
Time-Memory tradeoffs for large-weight
syndrome decoding in ternary codes

Pierre Karpman1 and Charlotte Lefevre2

1 Univ. Grenoble Alpes, CNRS, Grenoble INP??, LJK, 38000 Grenoble, France
2 Radboud University, Nijmegen, The Netherlands

pierre.karpman@univ-grenoble-alpes.fr

charlotte.lefevre@ru.nl

Abstract. We propose new algorithms for solving a class of large-weight
syndrome decoding problems in random ternary codes. This is the main
generic problem underlying the security of the recent Wave signature
scheme (Debris-Alazard et al., 2019), and it has so far received limited
attention. At SAC 2019 Bricout et al. proposed a reduction to a binary
subset sum problem requiring many solutions, and used it to obtain the
fastest known algorithm. However —as is often the case in the coding
theory literature— its memory cost is proportional to its time cost, which
makes it unattractive in most applications.
In this work we propose a range of memory-efficient algorithms for this
problem, which describe a near-continuous time-memory tradeoff curve.
Those are obtained by using the same reduction as Bricout et al. and
carefully instantiating the derived subset sum problem with exhaustive-
search algorithms from the literature, in particular dissection (Dinur et
al., 2012) and dissection in tree (Dinur, 2019). We also spend significant
effort adapting those algorithms to decrease their granularity, thereby al-
lowing them to be smoothly used in a syndrome decoding context when
not all the solutions to the subset sum problem are required. For a pro-
posed parameter set for Wave, one of our best instantiations is estimated
to cost 2177 bit operations and requiring 288.5 bits of storage, while we
estimate this to be 2152 and 2144 for the best algorithm from Bricout et
al..

1 Introduction

At ASIACRYPT 2019, Debris-Alazard et al. proposed a new (conjecturally post-
quantum secure) code-based signature scheme called Wave [4]. Some of the more
unusual and notable features of this scheme are that it is based on ternary linear
codes, i.e. codes whose alphabet is F3, and that its security relies in part on the
generic hardness of some large-weight syndrome decoding problems. Most of the
existing cryptography and coding-theory literature does not quite address either
of those aspects as it tends to focus on binary codes (where low- and large-weight

?? Institute of Engineering Univ. Grenoble Alpes



2 Pierre Karpman and Charlotte Lefevre

problems are symmetric) and, in the few existing adaptations to q-ary codes, on
low-weight problems [2,13,10,16,12].

Shortly following the introduction of Wave, Bricout et al. introduced new
dedicated algorithms for solving the specific large-weight ternary syndrome de-
coding instances underlying Wave’s security [1]. Their approach consists in ex-
ploiting the fact that a large-weight syndrome may be found by: 1) finding a
full -weight syndrome for a smaller derived sub-problem and; 2) extending this
smaller solution to one for the original problem, hoping that it satisfies the
weight constraint. While this overall strategy is quite typical of the family of
information-set decoding algorithms, the fact that the first step searches for
full -weight syndromes over F3 leads to a clean reduction to a {0,1}-subset sum
problem. Furthermore, since the success probability of the second step is typi-
cally small, one in fact needs to repeat the first one many times; the best results
are then obtained when many solutions for the latter can be obtained at a low
(ideally constant) amortised cost. Bricout et al. consider several algorithms for
solving the subset sum problem and obtain their best results by using Wag-
ner’s k-tree algorithm [17] with an adaptation of the so-called representation
technique. For parameter sizes relevant to Wave’s security, their best algorithm
has an asymptotic time cost of O(20.0176n), where n is the length of the code.
However, the memory cost of this algorithm is also O(20.0176n); while this is a
common behaviour of the “fastest” algorithms from the cryptography and coding
theory literature, this is an unattractive feature for “real-life” implementations
as (beyond a certain point) memory is much more expensive than time in exist-
ing hardware, and certainly not on par as analyses focusing on optimising time
cost alone somewhat implicitly assume.

Our contribution. In this paper, we perform a detailed study of time-memory
tradeoffs for the large-weight ternary syndrome decoding problem, in the regime
relevant to Wave’s security. We use the same reduction to {0,1}-subset sum as
Bricout et al., and the tradeoffs are obtained by acting on one parameter used
in the reduction and, more importantly, by carefully instantiating the resolu-
tion of the subset sum problem with memory-efficient algorithms. For this task
we rely on the dissection [6] and dissection in tree [5] frameworks. One main
hurdle in efficiently applying both frameworks to the syndrome decoding set-
ting is that they are designed to exhaustively solve general-birthday (or subset
sum-like) problems, which they do at a low (possibly constant) amortised cost.
The reduction by Bricout et al. only requires comparatively few solutions, and
providing more than necessary inevitably leads to a sub-optimal instantiation.
We thus spend a significant effort in adapting both frameworks to lower the
granularity at which they return solutions (i.e. the minimum number of solu-
tion that can be returned with constant amortised cost), so that only the right
amount is computed. This eventually leads to attractive time-memory tradeoffs
which significantly outperform the results of Bricout et al. when taking the cost
of memory into account. We however make no attempt at accurately modeling
the cost of memory access which we assume to be constant and only compute for



Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 3

our algorithms the cost of memory storage. A summary of our results is shown
in Table 1 in the asymptotic regime where we include the product of time and
memory costs as a primitive tool of comparison between different tradeoffs.

Table 1: Asymptotic exponents (in base 2) of some algorithms for solving a
ternary syndrome decoding problem for a random code of length n, dimension
0.676n, and syndrome weight 0.948366n.

Time Memory Time × Memory Tradeoff Algorithm

0.0176n 0.0176n 0.0352n T = M
k-tree +

representations [1]

0.02014n 0.01007n 0.03021n T = M2 4,4-dissection (Section 5)

0.02256n 0.007521n 0.03008n T = M3 2,11-dissection (Section 5)

0.02335n 0.005838n 0.02919n T = M4 3,11-dissection (Section 5)

Structure of the paper. We recall some definitions and state our problem
in Section 2. We then present the framework of Bricout et al. in a detailed
and self-contained way in Section 3, while also emphasising the role played by
the granularity. Section 4 recalls some classical frameworks for the generalised
birthday problem and applies them (sometimes with some tweaks) to syndrome
decoding, and Section 5 does the same with the more recent dissection-in-tree
framework. Finally Section 6 presents numerical results applied to the most
recent parameter set for Wave.

2 Preliminaries

2.1 Notation and definitions

Except specified otherwise, we assume to be in a ternary setting, i.e. with all
structures defined over F3.
Vectors (resp. matrices) names are written in a bold font and in lower (resp.
upper) case, for instance x (resp. M); vectors are row vectors. The ith coordinate
of a vector x is written xi, and indices start from 1. The (Hamming) weight wt(x)
of an n-dimensional vector x is the size of its support, i.e. #{i ∈ J1, nK |xi 6= 0},
where J1, nK = {1, 2, . . . , n}.
A (ternary) linear code of length n and dimension k is a k-dimensional linear
subspace of Fn3 ; any code with such parameters is said to be an [n, k] linear code.
A parity-check matrix of an [n, k] (ternary) linear code C is any full-rank matrix

H ∈ F(n−k)×n
3 s.t. x ∈ C ⇔ xHT = 0, where 0 ∈ Fn−k3 is the null vector.

We use x := y (resp x =: y) to define x as being equal to y (resp. y as being
equal to x), and x � S means that x has been drawn uniformly at random



4 Pierre Karpman and Charlotte Lefevre

from the finite set S; except specified otherwise, this drawing is supposed to be
independent from any other.
We say that an algorithm A returning S distinct (and a priori independent)
outputs in time O(ST ) runs in amortised time O(T ). Also, in order to sim-
plify notation, we often drop the “O(·)” when discussing the cost of algorithms.
Finally, except specified otherwise, the logarithm function log is in base 2.

2.2 The large-weight ternary syndrome decoding problem

We now define the ternary syndrome decoding problem (or “SDP” for short),
which is the main problem studied in this paper. We specialise the definition to
the ternary case, i.e. with all underlying structures with coefficients in F3, but
generalizations to other fields are straightforward.

Problem 1 (Ternary syndrome decoding problem). Let H ∈ F(n−k)×n
3 be a

parity-check matrix for an [n, k] ternary linear code, w ∈ J1, nK, s ∈ Fn−k3 .
The ternary syndrome decoding problem with inputs H, s, w asks to find e ∈ Fn3
s.t.:

1. eHT = s;
2. wt(e) = w.

We may refer to s as the target syndrome, and to e as an error.

A natural variant of this problem, which we however do not consider here, is
to constraint the weight of e not to a single value w but only requiring that it
be included in some interval.

In all of this work we only consider instances of Problem 1 with the following
additional restrictions:

1. We consider uniformly random linear codes:

H �
{
M ∈ F(n−k)×n

3 | rank(M) = n− k
}
.

2. We consider uniformly random syndromes: s� Fn−k3 .
3. The code parameters n and k and the target weight w are proportional,

with the same ratios as in the “updated” parameters for the Wave signature
scheme given by Bricout et al. [1], viz. k = 0.676n, w = 0.948366n. In the
following we refer to this setting as the Wave regime which, since w ≈ 0.95n
is a particular instance of a large-weight regime.

Remark 2. The Wave regime as defined above corresponds to a setting for which
no efficient (in particular no polynomial-time) algorithm for solving the prob-
lem is known, yet one expects a random instance to have a number of solution
exponential in the length n of the code. We refer to [4, §3] for more details on
the topic and on parameter selection for Wave in general.



Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 5

3 A framework for solving the ternary syndrome
decoding problem

At SAC 2019 [1], Bricout et al. formalised a high-level framework to solve (hard)
instances of the ternary syndrome decoding problem They name this framework
“PGE+SS”, standing for partial Gaussian elimination + subset sum, and its
structure closely follows the one used by similar information set decoding (or
ISD) algorithms used in the (more usual) binary setting. Since our work fully
adheres to this framework we wish to give here a self-contained description of
its main ideas and analysis, and refer to [1] for more details.

3.1 The PGE+SS framework

Let H ∈ F(n−k)×n
3 , s, w define an instance of Problem 1; the PGE+SS framework

fixes two additional parameters l ∈ J0, n − kK and p ∈ J0,min(w, k + l)K. One
then does the following:

1. Partial information set selection. Pick P ∈ Fn×n3 uniformly at random
among the permutation matrices that are s.t. the n − k − l first columns
of HP are linearly independent.

2. Partial Gaussian elimination. Compute the reduced row-echelon form of
HP , stopping after the first n−k− l rows have been processed. This returns
an invertible matrix S ∈ GL(n− k, 3) s.t.:

SHP =:

(
In−k−l H1

0 H2

)
,

with H1 ∈ F(n−k−l)×(k+l)
3 , H2 ∈ Fl×(k+l)3 , and further let s′ =

(
s′1 s′2

)
:=

sST , with s′1 ∈ Fn−k−l3 , s′2 ∈ Fl3.
Remark then that if e′ is a solution to the syndrome decoding problem
instance defined by SHP , s′ and w then e′P T is a solution to the initial
instance, as from e′P THTST = s′ one has (e′P T )HT = s.

3. Subset sum problem resolution. Solve the syndrome decoding problem in-
stance defined by H2, s′2 and weight p and return S distinct solutions
{e′2 ∈ Fk+l3 }, where S is a parameter to be determined later. For large-
weight ternary syndrome decoding and well-chosen parameters l and p, this
in fact reduces to a {0,1}-subset sum problem (see Sections 3.2 and 4.1 and
[1, §2] for details).

4. Probabilistic reconstruction. For every solution e′2 returned at step 3 compute
the unique vector e′1 := s′1 − e′2H

T
1 s.t.

(
e′1 e′2

)
P THTST =

(
s′1 s′2

)
, and

if wt(e′1) = w − p return
(
e′1 e′2

)
P T as a solution to the initial problem. If

none of the solutions satisfied the weight constraint the algorithm fails.

Remark 3. Prange’s algorithm [14] corresponds to the setting l = 0. In that case
the subset sum problem from step 3 becomes trivial since the zero-dimensional
s′2 imposes no constraint. Yet for the same number of returned solutions S and
for most target weights w the success probability of step 4 is in this case typically
smaller than for l > 0.



6 Pierre Karpman and Charlotte Lefevre

We now analyse some aspects of the PGE+SS framework, but only in the
regime relevant to us, i.e. when the target weight w is close to n (but lower than
the Gilbert-Varshamov bound). In particular we only consider the case where
p = k + l, that is where the solutions for the smaller syndrome decoding sub-
problem at step 3 are required to be full-weight. This has two consequences: 1)
except for very large values of l, this maximises the probability that a solution
to the sub-problem extends to a solution to the initial problem in step 4; 2) since
there are exactly two non-zero elements in F3, this sub-problem can be solved
by using an algorithm for the (quite common) {0,1}-subset sum problem.

3.2 Required number of solution for the subset-sum problem

With the above constraint on the PGE+SS parameterization, the number S
of returned solution to the sub-problem required for the algorithm to succeed
with constant probability becomes only a function of n, l, k and w (or in fact
only n and l inasmuch as k and w depend on n in the Wave regime): assuming
independence of the solutions, it precisely needs to be proportional to the inverse
probability that e′ as computed in step 4 has the right weight; we compute this
probability in Proposition 4, and often denote Sl its inverse in the remainder of
this paper.

Proposition 4. Let H, s, w define a random instance of Problem 1 in the
Wave regime, and H1, H2, s′1, s′2 be as in Section 3.1. Then assuming that the
syndrome decoding sub-problem defined by H2, s′2, k+ l has many solutions, and
if e′2 is picked uniformly at random among them, one has:

Pr[wt(e′1) = w − k − l] ≈
(
n−k−l
w−k−l

)
2w−k−l

3n−k−l
, (1)

where e′1 ∈ Fn−k−l3 is equal to s′1 − e′2H
T
1 .

Proof. Let P be as in Section 3.1 and S denote the set of solutions to the main
decoding problem; we have that wt(e′1) = w − k − l iff.

(
e′1 e′2

)
P T ∈ S. Thus

Pr[wt(e′1) = w − k − l] = Pr[∃ e ∈ S, e =
(
∗ e′2

)
P T ], i.e. the probability that

there is a solution with the right structure.3

To compute this probability, we first assume that the elements of S are
uniformly distributed among the 2w

(
n
w

)
weight-w vectors of Fn3 . Also, since the

Wave regime is such that w is far away from the Gilbert-Varshamov bounds we
approximate the expected size of S by S := 2w

(
n
w

)
/3n−k. Similarly, the expected

number of solution to the sub-problem is approximated by S2 := 2k+l/3l.
Now for e ∈ S to have the right structure, two conditions must be satisfied:

1) it must have the right support, which happens with probability
(
n−k−l
w−k−l

)
/
(
n
w

)
;

2) it must be equal to e′2 on the right part, which happens with probability S−12

conditioned on having the right support (since by construction this part then
constitutes a solution to the sub-problem). Finally, equating the probability with

3 Note that since e′
1 is fully determined by e′

2 there can be at most one such solution.



Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 7

the (approximated) expectancy, we get Pr[wt(e′1) = w − k − l] = S × S−12 ×(
n−k−l
w−k−l

)
/
(
n
w

)
. ut

In practice we sometimes rely in our cost computations on the same simpler
asymptotic estimate for Eq. (1) as [3, Lemma 1.2].

Remark 5. In the Wave regime, Sl < 2k+l/3l, the number of solutions to the sub-
problem, so by properly choosing S at step 3 one can ensure that the algorithm
succeeds w.h.p..

3.3 Parameterization of the subset-sum problem

The choice for the (unique) parameter l of the PGE+SS framework has a con-
siderable influence on the final cost of solving the problem. Some of the conse-
quences are quite obvious: if l is small, then the decoding sub-problem is easy
to solve, but the required number of solution Sl is huge; similarly, if l is large
one requires much fewer solutions but solving the sub-problem becomes much
harder. A slightly less näıve observation is that although at first sight one is
asking in step 3 to solve a problem similar to the original (viz. a syndrome de-
coding problem), the fact that many solutions are required (and not just one)
opens the way to specific optimisations; in particular one may aim at finding
theses solutions at a low (ideally constant) amortised cost, so that the total time
cost be proportional to Sl. To reach this goal one has at its disposal a full range
of powerful algorithms for the subset sum problem. Yet those algorithms are
not without some limitations, and their (efficient) usage is often not straightfor-
ward. We now mention two of those limitations at a high level, and explore their
consequences systematically in Sections 4 and 5.

– The algorithms we consider have an intrinsic non-trivial granularity at which
they return solutions. This is the smallest number of solutions that an al-
gorithm may return at its nominal (usually constant) amortised cost, see
Definition 6. In our case one incurs some loss in using an algorithm if its
granularity is larger than the number of required solutions Sl.

– They also all have a large memory cost, sometimes equal to their granularity.

Definition 6 (Granularity of an algorithm). Let A be an algorithm that
returns S outputs and runs in amortised time O(T ). We define its granularity
as the least positive integer S′ ≤ S s.t. there exists a tweaked algorithm A′ for
the same problem that returns S′ outputs in amortised time O(T ).

The above can be summarised as the following rough estimation for the cost
of a PGE+SS instantiation in our case: a subset sum algorithm that returns S
solutions in amortised constant time and with memory cost M and granularity
S′ can be used to solve the decoding problem with memory cost M ,4 and time
cost max(Sl, S

′).

4 If Sl > M , one would in practice interleave steps 3 and 4 so as to avoid storing all
Sl solutions at the same time.



8 Pierre Karpman and Charlotte Lefevre

4 Fundamental algorithms for the generalised birthday
problem

4.1 Subset sum as a generalised birthday problem

In this section we present and compare two families of algorithms that solve the
generalised birthday problem (whose definition we recall in Problem 7, in the
specific case of Fn3 ): the k-tree algorithm and its variants [17] and the dissection
framework [6]. Both can be seen as a way to generalise the meet-in-the-middle
algorithm.

Problem 7 (Generalised birthday problem or r-list problem). Let L1, . . . , Lr be r
lists of vectors uniformly sampled from Fn3 and s ∈ Fn3 be a target, the generalised
birthday problem asks to find (x1, . . . ,xr) ∈ L1 × · · · × Lr s.t.

∑r
i=1 xi = s.

An algorithm solving Problem 7 can be used in the PGE+SS framework
to solve the subset sum problem arising from the sub decoding problem in the
full-weight regime.

Let us hereafter denote by H ∈ Fl×(k+l)3 and s ∈ Fl3 the matrix H2 and
vector s′2 from Section 3.1 respectively. Then finding a full-weight vector e s.t.
eHT = s can be done by: 1) building r lists Li = {xHT : x ∈ Wi}, where the
elements of the sets Wi have full weight on a set of indices Ii and weight zero
on its complementary and I1, . . . , Ir forms a partition of J0, k + lK; 2) solving a
generalised-birthday problem with input L1, . . . , Lr and s.

This is a classical approach in general, and it was successfully applied to
ternary syndrome decoding by Bricout et al., who consider a number of variants
of the k-tree algorithm [1]. We recall their results and start exploring some
related time-memory tradeoffs next.

4.2 Application of the k-tree algorithm to syndrome decoding

From now on assume that r =: 2a is a power of two. Recall that the basic
k-tree algorithm [17] works as follows: at the first step, subtract the target s
to every element of Lr, then for each pair of lists (L2i−1, L2i), i ∈ J1, 2a−1K,
compute the merged list L′i := L2i−1 ./w L2i := {xu + xv : (xu,xv) ∈ L2i−1 ×
L2i,xu =w −xv}, where w is a parameter and x =w y means that x and y
are equal on their last w coordinates. This process is then repeated on the lists
L′1, . . . , L

′
2a−1 with the equality constraint being imposed on the w′ coordinates

before the last w ones, etc.; after a iterations in total, and provided that w+w′′+
· · · = l = dim(s), all the elements of the last list (if non empty) are solutions to
the problem.

In a classical and typical parameterization of the k-tree algorithm, one takes
w = w′ = · · · and lists of initial size equal to the “entropy” of a size-w constraint;
in our case this is 3w. This ensures that on average the size of all lists (except
possibly the last one) remains equal to 3w at every level of the tree and this also
gives the memory cost of the algorithm (up to a factor 2a if the lists cannot be



Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 9

generated on-the-fly). Then the two typical choices for w are l/(a+ 1) and l/a;
in the former case the expected size of the root list is 1, while it is 3w = 3l/a

in the latter. This last parameterization is of particular interest in our context
since it gives an algorithm with time and memory cost O(2a3l/a) that on average
returns 3l/a solutions. The amortised cost per solution is then O(2a), or O(1) as
a is in fact often a constant, and the granularity is 3l/a.

As we have just described it, the k-tree algorithm only returns in the root
lists solutions which are highly structured which, put another way, means that it
highly decimates the number of possible solutions to be found among the initial
lists. Yet if more than 3l/a solutions are needed, two (non-exclusive) options
exist: 1) restart the algorithm from new lists (if possible); 2) jointly change the
merging condition for two pairs of lists at the same level, so that one merges
elements s.t. xu =w −xv + t and the other elements s.t. xu =w −xv − t;
this is easily implementable by simply adding (resp. subtracting) the right w
coordinates of t to one of the two lists for each pair. This second option in fact
lets one now exhaustively search for all the possible solutions, something we
will discuss again in Section 4.3. We illustrate this and the general process of a
typical k-tree instantiation in Fig. 1 for a = 3.

Remark 8. We defined here the k-tree algorithm with as input a number of lists
which is a power of two. It is possible to adapt the algorithm to a relaxed setting
without this constraint, but there is no added gain5 in doing it.

Bricout et al. use the k-tree algorithm within the PGE+SS framework to
solve hard instances of the ternary syndrome decoding problem [1]. In a basic
application, the only additional constraint to what has already been described
above is that for a fixed l parameter, the depth of the tree must be s.t. it is
possible to build lists of size 3l/a at its leaves. When elements of those initial
lists are of the form {xHT : x ∈ Wi}, this list population constraint can be
expressed as:

3l/a ≤ 2(k+l)/2
a

. (2)

This simply expresses the fact that there are 2a lists of full-weight vectors to
build at the leaves of the tree and one must then split the support of the domain
Fk+l3 into that many equally-sized disjoint sets.

For a fixed l parameter, the memory (and the granularity) of this application
of the k-tree algorithm is minimised by simply selecting the largest a for which
this constraint is satisfied.

Smoothed k-tree algorithm. Smoothing the k-tree algorithm is a technique that
allows to slightly relax constraint (2) by adding one more level to the tree than
what it dictates. This corresponds to the extended k-tree algorithm of Minder
and Sinclair [11, Theorem 3.1], and it was adapted to the ternary case under
this name by Bricout et al. [1].

5 In the next part, the gain is formally defined in Definition 10.



10 Pierre Karpman and Charlotte Lefevre

L1 L2 L3 L4 L5 L6 L7 L8

−t3 −t2+t3 −t4 s1 + t2
+t4

−t2

−t1

s1 + t2

s2 + t1

s

l/3

2l/3

l

Fig. 1: Illustration of the k-tree algorithm with M = 3l/3. For only one iteration
of the tree, the targets ti are all set to 0. For more than one iteration, the targets
ti must be set to non-zero values, and every distinct tuple of ti’s provides disjoint
solutions.

In a nutshell the idea is the following: if one cannot build initial lists that
are large enough, the constraint size w from the level 1 lists to level 2 is lowered
so as to increase the size of the latter; then this increased (expected) list size is
preserved all the way up to the root of the tree. Schematically this translates
into a sequence of constraints sizes w < w′ = w′′ = · · · which sum to l; the
memory cost is then equal to 3w

′
, which is more than if one had had constraints

of identical sizes, i.e. one has to “pay” for the dissatisfaction of Eq. (2) with
memory. Nonetheless, in the case of the SDP, adding one more level to the
tree to apply the smoothing technique is always more beneficial, even if this is
done at a less favourable time/memory ratio. We summarise the consequences
of smoothing as Proposition 9, which restates [1, Prop. 4].

Proposition 9. Let l, k, n be as above and a > 3 be a constant. If 3l/(a−1) ≤
2(k+l)/2

a−1

, then one can use a smoothed k-tree algorithm with a levels to obtain
2m solutions to the generalised birthday problem in amortised constant time and
memory cost 2m, where:

m =
1

a− 2

(
l log(3)− k + l

2a−1

)
.

Proof. We only prove this informally without showing optimality nor checking
initial conditions, our main goal here being to illustrate the inner workings of
smoothing.



Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 11

Let ς := l log(3) normalise in base 2 the size of the dimension-l ternary
constraint that one wishes to solve and τ := (k + l)/2a be the logarithm of
the maximum size of 2a lists of full-weight vectors partitioning the domain. We
wish to find initial and subsequent constraints w and w′ = w′′ = · · · s.t.: 1)
w′ = 2τ −w; 2) w+(a−1)w′ = ς. The first condition expresses the fact that the
constraint of size w ensures that the first level lists merge into lists of expected
size 2w

′
; the structure of the k-tree algorithm together with the second condition

then ensure the fact that the root list contains 2w
′

solutions to the problem, and
since w < w′ that the algorithm runs in amortised constant time and with
memory 2m := 2w

′
.

To find the stated value of m, one simply substitutes 2τ − w for w′ into
w + (a− 1)w′ = ς and solves the latter for w, i.e.:

w + (a− 1)(2τ − w) = ς

⇔ (a− 1)2τ − (a− 2)w = ς

⇔ w = ((a− 1)2τ − ς)/(a− 2)

Using again w′ = 2τ − w one then gets:

w′ = [2(a− 2)τ − ((a− 1)2τ − ς)]/(a− 2)

⇔ w′ = (ς − 2τ)/(a− 2) = (l log(3)− (k + l)/2a−1)/(a− 2).

ut

Using representations. Bricout et al. obtained their best result in the Wave
regime by applying the so-called representation technique [8] to their ternary
k-tree algorithm, slightly beating their instantiations that used smoothing. We
do not detail this approach since we do not consider it in our work, and refer
to [1] for details. When optimised for time, this uses a tree with a = 7 levels and
parameter l = 0.060835n and solves the decoding problem in asymptotic time
and memory O(20.0176n).

Time-memory tradeoffs from the k-tree algorithm. Recall that within
the PGE+SS framework, solving the sub decoding problem for parameter l in
amortised constant time with granularity and memory cost S′ allows to solve
the initial problem with memory cost S′ and time cost max(Sl, S

′). Since the
(smoothed) k-tree algorithm may in principle be used for any l one then naturally
obtains a time-memory tradeoff by varying this parameter and using the best
variant of the k-tree algorithm to solve the derived sub-problem. Choosing this
variant is a rather straightforward consequence of what has been presented above
and we give pseudocode for this parameter selection in the full version [9] for both
“standard” and smoothed k-tree algorithms We show the resulting time-memory
tradeoff curves in Fig. 2, where we also include the best attack of Bricout et al. as
a point of comparison. One may notice there the natural discontinuity exhibited
by the standard k-tree algorithm and the fact that the smoothed variant is indeed



12 Pierre Karpman and Charlotte Lefevre

always superior. The near monotonicity of the curves is consequence of the fact
that the granularity of the k-tree algorithm is low and thence does not limit the
performance of the algorithm, except for the relatively large l parameters used
to draw the bottom right part of the graph.

0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
log(M)/n

0.018

0.020

0.022

0.024

0.026

0.028

0.030

0.032

lo
g(
T)

/n

k-tree + representations [1]
k-tree
smoothed k-tree

Fig. 2: Time-Memory tradeoffs from the (smoothed) k-tree algorithm.

4.3 Solving generalised birthday problems with dissection

The dissection framework was introduced by Dinur et al. at CRYPTO 2012 to
solve “composite” problems in a memory-efficient way [6]. The main initial moti-
vation was provided by the generic key recovery attack of iterated block ciphers,
but the framework adapts easily to an r-list problem and was already used in this
context by Esser et al. and Dinur [7,5], who also study it in some non-exhaustive
regimes. Dissection generalises the meet-in-the-middle algorithm in a different
way than the k-tree algorithm (with both techniques also being refinements of
[15]). Its main originality is that instead of merging lists along a (typically) bal-
anced binary tree, it uses a recursive asymmetric decomposition; the solutions of
the smaller sub-problem resulting from this decomposition are stored in memory
and combined with solutions for the larger problem that are generated on-the-fly.
Altogether, this asymmetric decomposition and the structure of the algorithm
make dissection a memory-friendly family of algorithms.



Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 13

An important notion to quantitatively analyse dissection algorithms (and
algorithms for the r-list problem in general) is the gain [6], which we state in
Definition 10 in our specific ternary case. In there, and in all of the following,
we let by definition the size of the r initial lists of Problem 7 be equal to 3m,
and often treat m as a parameter.

Definition 10. Let A be an algorithm that solves Problem 7 with r lists in F3

in time O(3mT ) and memory O(3mM ) with m ∈ R. Then its gain is defined as
gain(A) := r − (T +M).

This should be understood as a gain over the time-memory tradeoff offered
by the meet-in-the-middle algorithm, which always has gain 0. Any positive gain
then gives a better tradeoff than the latter. Hereafter we use gain(r) to denote
the gain of an r-dissection that solves an r-list problem (or sometimes simply g,
when r is clear from the context).

We now illustrate the dissection framework with two examples.

Example 11 (4-dissection). The 4-dissection is simply the exhaustive variant
of the k-tree algorithm with two levels as described in Section 4.2, and it was
in fact well-known before the general formulation of the dissection framework.
Unlike instantiations with a larger number of lists, it also uses a symmetric
decomposition. Starting from four lists L1,...,4 of size 3m and with a target s
of dimension l := 2m, one introduces an intermediate target t of dimension m.
Then for each value of t, one applies the k-tree algorithm to L1+t := {x+

(
0 t
)

:
x ∈ L1}, L2, L3−t, L4−s, obtaining as a result a list of solutions with a unique
structure (viz. x1,...,4 s.t. x1 + x2 =m −t, x3 + x4 =m s + t), and enumerating
all values for t yields all the solutions to be found within L1,...,4. The memory
cost and the granularity is 3m and the time cost 32m, also equal to the expected
number of returned solutions. The product of the time and memory cost is then
33m, which is a factor 3m less than what one would get from meet-in-the-middle
algorithms, hence the gain is equal to 1.

Example 12 (7-dissection). The 7-dissection is the first instantiation of the frame-
work with gain 2. It groups its 7 input lists into a group of three (resp. four) lists,
for which a meet-in-the-middle algorithm (resp. 4-dissection) will be used. Let
again 3m be the size of the initial lists, and t1 and t2 be as in Fig. 3, which also
illustrates the structure of the algorithm; to solve a 7-list problem for a target s
of size 3m one does the following for all values of t1 and t2:

1. Exhaustively search for all solutions to a 3-list problem for the 2m target(
s2 − t2 s1 − t1

)
, using a meet-in-the-middle algorithm with memory (resp.

time) cost O(3m) (resp. O(32m)), and store all solutions in a list L′.

2. Exhaustively search for all solutions to a 4-list problem for the 2m target(
t2 t1

)
, using 4-dissection with memory and granularity (resp. time) cost

O(3m) (resp. O(32m)), and for every returned solution x =
(
∗ t2 t1

)
check

on-the-fly if there is x′ ∈ L′ s.t. they sum to s.



14 Pierre Karpman and Charlotte Lefevre

The total memory cost is O(3m), the time cost and number of returned solutions
is O(34m), and the granularity is given by the size of the intermediate target(
t2 t1

)
for the 4-dissection and thence 32m.

L1 L2 L3 L4

t2

t1

Repeat for all t1, t2

2m

Exhaustive 4-dissection

L5 L6 L7

s2−t2
s1−t1

2m

Exhaustive
meet-in-the-middle

s 3m

Fig. 3: 7-dissection with initial lists of size 3m and a target s of size 3m. A list
drawn with dashed lines is not stored in memory and processed on-the-fly.

In general an r-dissection of gain g is built from an (r− g−1)-dissection and
a meet-in-the-middle algorithm with g + 1 lists. This leads to a magic sequence
(Mn) of gains [6], where Mg is the least r s.t. there is an r-dissection with gain

g. Dinur et al. showed that Mg = (g+1)(g+2)
2 + 1 ≈ g2/2, leading to the following

approximation:

gain(r) ≈
√

2r (3)

One may also characterise an r-dissection with gain g from the fact that it
returns all the 3m(r−g−1) solutions to an r-list problem with target size (g+1)m
in amortised constant time and with memory cost O(3m). Since in this case
the intermediate target t used in the recursion is of size gm, it also follows
that in this regime the granularity of the dissection is at most 3m(r−g−1)/3gm =
3m(r−2g−1). Remark that it is also straightforward to exhaustively solve for target
sizes smaller than (g + 1)m by running many times a dissection with dummy
targets of the latter size.

The above description concerns dissection with a memory cost equal to the
size of the initial lists, but the framework can be easily extended to use more



Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 15

memory [6]. For any integer µ > 1, one increases the number µr of lists in the
meet-in-the-middle step and returns a list L′ of partial solutions of size 3µm

while also allowing the recursive dissection to have memory cost 3µm. Denoting
gain(r, µ) the gain of such an r-dissection with memory parameter µ, one has
the relation µr = gain(r, µ) + µ. A convenient consequence of generalising dis-
section in this way is that in some sense an r-dissection with µ = 1 and m = n
is equivalent to an rN -dissection with µ = N and m = n/N , where N ≥ 1
is an arbitrary integer. In our context where we have considerable freedom in
the choice for the initial number of lists, this remark simplifies the search for
good parameterization of the dissection to solve the problem at hand. Indeed,
considering one r-dissection with r large and allowing µ to vary is enough to
reasonably represent all tradeoffs offered by the dissection framework, as we do
in Fig. 4. In the following description we however let µ = 1 unless mentioned
otherwise.

4.4 Application of the dissection framework to syndrome decoding

Since the dissection framework can be used to solve an r-list problem, it readily
applies to the full-weight sub decoding problem encountered in the PGE+SS
framework, in exactly the same way as the k-tree algorithm does. In principle
this provides a range of memory-efficient tradeoffs to solve the (full) decoding
problem, yet the main hurdle in a straightforward application of dissection to
this context is that its granularity is quite coarse; in particular it is coarser
than the one of the k-tree algorithm. In this section we slightly adapt the dis-
section to decrease its granularity and make it more easily applicable to the
PGE+SS framework. We then compare the results with instantiations based on
the (smoothed) k-tree algorithm in the next Section 4.5.

Let n, l, r, m be as above; a straightforward adaptation of Eq. (2) to the use
of dissection is:

3m ≤ 2(k+l)/r. (4)

By design, an r-dissection with gain g returns solutions to an r-list problem
with target size (at most) (g+1)m in amortised constant time. If used within the
PGE+SS framework, one thus ideally requires that l ≤ (g+ 1)m. When the size
l of the sub-problem increases, and since g increases monotonically with r one
may require to increase r at some point in order to remain in the same regime.
Yet since Sl decreases with l while the granularity of the dissection increases
with r, this eventually results in unattractive instantiations of the PGE+SS
framework where more solutions to the sub-problem are returned than needed.
Essentially this quick analysis hints at the fact that the dissection framework is
mostly useful in the low-memory regime implied by small values of l.

Improving the granularity of the dissection. Recall that at a high level,
the granularity of an r-dissection with gain g in the amortised constant time
regime is equal to 3m(r−2g−1).



16 Pierre Karpman and Charlotte Lefevre

One may first remark that since such a dissection recursively decomposes
into an (r− 1− g)-dissection and a meet-in-the-middle algorithm on g + 1 lists,
and since the solutions returned by the former are processed on-the-fly, one may
possibly reduce the granularity by asking the former to return fewer solutions
(i.e. not to be exhaustive in its resolution of the recursive sub-problem). However
this will only decrease the granularity if the lowered cost of this non-exhaustive
dissection does not become smaller than the one of the meet-in-the-middle, which
otherwise would dominate the running time. Yet if this condition is not met one
may replace this meet-in-the-middle algorithm by a (g + 1)-dissection to do
the exact same work at a lower cost,6 as already considered by Dinur [5]. We
illustrate this in Example 13 and generalise the process in Proposition 14.

Example 13 (11-dissection with lowered granularity). An 11-dissection has gain
3 and is composed of a 7-dissection and a meet-in-the-middle algorithm. In the
amortised constant time regime the 7-dissection has granularity at most 32m but
the meet-in-the-middle with 4 lists and memory 3m has time cost 33m, so the
granularity of the 11-dissection for a target of size 4m is given by the latter and
equal to 33m. Even though this is already smaller than what one would obtain
by asking the 7-dissection to exhaustively return the 34m solutions to its sub-
problem of size 3m, it is possible to do better: since a 4-dissection has gain 1,
using one instead of a meet-in-the-middle algorithm lets one building the list L′

in time 32m, thus lowering the overall granularity to 32m.

Proposition 14. The granularity of an r-dissection with gain g, initial lists size
3m and target size at most m(g + 1) is 3m(g−gain(g+1)).

Proof. It is enough to prove the statement for target sizes exactly m(g + 1),
since lower sizes can then be accommodated for by considering one or more
larger dummy targets.

We prove this by induction on the gain g.
The base case g = 1 corresponds to a 4-, 5- or 6-dissection. We have already

seen in Example 11 that the granularity of the 4-dissection is 3m. The 5- and
6-dissection just add one or two additional lists to a 4-dissection and thus cannot
have a lower granularity.

We now assume that the property holds for any dissection of gain g− 1 ≥ 1,
and will prove it for any dissection of gain g. Consider an r-dissection of gain g;
by construction it is built from an (r−g−1)-dissection of gain g−1 and (with our
tweak) an exhaustive (g+1)-dissection. The time cost of the (g+1)-dissection is
O(3m(g−gain(g+1))) while it returns 3m intermediate solutions, and by induction
the granularity of the (r−g−1)-dissection is 3m(g−1−gain(g)). Since 1+gain(g) ≥
gain(g+ 1), the latter dissection is more fine-grained than the former; it is then
possible to ask the (r− g− 1)-dissection to return only 3m(g−gain(g+1)) solutions
with a target size of mg in amortised constant time. The remaining target size

6 Remark that there would be no point in doing this in an exhaustive dissection since
in that case the cost of the (exhaustive) (r− 1− g)-dissection is always higher than
the one of the meet-in-the-middle.



Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 17

required to merge the solutions of the two sub dissections into solutions of the
main one being m, one expects to find 3m(g−gain(g+1)) of them and so the r-
dissection is able to provide that many solutions in amortised constant time. ut

Despite the improvement provided by Proposition 14, the granularity of the
dissection remains too high in our context for many values of l, as shown in
Example 15.

Example 15. Let l = 0.04n, one has Sl ≈ 30.0148n. Solving the derived r-list
problem using dissection in the amortised constant time regime and with min-
imum memory gives the constraint m = l/(g + 1) and the granularity is thus
3m(g−gain(g+1)) = 3l(g−gain(g+1))/(g+1); this latter quantity is lower-bounded by
30.02n for any g and therefore no suitable dissection has a granularity less than
Sl. This fact is illustrated in Fig. 4 where no instantiation reaches the grey line
representing a time cost of Sl.

We conclude by proposing another tweak to the dissection framework to
further reduce its granularity. Recall that we let µ = 1 for simplicity, but the
process generalises to other values in the same way as the original dissection.
Let us again consider an r-dissection of gain g with initial lists of size 3m and
denote by 3s the desired number of solution. Assume that s < m(g − gain(g +
1)), so that the granularity guaranteed by Proposition 14 is too high. The idea
here is to reduce the dominating time cost of the exhaustive (g + 1)-dissection
by asking for fewer solutions, which mechanically means that the number of
solutions that need to be returned by the (r−g−1)-dissection has to be increased.
In some sense this consists in balancing the cost of the two sub-problems in the
(typically highly asymmetric) dissection, and thus making it somewhat closer
to a k-tree algorithm. A possible explanation as to why this eventually leads
to better results is that when only a very small fraction of the total number
of solutions is required, more symmetric algorithms (one of whose drawbacks
is that they highly decimate the solution space) tend to perform better. More
formally one asks for 3s+c solutions in the (r− g−1)-dissection and 3m−c in the
(g + 1)-dissection for some c ∈ R, and the overall time cost is minimised under
the equality constraint:

s+ c = m(g − gain(g + 1))− c,
which gives:

c =
m(g − gain(g + 1))− s

2

One must also satisfy the “granularity constraint” given by the (r − g − 1)-
dissection, viz.:

s+ c ≥ m(g − 1− gain(g)).

There are then two possibilities:{
s ≥ m(g − gain(g + 1)) : gain(g + 1) = gain(g) + 1

s ≥ m(g − 2− gain(g + 1)) : gain(g + 1) = gain(g)



18 Pierre Karpman and Charlotte Lefevre

As it was initially assumed that s < m(g−gain(g+1)), this technique is thus
only useful if gain(g+1) = gain(g). In that case and under the above conditions,
one can check that the granularity constraint of the (g+1)-dissection is satisfied
and so the overall time cost is given by O(3s+c) = O(3(m(g−gain(g+1))+s)/2).
This is simply the middle point (in the exponent) between the granularity of the
original dissection and the number of required solutions. Here the solutions are
not obtained in amortised constant time any more, but one does not “waste”
any in the sense that only the desired number is returned.

In Fig. 4, the time-memory tradeoffs obtained by using this modified dissec-
tion are drawn in black.

Finally one may somewhat further extend the above by using a u-dissection
instead of a (g + 1)-dissection for some parameter u, further balancing the cost
of the two sub dissections. This does not provide an added gain from the above
but allows a finer control of the time/memory ratio.

Results. We illustrate the time-memory tradeoffs offered by the dissection to
solve the ternary syndrome decoding problem in the Wave regime in Fig. 4. For
simplicity, this graph illustrates the tradeoffs obtained using only a fixed (sub-
optimal) value of l = 0.04n; the best tradeoffs, all using l < 0.034n, are shown in
Fig. 5 in the next Section 4.5. The figure was obtained by using the parameter
selection algorithms given in the full version [9] and implemented in https:

//github.com/charlotte-lefevre/TM_tradeoffs_SDP. All the results come
from a single 400-dissection which, as remarked previously, allows to implicitly
consider many dissections with fewer initial lists by simply varying µ. We do not
consider r-dissections with r > 400, since it would only improve the tradeoffs
T ≈ Mm with m > 20. The figure reads as follows: each line represents a
different value for µ in ascending order from left to right, and each point on a
line represents a different value for m, the log3 of initial lists size. The additional
tradeoffs obtained with the last proposed tweak to improve its granularity are
singled out as black crosses, and provide here the best results.

Finally a notable aspect of the results shown in Fig. 4 (which also applies to
Fig. 5) is that there is very little interest in increasing the memory allocated to
the dissection beyond a certain point.

4.5 Comparison of the k-tree & dissection frameworks

The k-tree and dissection frameworks may both be used to solve the same r-list
problems. In this short section we wish to compare these two options and show
in which regimes they respectively perform better. We again let by definition 3m

be the initial lists size.
We start with an example, comparing a 16-dissection with a 16-tree algo-

rithm. The 16-dissection of gain g = 4 is split into an 11-dissection and a 5-
dissection, with a total recursion depth equal to 5; the maximal target size for
which this dissection may provide solutions in amortised constant time is thus
equal to 5m = (g+1)m. The 16-tree algorithm has a total number of levels equal

https://github.com/charlotte-lefevre/TM_tradeoffs_SDP
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP


Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 19

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
log(M)/n

0.02

0.03

0.04

0.05

0.06

0.07

0.08

lo
g(
T)

/n

Sl

k-tree + representations [1]
400-dissection
400-dissection with reduced granularity

Fig. 4: Time-memory tradeoffs offered by the use of a 400-dissection within the
PGE+SS framework with l = 0.04n. The grey line represents the desired number
of solution Sl for this particular l.

to 4, and the maximal target size for which it may provide solutions in amortised
constant time is 4m. Now considering a full-weight sub syndrome decoding prob-
lem of target size l, setting m to l/5 (resp. l/4) minimises the memory cost and
granularity of the 16-dissection (resp. 16-tree algorithm) while allowing to find
solutions in amortised constant time. In this case the dissection’s granularity is
33l/5 while the one of the k-tree is 3l/4. It is thus mostly beneficial to use the
more memory-efficient 16-dissection over a 16-tree algorithm when Sl ≥ 33l/5,
which asymptotically holds for l / 0.028n, while the granularity of the 16-tree
itself will not be a limiting factor until the much larger value of l ≈ 0.051n; since
Sl is decreasing with increasing l in this range, it means that a 16-tree is able
to reach a lower time cost than a 16-dissection, but with a comparably higher
memory cost.

More generally, we may compare a 2a-tree with a 2a-dissection: from Eq. (3)
the gain of the dissection is approximately 2(a+1)/2, and it follows from Propo-

sition 14 that its granularity is approximately 3m2a/2

, which is to be compared
with the much lower 3m for the k-tree algorithm. The maximum target size for
which the dissection may provide solutions in amortised constant time is then
≈ m2(a+1)/2, much larger than the k-tree algorithm at am. One may then again
remark that the dissection is much more memory-efficient than the k-tree algo-
rithm as it allows to return exponentially-more solutions in amortised constant



20 Pierre Karpman and Charlotte Lefevre

time with the same memory usage, but that its efficient usage may be limited
by an exponentially-larger granularity.

We conclude this comparison by plotting in Fig. 5 the best time-memory
tradeoffs we obtained by applying the dissection & k-tree frameworks to ternary
syndrome decoding in the Wave regime. In consistency with the above analysis,
dissection performs significantly better than the k-tree algorithm in the low-
memory regime where the total memory cost M / 30.0073n; there is also little
interest in using memory larger than ≈ 30.0025n since doing so only very moder-
ately decreases the time cost. All of those points correspond to small values for
the l parameter for which the dissection granularity matches the large number of
required solutions. In the large-memory regime the dissection looses its interest
and it becomes significantly outperformed by the k-tree algorithm whose fine
granularity is not limiting until much larger values of l.

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
log(M)/n

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

lo
g(
T)

/n

k-tree + representations [1]
smoothed k-tree
400-dissection after minimization

Fig. 5: Time-memory tradeoffs for the ternary syndrome decoding problem in
the Wave regime from the k-tree & dissection frameworks. The results for the
dissection are the best tradeoffs obtained from a 400-dissection after minimisa-
tion with l, µ and m.

5 Dissection in tree for syndrome decoding

We now present the “hybrid” Multiple-Layer List Sum Algorithms (which we
will call “dissection in tree” for short) introduced by Dinur as a framework to



Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 21

solve generic generalised birthday problems [5], and apply it to ternary syndrome
decoding. Similarly to the algorithms of the previous section, fully exploiting the
framework in our particular case requires careful parameter selection and some
modifications in particular to improve the granularity.

5.1 The main algorithm of dissection in tree

The idea behind dissection in tree is in fact quite straightforward: it consists in
replacing the binary tree structure underlying the k-tree algorithm with an n-ary
one and using (typically exhaustive) n-dissection to implement the merging of
lists at each level. Similarly as in the k-tree framework, the merging is usually
done w.r.t. targets whose sizes ensure that the expected list size is maintained
constant through the tree, except possibly at the root level.

We first illustrate this in our case with a tree of three levels of 4-dissection,
which we denote as a 3,4-dissection; Fig. 6 shows the structure of the resulting
tree. This instance provides some of the best tradeoffs we were able to obtain
for syndrome decoding in the Wave regime.

3l/8

3l/4

l

Fig. 6: Illustration of 4-dissection with three levels and M = 3l/8.

Since in this case the number of leaves is equal to 43 = 64, and again letting
3m denote by definition the cardinal of the lists, an immediate adaptation of the
constraint from Eq. (2) gives here:

3m ≤ 2
k+l
64 (5)

To keep a constant expected size for the lists of the first two levels, the target
size is set to 3m. At the last level, the remaining target size is equal to l − 6m,
where l again denotes the total target size. The expected number of returned
solutions S for a thusly parameterised 3,4-dissection is then given by:



22 Pierre Karpman and Charlotte Lefevre

S =
34m

3l−6m
=

310m

3l

Since the time cost of an exhaustive 4-dissection is O(32m), one obtains the
following constraint for the solutions to be returned in amortised constant time:

310m

3l
≥ 32m ∴ m ≥ l

8
,

and one would typically use the minimal admissible value m = l
8 .

Comparison with a 64-tree. It is quite relevant to compare the performance of
3,4-dissection and a k-tree instance with 6 levels, since both instantiations have
a similar structure and use the same number of lists. When applied to syndrome
decoding and even without specific adaptation, the 3,4-dissection performs sys-
tematically better: as shown above, it is able to provide solutions to the sub
decoding problem for a target of size l in amortised constant time with memory
cost O(3l/8), while the 64-tree requires a memory of size O(3l/6) to achieve the
same. Informally one effect at play here is that using a dissection allows to find
solutions that are less structured compared to a k-tree algorithm, and one thus
does not require to increase the memory as much as the latter does to compen-
sate for a high decimation of the solution space. One beneficial effect of a lower
memory consumption is then that it leads to a wider range of target sizes: the
constraint from Eq. (5) is “easier” to satisfy than Eq. (2), thus allowing for lower
time cost for identical memory costs. There is however one downside to using
dissection in tree: the granularity of 3l/4 = 32m = 32(l/8) of the 3,4-dissection
is coarser than the 3l/6 of the 64-tree, which can be explained from the use of
inherently coarser dissections to perform the merging. While this never makes
3,4-dissection “worse” than a 64-tree, it does prevent exploiting its full potential.

We summarise this comparison in Fig. 7, which plots the best time-memory
tradeoffs obtained from raw 3,4-dissection and 64-tree and various values of l
(shown in false colour). Two regimes are clearly observable for the 3,4-dissection
whose coarse granularity makes it returning too many solutions for somewhat
large values of l.

The analysis of a general raw h, r-dissection tree is a straightforward exten-
sion of the above example for the 3,4-dissection.

Letting again 3m be by definition the initial list size, enforcing equally-sized
lists gives target sizes of m(r−1) at every level of the tree but the last, where it is
l−m(r−1)(h−1). Then if we let g = gain(r), the cost of one dissection is equal
to O(3m(r−1−g)) and returning solutions in amortised constant time translates
into the following:

3mr

3l−m(r−1)(h−1) ≥ 3m(r−1−g) ∴ m ≥ l

(r − 1)(h− 1) + 1 + g
, (6)



Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 23

0.002 0.004 0.006 0.008 0.010 0.012 0.014
log(M)/n

0.018

0.020

0.022

0.024

0.026

0.028

0.030

0.032

0.034
lo

g(
T)

/n
3,4 dissection
64-k-tree

0.01

0.02

0.03

0.04

0.05

Va
lu

e 
of

 l 
co

ef
fic

ie
nt

Fig. 7: Best time-memory tradeoff for the syndrome decoding problem in the
Wave regime using raw 3,4-dissection and 64-tree.

or simply m = l/((r − 1)(h− 1) + 1 + g) when minimising the memory.
Finally, the straightforward generalisation of Eq. (5) is given by:

3m ≤ 2
k+l

rh (7)

We provide the full algorithm for this parameter selection in the full ver-
sion [9], and an implementation at https://github.com/charlotte-lefevre/
TM_tradeoffs_SDP.

5.2 Improvements for syndrome decoding

We now present (and ultimately combine) two improvements to the dissection
in tree: the first aims at reducing its granularity while the second is a straight-
forward adaptation of the smoothing technique. The price to pay for both are
exponentially larger memory costs and thus less favourable tradeoffs.

Improving the granularity of the dissection in tree. In a raw dissection
tree, the dissections performed at every level are exhaustive. To decrease the
overall granularity, one idea would then be to consider non-exhaustive dissections
so that fewer solutions are eventually returned. This however also requires to

https://github.com/charlotte-lefevre/TM_tradeoffs_SDP
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP


24 Pierre Karpman and Charlotte Lefevre

decrease the target sizes at every level to compensate, and thus also to increase
the initial list sizes if one wishes to return solutions in amortised constant time.

Let α be a new parameter s.t. the r-dissection now enumerates only 3m(r−α)

candidates from the product of the r input lists. Enforcing equally-sized lists
gives target sizes of m(r − 1 − α) at every level of the tree but the last, where
it is l−m(h− 1)(r− 1−α). The expected number of returned solutions is then
equal to:

S =
3m(r−α)

3l−m(h−1)(r−1−α) (8)

Each dissection now costs O(3m(r−g−1−α)) (provided that this is not lower
than their granularity), and returning solutions in amortised constant time trans-
lates into the following:

3m(r−α)

3l−m×(h−1)(r−1−α)
≥ 3m(r−g−1−α)

∴ m ≥ l

(h− 1)(r − 1) + 1 + g − α(h− 1)
(9)

The memory increase for positive values of α is then visible by comparing
Eq. (6) and Eq. (9).

It remains to determine the optimal α, which in the amortised constant time
regime is constrained by two phenomena:

1. The number of returned solutions must not be greater than necessary, i.e.
S ≤ Sl. Letting s = log3(Sl) and injecting the minimal value for m given by
Eq. (9) into Eq. (8) gives (after a tedious computation):

[l − (h− 1)s]× α ≥ [l(r − g − 1)− s(g + 1 + (h− 1)(r − 1))] (10)

2. The required number of solution at every level must not be lower than the
granularity of the dissection. From Proposition 14 this gives:

r − g − 1− α > g − gain(g + 1) (11)

One would then pick the smallest value of α satisfying both constraints
to minimise the overall memory cost. We provide the full algorithm for this
parameter selection in the full version [9], and an implementation at https:

//github.com/charlotte-lefevre/TM_tradeoffs_SDP.

Smoothing the dissection tree. Since the dissection tree features a popula-
tion constraint similar to the k-tree algorithm, we may adapt to it the smoothing
technique from Proposition 9. This leads to the following:

https://github.com/charlotte-lefevre/TM_tradeoffs_SDP
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP


Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 25

Proposition 16. Let l, r, h be fixed, g := gain(r). If 3l > 2(k+l)/(r
h−1) and

3l/(g+1+(r−1)(h−2)) < 2(k+l)/(r
h−1) , then one can use a smoothed tree with h

levels of r-dissections to obtain 2m(r−g−1) solutions to the generalised birthday
problem with r lists in amortised constant time, where:

m =
1

(h− 2)(r − 1) + g

(
l log2(3)− k + l

rh−1

)
.

The proof is similar to the one of Proposition 9 and given in the full ver-
sion [9], along with the parameter selection algorithm.

Combination of the improvements. There are settings where both previous
improvements may be jointly necessary. This can be done by using a two-step
process: the bottom level of the tree is used to satisfy a constraint of size t,
which becomes a parameter, in a possibly non-exhaustive way as controlled by
a parameter β. As in a smoothed tree, the goal is to produce intermediate lists
of size 3m (where m is another parameter), starting from ones of size 3m̃, m̃ :=

log3(2
k+l

rh ). Then the h−1 remaining levels are required to satisfy a target of size
l − t with input lists of size 3m, in a possibly non-exhaustive way as controlled
by a parameter α.

Parameters leading to valid instances in amortised constant time must then
satisfy the following constraints:

1. The expected list size is larger than 3m after the first level:

3m̃×(r−β)

3t
≥ 3m ∴ β ≤ r − m+ t

m̃

2. The parameter α is constrained by Eqs. (10) and (11).
3. The parameter β is constrained by Eq. (11).
4. The cost is dominated by the upper part of the tree:

3m̃×(c−β) ≤ 3m(c−α) ∴ β ≥ c− m

m̃
(c− α),

where c := r − g − 1.

When searching for valid parameterizations, it is best to first select the value
for t and to take it as large as possible as this minimises the memory cost. This
makes sense, intuitively, since in that case the tree is as close as possible to a
balanced (non-smoothed) one.

The full parameter selection algorithm is given in the full version [9] and
an implementation is provided at https://github.com/charlotte-lefevre/

TM_tradeoffs_SDP. The impact of the granularity improvements, also combined
with smoothing, are illustrated for the 3,4-dissection in Fig. 8. Thanks to these
improvements, the 3,4-dissection is now applicable to larger memory regimes but
at the cost of less favourable tradeoffs (clearly observable from the changes of
the slopes).

https://github.com/charlotte-lefevre/TM_tradeoffs_SDP
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP


26 Pierre Karpman and Charlotte Lefevre

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
log(M)/n

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

lo
g(
T)

/n

k-tree + representations [1]
3,4 dissection
3,4 dissection with improved granularity
3,4 dissection with combination of the improvements

Fig. 8: Best time-memory tradeoff for the syndrome decoding problem in the
Wave regime using 3,4-dissection. From M ≈ 20.01n, the granularity of the 3,4-
dissection becomes too coarse, so that non-exhaustive dissections are henceforth
considered. Then at M ≈ 20.0112n, Eq. (7) is no more satisfied, leading thus to
the use of the smoothing technique.

5.3 Experimental results

As a proof of concept, we implemented the 3,4-dissection algorithm using Sage.
The main aim here is to check that the practical number of iterations of the Sub-
set sum step before finding a solution to the SDP coincides with the theoretical
prediction. This implementation is not fully optimised and relies on a general-
purpose finite-field linear algebra software packaged within Sage. This restricts
its usage to relatively small parameters and we only considered instances up to
n = 875, which in the Wave regime translates to k = 591, l = 48. With this
instantiation, one iteration of the Subset sum step combined with the Proba-
bilistic reconstruction step takes on average 800 seconds on a (virtualised) i386
processor.7 With 10 runs of the full algorithm, 5.7 iterations of the Subset sum
step were necessary on average before finding a solution, which is somewhat
consistent with the theoretically expected 2.9, especially given the small number
of runs. Moreover, with the instantiation n = 560, k = 379, l = 34, the average
number of iterations with 110 runs is 12.05, which comes very close to the 12.3
expected number of iterations.

7 The computer used for the tests has an Apple M1 processor, but Sage uses Apple’s
Intel emulator.



Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 27

The code of this proof-of-concept implementation is available at https://

github.com/charlotte-lefevre/TM_tradeoffs_SDP.

6 Application to Wave

We summarise our best time-memory tradeoffs for solving the syndrome de-
coding problem in the Wave regime in Fig. 9. We do this in two settings: in
Fig. 9b we use asymptotic estimates similar to the ones used in the previ-
ous sections, while Fig. 9a is an estimate in bit complexity for concrete pro-
posed security parameters. The plots were all drawn using the parameter se-
lection algorithms presented in the full version [9], and the code is available at
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP.

From these figures it is notable that dissection in tree always outperforms
k-tree instantiations (except in the regime where time and memory are about
equal) and almost always outperforms dissection (it is about equivalent in the
very low memory regime). For instance, the bit complexity estimate for the 3,4-
dissection at M ≈ 290 is about 225 times less than using a smoothed k-tree
algorithm with the same amount of memory. For low-memory regimes, the best
instances use layered dissections with 2 levels, while from M ≈ 20.009n, the best
tradeoffs are obtained with 4, 4 or 3, 4-dissections.

Table 2: Bit cost estimates for various tradeoffs for solving the generic syndrome
decoding problem, n = 7236, k = 4892, w = 6862.

Time Memory Target tradeoff Algorithm

2152 2144 T = M k-tree + representations [1]
2162 2130 T = M5/4 3,4-dissection
2177 288.5 T = M2 3,4-dissection
2194 264.8 T = M3 2,11-dissection
2213 242.6 T = M5 2,16-dissection
2247 224.6 T = M10 2,29-dissection

The bit costs of Fig. 9a correspond to Wave’s “new” parameters n = 7236,
k = 4892, w = 6862 [1], and were computed using the following assumptions or
simplifications:

– Elements of F3 are stored on 2 bits, and elementary operations in Fn3 cost
2n bit operations.

– Polynomial factors of the algorithms are taken into account.
– Polynomial factors in the estimate for Sl are taken into account.
– Computing L1 ./w L2 for some lists L1, L2 of elements of Fn3 and some w

costs 2n(#L1 + #L2) as long as the size of the result is not larger than one
of the input lists.

https://github.com/charlotte-lefevre/TM_tradeoffs_SDP
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP


28 Pierre Karpman and Charlotte Lefevre

0 20 40 60 80 100 120 140 160
log(M)

140

160

180

200

220

240

260

280
lo

g(
T)

T=
M⁴

T=
M³

T=
M²

smoothed k-tree
k-tree + representations [1]
r = 4 h = 3
r = 11 h = 2

r = 16 h = 2
r = 22 h = 2
r = 29 h = 2

(a) Bit cost for fixed parameters.

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
log(M)/n

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

lo
g(
T)
/n

T=
M⁴

T=
M³

T=
M²

dissection
smoothed k-tree
k-tree + representations [1]
r = 11 h = 2
r = 16 h = 2

r = 22 h = 2
r = 29 h = 2
r = 4 h = 3
r = 11 h = 3
r = 4 h = 4

(b) Asymptotic cost.

Fig. 9: Summary of obtained time-memory tradeoffs. For the dissection in tree,
r denotes the dissection used and h the number of levels.



Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 29

The last simplification implies a constant cost for memory access, which is
an unrealistic underestimation for most of the considered memory sizes. The
provided costs should thus not be interpreted as precise estimates but rather as
intermediate points between asymptotic computations and a full and accurate
modelling of an attack, which is out of the scope of this paper.

Finally, we list some of the most notable tradeoffs for concrete parameters in
Table 2.

Acknowledgements

The first author was partially supported by the French National Research Agency
in the framework of the Investissements d’avenir programme (ANR-15-IDEX-
02). The second author is in part supported by the Netherlands Organisation for
Scientific Research (NWO) under grant OCENW.KLEIN.435. Part of this work
was done when the second author was with Université Grenoble Alpes, and was
partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01)
in the framework of the Investissement d’avenir programme. Finally we wish to
thank the reviewers for all their comments.

References

1. Rémi Bricout, André Chailloux, Thomas Debris-Alazard, and Matthieu Lequesne.
Ternary Syndrome Decoding with Large Weight. In Kenneth G. Paterson and
Douglas Stebila, editors, SAC 2019, volume 11959 of Lecture Notes in Computer
Science, pages 437–466. Springer, 2019.

2. John T. Coffey and Rodney M. Goodman. The complexity of information set
decoding. IEEE Trans. Inf. Theory, 36(5):1031–1037, 1990.

3. Thomas Debris-Alazard. Cryptographie fondée sur les codes : nouvelles approches
pour constructions et preuves ; contribution en cryptanalyse. (Code-based Cryp-
tography: New Approaches for Design and Proof ; Contribution to Cryptanalysis).
PhD thesis, Pierre and Marie Curie University, Paris, France, 2019.

4. Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. Wave: A New
Family of Trapdoor One-Way Preimage Sampleable Functions Based on Codes. In
Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, volume 11921
of Lecture Notes in Computer Science, pages 21–51. Springer, 2019.

5. Itai Dinur. An algorithmic framework for the generalized birthday problem. Des.
Codes Cryptogr., 87(8):1897–1926, 2019.

6. Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Efficient Dissection
of Composite Problems, with Applications to Cryptanalysis, Knapsacks, and Com-
binatorial Search Problems. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 719–740.
Springer, 2012.

7. Andre Esser, Felix Heuer, Robert Kübler, Alexander May, and Christian Sohler.
Dissection-BKW. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO
2018, volume 10992 of Lecture Notes in Computer Science, pages 638–666. Springer,
2018.



30 Pierre Karpman and Charlotte Lefevre

8. Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knap-
sacks. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110, pages 235–256.
Springer, 2010.

9. Pierre Karpman and Charlotte Lefevre. Time-memory tradeoffs for large-weight
syndrome decoding in ternary codes. IACR Cryptol. ePrint Arch., 2022. Full
version, to appear.

10. Alexander Meurer. A coding-theoretic approach to cryptanalysis. PhD thesis, Ruhr
University Bochum, 2013.

11. Lorenz Minder and Alistair Sinclair. The Extended k-tree Algorithm. J. Cryptol.,
25(2):349–382, 2012.

12. Robert Niebuhr, Pierre-Louis Cayrel, Stanislav Bulygin, and Johannes Buchmann.
On lower bounds for information set decoding over Fq. In SCC 2010, volume 10,
pages 143–157, 2010.

13. Christiane Peters. Information-Set Decoding for Linear Codes over Fq . In Nico-
las Sendrier, editor, PQCrypto 2010, volume 6061 of Lecture Notes in Computer
Science, pages 81–94. Springer, 2010.

14. Eugene Prange. The use of information sets in decoding cyclic codes. IRE Trans.
Inf. Theory, 8(5):5–9, 1962.

15. Richard Schroeppel and Adi Shamir. A T = O(2n/2), S = O(2n/4) algorithm for
certain NP-complete problems. SIAM J. Comput., 10(3):456–464, 1981.

16. Rodolfo Canto Torres. Asymptotic analysis of ISD algorithms for the q-ary case.
In Proceedings of the Tenth International Workshop on Coding and Cryptography
WCC 2017, 2017.

17. David A. Wagner. A Generalized Birthday Problem. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 288–303.
Springer, 2002.


	Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 

