] and [39], where the attacker has access to a key generation oracle, imply
our anonymity notion with QCh = 1.

Definition 6. A ring signature scheme Ring is (t, ε, n,QCh)-anonymous against
key exposure if, for any adversary A with running time at most t, having access
to n key pairs, and making at most QCh queries to the Chall oracle, we have

that AdvanonRing (A) = Pr
[
GanonRing (A) = 1

]
≤ ε, where GanonRing (A) is as in Figure 4.

It is easy to see that one can transform any (t, ε, n, 1)-anonymous (as per
Definition 6) ring signature scheme into a (t, ε ·QCh, n,QCh)-anonymous scheme
via a hybrid argument.

The construction. Our construction, denoted RingDVS, is a straightforward
adaption of a 2-user ring signature Ring to the DVS setting as detailed in Fig-
ure 5. The security of the resulting DVS scheme hinges on the unforgeability
and anonymity of the ring signature as per Definitions 5 and 6.
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GufRing(A):

1 QS ← ∅
2 QCo ← ∅
3 L ← ∅
4 for i ∈ [n]

5 (pki, ski)←$ Ring.KGen()

6 L ← L ∪ {pki}
7 (R?,m?, σ?)←$ASign,Corr(L)

8 d1 ← Ring.Vrfy(R?,m?, σ?)

9 d2 ← J(m?,R?) /∈ QSK
10 d3 ← JR? ⊆ L\QCoK
11 return Jd1 ∧ d2 ∧ d3K

Sign(s,m,R):

12 if pks /∈ R ∨ s /∈ [n] //sign wrt. honest key

13 return ⊥
14 if R 6⊆ L //sign wrt. honest ring

15 return ⊥
16 QS ← QS ∪ {(m,R)}
17 σ←$ Ring.Sign(skS ,m,R)

18 return σ

Corr(i):

19 QCo ← QCo ∪ {pki}
20 return ski

GanonRing (A):

1 L ← ∅
2 for i ∈ [n]

3 (pki, ski)← Ring.KGen()

4 L ← L ∪ {(pki, ski)}
5 b←$ {0, 1}
6 b′←$AChall(L)

7 return Jb′ = bK

Chall(m, i0, i1,R):

8 if {pki0 , pki1} 6⊆ R //challenge signers in ring

9 return ⊥
10 if {i0, i1} 6⊆ [n] //sign with honest keys only

11 return ⊥
12 σ←$ Ring.Sign(skib ,m,R)

13 return σ

Fig. 4. Unforgeability w.r.t. honest-ring insider corruption (top) and anonymity
against key exposure (bottom) of a ring signature scheme Ring. The latter game is
specialized for the ring size 2.

Theorem 1 (Unforgeability of RingDVS). If Ring is a (t, ε, n+ 2, QS , QCo)-
unforgeable w.r.t. honest-ring insider corruption 2-user ring signature scheme,
then RingDVS defined in Figure 5 is (t′, ε, n,QS)-existentially unforgeable under
chosen message attacks, with t′ ≈ t.

Proof. We reduce the existential unforgeability of RingDVS to the unforgeability
w.r.t. honest-ring insider corruption of Ring.

Initialization of A. The adversary B against unforgeability of the ring signa-
ture receives as input a list L of honestly generated public keys {pki}n+2

i=1 .
Next, B corrupts all keys except the first two via its Corr oracle. It sets the
first two public keys as challenge keys for A as pkS ← pk1 and pkD ← pk2.
(Observe that we choose these two indices wlog. for easier bookkeeping.) The
reduction then initializes the adversary A against unforgeability of the DVS
on input (pkS , pkD, {(pki, ski)}n+2

i=3 ).
Queries to Sign. Queries of A to the Sign oracle are of the form (pk,m). If

pk is not one of the honestly generated keys that the reduction gave to A,
return ⊥. For each query, B queries its own signing oracle on (1,m, {pk1, pk})
and returns the answer directly to A. If pk = pk2, record m in Q.

Existential Forgery. At some point, A outputs a DVS forgery (m∗, σ∗) wrt.
pkS and pkD. The reduction outputs (m∗, σ∗, pk1, pk2) as its own forgery.
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RingDVS.SKGen():

1 (pkS , skS)←$ Ring.KGen()

2 return (pkS , skS)

RingDVS.VKGen():

3 (pkD, skD)←$ Ring.KGen()

4 return (pkD, skD)

RingDVS.Sign(skS , pkD,m):

5 return Ring.Sign(skS ,m, {pkS , pkD})
RingDVS.Sim(pkS , skD,m):

6 return Ring.Sign(skD,m, {pkS , pkD})
RingDVS.Vrfy(pkS , pkD,m, σ):

7 return Ring.Vrfy({pkS , pkD},m, σ)

Fig. 5. Designated-verifier signature scheme RingDVS = RingDVS[Ring] constructed
from a 2-user ring signature scheme Ring.

The reduction soundly simulates the unforgeability game against RingDVS.
It simulates the signing oracle truthfully by using its own signing oracle.

If A outputs a valid DVS forgery wrt. sender key pkS = pk1 and verifier
key pkD = pk2, the output of B is a valid ring forgery wrt. the ring {pk1, pk2}
by construction of RingDVS. Furthermore, since m /∈ Q, A has not queried its
Sign oracle on m and pkD. Thus, the message-ring pair (m, {pk1, pk2}) was not
queried by B to its oracle either. Lastly, the forgery is wrt. the keys {pk1, pk2},
which B did not corrupt. Hence, all winning conditions for the ring unforgeability
game are met.

The running time t of B is dominated by the running time t′ of A and we
write t ≈ t′; simulating the signing oracle and querying the corruption oracle n
times are not expensive. If A outputs a successful DVS forgery with probability
ε, then B is able to produce a valid ring forgery with the same probability.

Theorem 2 (Source hiding of RingDVS). If Ring is a (t, ε, n,QCh)-anonymous
against key exposure 2-user ring signature for n ≥ 2, then RingDVS as shown in
Figure 5 is (t′, ε, QCh)-source hiding, with t′ ≈ t.

Proof. We reduce the source hiding of RingDVS to the anonymity against key
exposure of Ring.

Initialization of A. The adversary B against anonymity of the ring signature
receives as input a list of honestly generated key pairs {(pki, ski)}ni=1. It
sets the first two public keys as challenge keys for A as pkS ← pk1 and
pkD ← pk2. The reduction then initializes the source hiding adversary A on
input (skS , pkS , skD, pkD).

Queries to Chall. A’s queries to the Chall oracle are of the form m. For each
of the QCh queries, B forwards the query to its own Chall oracle as (m, 1,
2, {pk1, pk2}) and returns the answer it gets directly to A.

Output. When A outputs its guess b′, the reduction outputs b′.

The reduction soundly simulates the source hiding game against RingDVS for
A. The runtime of B is essentially the runtime of A plus the runtime to forward
the challenge queries and responses and we write t ≈ t′.

AdversaryA distinguishing between outputs of RingDVS.Sign and RingDVS.Sim
amounts to distinguishing between Ring signatures under the two signing keys sk1

and sk2 in the ring {pk1, pk2}. Hence, B inherits A’s winning probability ε.



14 Brendel, Fiedler, Günther, Janson, and Stebila

Implications and the inverse direction. Our construction above establishes
that DVS schemes with the security properites needed for this work (i.e., un-
forgeability and source hiding) can be generically constructed from 2-user ring
signatures that provide unforgeability w.r.t. honest-ring insider corruption and
anonymity against key exposure. We note that the latter security properties are
weaker than those put forward by Bender, Katz, and Morselli [6].

Hashimoto et al. have recently shown in the full version of their work [47]
that it is indeed possible to construct also the reverse direction (in contrast to an
earlier statement of ours). For their construction each ring member has a signer
key pair and a designated verifier key pair. In the signing procedure, depending
on the lexicographical order of the signer public keys either DVS.Sign or DVS.Sim
is executed generating a ring signature. Verification follows analogously.

Post-quantum ring signature candidates. Several post-quantum ring signa-
ture schemes were suggested in the literature. In the following, we list a selection
of schemes having concrete instantiations and report on the signature sizes and
other practical parameters provided in the corresponding works to illustrate their
practicality. All schemes except Raptor (listed first) come with security proofs
for unforgeability and anonymity definitions that imply our notions.

Lu, Au, and Zhang [61] introduce Raptor, which uses a chameleon hash
function based on the NIST finalist FALCON [71], producing signatures of size
approximately 5 KB for a 2-user ring. However, they argue that the best-known
attack is inefficient instead of proving unforgeability and anonymity.

Yuen, Esgin, Liu, Au, and Ding [85] propose DualRing-LB (which is a lattice-
based instantiation of their generic construction DualRing) with a signature size
of 4.4 KB for rings of size 2. They prove anonymity (against full key exposure)
of their scheme under a slightly different notion, where only the first-stage at-
tacker has access to a signing oracle and only the second-stage attacker gets the
randomness used in creating all keys (i.e., access to the secret keys).

The following two schemes use zero-knowledge proofs based on symmetric
primitives, akin to the NIST alternate candidate Picnic [86]: Derler, Ramacher,
and Slamanig [28] provide a scheme using NIZK proofs and accumulators. For
their smallest reported ring size 25, signatures can have a size of 719 KB. Katz,
Kolesnikov, and Wang [51] use NIZKPoK with the MPC-in-the-head paradigm.
For their smallest ring size 27, signing takes 2 seconds and produces signatures
of size 285 KB.

In terms of lattice-based constructions, a series of works [38,37,39] by Esgin
et al. provide constructions relying on the hardness of M-LWE and M-SIS. The
most recent candidate has a signature size of 18 KB for a 2-user ring. A construc-
tion by Lyubashevsky, Nguyen, and Seiler [65] relies on (variants of) M-LWE and
M-SIS and their smallest signature for rings of size 25 is 16 KB. Beullens, Kat-
sumata, and Pintore [7] introduce Falafl that also relies on M-LWE and M-SIS
and produces signatures of size 29 KB in less than 100 milliseconds.
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Sheikhi-Garjan, Kiliç, and Cenk [76] recently presented an isogeny-based ring
signature in which signing and verifying scale in the product nq of the ring size
n and isogeny security parameter q.

3 Security Model for Asynchronous Deniable Key
Exchange

From a formal perspective, an asynchronous authenticated key exchange protocol
is just a traditional authenticated key exchange protocol with a specific type of
message flow. In particular, asynchronicity allows one party to post pre-key
bundles containing long-term and possibly ephemeral public keys, provided that
they can be constructed without knowing the intended partner. We will formalize
security for this setting based on a Bellare–Rogaway-type model [3] with implicit
authentication and (weak) forward secrecy using post-specified peers [18,53]. The
model presented in this section is simplified to deal with basic Bellare–Rogaway-
type security with only long-term keys; in the full version [14] we present a
more granular model that accommodates the complex characteristics found in
the Signal protocol handshake, including semi-static keys and stronger security
against maximal exposure.

Parties and sessions. Let P be the set of np parties, each of whom has a long-
term public-key/secret-key pair generated by an algorithm KGenLT. Each party
may run multiple instances of the protocol simultaneously or sequentially, each
of which is called a session. The ith session at party P is denoted πiP . For each
session, the party maintains the following collection of session-specific informa-
tion:

– oid ∈ P: The identity of the session owner.

– pid ∈ P ∪ {?}: The identity of the intended peer, which may initially be
unknown (indicated by ?).

– role ∈ {initiator, responder}: The role of the party.

– stexec ∈ {⊥, running, accepted, rejected}: The status of this session’s execution.

– sid ∈ {0, 1}∗ ∪ {⊥}: A session identifier defining partnering.

– cid ∈ {0, 1}∗ ∪ {⊥}: A contributive identifier, defining a preliminary form of
partnering (often as a substring or prefix of the session identifier) for the case
the session is not yet bound to an authenticated peer [34].

– K ∈ KKE ∪ {⊥}: The session key established in this session.

– Any additional protocol-specific data used during execution.

Protocol specification. A 2-party key exchange protocol consists of the following
algorithms:

– KGenLT() $→ (pk, sk): A probabilistic long-term key generation algorithm
that outputs a public-key/secret-key pair.
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– Run(sk, ~pk, π,m) $→ (π′,m′): A probabilistic session execution algorithm that
takes as input a party’s long-term secret key sk, a list of long-term public
keys for all honest parties ~pk, a session state π, and an incoming message
m, and outputs an updated session state π′ and a (possibly empty) outgoing
message m′. To set up the session sending the first message, Run is called
with a distinguished message m = create.

In a deniable key exchange protocol, we will demand the existence of an addi-
tional algorithm:

– Fake(pkU , skV ) $→ (K,T): A probabilistic transcript simulation algorithm that
takes as input one party’s public key and the other party’s secret key and
generates asession key K and a transcript T of a protocol interaction between
them.

Asynchronous key exchange. In principle, a key exchange protocol can have an
arbitrary number of message flows, which correspond to multiple calls to Run
for a single session. In normal execution of an asynchronous authenticated key
exchange protocol, the following three calls to Run occur: 1) a call to Run at
the responder (Bob)5 with m = create, which sets up the responder session and
outputs the responder’s pre-key bundle, including an ephemeral public key; 2)
a call to Run at the initiator with the responder’s pre-key bundle (long-term
public and ephemeral public keys) which generates a session key and outputs a
key exchange message; and 3) a call to Run at the responder with the initiator’s
long-term public key and key exchange message which generates a session key
and has no output message.

Partnering. Two sessions πiU and πjV are said to be partners if they agree on
the session identifier (πiU .sid = πjV .sid). An honest partner session is a partner
session that is honest, i.e., not under adversarial control.

Session key indistinguishability. The first security property we want of an au-
thenticated key exchange protocol is indistinguishability of session keys. At the
start of the security experiment, long-term public-key/secret-key pairs are gen-
erated for all np honest parties and the public keys ~pk are provided to the
adversary, as well as a random challenge bit btest fixed for the duration of the
experiment. The adversary is then able to interact with honest parties via the
following queries:

– Send(U, i,m): Sends message m to session πiU , which corresponds to exe-
cuting Run(skU , ~pk, π

i
U ,m), saving the updated session state π′ as πiU , and

returning the outgoing message m′ to the adversary.

5Note that we call Bob the responder in our model despite Bob outputting the first,
asynchronous key exchange message. Based on the high-level protocol interaction, we
deem it more natural to call Alice, who decides to initiate a Signal session with Bob,
the initiator (in contrast to, e.g., [79,21,80]).
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– CorruptLTKey(U): Returns party U ’s long-term secret key skU to the
adversary.

– RevealSessKey(U, i): If session πiU has accepted, return its session key
πiU .K to the adversary.

– Test(U, i): If the Test query has been called before or session πiU has not
accepted, then return ⊥. Otherwise, if btest = 0, return πiU .K, otherwise return
an element of KKE chosen uniformly at random. Record π∗ ← πiU .

The test session π∗ = πi
∗

U∗ is called fresh if the following all hold:

1. RevealSessKey(U∗, i∗) was never called.
2. RevealSessKey(V, j) was never called for any V, j such that π∗.sid =
πjV .sid.

3. Either
(a) there exists an honest partner session π∗p (π∗p .sid = π∗.sid if π∗ is a re-

sponder, and π∗p .cid = π∗.cid if π∗ is an initiator), covering weak forward
secrecy, or

(b) CorruptLTKey(π∗.oid) and CorruptLTKey(π∗.pid) were never called,
covering implicit authentication.

At the end of the experiment, the adversary outputs a bit b′. The adversary
is said to win if b′ = btest and the test session π∗ is fresh. Formally, if the
test session is fresh, the experiment outputs 1 if b′ = btest and 0 otherwise; if
the test session is not fresh, then the experiment outputs a random bit. The
adversary’s advantage in the key indistinguishability game is the absolute value
of the difference between 1

2 and the probability that the experiment outputs 1.

Deniability. The second security property we want is deniability. At the start of
this experiment, long-term public-key/secret-key pairs are generated for all np
honest parties and the public and secret keys are provided to the adversary. A
random challenge bit b is fixed for the duration of the experiment. The adver-
sary is given repeated access to a Chall oracle which takes as input two party
identifiers U and V . If b is 0, then Chall will generate an honest transcript of
an interaction between U and V using the Run algorithm and each party’s secret
keys. If b is 1, then Chall will generate a simulated transcript of an interaction
between U and V using the Fake algorithm. At the end of the experiment, the
adversary outputs a guess b′ of b. The experiment outputs 1 if b′ = b and 0 oth-
erwise. The adversary’s advantage in the deniability game is the absolute value
of the difference between 1

2 and the probability the experiment outputs 1.
There are several prior works giving definitions of offline deniability for key

exchange [29,23,24,79,80]. Our definition differs from previous ones threefold:
Firstly, the challenge oracle executes Run on behalf of the framing party, i.e., we
consider semi-honest adversaries only. Secondly, the Fake algorithm (correspond-
ing to the simulator in simulation-based definitions) has access to the receiver’s
secret key. Thirdly, the adversary (the judge in simulation-based settings) has
access to all secret keys. This restricts the deniability to semi-honest adversaries
and 1-out-of-2 (one needs a secret key of either party to create a transcript) but
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lifts us to the so-called big brother setting. The strong point of this deniability
notion is that you get some deniability guarantees even against strong judges,
who know all secret keys. This models the informal deniability requirement from
the Signal specification [67, §4.4]. See the full version [14] for a more detailed
discussion.

4 Security of the Core Protocol

We now show that our core protocol Π from Figure 2 achieves the security
properties defined in Section 3. Key indistinguishability of Π depends on the
IND-CCA security of the two KEMs, the unforgeability of the DVS, and the
security of the KDF; deniability of Π depends on the source hiding of the DVS.
Both proofs are in the standard model.

To formally capture Π in the security model of Section 3, we need to specify
a few more details:

– Alice takes the initiator role, Bob the responder role.
– The transcript in Figure 2 corresponds to the session identifier and consists of

the parties’ identities and long-term public keys, the responder’s ephemeral
public key, and the KEM ciphertexts; the contributive identifier corresponds
to the pre-key bundle part of the transcript, received by Alice from Bob:

transcript = sid = (A,B, pkDVSA , pkKEMB , pkDVSB , epkKEMB , c1, c2),

cid = (B, pkKEMB , pkDVSB , epkKEMB ).

Note that the session identifier does not include the DVS signature itself to
avoid that the latter needs to be non-malleable (akin to strong unforgeability
of regular signatures) [58].

4.1 Key Indistinguishability

Theorem 3 (Key indistinguishability of Π). Let DVS be a (t, εDVS, np,
QS)–unforgeable DVS scheme, KEM1 be a (t, εKEM1

, ns)–IND-CCA-secure KEM,
KEM2 be a (t, εKEM2

, 1)–IND-CCA-secure KEM, and KDF be a (t, εKDF, ns)–PRF-
secure key derivation function when keyed through either of the key compo-
nents K1 and K2. Then the asynchronous DAKE protocol Π from Figure 2
provides key indistinguishability (as defined in Section 3) in that the advantage ε′

of any adversary A running in time t′ ≈ t is upper bounded as

ε′ ≤ ns ·

ns · (εKEM2 + εKDF

)
+np ·

(
εKEM1

+ εKDF

)
+n2

p ·
(
εDVS + ns · (εKEM2

+ εKDF)
)
 ,

where ns ≤ QSnd is the maximum number of sessions (upper bounded by the
number QSnd of Send queries) and np the number of parties.
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Proof. We proceed via a sequence of game hops starting from the key indistin-
guishability game for an adversary A. We bound the difference between each
hop until we reach a game where the adversary’s advantage is 0.

Game 0. The initial key indistinguishability game, denoted G0, letting ε′ :=
AdvG0ADAKE(A) = |Pr[G0 = 1]− 1

2 |.
Game 1 (Guess test session π∗). We first guess the tested session π∗

and “invalidate” the game by overwriting the adversary’s bit guess with 0 if
the adversary calls Test on a different session. Guessing among the ns many
sessions (where ns is at most the number QSnd of calls to the Send oracle),
AdvG0ADAKE(A) ≤ ns · AdvG1ADAKE(A).

For the remaining proof, we distinguish the following three cases for the test
session being fresh:

A. There exists an honest partner session π∗p (π∗p .sid = π∗.sid if π∗ is a responder,
and π∗p .cid = π∗.cid if π∗ is an initiator).

B. The tested session is an initiator (“Alice”) session and CorruptLTKey(π∗.pid)
was never called.6

C. The tested session is a responder (“Bob”) session and neither CorruptLTKey(
π∗.oid) nor CorruptLTKey(π∗.pid) was ever called.7

Treating theses cases as events in G1, and writing G1[X] to indicate that event X
occurs, by the union bound we have:

AdvG1ADAKE(A) ≤ Adv
G1[A]
ADAKE(A) + Adv

G1[B]
ADAKE(A) + Adv

G1[C]
ADAKE(A).

Case A (Honest partner) In the first proof case, there exists a session π∗p
that agrees with the tested session π∗ on the responder’s ephemeral KEM public
key epkKEM used. We will leverage this to embed a challenge into the ephemeral
KEM ciphertext c2.

Game A.1 (Guess partnered session). We first guess a session π∗p which
is partnered via sid (if π∗ is a responder) or cid (if π∗ is an initiator) to the
test session π∗, and let the adversary lose if the guess is incorrect. By this case’s
prerequisites, (at least) one partner session exists and is guessed with probability

at least 1/ns, hence Adv
G1[A]
ADAKE(A) ≤ ns · AdvGA.1ADAKE(A).

Game A.2 (Ephemeral KEM). We now replace the KEM key K2 with a

random key K̃2 in π∗ and also in π∗p (unless the latter is a responder and receives
a different ciphertext c2 than sent by π∗).

6This is slightly stronger than what freshness condition 3 (b) demands. In the secu-
rity result for our full SPQR protocol (see Section 5), this is captured more precisely.

7In our full SPQR protocol (see Section 5), we will strengthen this case by having
Bob use semi-static DVS keys. This limits the time window for a key-compromise
impersonation (KCI) attack [8] against Bob, as in the Signal handshake [67, §4.6].
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We bound the difference introduced by this step through a reduction to the
IND-CCA security of the KEM2 scheme, which simulates GA.1 truthfully except for
the following changes and runs in time t ≈ t′. It embeds the obtained challenge
public key pk into the ephemeral KEM public key epk of the responder session
among π∗ and π∗p , the challenge ciphertext c∗ as c2 of the initiator session (among
π∗ and π∗p), and the challenge (real-or-random) key K∗b ) as K2 into both π∗ and
π∗p . If π∗ is an initiator session, it uses its Decaps oracle (at most once, i.e.,
QD ≤ 1) to decrypt a potentially different ciphertext c′2 6= c2 = c∗ received
by π∗p . Depending on the IND-CCA KEM challenge bit, the reduction perfectly

simulates GA.1 or GA.2, hence AdvGA.1ADAKE(A) ≤ εKEM2
+ AdvGA.2ADAKE(A).

Game A.3 (KDF). We finally replace the key derivation function KDF in

both π∗ and π∗p (in the latter only if it uses K̃2) with a random function, in

particular replacing the session key K of π∗ with a randomly sampled key K̃.

We bound the introduced advantage difference via a reduction to the pseudo-
randomness of the key derivation function KDF, treated as a PRF keyed through
the second key component K2 and taking (K1, transcript) as label. The reduction
runs in time t ≈ t′ and simulates Game GA.2 truthfully, except that it does not
sample K̃2 itself but instead uses its oracle PRFChallenge to compute the
session key values derived from K̃2. It calls its oracle at most twice, once for
π∗ and possibly once for π∗p on a different label, hence QPRF ≤ ns. Depending
on whether its oracle output is the true KDF evaluation or that of a random
function, the reduction perfectly simulates GA.2 or GA.3, thus AdvGA.2ADAKE(A) ≤
εKDF + AdvGA.3ADAKE(A).

In Game GA.3, the challenge key Ktest for π∗ is a uniformly random key,
independent of btest. Furthermore, by the first two freshness conditions, A cannot
reveal Ktest via a RevealSessKey query on π∗ or any partnered session who
might hold the same key. Thus, in GA.3, A cannot do better than guessing,
leaving it with advantage AdvGA.3ADAKE(A) = 0.

Case B (Initiator tested, peer uncorrupted) In the second proof case, we
have that the tested initiator session π∗ has an uncorrupted intended peer. We
will leverage this to embed a challenge into the static KEM ciphertext c1.

Game B.1 (Guess responder identity). We first guess the test session’s
intended peer, V = π∗.pid, among the np many parties in the game and let the
adversary lose if we guess incorrectly. This reduces the adversary’s advantage by

a factor at most np: Adv
G1[B]
ADAKE(A) ≤ np · AdvGB.1ADAKE(A).

Game B.2 (Static KEM). We can now replace the KEM key K1 in π∗ (and
any responder session of V receiving the same ciphertext c1) with a random

key K̃1.

We bound the advantage difference introduced by this step through a re-
duction to the IND-CCA security of the KEM1 scheme. The reduction runs in
time t ≈ t′ and simulates GB.1 truthfully, but embeds the obtained challenge
public key pk as V ’s public KEM key pkKEMV at the outset of the game. It further
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embeds the challenge ciphertext c∗ as c1 sent by π∗ and the challenge (real-or-
random) key K∗b ) as K1 into π∗ (and any responder session of V receiving c∗).
The reduction uses the Decaps oracle to decapsulate any ciphertexts c1 6= c∗

received by sessions of V (calling the oracle at most ns times), and never has to
respond to CorruptLTKey(V ) queries as otherwise π∗ would not be fresh. De-
pending on the IND-CCA KEM challenge bit, the reduction perfectly simulates
GB.1 or GB.2, hence AdvGB.1ADAKE(A) ≤ εKEM1

+ AdvGB.2ADAKE(A).

Game B.3 (KDF). We finally replace the key derivation function KDF in π∗

(and any other session using K̃1) with a random function, in particular replacing

the session key K of π∗ with a randomly sampled key K̃.
Analogous to Game GA.3, we can bound the introduced advantage difference

by the pseudorandomness of KDF when keyed through the first key compo-
nent K1 and taking (K2, transcript) as label. The challenge static KEM key K̃1

may possibly be decapsulated in many responder sessions of V , who use distinct
transcript labels unless they are partnered with π∗; the PRF reduction, running
in time t ≈ t′, may hence make up to ns queries to its PRFChallenge oracle.
Simulating either of the two games in the reduction, we get AdvGB.2ADAKE(A) ≤
εKDF + AdvGB.3ADAKE(A).

Here, the challenge key Ktest for π∗ is uniformly random and independent, as
only partnered sessions will use the same transcript label to derive their session
keys, but for π∗ to be fresh those cannot be revealed. Thus AdvGB.3ADAKE(A) = 0.

Case C (Responder tested, both parties uncorrupted) In the final proof
case, we know that the tested responder session π∗ has an uncorrupted intended
peer. We will leverage this to ensure that there is a partnered initiator session
(which signed the transcript) and then embed a challenge into the ephemeral
KEM ciphertext c2 between these two sessions.

Game C.1 (Guess initiator and responder identities). We first guess the
(responder) test session’s owner V = π∗.oid and intended (initiator) peer U =
π∗.pid among the np many parties in the game and “invalidate” the game (over-
writing A’s bit guess by 0) if we guess incorrectly. Guessing both parties induces

a quadratic loss in np: Adv
G1[C]
ADAKE(A) ≤ n2

p · Adv
GC.1
ADAKE(A).

Game C.2 (Signature unforgeability). We now “invalidate” the game
(overwriting A’s bit guess by 0) if the test session π∗ accepts a DVS signature σ
on a transcript that no session of U has issued.

We bound this event by a reduction against the existential unforgeability
of DVS, running in time t ≈ t′ and simulating GC.1 with the following modifi-
cation: Instead of generating parties’ DVS keys itself, the reduction embeds the
unforgeability game’s challenge public keys as pkU = pkS and pkV = pkD, and
assigns the additional DVS public-secret key pairs from the unforgeability game’s
list L to the remaining parties. (Note that the reduction obtains the secret keys
for the latter keys, allowing it to fully simulate those parties.) The reduction
uses its signing oracle to compute signatures under pkU = pkS (and for any peer
public key pk). As U and V remain uncorrupted in this proof case, the reduc-
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tion never has to answer a CorruptLTKey(U) or CorruptLTKey(V ) query.
In the case that π∗ receives a valid DVS transcript-signature pair (transcript,
σ) that no session of U sent (and hence transcript was not queried to the DVS
Sign oracle), the reduction outputs this pair as its forgery and wins. Therefore,
AdvGC.1ADAKE(A) ≤ εDVS + AdvGC.2ADAKE(A).

Game C.3 (Guess partnered session). As of GC.2, we know that π∗ receives
a DVS signature on a transcript value transcript = π∗.sid sent by some session
of U . We now guess this (sid-partnered) session π∗p (among the ns many sessions)
and, invalidating the game (overwriting A’s bit guess by 0) upon wrong guess,
get AdvGC.2ADAKE(A) ≤ ns · AdvGC.3ADAKE(A).

Game C.4 (Ephemeral KEM). We next replace the KEM key K2 with a

random key K̃2 in π∗ and π∗p .
As in Game GA.2, we bound the introduced advantage difference by the

IND-CCA security of the KEM2 scheme. The reduction runs in time t ≈ t′,
embeds the challenge pk and c∗ into π∗’s ephemeral KEM public key, resp.
π∗p ’s c2 ciphertext, and uses the challenge key K∗b in place of K2 in both ses-
sions. It does not need to use its Decaps oracle (i.e., QD = 0), since pk is
not used in another session and we are at this point guaranteed that π∗ re-
ceives π∗p ’s ephemeral ciphertext. (So in fact we only need IND-CPA security
of KEM2 here.) The reduction simulates the difference between GC.3 and GC.4,
so AdvGC.3ADAKE(A) ≤ εKEM2

+ AdvGC.4ADAKE(A).

Game C.5 (KDF). In the final game hop, we replace KDF in both π∗ and
π∗p with a random function, replacing the session key K of π∗ with a randomly

sampled key K̃.
As in Game GA.3, this is bounded by the pseudorandomness of KDF with

key K2 and label (K1, transcript). Due to π∗ and π∗p agreeing on the transcript
input to KDF, the corresponding reduction only makes one query, QPRF = 1 ≤
ns, running in time t ≈ t′. Simulating the game difference through this reduction,
we get AdvGC.4ADAKE(A) ≤ εKDF + AdvGC.5ADAKE(A).

This completes the last proof case, as the challenge key Ktest for π∗ is now
uniformly random and independent (beyond partnered sessions), leaving A with
advantage AdvGC.5ADAKE(A) = 0.

4.2 Deniability

Observe that we use a different deniability notion compared to prior works as
discussed in Section 3. A more thorough discussion of the different deniabil-
ity notions can be found in the full version [14]. In consequence, we can forgo
the strong knowledge assumptions that both [81,46] used to prove deniability
of X3DH and their own construction, respectively. We conjecture that either
construction can likewise be shown to be deniable wrt. our definition without
strong knowledge assumptions.

Theorem 4 (Deniability of Π). Let DVS = (SKGen,VKGen,Sign,Vrfy,Sim)
be a (t, εsrchid, QCh)-source hiding DVS scheme. Then the asynchronous DAKE
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protocol Π from Figure 2 provides deniability (as defined in Section 3) in that
the advantage ε′ of any adversary A running in time t′ ≈ t and making up to
QCh challenge queries is upper bounded as ε′ ≤ n2

p ·εsrchid, where np is the number
of parties.

Proof. The proof follows by a standard hybrid argument. Let A be a successful
adversary against deniability of Π, then we can construct a reduction B against
the source hiding property of DVS. Observe that B computes for each of the np
parties a long-term key pair. It randomly guesses the identifiers of two parties
iid∗, rid∗ ∈ [np] for which A can distinguish between Run and Fake. Let a number
i ∈ [n2

p] uniquely denote two independent values iid, rid in a query (e.g., encoded
as (iid − 1) · np + rid) and let i∗ ∈ [n2

p] denote the specific guess iid∗, rid∗ of B.
For party iid∗, B replaces the sampled long-term key with its challenge key pair
(pkS , skS) and similarly it replaces for party rid∗ with (pkD, skD).

In case A makes a query i for 1 ≤ i < i∗, then B answers as if b = 0, i.e.,
it runs DVS.Sign. For all i∗ < i ≤ n2

p, if A makes a query, then B answers as
if b = 1, i.e., it runs DVS.Sim. If A queries i = i∗, then B passes it to its own
oracle. In all cases B returns the transcript and the session key K to A. Finally,
when A returns its guess bit b′, B returns b′ as its guess.

Observe that B faithfully simulates the deniability game for A. Moreover,
the runtime of B is essentially the runtime of A plus the runtime to generate the
keys and answer the oracle queries.

Now we analyze the winning probability of A against deniability. For this,
we define the hybrids H0, . . . ,Hn2

p
with Hi being the hybrid that answers all

challenge queries for indices 1, . . . , i with Run and the challenge queries for in-
dices i + 1, . . . , n2

p with Fake. The extreme hybrids are Hn2
p
, which answers all

the challenge queries with Run, and H0, which answers all queries with Fake.
Observe that Hi−1 and Hi only differ in an execution of Run or Fake. Hence, the
probability of distinguishing between Hi−1 and Hi is bounded by εsrchid. Since
there are n2

p many hybrids, we overall obtain that A’s probability of winning the
deniability game is bounded by ε′ ≤ n2

p · εsrchid.

5 Signal in a Post-Quantum Regime

We now extend our core protocol Π from Figure 2 to capture all the characteris-
tics of the Signal handshake. The core protocol already captures implicit mutual
authentication, forward secrecy, offline deniability, and asynchronicity. Signal’s
X3DH has a few more subtle aspects and security features to consider, which
we address in our extended asynchronous DAKE protocol: SPQR (Signal in a
Post-Quantum Regime), depicted in Figure 6.

Semi-static keys In Signal, asynchronicity is facilitated by a central, untrusted
server which stores the users’ pre-key bundles. To enable multiple users to asyn-
chronously contact some responder user, say Bob, the latter uploads multiple
ephemeral public pre-keys to the Signal server, of which one is handed to any
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KGenLT():

(pkKEM, skKEM)←$ KEM1.KGen()

(pkDVS, skDVS)←$ DVS.SKGen()
tk←$ tPRF.KGen()

pk ← (pkKEM, pkDVS)

sk ← (skKEM, skDVS, tk)
return (pk, sk)

KGenSS():

(sspkKEM, ssskKEM)←$ KEM2.KGen()

(sspkDVS, ssskDVS)←$ DVS.VKGen()

sspk ← (sspkKEM, sspkDVS)

sssk ← (ssskKEM, ssskDVS)
return (sspk, sssk)

KGenEP():

return (epk, esk)←$ KEM3.KGen()

Alice BobSignal Server

Initiator Registration Responder Registration

(pkA, skA)←$ KGenLT() (pkB , skB)←$ KGenLT()

(sspkB , ssskB)←$ KGenSS()

Responder Ephemeral Key Generation

(epkB , eskB)←$ KGenEP()Send Pre-Key Bundle to Initiator

B, pkB , sspkB , epkB

define: cid := (B, pkB , sspkB , epkB)

define: sid := (A,B, pkA, pkB , sspkB , epkB , n, c1, c2, c3)

Initiator Key Agreement and Protocol Message Responder Key Agreement (on input m)

(skKEMA , skDVSA , tkA)← skA (skKEMB , skDVSB , tkB)← skB

(ssskKEMB , ssskDVSB )← ssskB

(pkKEMB , pkDVSB )← pkB (pkKEMA , pkDVSA )← pkA

(sspkKEMB , sspkDVSB )← sspkB (sspkKEMB , sspkDVSB )← sspkB

(n, r)←$ {0, 1}λ ×RtPRF if DVS.Vrfy(pkDVSA , sspkDVSB , sid, σ) = false
r1‖r2‖r3‖r4 ← tPRF(tkA, r) return (⊥,⊥, rejected,⊥)

(K1, c1)← KEM1.Encaps(pk
KEM
B ; r1) K1 ← KEM1.Decaps(skKEMB , c1)

(K2, c2)← KEM2.Encaps(sspk
KEM
B ; r2) K2 ← KEM2.Decaps(ssskKEMB , c2)

if epkB 6= ⊥ if eskB 6= ⊥
(K3, c3)← KEM3.Encaps(epkB ; r3) K3 ← KEM3.Decaps(eskB , c3)

else (K3, c3)← (ε, ε) else (K3, c3)← (ε, ε)

ms← K1‖K2‖K3 ms← K1‖K2‖K3

σ ← DVS.Sign(skDVSA , sspkDVSB , sid; r4)
K ← KDF(ms, sid) K ← KDF(ms, sid)

m← (A, pkA, n, c1, c2, c3, σ)

return (K, sid, accepted,m) return (K, sid, accepted, ε)

m = (A, pkA, n, c1, c2, c3, σ)

Responder Fake transcript

run Responder Ephemeral Key Generation, and Initiator Key Agreement with a modified random-
ness sampling and DVS generation:
(K1, c1)←$ KEM1.Encaps(pk

KEM
B )

(K2, c2)←$ KEM2.Encaps(sspk
KEM
B )

if epkB 6= ⊥ (K3, c3)←$ KEM3.Encaps(epkB)
else (K3, c3)← (ε, ε)

σ←$ DVS.Sim(ssskDVSB , pkDVSA , sid)
K ← KDF(ms, sid)
return (K,m = (B, pkB , sspkB , epkB , A, pkA, n, c1, c2, c3, σ))

Fig. 6. The SPQR protocol (top: key generation, middle: protocol flow, bottom: fake
transcript generation), combining static, semi-static and ephemeral key encapsulation
schemes KEM1, KEM2, and KEM3, a designated verifier signature DVS, and a twisted
pseudorandom function tPRF.
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initiator session that wants to contact Bob (along with the other pre-key bundle
elements) and then deleted from the Signal server.

Bob will periodically upload new ephemeral pre-keys; however, if Bob has
been offline for a long time, those pre-keys may run out. Therefore, the Signal
protocol also includes a semi-static key in user pre-key bundles, and always in-
cludes key derivations based on that semi-static key. If the Signal server runs out
of ephemeral pre-keys, the corresponding key share is not derived and left out; in
that case the semi-static key share still provides delayed forward secrecy [13]. We
capture this similarly in SPQR by encapsulating a key-ciphertext pair (K3, c3)
against Bob’s ephemeral KEM public key epkB only if the latter is present.

Maximal-exposure security Signal aims for very strong security guarantees, con-
sidering beyond long-term and session key compromise and also compromise
of semi-static and ephemeral keys (via the randomness of sessions) [17,56,21].
We model this in an accordingly strong key exchange model and prove that
SPQR achieves equivalent security in the post-quantum setting as Signal does
in the classical setting in the full version [14]. In particular, we show that ses-
sion keys remain secret, as long as any of the (Alice–Bob) secret combinations
ephemeral–ephemeral, ephemeral–semi-static, ephemeral–long-term, and long-
term–semi-static are uncompromised. Secrecy from the first three is straightfor-
wardly achieved via encapsulations against the corresponding ephemeral, semi-
static, and long-term KEM keys of Bob. To achieve secrecy from the last one
(i.e., when all initiator randomness is compromised), beyond relying on the DVS
scheme for initiator authentication, we apply a NAXOS-like [56] trick to extract
randomness from Alice’s long-term secrets via a twisted PRF [42,54]. Twisted
PRFs can be generically instantiated from regular PRFs (see full version [14])
and yield output indistinguishable from random as long as a session’s long-term
secret or randomness is uncompromised.

Our formal security results establishing key indistinguishability and deni-
ability for SPQR are as follows; see the full version [14] for the game-based
formalizations of key indistinguishability and deniability as well as for the full
proof details expanding beyond the core ideas from Section 4.

Theorem 5 (Key indistinguishability of SPQR). Let DVS be a (t, εDVS,
np · nss , QS)–unforgeable DVS scheme.

Let KEM1 be a (t, εKEM1
, ns)–IND-CCA-secure KEM, KEM2 be a (t, εKEM2

,
ns)–IND-CCA-secure KEM, KEM3 be a (t, εKEM3 , 1)–IND-CCA-secure KEM with
randomness space RKEM3 , and δcorr be the maximal correctness error among
KEM1, KEM2, and KEM3.

Let KDF be a (t, εKDF, ns)–PRF-secure key derivation function when keyed
through any key component K1, K2, K3, and tPRF a (t, εtPRF, ns)-secure twisted
pseudorandom function with label space RtPRF.

Then the SPQR protocol with randomness space RKE = {0, 1}λ × RtPRF ×
RKEM3 as shown in Figure 6 provides (t′, ε′, (QSnd, QCorrLT , QCorrSS , QRevR,
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QRevSK))–key indistinguishability (formalized in the full version) for t ≈ t′ and

ε′ ≤ n2
s

2λ
+

n2
s

2|RtPRF|
+

n2
s

2|RKEM3
| + 3ns · δcorr

+ ns · n2
p ·
(
nss ·

(
εDVS + 2ns · (εtPRF + εKEM2

+ εKDF)
)

+ns ·
(
2εtPRF + εKEM1

+ εKEM3
+ 2εKDF

) )
,

where ns ≤ QSnd is the maximum number of sessions (upper bounded by the
number QSnd of Send queries), np the number of parties, and nss the number
of semi-static keys per party.

Theorem 6 (Deniability of SPQR). If DVS is a (t, εsrchid, QCh)-source hiding
designated verifier signature and tPRF is a (t, εtPRF, QCh)-pseudorandom func-
tion, then the SPQR protocol as shown in Figure 6 is (t′, ε′, Q′Ch)-deniable, where
t′ ≈ t, ε′ ≤ n2

pnss · εsrchid + npQCh · εtPRF, where np is the number of parties and
nss the number of semi-static keys per party, and Q′Ch = QCh.

6 Discussion and Limitations

Our protocols demonstrate that designated verifier signatures are helpful for con-
structing practical AKE protocols with constraints on the message flow (asyn-
chronicity) and with specialized security properties (deniability).

The key ingredient in our approach for achieving post-quantum asynchronous
DAKE is a post-quantum designated verifier signature scheme. While there are
several lattice-based DVS schemes in the literature as described in Section 2.1,
we believe that their security merits further scrutiny before adoption. In the
meantime, we propose instantiations via 2-user ring signatures, for which we
discussed post-quantum candidates in Section 2.2.

We believe SPQR is a good start as a PQ replacement for the Signal X3DH
handshake, but in any real-world protocol deployment there are many subtleties,
some of which we now highlight.

The way Signal is used in practice has the semi-static keys signed under the
long-term key. In SPQR the long-term key is not suitable for this purpose, so
an additional long-term signing key might have to be introduced solely for the
purposes of signing the other keys; note this could be done without undermin-
ing deniability. This characteristic was likewise not considered in the provable
security analysis of Signal of [21].

SPQR is solely a replacement for the initial handshake (X3DH). A fully post-
quantum Signal would require quantum-resistance in the ratcheting and message
encryption; fortunately there are several generic treatments of ratcheting [5,70,1].

As Signal does not use certificates or a PKI, long-term public keys must be
manually authenticated out-of-band, and that remains the case with SPQR.

Our analysis of SPQR considers randomness exposure, but not malicious
randomness. The latter has been captured for ratcheting [1], but not yet in the
initial handshake. Our security analysis shows that SPQR, as an authenticated
key exchange protocol, has offline deniability. As discussed in the full version,
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we think that our deniability notion is the best one can hope for if the adversary
has access to the secret keys. We leave formally proving this as future work.

Cryptographic deniability should be treated with caution. How cryptogra-
phers understand deniability may be different from how a judge in a legal system
understands it [79]. Additionally, there are stronger notions of deniability [33]
that SPQR (and the Signal handshake) does not achieve, such as if one party ma-
liciously generates messages or colludes in real-time with the judge. One should
further confirm deniability at all protocol levels, and that deniability of individ-
ual components composes appropriately. Despite all these subtleties, steps to-
ward deniability are helpful, as Unger and Goldberg write [79]: “we should strive
to design deniable protocols to avoid unintentionally incriminating users.”
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