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Abstract. We construct the first tightly secure signature schemes in
the multi-user setting with adaptive corruptions from lattices. In stark
contrast to the previous tight constructions whose security is solely based
on number-theoretic assumptions, our schemes are based on the Learning
with Errors (LWE) assumption which is supposed to be post-quantum
secure. The security of our scheme is independent of the numbers of users
and signing queries, and it is in the non-programmable random oracle
model. Our LWE-based scheme is compact, namely, its signatures contain
only a constant number of lattice vectors.

At the core of our construction are a new abstraction of the existing
lossy identification (ID) schemes using dual-mode commitment schemes
and a refinement of the framework by Diemert et al. (PKC 2021) which
transforms a lossy ID scheme to a signature using sequential OR proofs.
In combination, we obtain a tight generic construction of signatures from
dual-mode commitments in the multi-user setting. Improving the work
of Diemert et al., our new approach can be instantiated using not only
the LWE assumption, but also an isogeny-based assumption. We stress
that our LWE-based lossy ID scheme in the intermediate step uses a
conceptually different idea than the previous lattice-based ones.

Of independent interest, we formally rule out the possibility that the
aforementioned “ID-to-Signature” methodology can work tightly using
parallel OR proofs. In addition to the results of Fischlin et al. (EURO-
CRYPT 2020), our impossibility result shows a qualitative difference
between both forms of OR proofs in terms of tightness.
Keywords. Digital signatures, identification schemes, multi-user security,
tightness, OR proofs, commitments, lattice, isogeny, impossibility result

1 Introduction

Tight Security. Security of modern cryptographic constructions is established
by security reductions. A reduction is an efficient algorithm R that uses an
efficient algorithm A against the security of scheme X as a subroutine, and if
A can break the security of X, then R can solve the computational problem Y.
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Thus, the hardness of Y implies the security of X. More precisely, we obtain
εA/tA ≤ L · εR/tR, where A runs in time tA and has success probability εA, and
R runs in time tR and has success probability εR. Here L is a polynomial in
the security parameter λ, which we call the security loss. Asymptotically, any
polynomial L is sufficient to show security. However, when we instantiate the
scheme in a theoretically sound manner, the concrete L has impact on the setup of
the system parameters. In particular, the smaller L is, the shorter the parameters
will be. If L is a small constant, we call the reduction tight (e.g. [8,9]). Many
works (e.g. [16,12,26]) also consider a relaxed tightness notion, called “almost
tight”, where L depends at most linearly on the security parameter λ. We do
not distinguish these two notions, but are precise about the security loss of our
scheme in our security theorem and when we compare it with the related work.
Signatures in Multi-User Setting. Digital Signatures play a central role in
modern public-key cryptography. The standard security notion is unforgeability
against chosen-message attacks [32] (denoted by CMA security) which states that
no efficient adversary can forge a signature on a new message after adaptively
asking signatures for arbitrary messages. This is defined in a single-user setting
where only one public key is involved. A seemingly more realistic notion is
CMA security in the multi-user setting with adaptive corruptions (denoted by
MU-CMA-Corr security). Here, adversary A receives N public keys, can adaptively
ask for signatures and additionally can corrupt some of the corresponding secret
keys, and in the end it outputs a forgery for an uncorrupted user. This is also
named MU-EUF-CMAcorr security in [6,31]. We note that there is a weaker notion
of multi-user security considered in [41,49] (MU-CMA security) where secret key
corruptions are not allowed.

MU-CMA-Corr security is an interesting notion to consider. The most impor-
tant reason is that MU-CMA-Corr security captures the actual security require-
ments of many applications that use digital signatures as a building block. A
well-known example is authenticated key exchange (AKE) protocols which use
signatures to authenticate protocol transcripts. Standard AKE security models
(such as the Bellare-Rogaway [10] and Canetti-Krawczyk [14] models) are in
multi-user settings and allow adversaries to corrupt signing keys of some hon-
est users. In particular, the work of Bader et al. [6] proposed the first tightly
MU-CMA-Corr secure signature schemes and used it to construct the first tightly
secure AKE protocol. The notion of MU-CMA-Corr has been used in many of its
subsequent works [31,43,38] for constructing more efficient AKE protocols, and
the notion is also used to prove the tight security of real-world protocols [22,20].
Tight security is of particular interest for these protocols, since they often have
massive amount of users involved. Nevertheless, understanding and constructing
efficient tightly MU-CMA-Corr secure signature schemes are fundamental research
questions.
On Achieving Tight MU-CMA-Corr Security. In general, CMA security can
only non-tightly imply MU-CMA-Corr security by a guessing argument. The
resulting reduction will lose a factor linear in the number of users, N . This is
similar for the implication from MU-CMA to MU-CMA-Corr.
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Many of the tightly secure signature schemes in the literature established their
tightness in the weaker sense, namely, either tight CMA security (for instance,
[11,26]) or tight MU-CMA security (for instance, [41,49]). None of them will
lead to a tightly MU-CMA-Corr secure scheme. Furthermore, Bader et al.[7] even
proved that tight MU-CMA-Corr is impossible to achieve if the signature satisfies
certain properties. These properties are satisfied by most signature schemes,
and thus constructing tightly MU-CMA-Corr secure signature schemes is very
challenging.

To the best of our knowledge, signature schemes in [5,6,1,31,21,35] are the
only exceptions with tight MU-CMA-Corr security. They all base their security on
number-theoretic assumptions (such as the Diffie-Hellman assumption in pairing
groups and ϕ-Hiding assumption), which leads to insecurity in the presence of
a powerful quantum adversary. It is also worth mentioning that very recently
Han et al. [35] identified a gap in the security proof of the compact and tightly
MU-CMA-Corr-secure scheme in [6] and closed this gap by following the blueprint
of the pairing-based HIBE scheme in [42].

We highlight that the tight lattice-based signature schemes in [2,11,12] and
isogeny-based scheme in [24] are only in the single-user setting. It is not clear
how to translate them tightly to the multi-user setting with adaptive corruptions.
Hence, currently, there is no tightly MU-CMA-Corr secure signature scheme from
post-quantum assumptions.

Our Goal and Its Difficulties. We aim at constructing compact lattice-
based signature schemes with tight MU-CMA-Corr security. In this paper, “com-
pact” means that the signature contains only a small constant number of lattice
vectors and has size independent of the message length, which is in contrast to
less efficient tree-based constructions.

As remarked above, there exist tight constructions of MU-CMA-Corr secure
signature schemes. However, we argue why it is inherently difficult to extend
them in realizing our goal:
– First, generic constructions in [5,6] and [1, Section 9.2] require some ex-

tractability of the underlying proof system. Such a proof system is hard to
construct in a compact and tightly secure manner using lattices. For instance,
one can use the Unruh proof system [55] that is tightly secure and extractable,
but its proof size is at least linear in the security parameter. This can only
give us a scheme with linear-size signatures.

– Second, the tree-based construction from one-time signatures in [1, Section
9.3] can give us a tight lattice-based construction, but it is not compact and
has signature size linear in the message length.

– Third, in [21] a generic construction was proposed by transforming a lossy
identification (ID) scheme [2] to a tightly MU-CMA-Corr secure signature
scheme using the sequential OR proof technique [4,25]. As pointed out by
the authors, this transformation requires additional properties of the lossy
ID scheme which are not obvious how to achieve using lattices.

– Last, the specific schemes in [31,35] crucially rely on number-theoretic as-
sumptions and the underlying algebraic structure. More precisely, [31] requires
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the Decisional Diffie-Hellman (DDH) assumption and a proof system for the
equality of discrete logarithms, and the compact scheme in [35] requires an
algebraic MAC with affine structures.

1.1 Our Contributions

We construct the first compact lattice-based signature schemes with tight
MU-CMA-Corr security in the random oracle model. Their security is based
on the Learing with Errors (LWE) assumption, and their security loss is indepen-
dent of the number of users and signing queries. Furthermore, our security proofs
do not program a random oracle. We also give an instantiation of our approach in
the isogeny setting to show its flexibility. Unfortunately, the resulting signature
scheme in the isogeny setting is not compact.

We have three tight lattice-based schemes, and they are all constructed from
our generic approach. One of them is almost tight, and the other two are fully
tight. All three schemes have public key size and signature size independent of
the message length. We note that our fully tight schemes (see our full version)
contain linearly (in λ) many lattice vectors in signatures, but independent of the
message length. In Table 1 we compare the efficiency and concrete security of
our schemes with some well-known efficient signature schemes in the random
oracle model. Asymptotically, the signature size of our almost tight scheme is
comparable to non-tight constructions, such as Lyubashevsky [44] and Ducas
et al. [23], which require the rewinding technique. Due to the tightness of our
scheme, it may have shorter signatures than these schemes. We stress that the
main purpose of this work is taking the first theoretical step to study whether
and how a tightly MU-CMA-Corr secure compact signature scheme from lattices
is possible. We are optimistic that the efficiency of our schemes can be further
improved.

Scheme Assumption Loss |sk| |pk| |σ|

GPV [29] SIS N T M mz
Lyu [44] SIS QN/AdvA mn n2z +M ω(log λ) +mz
DDLL [23] SIS QN/AdvA M mn+M m+ n+mz
AFLT [2] RLWE N 2nz nz 3nz
KLS [40] MLWE N 2knz k2nz 3knz

Ours (Fig. 6) LWE λ 1 + T 4M (4n+ 2m)z
Ours (full version) LWE 1 1 + T 2M (2n2 + 2nm)z
Ours (full version) LWE 1 1 + T 2M 2n(M + T )

Table 1. Overview of lattice-based signature schemes in the random oracle model. Here,
Q denotes an upper bound on the number of signature and random oracle queries and
λ is the security parameter. The security loss is up to constants and with respect to N -
MU-CMA-Corr security. The modulus is denoted by q = poly(n) and M = n ·m · dlog qe
denotes the size of an n×m matrix, m = Θ(n log q), T denotes the size of a trapdoor
for such a matrix and z the size of an element in Zq.
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Our schemes are constructed by a generic transformation that tightly turns
a dual-mode commitment scheme into a MU-CMA-Corr secure signature. Our
transformation contains two technical contributions, an abstraction of the existing
lossy ID schemes and a refinement of the framework of Diemert et al. [21] which
used the sequential OR proofs of Abe et al. [4] and Fischlin et al. [25]. The
abstraction is a generic transformation from dual-mode commitment to lossy
ID, and the existing lossy ID schemes [34,15,2,1] are concrete instantiations of
our transformation. More importantly, this yield a new construction based on
the LWE assumption using a conceptually new approach. Together with our
refinement of the Diemert et al. framework, our tight lattice-based signature
schemes are obtained.

We stress that our approach is more general than Diemert et al.. To show this,
we implement our approach with isogenies. For readability, we present our scheme
using the (general) Group Action Diffie-Hellman assumption, which captures
the post-quantum secure isogeny-based assumption used in [24,54], Decisional
CSIDH. We detail our technical approach and show how it improves the existing
literature in Section 1.2. We will mostly focus on the lattice-based construction
for simplicity.
Limitation of Parallel OR Proofs. Complementing these positive results,
we show the advantage of sequential OR proofs by formally proving the limitation
of its natural counterpart, parallel OR proofs of Cramer et al. [18], in constructing
tightly secure signatures. More precisely, we prove that it is impossible to tightly
turn an ID scheme into a MU-CMA-Corr secure signature using parallel OR proofs
Cramer et al., if the underlying ID scheme satisfies some mild properties. We note
that these properties are satisfied by many ID schemes, including the DDH-based
lossy ID scheme [15]. We establish this impossibility result using meta-reduction
techniques [17,7,1]. We note that our impossibility result does not apply to more
generic but less efficient OR-proof-based tight construction in [6], since they use
the OR-proof ideas in a different manner.

Our result is very different to the previous impossibility results [17,39,37,7]
about tight signatures, and it enriches our understanding on constructing tight
signature schemes. More precisely, Bader et al. [7] show that, if a signature
scheme has signatures that are either unique or rerandomizable over the whole
signature space, it will not have a tight reduction. Here we note that the work of
Bader et al. [7] summarized results [17,39,37]. Clearly, signature schemes from
parallel OR proofs are neither unique nor rerandomizable. Thus, their approach
cannot be directly applied here, while our work is the first tightness impossibility
result applicable to non-unique and non-rerandomizable signatures.

1.2 Technical Details
We provide more details about our generic construction of tightly MU-CMA-Corr
secure signatures. Our generic construction has two steps: It first transforms a
dual-mode commitment scheme to a lossy ID scheme, and then from a lossy ID
scheme to a MU-CMA-Corr secure signature scheme via sequential OR proofs.
Both steps are tight. Fig. 1 gives an figurative overview of this framework.
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COM Lossy ID SIG
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Full Version,impl. in [34]
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impl. in [24]
Full Version,impl. in [15]

Fig. 1. Overview of our construction. All implications are tight. New implications
are marked with red, and new implications that implicitly exist in previous work are
marked with blue. The assumption GADH is a generic assumption about group actions,
capturing isogeny-based assumptions.

Our Starting Point: The Diemert et al. (DGJL) Approach [21]. The
DGJL approach transforms a lossy ID scheme into a tightly MU-CMA-Corr secure
signature scheme using sequential OR proofs. A lossy ID scheme is a canonical
three-move ID scheme (or, equivalently, a Σ protocol [19]). Additionally, a lossy
ID scheme has two sets of public keys, lossy keys and normal ones. It requires
that under a lossy public key even an unbounded adversary cannot impersonate
an honest user. For tight MU-CMA-Corr security, the DGJL approach required
that, given multiple keys of a lossy ID scheme, it is hard to tell whether they all
are lossy or normal. This is a property can be tightly satisfied by the random self-
reducibility of DDH- and ϕ-Hiding-based schemes in [15,34], but not the lattice-
based ones. It is the main reason why their approach cannot be implemented
from lattices. We call this property multi-key lossiness. Our main technical goal
is to find a lattice-based lossy ID scheme with tight multi-key lossiness.

From Dual-mode Commitment to Lossy ID. We take a closer look at the
existing lattice-based lossy ID schemes, and they are based on the Ring-LWE
[2] and Module-LWE [40] assumptions. To tightly achieve multi-key lossiness, we
need the random self-reducibility (RSR) of these structured LWE assumptions.
Unfortunately, it is not known how to rerandomize these structured LWE instances.
We suppose this is inherent, since if the RSR was possible then the hardness of
Ring-LWE would not depend on the number of samples in the current worst-case
to average-case reduction [46]. However, for plain LWE assumption the number
of samples does not influence security [52,50,13,27], i.e. we have RSR. Hence, we
want to construct a lossy ID scheme based on the (plain) LWE assumption. A
natural direction is to take the idea of these Ring-LWE and Module-LWE schemes
and implement them directly using the plain LWE assumption. We suppose this
cannot work, since in these schemes the ring structure is crucial for proving
lossiness3.

3 A trivial solution to argue lossiness with plain LWE is to have an ID scheme with
single bit challenges, but that will result in a non-compact scheme with linear-size
signatures, since for such an ID scheme we need to repeat O(λ) times to get soundness
(where λ is the security parameter).
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Instead, our approach uses a dual-mode commitment scheme which can be
constructed from the plain LWE assumption. Roughly speaking, a dual-mode
commitment scheme has two indistinguishable modes, hiding and binding. In the
hiding mode, there exists a (private) trapdoor that can open a commitment to
any message. In the binding mode, a commitment can be opened to only one
message, which is a statistical property and similar to public-key encryption.

Our high-level idea can be described in a simple manner: The commitment
key is the public key of the lossy ID scheme. The hiding commitment key is the
normal public key of our lossy ID scheme, and the binding commitment key is
the lossy key. In the protocol, a prover P holds the commitment trapdoor and
its first move to the verifier V is a random commitment. After that, V returns
a random message and asks P to open the previous commitment to the given
message. If P sends back a valid opening for that in the third move, V will accept.

The correctness is implied by the hiding mode of the commitment scheme. In
the binding mode (which is the lossy mode of the ID scheme), a commitment can
only be opened to only one message, and thus even an unbounded adversary cannot
successfully complete the interaction, since our message space is exponentially
large.

We modify the Regev encryption scheme [52] to construct this dual-mode
commitment scheme. In particular, we are able to show that multiple hiding
commitment keys are tightly indistinguishable from the binding ones, which
implies tight multi-key lossiness of the resulting ID scheme. Interestingly, the
resulting lossy ID scheme is the first lattice-based lossy ID scheme without using
the rejection sampling technique [44].

Moreover, we show that many well-known lossy ID schemes [34,15,2,1,24] are
obtained from dual-mode commitment schemes. In particular, we give a new
analysis of the isogeny-based scheme in [24] to show that it is tightly multi-key
lossy. It will give us the first tightly MU-CMA-Corr secure signature scheme from
isogenies. We remark that this scheme is non-compact, since it requires parallel
repetitions for soundness of the underlying ID scheme.

From Lossy ID to Signatures. Equipped with our lattice-based lossy ID
scheme, we can transform it to a tightly MU-CMA-Corr secure signature scheme
using sequential OR proofs. We note that this cannot be done using parallel OR
proofs by our impossibility result.

Our transformation follows the blueprint of the DGJL framework, but we
adapt it to be suitable for our ID schemes. An important modification is our trans-
formation requires universal honest-verifier zero-knowledge (uHVZK) property of
the underlying lossy ID, instead of injective simulators as in [21]. This is more
natural, as lossy ID schemes from dual-mode commitments do not necessarily
have an injective simulator, but uHVZK. Our work shows that injective simulator
is not necessary for tight MU-CMA-Corr security, but uHVZK is enough. Further,
in contrast to [21], we allow the lossy keys to be correlated, which is necessary
for the analysis of the isogney-based scheme. Another (minor) adaptation is to
tolerate correctness errors. This is a property which lattice-based constructions
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always have. Thus, our refinements make it possible to instantiate the DGJL
framework based on a wider class of assumptions.

Similar to the DGJL framework, our security proof does not program the
random oracle. Different to them, our resulting signature scheme does not have
strong MU-CMA-Corr security, but it can be tightly turned into a strongly secure
scheme using one-time signatures [45] and the known transformation [53].
Open Problems. We leave further improving the efficiency of our schemes as
an open problem. Random oracles used in our proofs are classical, and it is
an interesting direction to extend our approach in the quantum random oracle
model, or even without random oracles. We also leave constructing tight and
compact signatures from isogenies as an open problem.

2 Preliminaries

We denote the security parameter by λ ∈ N. All algorithms will get 1λ implicitly
as input. A probabilistic algorithm A is said to be PPT (probabilistic polynomial
time) if its running time T(A) can be bounded by a polynomial in its input size.
We make use of standard asymptotic notation for positive functions such as ω
and O. A function ν : N→ R is negligible in its input λ if ν ∈ λ−ω(1). The term
negl(λ) always denotes a negligible function. If a function ν is at least 1−negl(λ),
we say that it is overwhelming. If D is a distribution, we write x← D to state
that x is sampled from D. If S is a finite set, the notation x $← S states that x
is sampled uniformly random from S. The statistical distance of distributions
D1,D2 on support X is defined as 1

2
∑
x∈X |Pr [D1 = x]− Pr [D2 = x]|. If it is

negligible in λ, we say the distributions are statistically close. The notation
y ← A(x) means that the variable y is assigned to the output of algorithm A on
input x. Sometimes we make the randomness used by an algorithm explicit by
writing y = A(x; r) if r ∈ {0, 1}∗ is A′s randomness. If we want to state that y is
a possible output of A on input x, we write y ∈ A(x). In all code-based security
games, numerical values are assumed to be implicitly initialized as 0, sets and
lists as ∅. If G is a game, we write GAΠ(1λ)⇒ b to state that the game G outputs
b ∈ {0, 1} considering the adversary A and the scheme Π. Whenever we deal
with statistically negligible terms, we denote them by Greek letters, e.g. εA. For
computationally negligible terms we use notation like AdvG

A,Π(λ). Throughout
the paper, we always denote the number of users or keys in a scheme by N . We
implicitly assume that it is bounded by a polynomial in the security parameter.

Matrices and (column) vectors are written in bold letters. The Euclidean
norm of a vector v is denoted by ‖v‖, and the spectral norm of a matrix A is
denoted by s1(A). By [n] := {1, . . . , n} we denote the set of the first n natural
numbers.

We present the standard background on lattices in the full version.
Commitment Schemes. A dual-mode commitment scheme is a commitment
scheme with two indistinguishable key generation modes, inducing statistically
binding and hiding commitments, respectively. Additionally, the latter mode
outputs a trapdoor that allows to open commitments to arbitrary messages.
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Definition 1 (Dual-Mode Commitment Scheme). A dual-mode (εb, εt, N)-
commitment scheme is a tuple of PPT algorithms CMT = (Setup,TSetup,Gen,
TGen,Com,TCom,Open,TCol) with the following syntax:
– Setup(1λ) outputs global system parameters par. We assume that par implicitly
defines sets K,M, C,D of keys, messages, commitments and decommitments,
respectively. All algorithms related to CMT take at least implicitly par as
input.

– Gen(par, 1N ) outputs N commitment keys ck1, . . . , ckN ∈ K.
– Com(ck,m) outputs a commitment c ∈ C and a decommitment dc ∈ D.
– Open(ck,m, dc, c) is deterministic and outputs b ∈ {0, 1}.
– TSetup has the same output types as Setup and additionally implicitly defines
a set T of trapdoors.

– TGen(par) outputs a commitment key ck ∈ K and a trapdoor td ∈ T .
– TCom(ck, td) outputs a commitment c ∈ C and a state St.
– TCol(ck, td, St,m) outputs dc′ ∈ D.

We say that CMT is ρ-complete if for all par ∈ TSetup(1λ), (ck, td) ∈ TGen(par),m ∈
M we have that Pr [Open(ck,m, dc, c) = 1 | (c, dc)← Com(ck,m)] ≥ ρ.
Finally, the following security properties should hold:
– Key Indistinguishability: The following advantage is negligible for all
PPT algorithms A:

AdvN-keydist
A,CMT (λ) :=

|Pr
[
A(par, ck1, . . . , ckN ) = 1 | par← Setup(1λ),

(ck1, . . . , ckN )← Gen(par, 1N )

]
−Pr

[
A(par, ck1, . . . , ckN ) = 1 | par← TSetup(1λ),

(cki, tdi)← TGen(par), i ∈ [N ]

]
|.

– εt-Trapdoor Property: For all par ∈ TSetup(1λ), (ck, td) ∈ TGen(par),m ∈
M the following distributions have statistical distance at most εt:

{(c,m, dc) | (c, dc)← Com(ck,m)}

and

{(c,m, dc) | (c, St)← TCom(ck, td), dc← TCol(ck, td, St,m)}.

– (εb, N)-Statistically Binding: The following probability is at most εb:

Pr
[
∃i ∈ [N ], c ∈ C,m 6= m′ ∈M : ∃dc ∈ D : Open(cki,m, dc, c) = 1

∧ ∃dc′ ∈ D : Open(cki,m′, dc′, c) = 1

]
,

where the probability is taken over

par← Setup(1λ), (ck1, . . . , ckN )← Gen(par, 1N ).

Signature Schemes. We define the standard notion of signature schemes and
their security.
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Definition 2 (Digital Signature Scheme). A signature scheme is a tuple of
PPT algorithms SIG = (Setup,Gen,Sig,Ver), where
– Setup(1λ) outputs global system parameters par. We assume that par implicitly
defines sets Kp,Ks,M,S of public keys, secret keys, messages and signatures,
respectively. All algorithms related to SIG take at least implicitly par as input.

– Gen(par) outputs public and secret key (pk, sk) ∈ Kp ×Ks.
– Sig(sk,m) returns a signature σ ∈ S.
– Ver(pk,m, σ) is deterministic and returns b ∈ {0, 1}.

We say that SIG is ρ-complete, if for all par ∈ Setup(1λ), all (pk, sk) ∈ Gen(par),
all m ∈M we have Pr [Ver(pk,m, σ) = 1 | σ ← Sig(sk,m)] ≥ ρ.

Definition 3 (Multi-User Security). Consider a signature scheme SIG =
(Setup,Gen,Sig,Ver), let N ∈ N be a natural number and consider the game
N -MU-CMA-Corr given in Fig. 2. We say that SIG is N -MU-CMA-Corr secure,
if for every PPT adversary A the following advantage is negligible in λ:

AdvN-MU-CMA-Corr
A,SIG (λ) := Pr

[
N -MU-CMA-CorrASIG(λ)⇒ 1

]
.

In addition, the notion N -MU-CMA is defined similarly, but A does not get access
to the oracle Key.

Game N -MU-CMA-CorrASIG(λ)
01 par← Setup(1λ)
02 for i ∈ [N ] : (pki, ski)← Gen(par)
03 O := (Sig,Key)
04 (i∗,m∗, σ∗)← AO(par, (pki)Ni=1)
05 if i∗ ∈ Lid : return 0
06 if ∃σ : (i∗,m∗, σ) ∈ Lm : return 0
07 return Ver(pki∗ ,m∗, σ∗)

Oracle Key(i)
08 Lid := Lid ∪ {i}
09 return ski

Oracle Sig(i,m)
10 σ ← Sig(ski,m)
11 Lm := Lm ∪ {(i,m, σ)}
12 return σ

Fig. 2. The games MU-CMA,MU-CMA-Corr for a signature scheme SIG and an
adversary A. The shaded statement is only executed in game MU-CMA-Corr.

Identification Schemes. Here, we introduce identification schemes and their
properties, where we extend the notions of [2,40] to the multi-user setting.

Definition 4 (Canonical Identification Scheme). A canonical identification
scheme ID is defined as a tuple of PPT algorithms ID := (ISetup, IGen,P :=
(P1,P2),V), with the following properties:
– ISetup(1λ) outputs global system parameters par. We assume that par implic-
itly defines a set ChSet, the set of challenges and sets CmtSet,RspSet. All
algorithms related to ID take at least implicitly par as input.

– IGen(par) returns public and secret key (pk, sk).
– P := (P1,P2) is split into two algorithms. P1(sk) returns a commitment

cmt ∈ CmtSet and a state St; P2(sk, ch, St) returns a response rs ∈ RspSet.
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– V(pk, cmt, ch, rs) is deterministic and outputs b ∈ {0, 1}.
Given ID as above, we define transcript generation as follows:

Alg Tran(pk, sk, ch)
01 (cmt, St)← P1(sk), rs← P2(sk, ch, St)
02 if rs =⊥: (cmt, ch) = (⊥,⊥)
03 return (cmt, ch, rs)

We say that ID is ρ-complete, if for all par ∈ ISetup(1λ), all (pk, sk) ∈ IGen(par)
we have

Pr
[
V(pk, cmt, ch, rs) = 1

∣∣∣∣ ch $← ChSet
(cmt, ch, rs)← Tran(par, pk, sk, ch)

]
≥ ρ.

From now on, without loss of generality, we assume that V accepts an honestly
generated transcript if and only if P2(sk, ch, St) 6=⊥. This can be assumed as the
algorithm P2 can call V to check the transcript itself before returning rs.

For the following definitions, we let ID = (ISetup, IGen,P = (P1,P2),V) be a
canonical identification scheme.

Definition 5 (Special Honest Verifier Zero-Knowledge). We say that ID
is εzk-special honest verifier zero-knowledge (HVZK) if there is a PPT algorithm
Sim such that for all par ∈ ISetup(1λ), all (pk, sk) ∈ IGen(par) the following
distributions have statistical distance at most εzk:

{(cmt, ch, rs)← Tran(pk, sk, ch) | ch $← ChSet}

and
{(cmt, ch, rs) | ch $← ChSet, (cmt, rs)← Sim(pk, ch)}.

We also introduce a slightly stronger version of HVZK, called universal special
honest verifier zero-knowledge (uHVZK), where the distributions should be the
same for every challenge. Clearly, uHVZK implies HVZK.

Definition 6 (Universal Special Honest Verifier Zero-Knowledge). We
say that ID is εzk-universal special honest verifier zero-knowledge (uHVZK) if there
is a PPT algorithm Sim such that for all par ∈ ISetup(1λ), all (pk, sk) ∈ IGen(par)
and all ch ∈ ChSet the following distributions have statistical distance at most
εzk:

{(cmt, ch, rs)← Tran(pk, sk, ch)} and {(cmt, ch, rs) | (cmt, rs)← Sim(pk, ch)}.

Definition 7 (Multi-Key Lossiness). Let N be a natural number. We say
that ID is (εmkl, N)-multi-key lossy, if there exists a PPT algorithm LIGen which
takes the number of users 1N as input and returns system parameters par and
public keys pk1, . . . , pkN such that the following holds:
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– For every PPT algorithm D, the following advantage is negligible in λ:

AdvN-keydist
D,ID (λ) :=

|Pr
[
D(par, pk1, . . . , pkN ) = 1

∣∣∣∣ par← ISetup(1λ)
(pki, ski)← IGen(par), i ∈ [N ]

]
−Pr

[
D(par, pk1, . . . , pkN ) = 1

∣∣(par, pk1, . . . , pkN )← LIGen(1N )
]
|.

– The following inequality holds:

E
[

max
i∈[N ]

max
cmt

Pr
ch

[∃rs ∈ RspSet : V(pki, cmt, ch, rs) = 1]
]
≤ εmkl,

where we take the expectation, maximum and probability over

(par, pk1, . . . , pkN )← LIGen(1N ), cmt ∈ CmtSet, ch $← ChSet,

respectively. That is, if the keys are generated in this lossy way, for every
unbounded adversary the advantage of successfully completing the protocol
with respect to any user is bounded by εmkl.

Note that N -multi-key lossiness for N = 1 is just lossiness as defined in [2].

Remark 1 (Correlation of Lossy Keys). Note that in our definition of multi-
key lossiness, we define one algorithm that outputs N lossy keys, whereas the
definition in [21] is with regards to N keys that are generated via N independent
invocations of the lossy key generator. We claim that our definition is more
general, as it also captures the possibility that the N lossy keys are somehow
correlated. As long as the expectation in our definition is bounded, this correlation
is not a problem. In fact, in some cases it is only possible to tightly achieve key
indistinguishability if the lossy keys are correlated, see our instantiation from
group actions in the full version.

3 Tight Signatures from Sequential OR Proofs, revisited

In this section we will generically construct a signature scheme with tight security
in presence of adaptive corruptions. First, we show that sequential OR proofs
can be used to construct signatures with this strong form of security from lossy
identification schemes. Then, we introduce a new generic construction of lossy
identification schemes from dual-mode commitments.

3.1 Generic Construction of Signatures in the Multi-User Setting

Let ID := (ISetup, IGen,P := (P1,P2),V) be a canonical identification scheme
with challenge set ChSet. We use ` ∈ N to model multiple attempts to compute
a signature for schemes with non-perfect completeness. Assuming that ID is
uHVZK, we construct a signature scheme SIGs[ID,H, `] with random oracle
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H : {0, 1}∗ → ChSet and message space {0, 1}∗ using the sequential OR proof
technique as defined in Fig. 3.

Intuitively, in the sequential OR proof signature, the challenge of one instance
is computed as the hash of the commitment of the other instance. To break the
circularity, the HVZK simulator is used on the instance for which the signer
does not know a secret key. Note that the construction is a combination of the
constructions in [2,25], in a sense that we combine the sequential OR proof
from [25] with the lossy identification framework and the repetition as in [2].
Completeness is straight-forward.

Alg Gen(par)
01 (pk0, sk0)← IGen(par)
02 (pk1, sk1)← IGen(par)
03 b $← {0, 1}, sk := (b, skb)
04 pk := (pk0, pk1)
05 return (pk, sk)

Alg Ver(pk,m, σ)
06 ch1 ← H(0, pk, cmt0,m)
07 ch0 ← H(1, pk, cmt1,m)
08 v0 ← V(pk0, cmt0, ch0, rs0)
09 v1 ← V(pk1, cmt1, ch1, rs1)
10 return (v0 ∧ v1)

Alg Sig(sk,m)
11 ctr := 0
12 while ctr ≤ ` ∧ (rs0 =⊥ ∨rs1 =⊥) :
13 ctr := ctr + 1
14 (cmtb, Stb)← P1(skb)
15 ch1−b ← H(b, pk, cmtb,m)
16 (cmt1−b, rs1−b)← Sim(pk1−b, ch1−b)
17 chb ← H(1− b, pk, cmt1−b,m)
18 rsb ← P2(skb, chb, Stb)
19 if rs0 =⊥ ∨rs1 =⊥: return ⊥
20 return σ := (cmt0, cmt1, rs0, rs1)

Fig. 3. The signature scheme SIGs[ID,H, `] = (Setup,Gen,Sig,Ver) for a canonical
identification scheme ID := (ISetup, IGen,P := (P1,P2),V) with HVZK simulator Sim,
where Setup := ISetup.

Theorem 1. Let ID be a canonical identification scheme. If ID is εzk-uHVZK
and (εmkl, N)-multi-key lossy for negligible εzk, εmkl, then SIGs[ID,H, `] is N-
MU-CMA-Corr secure, with a tight reduction. More precisely, for any adversary A
making at most QS signing queries, QC secret key queries and QH hash queries
(including the indirect ones induced by signing queries), there exists an adversary
D such that T(D) ≈ T(A) and

AdvN-MU-CMA-Corr
A,SIGs[ID,H,`] (λ) ≤ 2 · AdvN-keydist

D,ID (λ) + 2 · (QH + 2)2 · εmkl + 3 · ` ·QS · εzk.

Due to space limitation and its similarities with [21] we postpone the proof to
the full version.

Similar to the above result, we can show that the Fiat-Shamir transformation
applied to a multi-key lossy identification scheme leads to a tightly secure signature
scheme in the multi-user setting without corruptions. We postpone this result to
the full version.
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3.2 Generic Construction of Lossy Identification Schemes

In this section we show a relation between (multi-key) lossy identification schemes
and dual-mode commitments. Note that it is well-known how to use canonical
identification schemes to build standard commitment schemes [36]. This section
shows that this can be used to understand lossy identification in a novel way.
In combination with the result from the previous section, we obtain an N -
MU-CMA-Corr secure signature scheme from a dual-mode commitment in a tight
way. Let CMT = (Setup,TSetup,Gen,TGen,Com,TCom,Open,TCol) be a dual-
mode commitment with message spaceM. We construct a canonical identification
scheme ID[CMT] in Fig. 4.

The intuition is that the prover sends a random commitment and is challenged
with a random element from the message space. Then the prover needs to open
the commitment for the challenge message. If the prover knows the trapdoor
of the dual-mode commitment, this is no problem. On the other hand, if the
commitment key is in binding mode, opening the commitment for the challenge
message is infeasible.

Alg LIGen(1N )
01 par← Setup(1λ)
02 (ck1, . . . , ckN )← Gen(par, 1N )
03 for i ∈ [N ] : pki := cki
04 return (par, pk1, . . . , pkN )

Alg P1(sk = td)
05 (c, St)← TCom(pk, sk)
06 return (cmt := c, St)

Alg P2(sk, ch, St)
07 dc← TCol(pk, sk, St, ch)
08 return dc

Alg V(pk, cmt, ch, rs)
09 c := cmt,m := ch, dc := rs
10 return Open(pk,m, dc, c)

Alg Sim(pk, ch)
11 (c, dc)← Com(pk, ch)
12 return (cmt := c, rs := dc)

Fig. 4. The identification scheme ID[CMT] = (ISetup := TSetup, IGen := TGen,P,V)
with challenge set ChSet :=M and related algorithms Sim, LIGen for a given dual-mode
commitment CMT = (Setup,TSetup,Gen,TGen,Com,TCom,Open,TCol) with message
spaceM.

Lemma 1 (uHVZK and Completeness). If CMT is a ρ-complete dual-mode
(εbind, εtrap, N)-commitment scheme, then ID[CMT] is εzk-uHVZK and ρ′-complete,
where εzk ≤ εtrap and ρ′ ≥ ρ− εtrap.

Proof. By definition of a dual-mode commitment scheme, the following distribu-
tions have statistical distance at most εtrap for any m ∈M:

{(c,m, dc) | (c, dc)← Com(ck,m)}

and
{(c,m, dc) | (c, St)← TCom(ck, td), dc← TCol(ck, td, St,m)},
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and the former is exactly the distribution output by Sim on input ch = m, and
the latter is exactly the distribution of a real transcript using m as the challenge.
The completeness of CMT now implies that V accepts a simulated transcript
output by Sim with probability at least ρ. Thus, a real transcript will be accepted
with probability at least ρ− εtrap, which finishes the proof. ut

Lemma 2 (Multi-Key Lossiness). If CMT is a dual-mode (εbind, εtrap, N)-
commitment scheme, then ID[CMT] is (εmkl, N)-multi-key lossy, where

εmkl ≤ εbind + 1/|M|.

In particular, for every PPT algorithm A there exists a PPT algorithm B, such
that T(B) ≈ T(A) and

AdvN-keydist
A,ID[CMT](λ) ≤ AdvN-keydist

B,CMT (λ).

Proof. As (ISetup, IGen) = (TSetup,TGen) and LIGen combines the outputs of
Setup and Gen, distinguishing lossy and honest keys of ID[CMT] is exactly
equivalent to distinguishing commitment keys generated via Setup,Gen and
TSetup,TGen. Thus, the reduction B is trivial. It remains to show the statement
about εmkl. To this end, let (par, pk1, . . . , pkN )← LIGen(1N ), which is the same
as writing

par← Setup(1λ), (ck1, . . . , ckN )← Gen(par, 1N ).
Define the event E of finding a collision for some i ∈ [N ] as

E := (∃i ∈ [N ],c ∈ C,m,m′ ∈M, dc, dc′ ∈ D :
m 6= m′ ∧ Open(cki,m, dc, c) = 1 ∧ Open(cki,m′, dc′, c) = 1).

By definition of the (multi-key) binding property, we know that Pr [E] ≤ εbind.
We can rewrite this event E in terms of ID[CMT]:

∃i ∈ [N ],cmt ∈ CmtSet, ch, ch′ ∈ ChSet, rs, rs′ ∈ RspSet :
ch 6= ch′ ∧ V(pki, cmt, ch, rs) = V(pki, cmt, ch′, rs′) = 1.

Define the random variable W as

W := max
i∈[N ]

max
cmt∈CmtSet

Pr
ch $←ChSet

[∃rs ∈ RspSet : V(pki, cmt, ch, rs) = 1].

Then, note that ¬E implies that for any i ∈ [N ] and cmt ∈ CmtSet there is at
most one challenge such that there is a valid response for it (with respect to pki).
Hence

E [W | ¬E] ≤ 1/|M|.
To finish our proof, we need to bound the expectation of W:

E [W] = E [W | E]Pr [E] + E [W | ¬E]Pr [¬E] ≤ 1 · εbind + E [W | ¬E] · 1
≤ εbind + 1/|M|.

ut
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4 Instantiations

In the previous sections we showed how to tightly transform any (multi-key)
dual-mode commitment scheme into a signature scheme with security in presence
of corruptions. We will now construct such dual-mode commitment schemes
based on a variety of assumptions, including LWE and isogenies.

4.1 Instantiation based on LWE

Our scheme CMTLWE based on the LWE assumption is presented in Fig. 5. It is
inspired by the classical lattice cryptosystem by Regev [52] and its extension
to multiple bits from [51]. It makes use of parameters n,m ∈ N and q ∈ P and
a parameter k ∈ N, k ∈ Θ(λ), as well as Gaussian widths s0, s > 0. For the
trapdoor algorithms (see [47]4) to work, we need to ensure that

m ≥ 3(n+ k)dlog qe

s ≥ C1 ·
√
s2

0C
2
0 (
√
m− w +

√
w)2 + 1 · ω(

√
log(n+ k)),

where w = (n + k)dlog qe. Additionally, we need a parameter 0 < α < 1 with
α < 1/(4sm) and αq ≥ 2

√
n, which is used for setting up statistically binding

keys.

Lemma 3 (Completeness, Trapdoor Property). The scheme CMTLWE is
ρ-complete and satisfies the εt-trapdoor property with ρ ≥ 1− negl(λ) and εt ≤
negl(λ).

Proof. Let (ck = A, td = TA)← TGen(par). First, we show that commitments
and decommitments generated using the trapdoor are accepted with overwhelming
probability, then we show the trapdoor property. In combination, this also implies
comleteness.

First, let (u, St)← TCom(ck, td),m ∈ {0, 1}k,TCol(ck, td, St,m). The prop-
erties of GenTrap ensure that A is statistically close to uniform. By the definition
of algorithm TCol and algorithm SampleD we have that z is distributed statisti-
cally close to DΛ⊥y (A),s, where y = u− [0t|bq/2e ·mt]t. It follows by definition of
Λ⊥y (A) that we have

Az = y = u−
[

0
bq/2e ·m

]
=⇒ Az +

[
0

bq/2e ·m

]
= u,

and with overwhelming probability (see [48,28]) ‖z‖ ≤ s ·
√
m (implying that the

transcript is not ⊥), which makes Open accept.
For the second part, note that the aborting condition ‖z‖ > s ·

√
m is given

in Com and in the execution of TCom,TCol, hence we only have to show that for
every m the distributions

D1 :=
{

(u,m, z)
∣∣∣∣u $← Zn+k

q , z← SampleD(A,TA,u−
[

0
bq/2e ·m

]
, s)
}

4 For the exact statements we use, we refer to the full version of our paper.
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Alg TGen(par)
01 (A,TA)← GenTrap(1n+k, 1m, s0, q)
02 ck := A ∈ Z(n+k)×m

q , td := TA
03 return (ck, td)

Alg Gen(par, 1N )
04 S̄ $← Zn×kq

05 for i ∈ [N ] :
06 Āi

$← Zn×mq , Ēi ← Dm×k
Z,αq

07 cki := Ai :=
[

Āi

S̄tĀi + Ēt
i

]
08 return (ck1, . . . , ckN )

Alg Com(ck,m)

09 z← DZm,s,u := Az +
[

0
bq/2e ·m

]
10 if ‖z‖ > s ·

√
m : return ⊥

11 return (c := u, dc := z)

Alg TCom(ck, td)
12 u $← Zn+k

q

13 return (u, St := u)

Alg TCol(ck, td, St,m)

14 y := u−
[

0
bq/2e ·m

]
15 z← SampleD(A,TA,y, s)
16 if ‖z‖ > s ·

√
m : return ⊥

17 return z

Alg Open(ck,m, z,u)
18 if ‖z‖ > s ·

√
m : return 0

19 if Az +
[

0
bq/2e ·m

]
6= u :

20 return 0
21 return 1

Fig. 5. The dual-mode commitment CMTLWE = (Setup,TSetup,Gen,TGen,Com,TCom,
Open,TCol) with message spaceM = {0, 1}k, where Setup = TSetup sets parameters
par as in the text.

and
D2 :=

{
(u,m, z)

∣∣∣∣u := Az +
[

0
bq/2e ·m

]
, z← DZm,s

}
are statistically close. Notice that in both distributions, u is uniquely determined
by m and y := u − [0t|bq/2e ·mt]t and y by m and u, which means we can
instead bound the statistical distance between

D′1 :=
{

(y, z)
∣∣y $← Zn+k

q , z← SampleD(A,TA,y, s)
}

and
D′2 := {(y, z)|y := Az, z← DZm,s} .

Standard lattice trapdoor techniques (see [48,28]) imply that these are statistically
close, which finishes the proof. ut

Lemma 4 (Key Indistinguishability). Let N = poly(λ) be a natural number.
Then CMTLWE satisfies key indistinguishability, under the LWEn,q,DZ,αq assump-
tion, where for every PPT algorithm A there exists a PPT algorithm B, such
that T(B) ≈ T(A) and

AdvN-keydist
A,CMTLWE

(λ) ≤ k · Adv
LWEn,q,DZ,αq
B (λ) + negl(λ).

Due to space limitations, we postpone the proof to the full version.
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Lemma 5 (Binding Property). For any N = poly(λ) the scheme CMTLWE is
(εb, N)-statistically binding, with εb ≤ negl(λ).

Proof. Consider the random experiment

par← Setup(1λ), (ck1, . . . , ckN )← Gen(par, 1N ).

Fix some user i ∈ [N ] and some commitment u. We show that with high
probability, there is at most one challenge m for which there is a decommitment
z that makes Open accept: Consider the matrix S̄ ∈ Zn×kq used in Gen and set
S := [−S̄t | Ik] ∈ Zk×(n+k)

q . Then we have SAi = Ēt
i. Now consider accepting

pairs (u,m, z), (u,m′, z′) of commitment, message and decommitment and denote
A := Ai,E := Ēi for simplicity. Let ej denote the j-th column of E for j ∈ [k].
By definition of Open, we have ‖z‖, ‖z′‖ ≤ s

√
m and

Az +
[

0
bq/2e ·m

]
= u = Az′ +

[
0

bq/2e ·m′
]
.

Multiplying with S from the left this implies

Etz + bq/2e ·m = Etz′ + bq/2e ·m′ =⇒ bq/2e ·m− bq/2e ·m′ = Et(z′ − z).

Looking at the absolute value of each coordinate j ∈ [k] of this equality individu-
ally we see that

{bq/2e, 0} 3
∣∣bq/2e ·mj − bq/2e ·m′j

∣∣ =
∣∣etj(z′ − z)

∣∣ ≤ 2s
√
m‖ej‖ ≤ 2sαqm,

where the last inequality holds with overwhelming probability, as ej ← Dm
Z,αq.

By our assumption α < 1/(4sm), this term is less than q/2, hence it is 0. This
means that mj = m′j . In summary, we have that with overwhelming probability
there is only one message m for which there exists a decommitment z that makes
Open accept. This holds for any i and any u and the claim follows. ut

To satisfy all the requirements of the previous analysis, we can set

k := n, m := 6ndlog qe, α := 1
5C∗m

−3/2 · ω(
√

logn)−2,

4n3 ≤ q ≤ n4, s0 = ω(
√

logn), s := C∗ ·
√
m · ω(

√
logn)2,

where C∗ :=
√

8 · C0 · C1 is chosen such that s satisfies the requirement. Then
especially the hardness of LWE is supported by worst-case to average case re-
ductions, i.e. αq ≥ 2

√
n. Also, Bertrand’s postulate implies that there is such

a prime number q between 4n3 and 8n3, which is upper bounded by n4 for all
reasonable n.

Remark 2 (On Complete Tightness). Let us sketch two variants of turning the
above ideas into a completely tight scheme. The first variant is to start with the
single bit version of the above scheme, i.e. use k = 1. Unfortunately, with such a
constant message space, the statement of Lem. 2 becomes useless and lossiness is
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Alg Gen(par)
01 (A0,T0)← GenTrap(12n, 1m, s0, q)
02 (A1,T1)← GenTrap(12n, 1m, s0, q)
03 b $← {0, 1}, sk := (b,Tb)
04 pk := (A0,A1)
05 return (pk, sk)

Alg Ver(pk,m, σ = (u0,u1, z0, z1))
06 m1 ← H(0, pk,u0,m)
07 m0 ← H(1, pk,u1,m)
08 if ‖z0‖ > s ·

√
m : return 0

09 if ‖z1‖ > s ·
√
m : return 0

10 if A0z0 +
[

0
bq/2e ·m0

]
6= u0 :

11 return 0
12 if A1z1 +

[
0

bq/2e ·m1

]
6= u1 :

13 return 0
14 return 1

Alg Sig(sk,m)
15 let σ = (b,Tb)
16 ub $← Z2n

q

17 m1−b ← H(b, pk,ub,m)
18 z1−b ← DZm,s

19 u1−b := A1−bz1−b+
[

0
bq/2e ·m1−b

]
20 mb ← H(1− b, pk,u1−b,m)

21 yb := ub −
[

0
bq/2e ·mb

]
22 zb ← SampleD(Ab,Tb,yb, s)
23 if ‖z0‖ > s ·

√
m : return ⊥

24 if ‖z1‖ > s ·
√
m : return ⊥

25 return σ := (u0,u1, z0, z1)

Fig. 6. The signature scheme SIGs[ID[CMTLWE],H, 1] = (Setup,Gen, Sig,Ver), where
Setup sets parameters as in Section 4.1.

not guaranteed anymore. The solution is to repeat Θ(n) many instances with
the same key in parallel and to accept only if all of the instances accept. Then
uHVZK can be seen for each instance independently and our message space is
large enough to apply Lem. 2. The second variant is to use commitments resulting
from [30,33] instead of the Regev-based construction we used here. In this variant
a commitment for x ∈ {0, 1}k with decommitment R is C := AR + xt ⊗G. It
can be proven that this is also a dual-mode commitment scheme, using the same
ideas we used here. We postpone a formal description of these variants to the
full version.

We will now instantiate our generic construction in Section 3 with the dual-
mode commitment scheme CMTLWE. As it has negligible completeness error,
` = 1 repetition of the sequential OR proof is sufficient. The final tightly N -
MU-CMA-Corr secure signature scheme is presented in Fig. 6. Note that signatures
contain a linear number of elements from Zq. The signature schemes based on
the completely tight dual-mode commitments mentioned above are formally
presented in the full version.

4.2 Instantiation based on Isogenies

We show how to instantiate our approach in the isogeny setting. In [24] a lossy
identification scheme is based on an isogeny assumption is presented. Our new
analysis shows that this can be obtained from a dual-mode commitment scheme.
More importantly, we are able to show tight multi-user security. Here, we use the
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subtle fact that our definition allows lossy keys to be correlated. Applying our
approach leads to the first tightly MU-CMA-Corr secure signature scheme based
on isogenies.

We can also show that the previously known lossy ID schemes [34,15,2,41]
are concrete instantiations of our transformation in Section 3.2. Due to space
limitations, we postpone these results to the full version.

5 Impossibility Result for Parallel OR Proofs

In this section, we consider a canonical identification scheme ID = (ISetup, IGen,P
:= (P1,P2),V) with challenge set ChSet and a random oracle H : {0, 1}∗ → ChSet.
Recall that sequential OR proofs can be used to construct MU-CMA-Corr secure
signatures in a tight way (see the previous sections). Here, we show that a similar
tight result for parallel OR proofs SIGp[ID,H] defined in Fig. 7 is unlikely. For

Alg Gen(par)
01 (pk0, sk0)← IGen(par)
02 (pk1, sk1)← IGen(par)
03 b $← {0, 1}, sk := (b, skb)
04 return (pk := (pk0, pk1), sk)

Alg Ver(pk,m, σ)
05 ch← H(pk, cmt0, cmt1,m)
06 if ch0 ⊕ ch1 6= ch : return 0
07 v0 ← V(pk0, cmt0, ch0, rs0)
08 v1 ← V(pk1, cmt1, ch1, rs1)
09 return (v0 ∧ v1)

Alg Sig(sk,m)
10 (cmtb, Stb)← P1(par, skb)
11 ch1−b

$← ChSet
12 (cmt1−b, rs1−b)← Sim(pk1−b, ch1−b)
13 ch← H(pk, cmt0, cmt1,m)
14 chb := ch⊕ ch1−b
15 rsb ← P2(skb, chb, Stb)
16 if rs0 =⊥ ∨rs1 =⊥: return ⊥
17 σ := (cmt0, cmt1, ch0, ch1, rs0, rs1)
18 return σ

Fig. 7. The signature scheme SIGp[ID,H] = (Setup,Gen, Sig,Ver) for a canonical identi-
fication scheme ID := (ISetup, IGen,P := (P1,P2),V) with HVZK simulator Sim, where
Setup := ISetup.

simplicity, we assume perfect completeness and hence only ` = 1 repetition of
the signing procedure. We will consider reductions without rewinding that use
the adversary as a black box. First, we fix an intermediate security notion and
the assumptions about the underlying identification scheme. After that we state
and prove our impossibility result.
Security Notions and Assumptions. We will now define a security notion
for digital signature scheme, which is weaker than N -MU-CMA-Corr security.
Here, the adversary can only corrupt statically and can not ask for signatures.
To be more precise, for a given signature scheme, the security game picks N
(distinct) public keys pki and corresponding secret keys ski and sends all public
keys to the adversary. Then the adversary can pick an index j ∈ [N ] and gets all
ski, except skj from the game. Finally, the adversary has to return a valid forgery
(m∗, σ∗) for pkj . Note that there is a straightforward tight reduction, showing
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that if SIG is N -MU-CMA-Corr secure, then it is also N -MU-CMA-S secure. Thus,
to prove that there is no tight proof of N -MU-CMA-Corr security of a signature
scheme SIG, it is sufficient to show the same for N -MU-CMA-S security.

Game N -MU-CMA-SASIG(λ)
01 par← Setup(1λ)
02 for i ∈ [N ] : (pki, ski)← Gen(par) // Assume pki’s pairwise distinct
03 (j, StA)← A1(par, (pki)i∈[N ])
04 if j /∈ [N ] : return 0
05 (m∗, σ∗)← A2(StA, (ski)i∈[N ]\{j})
06 return Ver(pkj ,m∗, σ∗)

Fig. 8. Game MU-CMA-S for a signature scheme SIG = (Setup,Gen,Sig,Ver), used in
the proof of the impossibility result in Section 5. We assume that the keys pk1, . . . , pkN
are pairwise distinct.

Definition 8 (Static Multi-User Security). Let SIG = (Setup,Gen,Sig,Ver)
be a signature scheme and N ∈ N be a natural number. Consider the game
MU-CMA-S given in Fig. 8. We say that SIG is N-MU-CMA-S secure, if for
every PPT adversary A = (A1,A2) the following advantage is negligible in λ:

AdvN-MU-CMA-S
A,SIG (λ) := Pr

[
N -MU-CMA-SASIG(λ)⇒ 1

]
.

Next, we define some properties the underlying identification scheme ID
should have, in order to apply our impossibility result. These are similar to the
ones defined in [7]. However, in our case they need to hold for the underlying
identification scheme and not for the resulting signature scheme as it would be
required for applying the result of [7] directly. For the rest of the section, we
denote the set of secret keys for a given public key pk with respect to some
parameters par, which should be clear from the context, of an identification
scheme by SK(pk). More formally SK(pk) := {sk|(pk, sk) ∈ IGen(par)}.
Definition 9 (Verifiability). Let ID = (ISetup, IGen,P,V) be a canonical iden-
tification scheme. We say that ID is parameter-verifiable if there is a deterministic
polynomial time algorithm VerP such that for all par:

VerP(par) = 1⇐⇒ par ∈ ISetup(1λ).

Further, we say that ID is key-verifiable if there is a deterministic polynomial
time algorithm VerK such that for all par ∈ ISetup(1λ) and pk, sk:

VerK(par, pk, sk) = 1⇐⇒ (pk, sk) ∈ IGen(par).

Definition 10 (Key-Rerandomization). Let ID = (ISetup, IGen,P,V) be a
canonical identification scheme. We say that ID is key-rerandomizable if there is
a PPT algorithm RerandK such that for all par ∈ ISetup(1λ) and all (pk, sk) ∈
IGen(par) the key sk′ ← RerandK(par, pk, sk) is distributed uniformly over SK(pk).
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NIP

N -MU-CMA-S G1 G2

∀i : AdvBi = 1− negl(λ) ∀A : AdvA = negl(λ)

stat.
R

Fig. 9. Overview of a typical cryptographic proof, summarized by two games G1,G2,
where G1 is statistically close to the real game. Here, a reduction R to the problem
NIP is used to interpolate between the games. We will show meta-reductions Bi, that
have a high advantage in G1, whereas every adversary has negligible advantage in G2.

We note that these properties are quite natural and are satisfied for example by
the Chaum-Pedersen (CP) lossy identification scheme [15], which is easy to see.

Example 1. The parameters of the CP scheme are the description of a cyclic
group G of prime order p and two generators g1, g2 ∈ G. To check the validity of
these parameters, one simply has to check that g1 and g2 are not the identity
element and that p is prime. Hence, CP is parameter-verifiable. The secret key
is a single exponent x ∈ Zp, sampled uniformly at random, and the public key
is (X,Y ) := (gx1 , gx2 ). Given x, g1, g2, X, Y it is trivial to check if this relation
is satisfied, showing key-verifiability. Moreover, such an x is unique for given
X,Y, g1, g2, which implies that CP is also key-rerandomizable.

Reduction Syntax. Before defining reductions, we need to define the undelying
problem, where we follow the notation in [3,7].

Definition 11 (Non-Interactive Problem). A non-interactive computational
problem is a triple of algorithms NIP = (T,V,U), where
– T(1λ) takes the security parameter as input and outputs an instance c and a
witness w.

– U(c) takes an instance c as input and outputs a candidate solution s.
– V(c, w, s) takes an instance c, a witness w and a candidate solution s as input
and outputs a bit b ∈ {0, 1}.

For any algorithm A taking z bits of randomness, we define the advantage

AdvNIP
A (λ) := |Pr

[
V(c, w, s) = 1 | (c, w)← T(1λ), ρA ← {0, 1}z, s← A(c; ρA)

]
−Pr

[
V(c, w, s) = 1 | (c, w)← T(1λ), ρU ← {0, 1}z, s← U(c; ρU)

]
|.

Before we formally define simple reductions, we make a convention about
cryptographic proofs. A proof can be presented as a sequence of games Gi,
where typically G0 is the original security game and Gi+1 results from Gi by
making small changes. In the final game it will be clear that the advantage of an
adversary is negligible. If one can show that in every step, changing the game
only changes the advantage of the adversary by a negligible amount, the proof
is complete. This is shown in one of two ways: Either, one can argue that two
subsequent games look statistically close to the adversary, or one uses a reduction
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Alg RA(c) // Simulate MU-CMA-S

01 ρR
$← {0, 1}z

02 (StR, par, (pki)i∈[N ])←R1(c; ρR)
03 (j, StA)← AH

1 (par, (pki)i∈[N ])
04 (StR, (ski)i∈[N ]\{j})← R2(StR, j)

05 (m∗, σ∗)← AH
2 (StA, (ski)i∈[N ]\{j})

06 return R3(StR, j,m∗, σ∗)

Oracle H(query)
07 (StR, h)← RRO(StR, query)
08 return h

Fig. 10. Syntax of a simple reduction R = (R1,R2,R3,RRO) in an execution with an
adversary A = (A1,A2), used in the proof of the impossibility result in Section 5. Here,
R simulates the game N -MU-CMA-SASIG for A.

that interpolates between the games to show that the advantages are close under
some computational assumption. Clearly, we can summarize all the steps into
one initial statistical step and one computational step using a reduction R, as it
is presented in Fig. 9. Note that this also captures reductions to search problems,
as one can always define the final game to reject everything. The reduction solves
the computational problem whenever the difference between the advantages in
G1 and G2 is non-negligible. This means that, when we analyze the advantage of
adversaries or meta-reductions, we can focus on G1, as every (even unbounded)
adversary has negligible advantage in G2. Hence, in our analysis we only have to
deal with the case where R’s simulation is statistically close to the real game.
With this convention in mind, we can now move towards the definition.

Definition 12 (Simple Reduction). Let NIP be a non-interactive computa-
tional problem and SIG be a signature scheme. A simple (NIP,SIG)-reduction R
is an algorithm against NIP that has one-time black box-access to an adversary
A = (A1,A2) against the N-MU-CMA-S security of SIG. In this case, R can
be represented by four algorithms (R1,R2,R3,RRO), where R2,R3,RRO are
deterministic polynomial time algorithms and R1 is PPT, such that
– R1(c) takes as input a NIP challenge c and outputs a state, parameters and

public keys (StR, par, (pki)i∈[N ]).
– R2(StR, j) takes as input a state StR and an index j ∈ [N ] and outputs a
new state and secret keys (StR, (ski)i∈[N ]\{j}).

– R3(StR, j,m∗, σ∗) takes as input a state, an index j ∈ [N ], a message m∗
and a signature σ∗ and outputs a NIP solution s.

– RRO(StR, query) takes as input a state StR and a random oracle query query
and outputs a new state and a hash value (StR, h).

The joint execution of R with adversary A is formally given in Fig. 10. We say
that R is (N, δR, L)-simple, if R’s simulation has statistical distance at most δR
from the game MU-CMA-S and for all A as above, it holds that

AdvNIP
RA(λ) ≥ L(λ,N,AdvN-MU-CMA-S

A,SIG (λ)).

Note that in our definition we can assume that R1 is the only probabilistic part
of the reduction as it can save random coins for R2,R3,RRO in the state StR.
Our Impossibility Result. We formalize and prove our impossibility result.
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Theorem 2. Let ID be a canonical identification scheme, which is εzk-HVZK,
parameter-verifiable, key-verifiable and key-rerandomizable. Define the signature
scheme SIG := SIGp[ID,H]. Then for every (N, δR, L)-simple (NIP,SIG)-reduction
R = (R1,R2,R3,RRO) there is an algorithm B such that

AdvNIP
B (λ) ≥ L(λ,N, 1)− 2(δR + εzk)− 1/N

and T(B) ≤ N ·T(R) +N(N − 1)T(VerK) + T(VerP) + T(RerandK) + T(Sig).

Proof. Let R = (R1,R2,R3,RRO) be a reduction as defined above. To prove our
impossibility result, we construct a sequence of adversaries and show that they
can win the MU-CMA-S game with high probability. The first few adversaries will
be inefficient. However, the final adversary is efficient by rewinding the reduction
R. This is a common way to present meta-reductions, although often there is
only one inefficient algorithm [7]. Our main task is to show that the success
probabilities of the reduction do not change significantly when we move from one
adversary to the next. The first adversary A∗ = (A∗1,A∗2), formally presented in
Fig. 11, obtains parameters and keys par, (pki)i∈[N ] from the challenger, samples
j∗ $← [N ] and gives it to the challenger. After obtaining all secret keys except
skj∗ , A∗ samples a random secret key with bit 0, i.e. a secret key with respect to
ID, par and pkj∗,0. Note that this is why A∗ is inefficient. It then signs a random
message m $←M and returns it. In terms of success probability the following
claim is then clear:

Lemma 6. AdvN-MU-CMA-S
A∗,SIGp[ID,H](λ) = 1.

We will now present and analyze the other adversaries, which are implicitly given
as meta-reductions B1, . . .B5 modeling the adversary and the reduction in their
joint execution. That is, they run in the NIP game and use R as a subroutine.
B5 will be efficient. A formal description can be found in Fig. 13. The changes
can be summarized as follows:
– B1 is as RA∗ except that B1 makes the following steps, summarized in the

subroutine Rewind in Fig. 12: After obtaining StR,1, par and (pki)i∈[N ] from
R1 it runs R2 independently for every j ∈ [N ], stores all secret keys obtained
and uses a flag succ[j] to keep track of those runs in which all secret keys
returned by R2 were valid. Then it samples a random j∗ as A∗ does, continues
with the j∗-th run as A∗ and returns whatever R3 returns.

– B2 additionally checks for an event bad between sampling the index j∗ and
continuing with the j∗-run. The event occurs if succ[j∗] = 1 and succ[j] = 0
for all other j 6= j∗, i.e. R could only return valid secret keys for one index
j∗ given to R2. If the event holds, B2 aborts.

– B3 is as B2 but additionally brute forces a random secret key for pkj∗,1 and
then uses both secret keys skj∗,0, skj∗,1 to compute the signature instead of
using the algorithm Sim. The computation of the signature with two keys is
summarized in Fig. 12.

– B4 is as B3, but if bad does not occur, it will have received a valid secret key
(b, skj∗,b) for pkj∗ from some execution of R2 with index j 6= j∗. It will use
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Alg A∗H1 (par, (pki)i∈[N ])
01 if VerP(par) 6= 1 :
02 return ⊥
03 j∗ $← [N ]
04 St := (par, (pki)i∈[N ], j

∗)
05 return (j∗, St)

Alg A∗H2 (St, (ski = (bi, ski,bi))i∈[N ]\{j∗})
06 if ∃i ∈ [N ] \ {j∗} : VerK(par, pki,bi , ski,bi) = 0 :
07 return ⊥
08 sk0

$← SK(pkj∗,0)
09 m∗ $←M, σ∗ ← Sig((0, sk0),m∗)
10 return (m∗, σ∗)

Fig. 11. The optimal (but inefficient) adversary A∗ = (A∗1,A∗2), winning the game
MU-CMA-S for the signature scheme SIGp[ID,H].

this secret key (rerandomized) to generate the signature instead of a brute
forced one. The other key skj∗,1−b is still brute forced and Sim is still not
used.

– B5 now uses only the rerandomized skj∗,b and the algorithm Sim to generate
the signature. Note the B5 does not brute force any secret key anymore and
is efficient. We set B := B5.

Alg RewindR(c)
01 ρR

$← {0, 1}z
02 (StR,1, par, (pki)i∈[N ])←R1(c; ρR)
03 if VerP(par) 6= 1 : return ⊥
04 succ := [0, . . . , 0]
05 for j ∈ [N ]:
06 (StR,2,j , (ski)i∈[N ]\{j})←R2(StR,1, j)
07 succ[j] := 1
08 for i ∈ [N ] \ {j} :
09 let ski = (bi, ski,bi)
10 if VerK(par, pki,bi , ski,bi) = 0 :
11 succ[j] := 0
12 if succ[j] = 1 :
13 for i ∈ [N ] \ {j} : sk[i] := ski
14 return (par, succ[·], sk[·], (StR,2,j)j∈[N ])

Alg FakeSign((sk0, sk1),m)
15 (cmt0, St0)← P1(sk0)
16 (cmt1, St1)← P1(sk1)
17 ch0

$← ChSet
18 ch← H(pk, cmt0, cmt1,m)
19 ch1 := ch0 ⊕ ch
20 rs0 ← P2(sk0, ch0, St0)
21 rs1 ← P2(sk1, ch1, St1)
22 if rs0 =⊥ ∨rs1 =⊥:
23 return ⊥
24 σ := (cmt0, cmt1, ch0,

ch1, rs0, rs1)
25 return σ

Fig. 12. Subroutines Rewind and FakeSign, used in algorithms Bi given in Fig. 13.

We will now argue, that the success probability of R does not significantly change
when we change our adversaries.

Lemma 7. AdvNIP
RA∗ (λ) = AdvNIP

B1
(λ).

Proof. First, note that the output of B1 does not depend on the executions of
R2(StR,1, j) for j 6= j∗. That is, only one iteration of the loop in Fig. 12, Line
05 has an influence on the output of R3 and hence B1. Considering only this
iteration, RA∗ and B1 are exactly the same, where it may be worth mentioning
that Line 03 in Fig. 13 and Line 06 in Fig. 11 are equivalent conditions. ut
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Lemma 8.
∣∣∣AdvNIP

B1
(λ)− AdvNIP

B2
(λ)
∣∣∣ ≤ 1/N.

Proof. Note that B1 and B2 only differ if the event bad occurs, which implies
that succ[j∗] = 1 and succ[j] = 0 for all other j 6= j∗. Further, the set of possible
j∗ satisfying this condition is either empty or has one element. This means that∣∣∣AdvNIP

B1
(λ)− AdvNIP

B2
(λ)
∣∣∣ ≤ Pr [bad] ≤ 1

N
.

ut

Lemma 9.
∣∣∣AdvNIP

B2
(λ)− AdvNIP

B3
(λ)
∣∣∣ ≤ δR + εzk.

Proof. Both B2 and B3 return ⊥ if VerP(par) 6= 1 (see Fig. 12) and also if
bad = 1. Therefore we can assume that par ∈ ISetup(1λ). As we assume that
the reduction R simulated a game of statistical distance δR to the real game,
the public key pkj∗,1 is of statistical distance at most δR to an honest key.
Hence with probability at least 1 − δR, B3 will be able to successfully sample
a random sk1 such that (pkj∗,1, sk1) ∈ IGen(par). Note that in this case what
R sees is (m∗, σ∗, query) where m∗ $← M, σ∗ ← FakeSign((sk0, sk1),m∗) and
query = ((pkj∗,0, pkj∗,1), cmt0, cmt1,m∗) is the random oracle query (observable
by RRO) that occurs during the run of FakeSig. Similarly, in the execution of
B2 it sees (m∗, σ∗, query) where m∗ $← M, σ∗ ← Sig((0, sk0),m∗) and query =
((pkj∗,0, pkj∗,1), cmt0, cmt1,m∗). Note that the difference is only the way how the
transcript (cmt1, ch1, rs1), which is part of σ∗, is generated. Further, query can be
efficiently computed without knowing how that transcript was generated. Hence
by εzk-HVZK, these have statistical distance at most εzk, which implies that R3’s
final output in the execution of B3 is distributed as the same output in B2, except
with probability at most εzk. Note that this is the step where the entire argument
fails for sequential OR proofs, as the additional value query that R observes
would have an order that allows R to distinguish (Recall that a sequential OR
proof makes two random oracle queries during signing). ut

Lemma 10. AdvNIP
B3

(λ) = AdvNIP
B4

(λ).

Proof. The only difference between B3 uses skb sampled uniformly random
from SK(pkj∗,b) to generate the signature via FakeSign and B4 uses skb ←
RerandK(par, pkj∗,b, s̄k). If bad does not occur, then there will be some j 6= j∗,
such that succ[j] = 1. Fix the largest such j, then sk[j∗] = (b, s̄k) is defined and
by definition of succ and key-verifiability we have that (pkj∗,b, s̄k) ∈ IGen(par).
By our assumption that ID is key-rerandomizable, we then know that these keys
are distributed skb as used in B4 is distributed uniformly over SK(pkj∗,b), which
proves the claim. ut

Lemma 11.
∣∣∣AdvNIP

B4
(λ)− AdvNIP

B5
(λ)
∣∣∣ ≤ δR + εzk.

Proof. The proof is exactly the same as for Lem. 9, applying εzk-HVZK to
(pkj∗,1−b, sk1−b). ut
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Alg B1(c), B2(c)
01 (par, succ[·], sk[·], (StR,2,j)j∈[N ])

← RewindR(c)
02 j∗ $← [N ]
03 if succ[j∗] 6= 1 : return 0
04 if ∀j ∈ [N ] \ {j∗} : succ[j] = 0 :
05 bad := 1, return ⊥
06 sk0

$← SK(pkj∗,0)
07 m∗ $←M, σ∗ ← Sig((0, sk0),m∗)
08 return R3(StR,2,j∗ , j∗,m∗, σ∗)

Alg B5(c)
09 (par, succ[·], sk[·], (StR,2,j)j∈[N ])

← RewindR(c)
10 j∗ $← [N ]
11 if succ[j∗] 6= 1 : return 0
12 if ∀j ∈ [N ] \ {j∗} : succ[j] = 0 :
13 bad := 1, return ⊥
14 let sk[j∗] = (b, s̄k)
15 skb ← RerandK(par, pkj∗,b, s̄k)
16 m∗ $←M, σ∗ ← Sig(skb,m∗)
17 return R3(StR,2,j∗ , j∗,m∗, σ∗)

Alg B3(c), B4(c)
18 (par, succ[·], sk[·], (StR,2,j)j∈[N ])

← RewindR(c)
19 j∗ $← [N ]
20 if succ[j∗] 6= 1 : return 0
21 if ∀j ∈ [N ] \ {j∗} : succ[j] = 0 :
22 bad := 1, return ⊥
23 sk0

$← SK(pkj∗,0)
24 sk1

$← SK(pkj∗,1)
25 let sk[j∗] = (b, s̄k)
26 skb ← RerandK(par, pkj∗,b, s̄k)
27 m∗ $←M
28 σ∗ ← FakeSign((sk0, sk1),m∗)
29 return R3(StR,2,j∗ , j∗,m∗, σ∗)

Fig. 13. The (inefficient) algorithms B1, . . . ,B4 and the efficient algorithm B5 used in
the proof of Thm. 2. The subroutines Rewind,FakeSign are given in Fig. 12.

In summary, combining all claims we obtain that

AdvNIP
B5

(λ) ≥ AdvNIP
RA∗ (λ)− 2(δR + εzk)− 1/N,

and B5 is efficient, which proves Thm. 2. ut
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