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Abstract Studying the security and efficiency of blind signatures is an
important goal for privacy sensitive applications. In particular, for large-
scale settings (e.g., cryptocurrency tumblers), it is important for schemes
to scale well with the number of users in the system. Unfortunately, all
practical schemes either 1) rely on (very strong) number theoretic hard-
ness assumptions and/or computationally expensive pairing operations
over bilinear groups, or 2) support only a polylogarithmic number of
concurrent (i.e., arbitrarily interleaved) signing sessions per public key.
In this work, we revisit the security of two pairing-free blind signature
schemes in the Algebraic Group Model (AGM) + Random Oracle Model
(ROM). Concretely,
1. We consider the security of Abe’s scheme (EUROCRYPT ‘01), which

is known to have a flawed proof in the plain ROM. We adapt the
scheme to allow a partially blind variant and give a proof of the new
scheme under the discrete logarithm assumption in the AGM+ROM,
even for (polynomially many) concurrent signing sessions.

2. We then prove that the popular blind Schnorr scheme is secure un-
der the one-more discrete logarithm assumption if the signatures
are issued sequentially. While the work of Fuchsbauer et al. (EURO-
CRYPT ‘20) proves the security of the blind Schnorr scheme for con-
current signing sessions in the AGM+ROM, its underlying assump-
tion, ROS, is proven false by Benhamouda et al. (EUROCRYPT
‘21) when more than polylogarithmically many signatures are issued.
Given the recent progress, we present the first security analysis of the
blind Schnorr scheme in the slightly weaker sequential setting. We
also show that our security proof reduces from the weakest possible
assumption, with respect to known reduction techniques.

1 Introduction

Blind signatures, first introduced by Chaum [17], are a fundamental crypto-
graphic building block. They find use in many privacy sensitive applications
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such as anonymous credentials, eCash, and eVoting. Informally, a blind signa-
ture scheme is a interactive protocol between a user and a signer. Here, the
signer holds a secret key sk and the user holds the corresponding public key pk.
The goal of the interaction is for the user to learn a signature σ on a message m
of its choice such that σ can efficiently be verified using pk. The protocol should
ensure two properties [29]: (1) One-More-Unforgeability: if the protocol is run
` times, the user should not be able to create ` + 1 or more valid signatures
(2) Blindness: the signer cannot link the transcripts of protocol runs to the sig-
natures that they created. In particular, it does not learn the messages that it
signs. In a practical setting, signer and user might however want a more relaxed
property to include some shared information, e.g. a date when the signature was
issued or an expiration date. To this end, Abe and Fujisaki [2] introduced Partial
Blindness which guarantees that signatures with the same shared information,
the so-called tag, are unlinkable to protocol runs using this tag.

In spite of decades of study, the security guarantees of practical blind and
partially blind signature schemes remain unsatisfactory. Practical constructions
rely on strong number-theoretic hardness assumptions and/or computationally
expensive pairing operations over bilinear groups [9, 13, 21, 24, 36]. Other con-
structions rely on weaker assumptions (and no pairings) but allow only for
a very small (polylogarithmic) number of signatures to be issued per public
key [3,15,27,28,38,40–42]. The reason for this is that the homomorphic structure
of these schemes gives rise to the so-called ROS attack (Random inhomogenities
in Overdetermined System of equations) when sufficiently many sessions of the
scheme are executed concurrently (i.e., if session can be interleaved arbitrarily).
Shortly after its discovery by Schnorr [45], Wagner [47] showed how to carry
out the ROS attack in sub-exponential time against the Schnorr and Okamoto-
Schnorr [35] blind signature schemes.4 A recent result of Benhamouda et al. [12]
improved the parameters of Wagner’s attack, presenting the first polynomial-
time attack (assuming that polylogarithmically many signing sessions can be
opened concurrently).

1.1 Our Results

In this work, we revisit the security properties of two classic blind signature
schemes which do not rely on pairings: Schnorr’s blind signature scheme [16,44]
and Abe’s blind signature scheme [1]. Neither of these schemes have meaningful
security guarantees if the number of concurrent signing sessions is beyond poly-
logarithmic (in fact, Abe’s blind signature scheme has no security proof at all
in a non-generic model of computation). Given the popularity of these schemes,
we believe that a reassessment of their security properties is long overdue. We
give a summary of our results below.

4 Although the attack can be formulated for all the aforementioned blind signature
schemes, the algebraic structure in the latter two schemes gives rise to an efficient
attack.
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Abe’s Scheme. In the first part of our work, we study the concurrent security
properties of Abe’s blind signature scheme. This scheme was initially proven
secure under the DL assumption in the ROM (with blindness holding com-
putationally under the DDH assumption). However, a later work by Abe and
Ohkubo [34] pointed out that the original proof contained a flaw and gave a
security proof in the generic group model (GGM)+ROM instead. We general-
ize Abe’s scheme to the partially blind setting and prove security of our new
scheme in the more realistic AGM+ROM under the DL assumption. (We note
that Abe’s scheme can be obtained as a special case of our new scheme and thus
our proof of security thus applies also to Abe’s original scheme). As the work
of Abe and Ohkubo is not publicly available, our proof is inspired by Abe’s ori-
ginal proof and does not follow the blue print of a ‘GGM-style proof.’ Instead,
we give a more general (and involved) proof that uses the AGM to avoid the
rewinding step that causes the problem in Abe’s proof. Apart from generalizing
Abe’s scheme to the partially blind setting, avoiding rewinding has the bene-
fit that our reduction is tight, allowing for relatively practical parameter sizes.
We stress that our reduction allows for the scheme to be proven secure with
concurrent signing sessions and for polynomially many signatures per tag.

Schnorr’s Scheme. In the second part of our work, we focus on the security
of Schnorr’s blind signature scheme. As we have already explained, the security
of this scheme is completely broken in the concurrent setting for reasonable
parameters. In spite of this, the Schnorr scheme continues to be one of the most
popular blind signatures due to its simplicity and its efficiency. Hence, it is an
important open question to settle what type of security this scheme actually
does achieve (if any).

We show that the blind Schnorr signature scheme is secure in the algebraic
group model (AGM) [22] + random oracle model (ROM) [10] if signing sessions
are sequential, i.e., if the i-th session is always completed before the (i + 1)-st
session is opened.

In more detail, under the above model assumptions, the blind Schnorr sig-
nature scheme is secure against `-sequential one-more-unforgeability (`-SEQ-
OMUF) under the `-one-more discrete logarithm (`-OMDL) assumption. This
is true even when polynomially many signatures are issued for the same public
key pk. We remark that security under sequential signing sessions is still a very
meaningful security guarantee and has been explored in prior works (see below).
Namely, sequentiality of sessions is easy to ensure (from the signer’s perspective)
at the expense of some efficiency.

Our result improves upon that of Fuchsbauer et al. [23], which proves that
the scheme is secure under the OMDL+ROS assumption (when run concur-
rently). While the ROS problem is known to be information theoretically hard
as long as the number of concurrent signing sessions is polylogarithmic, the
recent work of Benhamouda et al. [12] shows a polynomial-time attack for
super-polylogarithmically many concurrent signing sessions. Therefore, the blind
Schnorr scheme is concurrently secure (in the AGM+ROM) if and only if the
signer issues at most polylogarithmically many signatures.

3



Negative Result (Schnorr). As OMDL is a relatively strong assumption (in
fact, [8] showed it is strictly stronger than q-discrete logarithm for known re-
duction approaches), a natural question is whether it is actually necessary for
proving Schnorr’s scheme secure. We answer this question by showing that our
reduction for blind Schnorr signatures in the AGM+ROM is optimal in the sense
that it is not possible to reduce `-SEQ-OMUF from (` − 1)-OMDL (or OMDL
with any lower dimension).

We use the meta-reduction technique [18] to rule out reductions in a very
strong sense: we show that any algebraic reduction that reduces `-SEQ-OMUF
from (` − 1)-OMDL in the AGM+ROM, can be turned into an efficient solver
against (` − 1)-OMDL. Our result complements that of Baldimtsi and Lysy-
anskaya [7], which also rules out a certain class of reductions for the blind Schnorr
scheme. Concretely, they show that reductions that program the random oracle
in a certain predictable way, can be turned into an efficient solver against the
underlying hardness assumption. While their approach restricts the type of ran-
dom oracle programming that the reduction may do, ours allows for arbitrary
programming, but restricts the reduction to be algebraic. On the other hand,
our (algebraic) reductions may themselves work in the AGM, which further
strengthens our result.

1.2 Related Work and Discussion

We have already mentioned several works that study the security of blind sig-
natures in the concurrent signer model. In the sequential model, the work of
Baldimtsi and Lysyanskaya [6] proves that an enhanced version of Abe’s scheme
is secure under DL. Pointcheval and Katz et al. [31, 39] give a transformations
that apply (among others) to the blind Schnorr and Okamoto-Schnorr scheme.
The resulting schemes remain secure even in the concurrent setting, but require
communication that grows linear in the number of signatures that have been
issued. In terms of practical parameters, these schemes are also significantly less
efficient than the schemes we consider here. Fuchsbauer et al. [23] gave a (con-
currently secure) scheme under the OMDL and modified ROS assumption in
the AGM+ROM. The latter assumption asserts the conjectured hardness of an
(apparently harder) version of the ROS problem, even given unbounded comput-
ing power. Nicolosi et al. [33] use a similar strategy to ours (i.e., by restricting
concurrency) to prove security of a proactive two-party signature scheme. In-
terestingly, they encounter similar issues as we do in our work, if concurrent
session are permitted. Drijvers et al. [19] show how a ROS based attack can be
applied in the context of multi-signatures (and how it can be overcome at the
cost of some efficiency). Finally, various constructions of blind signatures in the
standard model exist (e.g., [20, 25]), but are usually not considered practical.

The Algebraic Group Model. [22] introduced the algebraic group model
(AGM) as a formal model to analyze group based cryptosystems. Previous works
had considered algebraic algorithms, for example [14, 37]. In the AGM, any ad-
versary must output an explanation of how it computed its output group ele-
ments from the group elements in its input. Since its introduction, the AGM has
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been readily adopted [5,8,23,26,32] and has served as a useful tool to prove the
security of schemes that would be too difficult to analyze in the plain model. [43]
have furthermore extended the AGM to decisional assumptions.

While the AGM is a weakening of the GGM, proofs in the AGM are inherently
different from the GGM in the sense that they are reductions from one problem
to another instead of showing information-theoretic hardness. From a qualitative
point of view, proofs in the AGM provide a weaker form of security than proofs
in the plain model, but a much stronger one than proofs in the GGM. The
recent work of Agrikola et al. [4] shows that some results from the AGM can be
transferred to the standard model using strong but falsifiable assumptions. This
suggests that proofs in the AGM indeed hold some meaning for the plain model.

Another benefit of AGM proofs (over GGM proofs) is that they offer more
insight into how secure a scheme actually is when deployed in real-world applica-
tions, as we explain in the following. In the GGM, a proof consists of establishing
bounds on the runtime/success probabilities of an adversary attacking a partic-
ular signature scheme. These bounds often look similar for different schemes
from an asymptotic point of view. Because of this, they do not give much in-
sight into what computational assumptions are needed for the scheme to remain
secure when run in the real world. By comparison, AGM proofs are by means
of reduction from a computational assumption and thus can be used to assess
the real-world disparities between two schemes that ‘look equally secure’ in the
GGM. As a concrete example, our work gives a security proof for Abe’s scheme
under the discrete logarithm assumption. By comparison, we show that proving
Schnorr’s scheme secure (even under sequential signing sessions) requires the
much stronger OMDL assumption. Arguably, this makes Abe’s scheme the more
attractive choice (along with allowing for concurrent sessions) for real world sys-
tems. This insight could not have been gained from proving these schemes secure
in the GGM.

Open Questions. Our work leaves open the question of what can be proven
about both the Abe and Schnorr blind signature schemes in the random oracle
model only. Interestingly, the already mentioned work of Baldimtsi and Lysy-
anskaya [7] rules out a security proof for the blind Schnorr scheme using standard
reduction techniques even in the sequential signing model. Namely, their result
excludes such a reduction from a computational hardness assumption even if the
signer just issues a single signature (which trivially restricts the sessions to being
sequential). Another interesting direction for future work could be a more fine-
grained security analysis (in the AGM+ROM) of the Schnorr scheme in a less
restrictive signing model that allows for a low degree of concurrency. Namely,
the ROS attack requires a polylogarithmic number of signing sessions to be open
at the same time. Thus, it might be possible to prove the security of the scheme
if, say, up to a constant number of signing sessions may be interleaved at any
given point in time. Regarding Abe’s scheme, there might yet be a glimmer of
hope that the original proof can be salvaged (i.e., without requiring the AGM).
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1.3 Organization

We first recall some preliminaries in section 2. In section 3 we introduce our
adaption of Abe’s scheme to the partially blind setting. We provide a proof
of partial blindness under DDH in section 3.1 as well as a proof of one-more-
unforgeability in section 3.2. We then provide the proof of sequential security of
blind Schnorr signatures in the AGM in section 4 and show that this result is
optimal in the number of OMDL-queries in section 4.1.

Acknowledgements We would like to thank Chenzhi Zhu and Stefano Tessaro
for pointing out a flaw in a previous version of Claim 5. We would further like
to thank the anonymous reviewers for their helpful feedback.

2 Preliminaries

2.1 Notation and Security Games

Notation. For positive integer n, we write [n] for {1, . . . , n}. We write xj for
the j-th entry of vector −→x and write x $← X to denote that x is drawn uniformly
at random from set X . We denote the security parameter with λ.

Security Games. We use the standard notion of (prose-based) security games
[11, 46] to present our proofs. We denote the binary output of a game G with
an adversary A as GA and say that A wins G if GA = 1.

2.2 The Algebraic Group Model

In the following, let pp be public parameters that describe a group G of prime
order q with generator g. (We assume for simplicity that pp also includes the
security parameter λ.) We denote the neutral element by ε and write all other
group elements in bold face. We further write Zq for Z/qZ.

Definition 1 (Algebraic Algorithm). We say that an algorithm A is algeb-
raic if, for any group element y ∈ G that it outputs, it also outputs a list of
algebraic coefficients −→z ∈ Ztq, i.e.,

(y,−→z ) $← A(−→x )

such that
y =

∏
xzii

We denote this representation as [y]−→x . For an adversary A that has access to
oracles during its runtime, we impose the above restriction to all group elements
that it outputs to an oracle. Similarly, all group elements that A receives through
oracle interactions are treated as inputs to A; hence, such group elements become
part of −→x when A outputs group elements (and hence algebraic coefficients) at a
later point.

In the algebraic group model (AGM), all algorithms are treated as algebraic
algorithms. Moreover, we define the running time of an algorithm A in the AGM
as the number of group operations that A performs.
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2.3 Hardness Assumptions

We introduce the two main hardness assumptions that we will use in the sub-
sequent sections. As before, we will tacitly assume that some public parameters
pp are known and describe a group G of prime order q with generator g.

Definition 2 (Discrete Logarithm Problem (DLP)). For an algorithm A,
we define the game DLP as follows:

Setup. Sample x $← Zq and run A on input g,U := gx.

Output Determination. When A outputs x′, return 1 if gx
′

= U. Otherwise,
return 0.

We define the advantage of A in DLP as

AdvDLP
A := Pr

[
DLPA = 1

]
.

Definition 3 (One-More-Discrete Logarithm Problem (OMDL)). For
a stateful algorithm A and a positive integer `, we define the game `-OMDL as
follows:

Setup. Initialize C = ∅. Run A on input g.

Online Phase. A is given access to the following oracles:

Oracle chal takes no input and samples a group element y $← G. It sets
C := C ∪ {y} and returns y.

Oracle dlog takes as input a group element y. It returns dlogg y. We as-
sume that dlog can be queried at most ` many times.

Output Determination. When A outputs (yi, xi)
`+1
i=1 , return 1 if for all i ∈

[`+ 1]: yi ∈ C, gxi = yi, and yi 6= yj for all j 6= i. Otherwise, return 0.

We define the advantage of A in `-OMDL as

AdvOMDL
A,` := Pr

[
`-OMDLA = 1

]
.

Definition 4 (Decsional Diffie-Hellman Problem (DDH)). For an al-
gorithm A we define the game DDH as follows:

Setup. Sample x, y, z $← Zq and b $← {0, 1}. Run A on input (g,gx,gy,gxy+bz)

Output determination. When A outputs b′, return 1 if b = b′ and 0 otherwise.

We define the advantage of A in DDH as

AdvDDH
A :=

∣∣∣∣Pr[DDHA = 1]− 1

2

∣∣∣∣ .
7



2.4 (Partially) Blind Signature Schemes

In this section, we introduce the syntax and security definitions of partially blind
(three-move) signature schemes [27]. We note that a fully blind signature scheme
is a special case of a partially blind signature scheme where there is only one
tag info, the empty string. We will refer to schemes where the tag is always the
empty string as blind signature schemes.

Definition 5 (Three-Move Partially Blind Signature Scheme). A three-
move partially blind signature scheme is a tuple of algorithms BS = (KeyGen,Sign :=
(Sign1,Sign2),User := (User1,User2),Verify) with the following behaviour.

– The randomized key generation algorithm KeyGen takes as input paramet-
ers pp, and outputs a public key pk and a secret key sk. We assume for
convenience that pk contains pp and sk contains pk.

– The signing algorithm Sign := (Sign1,Sign2) is split into two algorithms:

• The randomized algorithm Sign1 takes as input a secret key sk and a tag
info and outputs a commitment C as well as a state stS.

• The deterministic algorithm Sign2 takes as input a secret key sk, a state
stS, and a challenge e. It outputs a response R.

– The user algorithm User := (User1,User2) is split into two algorithms:

• The randomized algorithm User1 takes as input a public key pk, a message
m, a tag info and a commitment C. It outputs a challenge e and a state
stU .

• The deterministic algorithm User2 takes as input a public key pk, a state
stU , and a response R. It outputs a signature σ or ⊥.

– The deterministic verifier algorithm Verify takes as input a public key pk, a
signature σ, and a message m and a tag info. It outputs either 1 (accept) or
0 (reject).

Definition 6 (Correcntess). We say that a partially blind signature scheme
BS = (KeyGen,Sign,User,Verify) is correct if for all messages m, all tags info
the following holds:

Pr

Verify(pk, sig,m, info) = 1:

(pk, sk) $← KeyGen(pp)
(C, stS) $← Sign1(sk, info)

(e, stU ) $← User1(pk,m, info, C)
R $← Sign2(sk, stS , e)
σ $← User2(pk, stU , R)

 = 1

Definition 7 (Partial blindness under chosen keys). We define partial
blindness of a three-move partially blind signature scheme BS against an ad-
versary M via the following game:

Setup. Sample b $← {0, 1} and run M on input pp.
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Online Phase. When M outputs messages m̃0 and m̃1, ˜info0 and ˜info1, and a

public key pk, check if pk is a valid5 public key, and ˜info0 = ˜info1. If so,

assign m0 := m̃b, info0 := ˜info0, m1 := m̃1−b, and info1 := ˜info1. If pk is not
a valid public key or info0 6= info1, abort and output 0. M is given access to
oracles User1,User2, which behave as follows.
Oracle User1: On input a bit b′, and a commitment C, if the session b′ is

not yet open, the game marks session b′ as open and generates a state
and challenge as (stb′ , e)

$← BS.User1(pk,mb′ , C, infob′). It returns e to
the adversary. Otherwise, it returns ⊥.

Oracle User2: On input a response R and a bit b′, if the session b′ is open,
the game creates the signature sigb′ as sigb′ := BS.User2(pk, stb′ , R) to
obtain a signature sigb′ . It marks session b′ as closed and outputs sigb′ .
If both sessions are closed and produced signatures, the oracle outputs
the two signatures sig0, sig1 to the adversary.

Output Determination. If both sessions are closed and produced signatures,
return 1 if the adversary outputs a bit b∗ s.t. b∗ = b. Otherwise, return 0.

We define the advantage of M in game BLINDBS as

AdvBLIND,BS
M :=

∣∣∣∣Pr
[
BLINDM = 1

]
− 1

2

∣∣∣∣ .
Definition 8 (`-(Sequential-)One-More-Unforgeability (`-(SEQ-)OMUF)).

For a stateful algorithm A, a three-move partially blind signature scheme BS,
and a positive integer `, we define the game `-OMUFBS (`-SEQ-OMUFBS) as
follows:

Setup. Sample (pk, sk) $← BS.KeyGen(pp) and run A on input (pk, pp).
Online Phase. A is given access to the oracles Sign1 and Sign2 that behave

as follows.
Oracle Sign1: On input info, it samples a fresh session identifier id (If

sequential, it checks if sessionid−1 = open and returns ⊥ if yes). If info
has not been requested before, it initializes a counter `closed,info := 0. It
sets sessionid := open and generates (Cid, stid)

$← BS.Sign1(sk, info).
Then it returns Cid and id.

Oracle Sign2: If
∑

info`closed,info < `, Sign2 takes as input a challenge e and
a session identifier id. If sessionid 6= open, it returns ⊥. Otherwise,
it sets `closed,info := `closed,info + 1 and sessionid := closed. Then it
generates the response R via R $← BS.Sign2(sk, stid, e) and returns R.

Output Determination. When A outputs tuples (m1, σ1, info1), . . . , (mk, σk, infok),
return 1 if there exists a tag info such that

∣∣{(mi, σi, infoi)
∣∣infoi = info

}∣∣ ≥
`closed,info + 1 (where by convention `closed,info := 0 for any info that has not

5 We include this in case the scheme permits such a check - for example, one can think
of schemes where the public key consists of group elements, in which case a user may
be able to check that the public key consists of valid encodings of group elements.
Another example of such a check is in the original version of Abe’s scheme [1] where
z = H1(g,h,y) which a user may check.
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been requested to the signing oracles) and for all i ∈ [k] : BS.Verify(pk, σi,mi, infoi) =
1 and (mi, σi, infoi) 6= (mj , σj , infoj) for all j 6= i. Otherwise, return 0.

We define the advantage of A in OMUFBS as

AdvOMUF
A,BS,` := Pr

[
`-OMUFA

BS = 1
]
.

And, respectively for SEQ-OMUFBS

AdvSEQ-OMUF
A,BS,` := Pr

[
`-SEQ-OMUFA

BS = 1
]
.

3 Adaption of Abe’s blind Signature Scheme to allow
partial blindness

We begin by describing an adaption of Abe’s blind signature scheme BSA [1] to
the partially blind setting. A figure depicting an interaction between signer and
user can be found in the full version [30]. Let again G be a group of order q
with generator g described by public parameters pp. Let H1 : {0, 1}∗ → G \ {ε},
H2 : {0, 1}∗ → G \ {ε}, H3 : {0, 1}∗ → Zq be hash functions.

– KeyGen : On input pp, KeyGen samples h $← G, x $← Zq and sets y := gx. It
sets sk := x, pk := (g,h,y) and returns (sk, pk).

– Sign1 : On input sk, info, Sign1 samples rnd $← {0, 1}λ and u, d, s1, s2
$← Zq.

It computes z := H1(pk, info), z1 := H2(rnd), z2 := z/z1, a := gu, b1 :=
gs1 · zd1, b2 := hs2 · zd2. It returns a commitment (rnd,a,b1,b2) and a state
stS = (u, d, s1, s2, info).

– Sign2 : On input a secret key sk, a challenge e, and state stS = (u, d, s1, s2, info),
Sign2 computes c := e− d mod q, r := u− c · sk mod q and returns the re-
sponse (c, d, r, s1, s2).

– User1 : On input a public key pk and a commitment (rnd,a,b1,b2), a tag
info, and message m, User1 does the following. It samples γ $← Z∗q and
τ, t1, t2, t3, t4, t5

$← Zq. Then, it computes z := H1(pk, info), z1 := H2(rnd),
α := a ·gt1 ·yt2 , ζ := zγ , ζ1 := zγ1 , ζ2 := ζ/ζ1. Next, it sets β1 := bγ1 ·gt3 · ζ

t4
1 ,

β2 := bγ2 · ht5 · ζ
t4
2 , η := zτ , and ε := H3(ζ, ζ1, α, β1, β2, η,m, info). Fi-

nally, it computes a challenge e := ε − t2 − t4 mod q, the state StU :=
(γ, τ, t1, t2, t3, t4, t5,m) and returns e, StU .

– User2 : On input a public key pk, a response (c, d, r, s1, s2) and a state
(γ, τ, t1, t2, t3, t4, t5,m), User2 first computes ρ := r + t1, ω := c + t2, σ1 :=
γ · s1 + t3, σ2 := γ · s2 + t5, and δ := d+ t4. Then, it computes µ := τ − δ · γ
and ε := H3(ζ, ζ1,g

ρyω,gσ1ζδ1 ,h
σ2ζδ2 , z

µζδ,m). It returns the signature σ :=
(ζ, ζ1, ρ, ω, σ1, σ2, δ, µ) if δ + ω = ε; otherwise, it returns ⊥.6

6 We note that the check for ε = ω + δ implicitly checks that c + d = e as well as
a = ycgr,b1 = zd1g

s1 ,b2 = zd2h
s2 , i.e. it checks that the output of Sign − 2 was

valid.
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– Verify : On input a public key pk, a signature (ζ, ζ1, ρ, ω, σ1, σ2, δ, µ) and
a message m, Verify computes first z := H1(pk, info) and then ε := H3(ζ,
ζ1,g

ρyω,gσ1ζδ1 ,h
σ2ζδ2 , z

µζδ,m, info). It returns 1 if δ + ω = ε; otherwise, it
returns 0.

We note that the only change we made to Abe’s scheme is that in our variant,
the z part of the public key is derived as a hash of pk and a tag info instead
of as a hash of the other elements of the public key. It is easy to see that by
using an empty info this yields the original scheme and thus our proofs about
the adapted scheme also apply to the original.

We note that Abe refers to z, z1, ζ, ζ1 as the tags of a signing session or
signature. However, as we are considering partial blindness, we will refer to them
as the linking components. By [1], the original scheme is computationally blind
under the Decisional Diffie-Hellman assumption. For completeness, we provide a
detailed proof of the partial computational blindness of our variant in section 3.1.

3.1 Partial Blindness of the adapted Abe scheme

We provide a formal proof of partial blindness under chosen keys for the Abe
blind signature scheme. Abe [1] proved the scheme to be blind for keys selected
by the challenger.

Lemma 1. Under the decisional Diffie-Hellman assumption in G, Abe’s blind
signature scheme BSA is computationally blind in the random oracle model.

Proof. We use similar techniques as [6].
Game G1 The first game is identical to the blindness game from Definition 7
for Abe’s blind signature scheme.

Setup. G1 samples b $← {0, 1}.
Simulation of oracle H1. G1 simulates H1 by lazy sampling of group ele-

ments.
Online Phase. When M outputs a public key (g,y,h) and messages m̃0 and

m̃1, and tags info0, info1, G1 verifies info0 = info1 assigns m0 = m̃b and
m1 = m̃b−1
Oracle User1. works the same as described in Definition 7
Oracle User2. works the same as described in Definition 7
Simulation of H2. H2 is simulated through lazy sampling
Simulation of H3. H3 is simulated through lazy sampling

Output determination. as described in Definition 7

The second game replaces the signature for m0 by a signature that is independent
of the run with the signer.
Game G2 The second game generates the signature on m0 independently of
the corresponding signing session.

Setup. G2 samples b $← {0, 1}.
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Simulation of oracle H1. G2 simulates H1 by lazy sampling of group ele-
ments.

Online Phase. When M outputs a public key (g,y,h) and messages m̃0 and m̃1

and ĩnfo0, ĩnfo1, G2 verifies that the key is well-formed and that ĩnfo0 = ĩnfo1
and aborts with output 0 if this check fails. It further assigns m0 = m̃b and

m1 = m̃b−1 as well as info0 = ĩnfo0 and info1 = ĩnfo1.
Oracle User1. For message m1, the oracle behaves the same as in G1. For

message m0, it checks that session 0 is not open yet and opens session
0. Then the game picks δ, ω, σ1, σ2, ρ, µ uniformly at random from Zq. It
further draws two random group elements ζ and ζ1 and sets ζ2 := ζ/ζ1.
It then sets H3(yω · gρ, ζδ1 · gσ1 , ζδ2 · hσ2 , ζδ · zµ,m0, info0) := δ + ω. It
draws e $← Zq uniformly at random and returns e as a challenge to the
adversary.

Oracle User2. For message m1, the oracle behaves the same as in G1. For
message m0, on input c, d, r, s1, s2, the game does the following checks7:
e = d+ c, a0 = gr ·yc, b1,0 = gs1 · zd1,0, b2,0 = hs2 · zd2,0. It considers the
produced signature to be the one generated in User1.

Simulation of H2. H2 is simulated through lazy sampling
Simulation of H3. For values not programmed in User1, G2 simulates H3

via lazy sampling
Output determination. as described in Definition 7

Claim 1. The advantage of an adversary B to tell the difference between G1 and

G2 is AdvG1,G2

B =
∣∣∣Pr
[
G1

B = 1
]
− Pr

[
G2

B = 1
]∣∣∣ ≤ AdvDDH

B′ .

Proof. We provide a reduction B′ that receives a random-generator DDH chal-
lenge (W,X,Y,Z) and simulates either G1 or G2 to the adversary. During
the first phase of the online phase, the reduction programs the random oracle
H1 to return values Wfi fi ∈ Zq. For simulation of H2, the reduction chooses
exponents gi

$← Zq and returns values Xgi , yielding uniformly random values
from the group G. In User1 for m0, when the adversary sends the commitment
which contains a random string rnd to be queried to the oracle H2, the reduction
identifies the g = gi that was used as the random exponent for z1 = Xg. Denote
further by f the fi used for generation of z = H1(pk, info1). It sets ζ = Yf and
ζ1 = Zf ·g. The reduction then proceeds to generate a signature by programming
the random oracle H3 as described in G2. For m1, the reduction participates
honestly in the signing protocol. In User2, for m0, the reduction checks that
the adversary produces a valid signing transcript as described in G2. If both
interactions yield valid signatures (i.e. the adversary produced a valid transcript
for m0 and a valid signature for m1), the reduction outputs both signatures,
otherwise ⊥. If the adversary outputs it was playing game G1, the reduction
outputs 0, otherwise it outputs 1.

We argue that if the challenge is a Diffie-Hellman tuple, the reduction sim-
ulates G1 perfectly. For a tuple W,Wa,Wb,Wab, the tuple z = Wf , z1 =

7 We note that these checks need to be done explicitly here, as they are no longer
implicitly performed through checking that ε = ω + δ,
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Wa·f · gf , ζ = Wb·f , ζ1 = Wa·b·f ·g is a valid Diffie-Hellman tuple w.r.t generator
Wf . Furthermore, the user tags ζ and ζ1 can be computed from z and z1 using
blinding factor γ = b. Furthermore, for any c, d, r, s1, s2 and signature compon-
ents ω, δ, ρ, σ1, σ2, µ there are unique choices of t1 = ρ − r, t2 = ω − c, t3 =
σ1 − γ · s1, t4 = δ − d, t5 = σ2 − γ · s2, τ = µ+ δ · γ that explain the signature in
combination with the transcript. Thus, the produced combination of signature
and transcript is identically distributed as an honestly generated signature.

If the challenge is not a Diffie-Hellman tuple, then the reduction simulates
G2 perfectly as the linking components ζi, ζ1,i look like random group elements
and the reduction computes the same steps as G2 to generate the signatures
and its outputs to the adversary. ut

We describe the final game G3 where both signatures are independent from the
runs with the signer.
Game G3

Setup. G3 samples b $← {0, 1}.
Simulation of oracle H1. G3 simulates H1 by lazy sampling of group ele-

ments.
Online Phase. When M outputs a public key (g,y,h) and messages m̃0 and

m̃1, G3 verifies that the key is well-formed and checks that info0 = info1
and aborts with output 0 if this check fails. It further assigns m0 = m̃b and
m1 = m̃b−1
Oracle User1. For session b′, the game checks that session b′ is not open

yet and opens session b′. It sets z := H1(info). Then the game picks
δ, ω, σ1, σ2, ρ, µ uniformly at random from Zq. It further draws two ran-
dom group elements ζ and ζ1 and sets ζ2 := ζ/ζ1. It then sets H3(yω ·
gρ, ζδ1 ·gσ1 , ζδ2 ·hσ2 , ζδ ·zµ,mb′ , infob′) := δ+ω. It draws e $← Zq uniformly
at random and returns e as a challenge to the adversary.

Oracle User2. For both sessions (denoted by i = 0, 1), on input ci, di, ri, s1,i, s2,i,
the game does the following checks: ei = di + ci, ai = gri · yci , b1,i =

gs1,i · zdi1,i, b2,i = hs2,i · zdi2,i. It considers the output signature to be the
one generated for this session in User1.

Simulation of H2. H2 is simulated through lazy sampling
Simulation of H3. For values not programmed in User1, G2 simulates H3

via lazy sampling
Output determination. as described in Definition 7

Claim 2. The advantage of an adversary B to tell the difference between G1 and

G2 is AdvG2,G3

B′′′ = Pr
[
G2

B′′′ = 1
]
− Pr

[
G3

B′′′ = 1
]
≤ AdvDDH

B′′ .

Proof. Follows along the same lines as Claim 1, embedding the DDH challenge
in the signature for m1 this time. ut

In game G3, the adversary cannot win, as both signatures are completely inde-
pendent from the two runs. As game G3 needs to program the random oracle H3

twice to generate the signatures (this fails with probability at most 2qh
q4·2|m0| , i.e.
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if the adversary has made the exact same requests before), we get the following
overall advantage of

AdvBLINDBSA

M =
2 · qh

q4 · 2|m0|
+ AdvDDH

B′ + AdvDDH
B′′

ut

3.2 One-More-Unforgeability

In the following, we provide a proof for the one-more-unforgeability. Similar to [1]
we do this in two steps. First, we show that it is infeasible for an adversary to
generate a signature that does not use a tag that corresponds to a closed signing
session. (Note that the scheme is only computationally blind, and an unbounded
algorithm can link signatures and sessions since (z, z1, ζ, ζ1) forms a DDH tuple.
We call such tuples linking components, and refer to z, z1 as “signer-side” and
ζ, ζ1 as “user-side”.) This corresponds to Abe’s restrictive blinding lemma. Then,
as the main theorem, we show that it is also infeasible for an adversary to win
`-OMUF by providing two signatures corresponding to the same closed signing
session.

Our techniques. The main idea for both the lemma and the theorem is to
use the algebraic representations of the group elements submitted to the ran-
dom oracle H3 in combination with the corresponding signature to compute the
discrete logarithm of either y or h or in the tags z. This fails either when the
adversary has not made a hash query for the signature in question, or when the
representation of the hash query does not contain more information than the
signature, i.e., the exponents in the representation already match the signature.
We show that both of these cases only occur with a negligible probability. We
simulate the protocol in two different ways. One way is to use the secret key x
like an honest signer and try to extract the discrete logarithm of h or one of
the z. The other way is to program the random oracles H1 and H2 so that the
reduction can use the discrete logarithms of z, z1, z2 to simulate the other side
of the OR-proof for extraction of the secret key. We also use the programming of
the random oracles to efficiently identify which signature is the “forgery”. This,
in combination with not having to run the protocol twice for forking, renders a
tight proof.

Comparison to the original standard model proof by Abe [1] We briefly
recall that similar to our proof, the original proof also shows the restrictive
blinding lemma first, which, shows that an adversary that wins the OMUF
game and at the same time produces a signature where dlogζ ζ1 6= dlogz z1,i for
all sessions i, can be used to solve the discrete logarithm problem. The proof
uses the forking technique, i.e. it rewinds the adversary to obtain a second set
of signatures with different hash responses to H3. The original proof of the re-
strictive blinding lemma also uses two signers, one that embeds in y and signs
using the z-side witness, another that embeds in h and signs using the secret key
x. These two signers are indistinguishable for a single run, however, two forking
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runs using the same witness reveal the witness being used internally. In partic-
ular, a forking pair of runs using the secret key x to sign, cannot be reproduced
by a signer that does not know the x-side witness. Therefore, the distribution
of signatures obtained from forking runs, in particular the components δ and ω
may depend on which witness was used internally. We note that for example in
‘honestly generated’ signatures (i.e. when the adversary followed the User1 and
User2 algorithms to generate signatures), the a pair of signatures at the forking
hash query reveals exactly the same witness as the signer used to sign while
forking, so it is not clear why a similar thing may not also hold for ‘dishonestly
generated’ signatures.

As our reduction for the restrictive blinding lemma works in the AGM, we can
avoid the rewinding step. The adversary submits representations of all the group
elements contained in a hash query, which gives the reduction information that
would otherwise be obtained from the previous run. As the scheme is perfectly
witness indistinguishable, the representations submitted by the adversary are
independent of the witness used internally. We show in Claim 5, that even a
so-called reduced representation that does use factors that are only determined
after all signing sessions were closed, is likely to reveal enough information for
the reduction to be able to solve the discrete logarithm problem.

The Restrictive Blinding Lemma. We first provide a reduction for the re-
strictive blinding lemma in the AGM + ROM. We therefore define the game
`-RB-OMUFBSA as follows:

Setup: Sample keys via (sk = x, pk = (g,h,y)) $← BSA.KeyGen(pp).
Online Phase: M is given access to oracles Sign1,Sign2 that emulate the be-

havior of the honest signer in BSA. It is allowed to arbitrarily many calls to
Sign1 and allowed to make ` queries to Sign2. In addition, it is given access
to random oracles H1, H2, H3. Let `info denote the number of interactions
that M completes with oracle Sign2 in this phase for each tag info.

Output Determination: When M outputs a list L of tuples (m1, sig1, info1), . . . ,
(mk, sigk, infok), proceed as follows:
– If the list contains a tuple (m, sig, info) s.t. Verify(pk,m, sig, info) = 0,

or does not contain `info + 1 pairwise-distinct tuples for some tag info,
return 0.

– Let zj , z1,j denote the values of z and z1 used in the j-th invocation
of Sign1. If there exists (m, sig, info) ∈ L with signature components
ζ 6= ζ1 (equivalently, ζ2 6= ε), s.t. for all j with H1(pk, info) = zj whose

sessions were closed with an invocation of Sign2, ζ
dlogzj

z1,j 6= ζ1, then
return 1. Otherwise, return 0. We call the first signature in L with these
mismatched linking components the special signature.

Define AdvRB-OMUF
M,`,BSA := Pr[`-RB-OMUFM

BSA = 1]. We show that an al-
gebraic forger M that wins `-RB-OMUFBSA can be used to solve the discrete
logarithm problem. This reduction is tight and does not require rewinding of the
adversary.
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Lemma 2 (Restrictive Blinding, see Lemma 3 in [1]). Let M be an al-
gebraic algorithm that runs in time tM, makes at most ` queries to oracle Sign2
in RB-OMUFBSA and at most (total) qh queries to H1, H2, H3. Then, in the
random oracle model, there exists an algorithm B s.t.

AdvDLP
B ≥1

2
AdvRB-OMUF

M,`,BSA − `+ 1

2q

− (
3qh
q

+ AdvdlogR1
+ AdvdlogR2

+ AdvdlogR3
+ AdvdlogR4

)

Proof. Let M be as in the lemma statement. As before, we assume w.l.o.g. that
M makes exactly ` queries to Sign2 and outputs a list of `+ 1 tuples. The proof
goes by a series of games, which we describe below.

Game G0. This is `-RB-OMUFBSA.

Game G1. To define G1, we first define the following event E1. E1 happens if M
returns a list L of `+1 valid signatures on distinct messages m1, ...,m` and there
exists (m, sig, info) = (m, (ζ, ζ1, ρ, ω, σ1, σ2, δ, µ) , info) ∈ L s.t. for all j whose

sessions were closed with an invocation of Sign2, ζ
dlogzj

z1,j 6= ζ1 ∧ ζ2 6= ε and M
did not make a query of the form H3(ζ, ζ1,g

ρyω,gσ1ζδ1 ,h
σ2ζδ2 , z

µζδ,m, info). In
the following, we refer to the first tuple (m, sig, info) ∈ L as the special tuple for
convenience. G1 is identical to game G0, except that it aborts when E1 happens.

Claim 3. Pr[E1] = `+1
q

Proof. The only way for an adversary to succeed without querying H3 for the
signature is by guessing the hash value ε = ω + δ. Since there are ` + 1 valid
signatures in L, the probability of guessing ε correctly for one of them is `+1

q .
ut

By the claim, we have that AdvG1

M ≥ AdvG0

M − `+1
q .

Game G2. Game G2 is identical to G1, except that it keeps track of the
algebraic representations of group elements submitted to H3 by M and aborts
if a certain event E2 happens. In the following, we define the event E2 which
depends on these representations.

Simplifying Notations. For each query to H3, the adversary M submits a set
of group elements ζ, ζ1, α, β1, β2, η along with a message m and info.

As M is algebraic, it also provides a representation of these group elements to

the basis of elements g,h,y,−→z ,−→a ,
−→
b1,
−→
b2,
−→z1 that it has previously obtained via

calls to H1, H2,Sign1, or Sign2. We note that by programming the oracles H1

and H2 the reduction knows a representation of its responses zi and z1,i. Any
element a,b1,b2 that was returned as reply to a query to Sign1 can be repres-
ented as a = yc · gr,b1 = zd1 · gs1 ,b2 = zd2 · hs2 . Here, z1, z2 = z/z1 correspond
to the call H2(rnd) made as part of answering this query to Sign1. This allows
us to convert any representation provided by M into a reduced representation in
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the (simpler) basis g,h,y. For a group element o, we denote this reduced rep-
resentation by [o]−→

I
and its components as g[o]−→

I
, h[o]−→

I
, y[o]−→

I
, respectively, where

−→
I := (g,h,y). If M wins, we denote the special message/signature pair in its
winning output as (m, info, (ζ, ζ1, ρ, ω, σ1, σ2, δ, µ)). The algebraic coefficients of
this tuple define the following integers which we call “preliminary values”:

ω′ := y[α]−→
I

δ′ :=
g[β2]−→I

+ x · y[β2]−→I

x · y[ζ2]−→I + g[ζ2]−→I

δ′′ :=
h[β1]−→I

h[ζ1]−→I
, δ′′′ :=

h[η]−→
I

h[ζ]−→
I

.

We further define the following non-exclusive boolean variables that describe
when which of the above values is actually well-defined:

C0 := (ω′ 6= ω) C1 := (ω′ = ω) ∧ (x · y[ζ2]−→I + g[ζ2]−→I 6= 0)

C2 := (ω′ = ω) ∧ (h[ζ1]−→I 6= 0) C3 := (ω′ = ω) ∧ (h[ζ]−→
I
6= 0)

Claim 4.
∨
i Ci = 1.

Proof. Since GM
2 = 1⇒ ζ2 6= ε, it follows that x·y[ζ2]−→I +g[ζ2]−→I and h[ζ2]−→I cannot

both be 0 when GM
2 = 1. Therefore, either x · y[ζ2]−→I + g[ζ2]−→I 6= 0 or h[ζ2]−→I 6= 0.

Moreover, since [ζ2]−→
I

= [ζ]−→
I
− [ζ1]−→

I
, either h[ζ1]−→I 6= 0 or h[ζ]−→

I
6= 0, whenever

h[ζ2]−→I 6= 0. Therefore, (h[ζ1]−→I 6= 0 ∨ h[ζ]−→
I
6= 0 ∨ x · y[ζ2]−→I + g[ζ2]−→I 6= 0) = 1 and

thus C1 ∨ C2 ∨ C3 = (ω′ = ω). The lemma follows immediately. ut

We now define E2 as the following event: ω′ = ω, and for any of δ′, δ′′, δ′′′,
as long as its denominator is not 0 (i.e., it is well-defined), then it is equal to δ.
That is,

E2 :=(C0 = 0) ∧ (C1 = 0 ∨ (C1 = 1 ∧ (δ′ = δ)))

∧ (C2 = 0 ∨ (C2 = 1 ∧ (δ′′ = δ))) ∧ (C3 = 0 ∨ (C3 = 1 ∧ (δ′′′ = δ))).

Claim 5. Pr[E2] ≤ 3qh
q + AdvdlogR1

+ AdvdlogR2
+ AdvdlogR3

+ AdvdlogR4

The proof for this claim can be found in the full version [30].
By the claim, AdvG2

M ≥ AdvG1

M − 3qh
q .

In the following, we explain how the reduction can simulate game G2 to the
adversary M and win the discrete logarithm game.

Simulation of H1, H2, H3. We begin by describing how S0, S1 simulate the
random oracles H1, H2, H3. These simulations are common to both Sι and are
performed in the straightforward way using lazy sampling. We assume that the
oracles keep respective lists Li for bookkeeping, where Li stores input/output
pairs. More specifically.
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– H1 and H2: on each fresh input ξ, Hi samples v $← Zq and returns gv. It
stores (ξ,gv, v) in Li.

– H3 : on each fresh input (ξ, ·), H3 samples ε $← Zq and returns ε. It stores
(ξ,−→rep, ε) in Li.

– On repeated inputs Hi returns whatever it returned the first time that ξ was
queried.

Scheduling of Signing Sessions. We assume that each Si internally schedules
sessions with the oracles Sign1 and Sign2 as required by G2. This can be easily
implemented by using a fresh session identifier for each new session.

Extracting Equations from Forgery. Suppose that M wins game G2, i.e.,
GM

2 = 1. Recall that in this case, M produces a one-more forgery of at least `+1
valid signatures, after having completed at most ` sessions with oracle Sign2. In
addition, we have required that one of the returned tuples (m, info, sig) be special,

i.e., that ζ
dlogzj

z1,j 6= ζ1 for all zj and z1,j (where again zj and z1,j corresponds
to the value of z and z1, respectively, derived during the j-th interaction with
oracle Sign1).

From the verification equation of the special signature (m, info, sig), one ob-
tains the equations α = gρ ·yω, β1 = ζδ1 ·gσ1 , β2 = ζδ2 ·hσ2 , η = zµj · ζδ. Denoting
w0,j := dlog zj , w := dlog h, we obtain the reduced equations

g[α]−→
I

+ x · y[α]−→
I

+ w · h[α]−→
I

= ρ+ x · ω (1)

g[β1]−→I
+ x · y[β1]−→I

+ w · h[β1]−→I
= (g[ζ1]−→I + w · h[ζ1]−→I + x · y[ζ1]−→I ) · δ + σ1 (2)

g[β2]−→I
+ x · y[β2]−→I

+ w · h[β2]−→I
= (g[ζ2]−→I + w · h[ζ2]−→I + x · y[ζ2]−→I ) · δ + σ2 · w

(3)

g[η]−→
I

+ w · h[η]−→
I

+ x · y[η]−→
I

= w0,j · µ+ (g[ζ]−→
I

+ w · h[ζ]−→
I

+ x · y[ζ]−→
I

) · δ. (4)

We continue by describing simulators S0 which covers case C0, and S1 which
covers C1, C2, C3. As we will see, the values c, r, d, s1, s2 inside a signature is-
sued as part of a signing query are all known to Si. Together with the above
observations, it is easy for each simulator to convert a query to H3 into reduced
representation. Moreover, the winning tuple in M’s output can be identified
through knowledge of the logarithms of all zi and all z1,i efficiently.

Case C0 = 1. We describe simulator S0, which simulates G2 using w. On input
a discrete logarithm instance U := gx, it behaves as follows:

Setup: S0 samples w $← Zq and computes the public key pk as pk := (g,h :=
gw,y := U), which implicitly sets sk := x.

Online Phase. S0 runs M on input pp, pk and simulates the oracles Sign1,
Sign2 as described below. In addition, it simulates the oracles H1, H2, H3 as
outlined above.
Queries to Sign1. When M queries Sign1(info) to open session sid, S0

checks in L1 if pk, info has been previously requested from H1 and if yes
sets w0,sid accordingly, otherwise samples w0,sid and programsH1(pk, info) :=
gw0,j . It samples rndsid

$← {0, 1}λ and sets z1,sid := gw1,sid = H2(rndsid),
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which places the tuple (rndsid, z1,sid, w1,sid) into L2. It then sets z2,sid :=

zsid/z1,sid, w2,sid :=
w0,sid−w1,sid

w , csid, rsid, u1,sid, u2,sid
$← Zq, asid :=

ycsid ·grsid , b1,sid := gu1,sid , b2,sid := hu2,sid and returns asid,b1,sid,b2,sid.
Queries to Sign2. When M queries Sign2(sid, esid), S0 sets dsid := esid −

csid, s1,sid := u1,sid− dsid ·w1,sid, s2,sid := u2,sid− dsid ·w2,sid and returns
csid, dsid, rsid, s1,sid, s2,sid.

It is straightforward to verify that the above simulation of G2 is perfect.
Solving the DLP instance. When M returns `+1 message signature pairs, S0

identifies the special signature using the exponents stored in L2. It retrieves
the corresponding hash query to H3 from L3 together with representations
of α, β1, β2, η. S0 uses Eq. (1) and the fact that C0 = 1 ⇔ ω 6= y[α]−→

I
,

to (efficiently) compute and output the value x as x = (ρ − g[α]−→
I
− w ·

h[α]−→
I

)/(y[α]−→
I
−ω). (In case C0 = 0, or there is no hash query corresponding

to the special signature, it aborts.)

If C0 = 1, then S0’s simulation of G2 is perfect.

Case C0 = 0 We describe simulator S1, which simulates G2 using x. On input
a discrete logarithm instance U := gw, it behaves as follows.

Setup. S1 samples x $← Zq. It sets pk := (g,h := U,y := gx), sk := x.
Online Phase. S1 runs M on input pp, pk and simulates the oracles Sign1,

Sign2 as described below. In addition, it simulates the oracles H1, H2, H3 as
outlined above.

Queries to Sign1. When M queries Sign1(info) to open session sid, S1

checks if info was requested to H1 already and if so sets w0,j accord-
ingly, otherwise it samples w0,j

$← Zq and sets H1(pk, info) := w0,j . It
then samples rndsid

$← {0, 1}λ and sets z1,sid := gw1,sid = H2(rndsid)
(hence w1,sid is known to S1 from programming H2). It then samples

usid, dsid, s1,sid, s2,sid
$← Zq and sets asid := gusid , b1,sid := gs1,sid · zdsid1,sid,

b2,sid := hs2,sid · zdsid2,sid and returns asid,b1,sid,b2,sid.
Queries to Sign2. When M queries Sign2 on input (sid, esid), S1 sets

csid := esid−dsid, rsid := usid−csid ·x and returns csid, dsid, rsid, s1,sid, s2,sid
Solving the DLP instance. When M returns `+1 message signature pairs, S1

identifies the special signature using the exponents stored in L2. It retrieves
the corresponding hash query to H3 from L3 together with representations
of α, β1, β2, η. If there is no hash query to H3 corresponding to the special
signature, it aborts. Since C0 = 0 it holds that C1 = 1 ∨ C2 = 1 ∨ C3 = 1.
S1 uses one of the following extraction strategies.

If C1 = 1: S1 uses Eq. (3) and the fact that C1 = 1⇒ (x · y[ζ2]−→I + g[ζ2]−→I 6= 0),

to (efficiently) compute and output the value w as follows. S1 first computes δ′

as δ′ := (g[β2]−→I
+ x · y[β2]−→I

)/(x · y[ζ2]−→I + g[ζ2]−→I ), which gives the equality

δ′ · (g[ζ2]−→I + x · y[ζ2]−→I ) + w · h[β2]−→I
= g[β2]−→I

+ x · y[β2]−→I
+ w · h[β2]−→I

. (5)
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Eqs. (5) and (3) yield

δ′ · (g[ζ2]−→I + x · y[ζ2]−→I ) + w · h[β2]−→I
= g[β2]−→I

+ x · y[β2]−→I
+ w · h[β2]−→I

= δ · (g[ζ2]−→I + x · y[ζ2]−→I + w · h[ζ2]−→I ) + σ2 · w.

If h[β2]−→I
−δ·h[ζ2]−→I −σ2 6= 0, S1 outputs w = ((δ−δ′)·(g[ζ2]−→I +x·h[ζ2]−→I ))/(h[β2]−→I

−
δ · h[ζ2]−→I − σ2). We prove the following claim.

Claim 6. h[β2]−→I
− δ · h[ζ2]−→I − σ2 6= 0.

Proof. Since C1 = 1 and event E2 does not happen (since otherwise GM
2 = 0),

we know that δ 6= δ′. Hence, it suffices to show that if δ 6= δ′, then h[β2]−→I
− δ ·

h[ζ2]−→I − σ2 6= 0. Due to Eq. (3) we get

δ′ · (g[ζ2]−→I + x · y[ζ2]−→I ) + w · h[β2]−→I
= δ · (g[ζ2]−→I + x · y[ζ2]−→I + w · h[ζ2]−→I ) + σ2 · w

= δ · (g[ζ2]−→I + x · y[ζ2]−→I ) + w · h[β2]−→I
,

which yields (δ′ − δ) · (g[ζ2]−→I + x · y[ζ2]−→I ) = 0. Since C1 = 1, we have g[ζ2]−→I + x ·
y[ζ2]−→I 6= 0, which contradicts the assumption that δ′ 6= δ. ut

It is easily verified that whenever C1 = 1, S1’s simulation of G2 is perfect.

If C1 = 0 and C2 = 1: S1 uses Eq. (2) and the fact that C2 = 1 ⇔ (ω =
y[α]−→

I
) ∧ (h[ζ1]−→I 6= 0), to compute and output the discrete logarithm w of the

instance U as follows. S1 first computes δ′′ :=
h[β1]−→

I

h[ζ1]−→
I

which leads to the equality

δ′′ · w · h[ζ1]−→I + g[β1]−→I
+ x · y[β1]−→I

= g[β1]−→I
+ x · y[β1]−→I

+ w · h[β1]−→I
. (6)

Eqs. (6) and (2) yield

δ′′ · w · h[ζ1]−→I + g[β1]−→I
+ x · y[β1]−→I

= g[β1]−→I
+ x · y[β1]−→I

+ w · h[β1]−→I

= (g[ζ1]−→I + w · h[ζ1]−→I + x · y[ζ1]−→I ) · δ + σ1.

By the same argument as in the previous case, δ 6= δ′′, and S1 can compute and
output w as w = (δ ·(g[ζ1]−→I +x ·y[ζ1]−→I )+σ1−g[β1]−→I

+x ·y[β1]−→I
)/((δ−δ′′) ·h[ζ1]−→I ),

as C2 = 1 implies that h[ζ1]−→I 6= 0. Moreover, S1’s simulation of G2 is perfect if
C2 = 1 holds.

If C1 = C2 = 0 and C3 = 1: In this case, S1 uses Eq. (4) and the fact that C3 =
1⇔ (ω = y[α]−→

I
) ∧ (h[ζ]−→

I
6= 0), to compute and output the discrete logarithm w

of the instance U as we described below. S1 computes δ′′′ := h[η]−→
I
/h[ζ]−→

I
, leading

to

δ′′′ · w · h[ζ]−→
I

+ g[η]−→
I

+ x · y[η]−→
I

= g[η]−→
I

+ x · y[η]−→
I

+ w · h[η]−→
I
. (7)

Equations (4) and (7) imply that

δ′′′ · w · h[ζ]−→
I

+ g[η]−→
I

+ x · y[η]−→
I

= g[η]−→
I

+ x · y[η]−→
I

+ w · h[η]−→
I

= w0 · µ+ (g[ζ]−→
I

+ w · h[ζ]−→
I

+ x · y[ζ]−→
I

) · δ.
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As in the previous cases, δ 6= δ′′′, so S1 can output w by computing w =
(δ · (g[ζ]−→

I
+x ·y[ζ]−→

I
)+µ ·w0− (g[η]−→

I
+x ·y[η]−→

I
))/((δ′′′−δ) ·h[ζ]−→

I
), since h[ζ]−→

I
6= 0

due to C3 = 1. Moreover, S1’s simulation of G2 is perfect if C3 = 1 holds. Since

both simulators provide a perfect simulation (in their respective cases) and cover
all cases that can happen whenever GM

2 = 1, B can run the correct simulator to
extract the discrete logarithm with advantage AdvDLP

B ≥ AdvG2

M /2. Moreover,

we have AdvG2

M ≥ AdvG1

M − −( 3qh
q + AdvdlogR1

+ AdvdlogR2
+ AdvdlogR3

+ AdvdlogR4
) ≥

AdvG0

M −−( 3qh
q + AdvdlogR1

+ AdvdlogR2
+ AdvdlogR3

+ AdvdlogR4
)− `+1

q . Hence, tB ≈ tM
and

AdvDLP
B ≥1

2
AdvRB-OMUF

M,`,BSA − `+ 1

2q

− (
3qh
q

+ AdvdlogR1
+ AdvdlogR2

+ AdvdlogR3
+ AdvdlogR4

)

ut

The Main Theorem In the following, we show that Abe’s blind signature
scheme has full one-more-unforgeability. We make use of the restrictive blinding
lemma to identify the forged signature.

Theorem 1. Let M be an algebraic algorithm that runs in time tM, makes at
most ` queries to oracle Sign2 in `-OMUFBSA and at most (total) qh queries
to H1, H2, H3. Then, in the random oracle model, there exists an algorithm B
such that

AdvDLP
B ≥1

4
AdvOMUF

M,`,BSA −
3qh
q
− AdvDLP

R1
− AdvDLP

R2
− AdvDLP

R3

− (AdvDLP
R′1

+ AdvDLP
R′2

+ AdvDLP
R′3

+ AdvDLP
R′4

)

Proof. The proof is similar to the proof of lemma 2. We give a brief overview,
the full proof can be found in the full version [30].

The reduction embeds the discrete logarithm challenge in either y or all the zj
and z1,j by programming the random oracle H1 and H2. I.e. on input of a discrete
logarithm challenge U, the reduction sets either y = U and generates zj , z1,j ,h
with known discrete logarithms to base gvi for randomly chosen vi

$← Zq, or
the reduction sets y = gx for known x $← Zq, h := gv for a known v ∈ Zq,
and generates all zj , z1,j as Uvi for vi

$← Zq. This allows the reduction to either
generate signatures using its knowledge of the discrete logarithms of zj , z1,j ,
and h, or its knowledge of the secret key x. Due to lemma 2 we can assume
that there is one session that produces two signatures. As the responses for H2

have been programmed, this session can be identified and a representation of all
group elements to g,y, zj , z1,j is known to the reduction. Similar to the proof of
lemma 2 the algebraic representations of the group elements submitted in hash
queries to H3 can be used to compute preliminary ω′ and δ′, δ′′, δ′′′ for both
of the special signatures belonging to the same session. As at least one of the
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signatures was not created through a run of the honest signing protocol, using
similar arguments as for the special signature in lemma 2, thus the witness can
be computed by the reduction which yields the statement. ut

4 Sequential Unforgeability of Schnorr’s Blind Signature
Scheme

In this section we show that Schnorr’s blind signature scheme satisfies sequential
one-more unforgeability under the one-more DL assumption in the AGM. We
first recall Schnorr’s blind signature scheme BSS below. A figure depicting an
interaction can be found in the full version [30].8 Let H : {0, 1}∗ → Zq be a hash
function.

– KeyGen : On input pp, KeyGen samples x $← Zq and sets x := gx. It sets
sk := x, pk := x and returns (sk, pk).

– Sign1 : On input sk, Sign1 samples r $← Zq and returns the commitment
r := gr and the state StS := r.

– Sign2 : On input a secret key sk, a state StS = r and a challenge c, Sign2
computes s := c · sk + r mod q and returns the response s.

– User1 : On input a public key pk, a commitment r, and a message m, User1
does the following. It samples first samples α, β $← Zq. Then, it computes

r′ := r·gα ·pkβ and c′ := H(r′,m), c := c′+β mod q. It returns the challenge
c and the state StU := (r, c, α, β,m).

– User2 : On input a public key pk, a state StU = (r, c, α, β,m), and a response
s, User2 first checks if gs = r·xc and returns ⊥ if not. Otherwise, it computes
r′ := r · gα · pkβ and s′ := s+ α and returns the signature σ := (r′, s′).

– Verify : On input a public key pk, a signature σ = (r′, s′) and a message m,

Verify computes c′ := H(r′,m) and checks whether gs
′

= r′ · pkc
′
. If so, it

returns 1; otherwise, it returns 0.

Theorem 2. Let M be an algebraic adversary that runs in time tM, makes at
most ` queries to Sign2 in `-SEQ-OMUFBSS, and at most qh random oracle
queries to H. Then there exists an adversary B such that

AdvOMDL
B,` ≥ AdvSEQ-OMUF

M,`,BSS − q2h + qh + 2

2q
,

and B runs in time tB = tM +O(`+ qh).

Proof. Let M be as in the theorem statement. Without loss of generality, we
assume that M makes exactly ` + 1 many Sign1() and exactly ` many Sign2

queries, and returns exactly ` + 1 valid signatures (r∗1, s
∗
1), . . . , (r∗`+1, s

∗
`+1) of

8 We use different letters to denote the variables in the scheme than what we used
in the previous section. Our choices are in line with the standard notation for this
scheme.
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messages m∗1, . . . ,m
∗
`+1.9 We further assume that pairs (m∗1, r

∗
1), . . . , (m∗`+1, r

∗
`+1)

are all distinct; otherwise M could not win `-SEQ-OMUFBSS as we prove in
the following simple claim.

Claim 7. The pairs (m∗i , r
∗
i ), . . . , (m

∗
j , r
∗
j ) are pairwise distinct for all i, j ∈ [`+

1].

Proof. Suppose (m∗i , r
∗
i ) = (m∗j , r

∗
j ) for i 6= j ∈ [` + 1]. If s∗i = s∗j then M

outputs two identical message/signature pairs, violating the winning condition.
Otherwise it cannot be the case that both (r∗i , s

∗
i ) and (r∗i , s

∗
j ) are both valid

signatures of m∗i , since given m∗i and r∗i , s
∗
i as in the valid signature is uniquely

defined (as in Eq. (??)). ut

Let x be the public key, r1, . . . , r`+1 be the group elements returned by Sign1,
and M’s Sign2 queries be Sign2(c1), . . . ,Sign2(c`). The proof goes by a sequence
of games, which we describe below. For convenience, we set AdvGi

M := Pr[GM
i =

1].

Game G0. This is the `-SEQ-OMUF game. We have that

AdvG0

M = AdvSEQ-OMUF
M,`,BSS .

Game G1. In G1 we make the following change. When M returns its final
outputs (m∗1, (r

∗
1, s
∗
1)), . . . , (m∗`+1, (r

∗
`+1, s

∗
`+1)), together with r∗i ’s algebraic rep-

resentation (γ∗i , ξ
∗
i , ρ
∗
i,1, . . . , ρ

∗
i,`+1) based on g,x, r1, . . . , r`+1, for each i ∈ [`+1]

for which H(r∗i ,m
∗
i ) is undefined, we emulate a query c∗i := H(r∗i ,m

∗
i ) via lazy

sampling. (If M has not seen a certain rj when outputting r∗i , then the game
naturally sets ρ∗i,j = 0, as M is not allowed to use rj as a base.) After that, we

define χi := c∗i + ξ∗i −
∑`
j=1 ρ

∗
i,jcj , and abort if χi = 0 for all i. (Note that ρ∗i,`+1

does not appear in the definition of χi.)
G1 and G0 are identical unless χi = 0 for all i ∈ [`+ 1]. Call this event E.

Claim 8. Pr[E] ≤ q2h+qh+2
2q

Proof. If M does not query H(r∗i ,m
∗
i ) for some i, then c∗i is a uniformly random

element of Zq in M’s view, so Pr[χi = 0] = 1/q.
Next we assume that M queries H(r∗i ,m

∗
i ) for all i; call such query the i-th

special query. Since (m∗i , r
∗
i ) pairs are all distinct, c∗i = H(r∗i ,m

∗
i ) is a uniformly

random element in Zq (independent of everything else) when M makes the i-
th special query. Also, r∗i ’s algebraic representation (γ∗i , ξ

∗
i , ρ
∗
i,1, . . . , ρ

∗
i,`+1) is

9 Since the security game is sequential OMUF, and M can make at most ` many Sign2

queries, this implies that M can make at most `+ 1 many Sign1 queries. Obviously,
any adversary who makes less than ` + 1 many Sign1 queries, or less than ` many
Sign2 queries, or returns more than ` + 1 valid signatures, can be turned into an
adversary who makes exactly `+ 1 many Sign1 and exactly ` many Sign2 queries,
and returns exactly `+ 1 valid signatures, with the same advantage and roughly the
same running time.
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already determined when M makes its i-th special query. Any special query is
made either during a session which is eventually closed (i.e., between M’s j-th
Sign1 query and j-th Sign2 query for some j ∈ [`]), or between two sessions
(including before the first session), or during the last session which is never closed
(i.e., after M’s (`+ 1)-th Sign1 query). We consider these cases separately:

Case C1. Suppose that there is any special query (say the i-th) made (a) between
two sessions (including before the first session); say the i-th special query is
made after the j0-th Sign2 query and before the (j0 + 1)-th Sign1 query, or
(b) after the (` + 1)-th Sign1 query. Consider the time when M makes its i-th
special query H(r∗i ,m

∗
i ). In case (a), at this point all group elements M has

seen are g,x, r1, . . . , rj0 , so ρ∗i,j0+1 = . . . = ρ∗i,` = 0; furthermore, the algebraic
coefficients (for r∗i ) ξ

∗
i , ρ
∗
i,1, . . . , ρ

∗
i,j0

are all fixed. Finally, cj (where j ∈ [j0])
is fixed when M makes its j-th Sign2 query, which happens before M’s i-th
special query. Similarly, in case (b), at this point the algebraic coefficients (for
r∗i ) ξ

∗
i , ρ
∗
i,1, . . . , ρ

∗
i,`+1 are all fixed, and c1, . . . , c` are fixed when M makes its

`-th Sign2 query, which happens before M’s i-th special query. This means that
in both cases (a) and (b), all coefficients in χi’s expression, except c∗i , are fixed
when M makes its i-th special query. On the other hand, c∗i is a uniformly random

element in Zq. Therefore, Pr[χi = c∗i + ξ∗i −
∑j0
j=1 ρ

∗
i,jcj = 0] = 1

q , for a single

H(r∗i ,m
∗
i ) query. Since M makes qh random oracle queries in total, we have that

Pr[χi = 0 ∧ C1] ≤ qh
q , and hence Pr[E ∧ C1] ≤ qh

q .

Case C2. Suppose that all special queries are made during some session which
is eventually closed. Since there are ` such sessions and ` + 1 special queries,
there is at least one session with at least two special queries during it; say the
i-th and (i+1)-th special queries are made during the j0-th session. Consider the
time when M makes its (i+ 1)-st special query. At this point all group elements
M has seen are g,x, r1, . . . , rj0 , so ρ∗i,j0+1 = . . . = ρ∗i,` = 0; furthermore, the
algebraic coefficients (for r∗i and r∗i+1) ξ∗i , ρ

∗
i,1, . . . , ρ

∗
i,j0
, ξ∗i+1, ρ

∗
i+1,1, . . . , ρ

∗
i+1,j0

are all fixed. The output of M’s i-th special query c∗i is also fixed right after M
makes its i-th special query, which happens before M’s (i+ 1)-th special query.
Finally, cj (where j ∈ [j0−1]) is fixed when M makes its j-th Sign2 query, which
again happens before M’s (i+ 1)-th special query. (This is because M’s (i+ 1)-th
special query is made during the j0-th session, which is started after the j-th
session is closed.) This means that all coefficients in χi and χi+1’s expressions,
except cj0 and c∗i+1, are fixed when M makes its (i+ 1)-th special query.
Next consider the time when M makes its j0-th Sign2 query (i.e., when the j0-th
session is closed). At this point c∗i+1 is also fixed, so the only coefficient in χi
and χi+1’s expressions which is not fixed is cj0 (to be chosen by M). In sum, the
last coefficient fixed is cj0 (chosen by M), and the second last coefficient fixed is
c∗i+1 (uniformly random in Zq).
Consider the linear system with unknown cj0{

χi = c∗i + ξ∗i −
∑j0
j=1 ρ

∗
i,jcj = 0,

χi+1 = c∗i+1 + ξ∗i+1 −
∑j0
j=1 ρ

∗
i+1,jcj = 0.

(8)
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Denote A :=

(
ρ∗i,j0 c∗i + ξ∗i −

∑j0−1
j=1 ρ∗i,jcj

ρ∗i+1,j0
c∗i+1 + ξ∗i+1 −

∑j0−1
j=1 ρ∗i+1,jcj

)
and B :=

(
ρ∗i,j0
ρ∗i+1,j0

)
the

augmented matrix and coefficient matrix, respectively, of (8). We first note that
if ρ∗i,j0 = ρ∗i+1,j0

= 0 all factors in eq. (8) are fixed when M makes his query.

Thus, the probability that χi = χi+1 = 0 is at most 1
q over the choice of c∗i and

c∗i+1. In the following we assume that ρ∗i,j0 6= 0 or ρ∗i+1,j0
6= 0. Then

Pr[χi = χi+1 = 0] = Pr[cj0 is the solution of (8)] ≤ Pr[(8) has a solution]

= Pr [rank(A) = rank(B)] ≤ Pr [rank(A) ≤ 1] = Pr [det(A) = 0]

= Pr

[
ρ∗i,j0c

∗
i+1 + ρ∗i,j0(ξ∗i+1 −

∑j0−1
j=1 ρ∗i+1,jcj)

−ρ∗i+1,j0
(c∗i + ξ∗i −

∑j0−1
j=1 ρ∗i,jcj) = 0

]
=

1

q
,

for a single pair of H(r∗i ,m
∗
i ) and H(r∗i+1,m

∗
i+1) queries. (The last equation

is true because when M makes its (i + 1)-th special query, c∗i+1 is a uniformly
random element of Zq, and all other coefficients are fixed.) Since M makes qh

random oracle queries in total, we have that Pr[χi = χi+1 = 0∧C2] ≤ (qh2 )
q , and

hence Pr[E ∧ C2] ≤ (qh2 )
q .

In sum, we have that (let case C0 be “M does not make the i-th special query
for some i ∈ [`+ 1]”)

Pr[E] = Pr[E ∧ C0] + Pr[E ∧ C1] + Pr[E ∧ C2]

≤ 1

q
+
qh
q

+

(
qh
2

)
q

=
q2h + qh + 2

2q
.

ut

By the claim, AdvG1

M ≤ AdvG0

M − q2h+qh+2
2q .

Reduction to `-OMDL. We now upper bound AdvG1

M via a reduction B from
`-OMDL. B runs on input (G,g, q), and is given oracle access to chal and dlog.
B first queries x := chal() and runs M(G,g, q,x). B runs the code of G1 except
that (1) on M’s j-th Sign1 query (j ∈ [`]), B returns rj := chal(); (2) on M’s j-th
Sign2 query, B returns sj := dlog(g, rj · xcj ). (B answers M’s (`+ 1)-th Sign1

query just as in G1, i.e., by sampling r`+1
$← Zq and returning r`+1 := gr`+1 .)

Finally, when M returns its final outputs, if there exists an i ∈ [`+ 1] s.t. χi 6= 0,
B computes

x :=
s∗i − γ∗i −

∑`
j=1 ρ

∗
i,jsj − ρ∗i,`+1r`+1

χi

and
rj := sj − cjx,

and outputs (x, r1, . . . , r`). (If χi = 0 for all i, B aborts.)
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Clearly, B runs in time tM +O(`+ qh). We claim that B wins `-OMDL if M
wins G1. Since M is algebraic, we have that

r∗i = gγ
∗
i · xξ

∗
i ·
∏̀
j=1

r
ρ∗i,j
j · rρ

∗
i,`+1

`+1 = gγ
∗
i +ρ

∗
i,`+1r`+1 · xξ

∗
i ·
∏̀
j=1

r
ρ∗i,j
j .

On the other hand, since M wins G1, i.e., (r∗i , s
∗
i ) is a valid forgery on message

m∗i , we have that

gs
∗
i = r∗i · xc

∗
i .

The two equations above combined yield

xc
∗
i+ξ

∗
i ·
∏̀
j=1

r
ρ∗i,j
j = gs

∗
i−γ

∗
i −ρ

∗
i,`+1r`+1 . (9)

By definition of sj , we have that

rj =
gsj

xcj
, (10)

substituting (10) into (9), we get

xχi = xc
∗
i+ξ

∗
i−

∑`
j=1 ρ

∗
i,jcj = gs

∗
i−γ

∗
i −

∑`
j=1 ρ

∗
i,jsj−ρ

∗
i,`+1r`+1 ,

so x = dlog x. By (10) again, rj = dlog rj . This means that B wins `-OMDL.
We have that

AdvOMDL
B,` = AdvG1

M .

We conclude that

AdvOMDL
B,` ≥ AdvSEQ-OMUF

M,`,BSS − q2h + qh + 2

2q
,

completing the proof. ut

4.1 Optimality of Our Reduction

In this section, we show an impossibility result which states (roughly) that re-
ducing `-sequential one-more unforgeability of Schnorr’s blind signature scheme
from `-OMDL (as shown in section 4) is the best one can hope for. Concretely,
we show that any algebraic reduction B that solves (`−1)-OMDL when provided
with black-box access to a successful algebraic forger A in `-SEQ-OMUFBSS,
can be turned into an efficient adversary M against (`− 1)-OMDL.

Algebraic Black Boxes. We consider a type of algebraic adversary that, apart
from providing algebraic representations for each of its output group elements to
the reduction, does not provide any further access (beyond black-box access). In
particular, the reduction does not get access to the code of the adversary. This
notion was previously put forth and used by Bauer et al. [8].
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Theorem 3. 10 Let B be an algebraic reduction that satisfies the following: if
algorithm A is an algebraic black-box algorithm that runs in time tA then

AdvOMDL
B,`−1 = εB

(
AdvSEQ-OMUF

A,`,BSS

)
and B runs in time tB(tA). (Here, εB and tB are functions in the success prob-
ability and running time of A). Then there exists an algorithm M (the meta-
reduction) such that

AdvOMDL
M,`−1 ≥ εB

((
1− 1

q

)`)
and M runs in time tM = tB(O(`3)).

Proof Idea. We give a brief overview of the proof here, the detailed proof
can be found in the full version [30]. We employ the meta-reduction technique
[18]. Our meta-reduction provides the reduction with interfaces from the one-
more discrete logarithm game as well as an algebraic black box forger for blind
Schnorr signatures. It plays the OMDL game itself and forwards all oracle queries
and responses, thereby providing the reduction with the interfaces of an OMDL
challenger. The meta-reduction (in the role of the forger) first opens and closes all
signing sessions before it makes its first hash query. We note that up to this point
the only outputs made by the meta-reduction in the role of the forger have been
uniformly random queries to the Sign2 oracle provided by the reduction, and
thus independent of the algebraic representations output by the meta-reduction
during the process. It then uses the algebraic representations output by the
reduction as well as the responses from Sign2 to compute the secret key through
means of linear algebra. The meta-reduction then starts making queries to the
random oracle provided by the reduction and generating signatures, providing
the discrete logarithm of its random commitments as a representation. Thus, all
representations as well as all queries made by the reduction are independent from
the algebraic representations that the reduction provides to the meta-reduction
but not a to a real adversary. When the meta-reduction has output its signatures
to the reduction, the reduction solves the OMDL challenge. The meta-reduction
at this point only forwards the solution to its own OMDL challenger and wins
whenever the reduction wins.

Doesn’t this also contradict Section 3? One may ask if it is possible to apply a
similar meta-reduction technique to Abe’s blind signature scheme or our partially
blind variant, which would contradict our result from Section 3. However, this
is not possible as the algebraic representations output by the reduction break
the witness-indistinguishability of the scheme. The meta-reduction would only
be able to compute the witness used by the reduction. Thus, the combination
of representations provided by the adversary and signatures provided by the
adversary would be dependent on the algebraic representations provided by the
reduction.
10 This theorem even holds for a weaker version of `-SEQ-OMUFBSS where the ad-

versary A is required to output signatures for `+ 1 distinct messages.
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