
The Direction of Updatable Encryption
Does Matter

Ryo Nishimaki1

NTT Corporation, Tokyo, Japan
ryo.nishimaki.zk@hco.ntt.co.jp

Abstract. We introduce a new definition for key updates, called backward-
leak uni-directional key updates, in updatable encryption (UE). This
notion is a variant of uni-directional key updates for UE. We show that
existing secure UE schemes in the bi-directional key updates setting
are not secure in the backward-leak uni-directional key updates setting.
Thus, security in the backward-leak uni-directional key updates setting
is strictly stronger than security in the bi-directional key updates setting.
This result is in sharp contrast to the equivalence theorem by Jiang
(Asiacrypt 2020), which says security in the bi-directional key updates
setting is equivalent to security in the existing uni-directional key updates
setting. We call the existing uni-directional key updates “forward-leak
uni-directional” key updates to distinguish two types of uni-directional
key updates in this paper.
We also present two UE schemes with the following features.
– The first scheme is post-quantum secure in the backward-leak uni-

directional key updates setting under the learning with errors as-
sumption.

– The second scheme is secure in the no-directional key updates setting
and based on indistinguishability obfuscation and one-way functions.
This result solves the open problem left by Jiang (Asiacrypt 2020).

Keywords. updatable encryption, key update, lattice

1 Introduction

1.1 Background

Updatable Encryption. Updatable encryption (UE) is a variant of secret key
encryption (SKE) where we can periodically update a secret key and a ciphertext.
More specifically, a secret key ke is generated at each period, called epoch. Here,
e denotes an index of an epoch. We can generate a conversion key ∆e+1 that
converts a ciphertext under ke (key at epoch e) to one under ke+1 (key at epoch
e + 1). Such a conversion key is called update token and generated from two
successive secret keys ke, ke+1. Roughly speaking, UE security guarantees that
confidentiality holds even after some old (and even new) keys and tokens are
corrupted as long as trivial winning conditions are not triggered. Adversaries
trivially win if a target secret key is corrupted or a target ciphertext can be
converted into a ciphertext under a corrupted secret key. In this study, we focus
on ciphertext-independent updates UE, where we can generate an update token
only from two secret keys [LT18, KLR19, BDGJ20, Jia20].1

1The other variant is ciphertext-dependent updates UE, where we need not only two
secret keys but also a part of ciphertext (called header) to generate a token [BLMR13,
EPRS17, BEKS20]. Ciphertext-independent updates UE is more efficient.

A serious threat to encryption is key leakage. In that case, no security is
guaranteed by standard encryption. Key updating is a standard solution to
guarantee security even after key leakage. However, the issue is how to update a
ciphertext generated by an old key. A naive solution is decrypting all ciphertexts
by the old key and re-encrypt them by a new key. However, it incurs significant
efficiency loss. Moreover, if we save encrypted data in outsourced storage such
as cloud servers, we need to download all ciphertexts from the server, decrypt
and re-encrypt them, and upload them again to keep the new key secret. Update
tokens of UE solve this problem since if we provide the server with an update
token, it can directly convert old ciphertexts into new ones without the new key.

Confidentiality is the primary concern in UE. Confidentiality of UE has been
improved to capture realistic attack models [EPRS17, LT18, KLR19, BDGJ20,
CLT20] since after UE was introduced [BLMR13]. In particular, Lehman and
Tackmann formalized trivially leaked information from corrupted keys and tokens
as the direction of key updates [LT18]. Although previous works proposed UE
schemes with improved confidentiality, most do not focus on preventing infor-
mation leakage from corrupted keys and tokens. We will explain the detail of
the information leakage below. In this work, we focus on the direction of key
updates and try to minimize leaked information from update tokens to improve
UE confidentiality.

Direction of key and ciphertext updates. Directions of key updates describe
information leakage that UE schemes cannot avoid. If an adversary has ∆e+1 and
ke, it might be able to obtain ke+1. Most existing UE schemes cannot prevent this
attack. In particular, in all existing (ciphertext-independent) UE schemes, we
cannot avoid leaking a secret key from both directions [LT18, KLR19, BDGJ20,
Jia20]. That is, we can extract ke+1 (resp. ke) from ∆e+1 and ke (resp. ke+1). This
setting is defined as bi-directional key updates [EPRS17, LT18]. Lehman and
Tackmann also defined uni-directional key updates, where we can extract ke+1
from ke and ∆e+1 (forward direction inference). In other words, this setting means
adversaries might not be able to infer ke from ke+1 and ∆e+1. Uni-directional
key updates are more preferable than bi-directional ones since a token leaks less
information. More information leakage triggers more trivial winning conditions
in confidentiality games for UE.

At first glance, secure UE with uni-directional key updates is stronger than
one with bi-directional key updates. However, Jiang proved that secure UE
with bi-directional key updates is equivalent to one with uni-directional key
updates [Jia20] (we call Jiang’s equivalence theorem in this paper). Jiang also pre-
sented the first post-quantum UE scheme with bi-directional key updates [Jia20].

A natural question is: Why do we consider only one-way uni-directional
key updates? That is, we can consider a variant of uni-directional key updates
where we can extract ke from ke+1 and ∆e+1 (backward direction inference).
To distinguish two versions of uni-directional key updates, we call the existing
definition forward-leak uni-directional key updates and our new one backward-
leak uni-directional key updates. The backward-leak uni-directional key updates
setting has never been studied in the UE literature, but it seems to be a valid

2

setting. It is natural to think the latest key is the most important since the reason
why we update keys is that the current and older keys might be leaked. In the
forward-leak setting, we must protect older keys to protect newer keys even if
older ciphertexts are deleted. This is undesirable. However, in the backward-leak
setting, we need to protect only the latest key if older ciphertexts are properly
deleted. Therefore, the backward-leak key updates are more suitable for UE than
the forward-leak key updates.

A related issue is the direction of ciphertext updates. It describes whether we
can convert ciphertext into one in an older epoch (downgrading ciphertext) by
using an update token or not. If we can both update and downgrade ciphertexts
by using a token, we say a UE scheme provides bi-directional ciphertext updates.
If we can update but cannot downgrade ciphertexts by using a token, we say a
UE scheme provides uni-directional ciphertext updates. UE with uni-directional
ciphertext updates is more desirable since older epoch keys might be leaked, and
downgrading ciphertexts leaks more information. However, all existing (ciphertext-
independent) UE schemes provide bi-directional ciphertext updates.

Thus, the first main question of this study is as follows.

Q1. Is UE with backward-leak uni-directional key updates strictly stronger than
UE with bi-directional key updates?

We affirmatively answer the first question in this work. Then, the next natural
question is as follows.

Q2. Can we achieve a (post-quantum) UE scheme with backward-leak
uni-directional key updates and uni-directional ciphertext updates?

We also affirmatively answer the second question.
Another natural question is whether we can prevent adversaries from inferring

secret keys from both directions or not. That is, even if adversaries have ke+1
(resp. ke) and ∆e+1, they cannot infer ke (resp. ke+1). Such key updates are called
no-directional key updates [Jia20]. Jiang left this question as an open problem.
Thus, the last question in this work is as follows.

Q3. Can we achieve a UE scheme with no-directional key updates (and
uni-directional ciphertext updates)?

We solve this open question in this work.

1.2 Our Contribution

The first contribution of our work is a definitional work. We define a new definition
of key updates, which we call backward-leak uni-directional key updates. In
addition, we prove that UE with backward-leak uni-directional key updates is
strictly stronger than bi-directional key updates (and forward-leak uni-directional
key updates). More specifically, we show that there are UE schemes with bi-
directional key updates that are not secure in the backward-leak uni-directional key

3

updates setting. This is in sharp contrast to Jiang’s equivalence theorem [Jia20]
explained above.

The second contribution is that we present two new constructions of UE. The
features of our UE schemes are as follows.

– The first scheme is a UE scheme with backward-leak uni-directional key
updates and secure under the learning with errors (LWE) assumption, which
is known as a post-quantum assumption. This scheme satisfies confidentiality
against CPA and ciphertext updates are randomized.

– The second scheme is a UE scheme with no-directional key updates and based
on one-way functions (OWFs) and indistinguishability obfuscation (IO). This
scheme satisfies confidentiality against CPA and ciphertext updates are
randomized.

These are the first UE schemes with stronger key updates. Note that all our
schemes provide uni-directional ciphertext updates (i.e., cannot downgrade ci-
phertext into older epoch ones). The first scheme is implementable since it is
directly constructed from lattices. Although the second scheme is a theoretical
construction,2 it solves the open question left by Jiang [Jia20].

Both schemes satisfy r-IND-UE-CPA security, which was defined by Boyd,
Davies, Gjøsteen, and Jiang [BDGJ20]. However, we consider the backward-leak
uni-directional or no-directional settings. See Sec. 2 for the definitions.

1.3 Related Work

We often use “forward-leak uni-/backward-leak uni-/bi-/no-directional UE” to
refer to UE with forward-leak uni-/backward-leak uni-/bi-/no-directional key
updates in this paper.

Ciphertext-independent updates UE. Lehman and Tackmann introduce post-
compromise security for UE and refine previous security notions. Those are
close to the definitions in this paper. They also present an efficient bi-directional
UE scheme based on the DDH assumption [LT18]. Klooß, Lehmann, and Rupp
present a CCA-secure bi-directional UE scheme based on the DDH assumption
in the ROM and RCCA-secure bidirectional UE schemes based on the SXDH
assumption [KLR19]. Boyd et al. integrate and refine previous security notions
and present CCA-secure bi-directional UE schemes with deterministic ciphertext
updates based on the DDH assumption in the ideal cipher model [BDGJ20]. Jiang
studies relationships among various models for UE and presents a bi-directional
UE scheme based on the LWE assumption [Jia20]. All these schemes provide
bi-directional ciphertext updates (a token enables us to update and downgrade a
ciphertext).

2Note that Jain, Lin,and Sahai achieve IO from well-founded assumptions, the
SXDH, LWE, a variant of LPN, and PRG in NC0 [JLS21]. See their paper for the detail
of the assumptions.

4

Ciphertext-dependent updates UE. Boneh, Lewi, Montgomery, and Raghunathan
introduce the notion of UE in the ciphertext-dependent updates setting and
present a bi-directional UE scheme based on key homomorphic PRFs [BLMR13].
Everspaugh, Paterson, Ristenpart, and Scott define stronger security notions for
UE and present bi-directional UE schemes that satisfy those notions [EPRS17].
Chen, Li, and Tang introduce a stronger CCA security notion by considering
malicious re-encryption attacks and present bi-directional UE schemes that satisfy
the stronger CCA security [CLT20]. Boneh, Eskandarian, Kim, and Shih improve
security notions by Everspaugh et al. [EPRS17] and present efficient bi-directional
UE schemes [BEKS20].

UE in constructive cryptography. Levy-dit-Vehel and Roméas study security
notions for UE in the constructive cryptography framework and explore the
right security notion for UE [LR21]. Fabrega, Maurer, and Mularczyk also study
security notions for UE in the constructive cryptography framework, generalize
previous definitions, and discover new security-efficiency trade-offs. [FMM21].

Concurrent and independent work. Slamanig and Striecks [SS21] concurrently
and independently proposed a UE scheme.3 Their scheme is a pairing-based
no-directional scheme. They define a stronger model for UE, where we can set an
expiry epoch e⊥ to a ciphertext. If we update a ciphertext with expiry epoch e⊥
by using a token ∆e+1 such that e+1 > e⊥, the updated ciphertext can no longer
be decrypted. Due to this stronger model, Jiang’s equivalence theorem [Jia20]
does not necessarily hold. The scheme provides uni-directional ciphertext updates.
The sharp differences between their work and ours are as follows. Let T be the
maximum number of epochs.

– Their no-directional scheme is secure in the expiry model under the SXDH
assumption, and the ciphertext and key size are O(log2 T) and O(log2 T),
respectively. Our no-directional scheme is secure if IO exists, but the ciphertext
and key size do not depend on T . Our no-directional scheme is not practical
since it relies on IO. Our uni-directional scheme is post-quantum secure with
backward-leak key updates, and the ciphertext and key size do not depend on
T .

1.4 Technical Overview

In this section, we present a high-level overview of our technique.

Direction of key updates. As we introduce in Sec. 1.1, we can consider two types
of uni-directional tokens, forward-leak and backward-leak uni-directional tokens.
If we can infer in both directions, we call bi-directional token. In the definitions

3Their paper [SS21] appeared on Cryptology ePrint archive right after the initial
version of this paper (https://eprint.iacr.org/2021/221/20210311:210911) appeared on
Cryptology ePrint archive. The comparison here is based on the latest versions of their
and our papers.

5

of confidentiality for UE, trivial winning conditions of adversaries depend on
those token variations.

We show the following adversary against existing bi-directional UE schemes:
(1) s/he triggers the trivial winning condition of the forward-leak uni-directional
key updates setting. (2) s/he does not trigger the trivial winning condition of the
backward-leak uni-directional key updates. (3) s/he trivially breaks confidentiality
of the schemes in the backward-leak uni-directional key updates. Therefore,
existing bi-directional UE schemes are not secure in the backward-leak uni-
directional key updates setting. The best way to understand the separation result
is looking at an example described in Sec. 3.3.

In this section, we explain the source of the difference between the two
settings. First, we recall that UE needs the power of public key encryption (PKE)
such as the DDH assumption. We can find this fact in all existing ciphertext-
independent UE schemes [LT18, KLR19, BDGJ20, Jia20]. Alamati, Montgomery,
and Patranabis [AMP19] prove that ciphertext-independent UE implies PKE.
By this fact, we can assume that an epoch key ke consists of a secret part ske
and a public key part pke. As an example, in RISE scheme [LT18], ske = xe ∈ Zp,
pke = gxe ∈ G, and ∆e+1 = xe+1/xe where g is a generator of a prime-order
group G. It is easy to see the token is a bi-directional token.

The direction of key updates depends on how to generate a token. A simple
but crucial observation is that we must use ske to generate ∆e+1. Otherwise,
∆e+1 does not have the power of decrypting and converting a ciphertext at epoch
e. On the other hand, we do not necessarily need ske+1 to generate ∆e+1 since
we can generate a ciphertext at epoch e + 1 by using pke+1.

The relation between the direction types and how to generate a token is
as follows. A forward-leak uni-directional token means ∆e+1 explicitly contains
information about ske+1. By combining the observation above, ∆e+1 should
contain information about ske and ske+1 in the forward-leak uni-directional key
updates setting. In addition, we can update an older epoch ciphertext into a
newer epoch ciphertext and attack the new one if the newer epoch key is revealed.
In other words, we can attack older epoch ciphertext even if older epoch keys are
not revealed (backward-leak inference is not possible in this setting). The key
inference direction could be the same as the ciphertext update direction. By this
observation, it is natural that Jiang’s equivalence theorem holds.

On the other hand, a backward-leak uni-directional token means ∆e+1 explic-
itly contains information about ske. It is possible to generate ∆e+1 from ske and
pke+1 based on the observations so far. Thus, a backward-leak uni-directional
token could hide information about ske+1 and prevent the forward inference. In
addition, this property prevents downgrading a ciphertext into an older epoch
ciphertext. Thus, even if an older epoch key is revealed, we cannot necessarily
attack the newer epoch ciphertexts since downgrading ciphertext and forward-leak
inference are impossible. The key inference direction is opposite to the ciphertext
update direction. This property is in sharp contrast to the forward-leak setting.
Therefore, triggers of trivial winning conditions are different in these two set-
tings. An intuition behind our separation result is based on those observations.

6

See Sec. 3.3 for the detail. Those observations are the starting points of our UE
scheme in the backward-leak uni-directional key updates setting. See the next
paragraph for an overview.

Our backward-leak uni-directional key updates scheme. Roughly speaking, a
token ∆e+1 is a homomorphic encryption of ske under a public key pke+1 in
our backward-leak uni-directional UE scheme. To update a ciphertext cte ←
Enc(pke, µ) at epoch e, we homomorphically decrypt cte by using ∆e+1 =
Enc(pke+1, ske) and obtain Enc(pke+1, µ). It is easy to see that if we have ∆e+1
and ske+1, we can obtain ske by decryption. However, it is difficult to infer ske+1
from ∆e+1 and ske since ske+1 is not used to generate ∆e+1. By the security of
PKE, it is difficult to obtain ske+1 from pke+1. To achieve confidentiality for UE,
we need to re-randomize tokens and updated ciphertext. This is also possible by
using the homomorphic property. Although we use the homomorphic property of
lattice-based encryption in our construction, we do not need fully homomorphic
encryption (FHE). We use the key-switching technique [BV14, BV11] and the
noise smudging technique [AJL+12] to directly achieve secure UE from the LWE
assumption. This idea is inspired by uni-directional proxy re-encryption schemes
based on lattices [Gen09, ABPW13, CCL+14, NX15].

To prove confidentiality, we need to erase information about ske∗ where
e∗ is the target epoch (otherwise, we cannot use confidentiality under pke∗).
However, secret keys are linked to update tokens. Thus, we need to gradually
erase secret keys in update tokens from new ones to old ones. That is, we change
Enc(pke+1, ske) into Enc(pke+1, 0|ske|). Once this change is done, we can change
Enc(pke, ske−1) into Enc(pke, 0|ske−1|), and so forth. Note that there exists an
epoch er where ∆er+1 is not corrupted such that e∗ ≤ er as long as adversaries
do not trigger the trivial winning conditions. We can start the erasing process
from er since sker is not used anywhere. This proof outline is reminiscent of the
proof technique for multi-hop universal proxy re-encryption [DN21].

Our no-directional key updates scheme. A no-directional token leaks information
about neither ke nor ke+1. To protect ke and ke+1, we obfuscate an update circuit.
We consider a secret key encryption (SKE) scheme SKE.(Gen,Enc,Dec) and the
following circuit R. Two different secret keys ske, ske+1 ← SKE.Gen(1λ) are hard-
coded in R. R takes a ciphertext cte ← SKE.Enc(ske, µ) as an input, computes
µ = SKE.Dec(ske, cte), and outputs cte+1 ← SKE.Enc(ske+1, µ). A token is an
obfuscated circuit of R[ske, ske+1] (notation [ske, ske+1] denotes that (ske, ske+1)
are hard-coded). This scheme works as a UE scheme. Intuitively, a token does
not leak information about hard-coded secret keys due to obfuscation security.
However, we do not know how to prove confidentiality of the scheme above.

To prove security, we instantiate the SKE scheme and obfuscation above with
puncturable pseudorandom functions (PRFs) and IO [SW21], respectively. That is,
a secret key is a PRF key K, and a ciphertext is (t, y⊕µ) := (PRG(r),PRF(K,PRG(r))⊕
µ) where PRG is a pseudorandom generator (PRG) and r ← {0, 1}τ . We slightly
modified the update circuit above so that it takes not only a ciphertext at epoch
e but also randomness re+1 for a ciphertext at the next epoch. That is, we use

7

a circuit Cre[Ke,Ke+1]((t, c), re+1) that decrypts (t, c) by Ke and encrypts the
result by Ke+1 and re+1. By using this particular scheme and the punctured
programming technique with IO security [SW21], we can prove confidentiality of
our no-directional UE scheme.

The issue is how to simulate update tokens in security proofs. Note that a UE
secret key at epoch e is linked only to UE tokens ∆e and ∆e+1 in the construction
above. In our no-directional scheme, to change target ciphertexts into random
ones, we use pseudorandomness of a PRF key Ke∗ , which is a UE key ke∗ at
epoch e∗. In the security game of pseudorandomness at punctured points, the
adversary is given y∗ and a punctured key Ke∗{t∗} where t∗ is chosen by the
adversary and tries to distinguish y∗ is PRF(Ke∗ , t

∗) or random. The punctured
key enables us to evaluate the PRF at all inputs except the punctured point
t∗. By using Ke∗{t∗}, we can simulate tokens ∆e and ∆e+1 for all inputs except
(r, y) such that t∗ = PRG(r). The issue is that we cannot evaluate the PRF at
t∗. However, we can overcome this issue by the standard exception handling
technique since t∗ can be randomly chosen by the reduction due to PRG security
and y∗ = PRF(Ke∗ , t

∗) is given as a target in the pseudorandomness game. We can
construct functionally equivalent circuits by using Ke∗{t∗}, t∗, y∗, and exceptional
handling. The exceptional handling cannot be detected by IO security. Thus, we
can simulate update tokens and use pseudorandomness to prove confidentiality.

Organization. In Sec. 2, we review the syntax and security definitions of UE.
Sec. 3 defines a new definition of uni-directional key updates (backward-leak
uni-directional key updates) and shows that it is strictly stronger than those of
bi-directional and forward-leak uni-directional key updates. In Sec. 4, we present
our UE scheme with backward-leak uni-directional key updates based on the
LWE problem and prove its security. In Sec. 5, we present our UE scheme with
no-directional key updates. Due to space limitations, we omit many details in
this version. Please see the full version [Nis21] for them.

2 Updatable Encryption

In this section, we briefly review the syntax and definitions of UE.

Syntax.

Definition 2.1. An updatable encryption scheme UE for message spaceM con-
sists of a tuple of PPT algorithms (UE.Setup,UE.KeyGen,UE.Enc,UE.Dec,UE.TokGen,UE.Upd).

UE.Setup(1λ)→ pp: The setup algorithm takes as input the security parameter
and outputs a public parameter pp. (This algorithm is an option for UE.)

UE.KeyGen(pp)→ ke: The key generation algorithm takes as input the public
parameter and outputs an epoch key ke.

UE.Enc(k, µ)→ ct: The encryption algorithm takes as input an epoch key and a
plaintext µ and outputs a ciphertext ct.

8

UE.Dec(k, ct)→ µ′: The decryption algorithm takes as input an epoch key and a
ciphertext and outputs a plaintext µ′ or ⊥.

UE.TokGen(ke, ke+1)→ ∆e+1: The token generation algorithm takes as input two
keys of successive epochs e and e + 1 and outputs a token ∆e+1.

UE.Upd(∆e+1, cte)→ cte+1: The update algorithm takes as input a token ∆e+1
and a ciphertext cte and outputs a ciphertext cte+1.

Let T be the maximum number of the epoch.

Security experiments. We review security definitions for UE in this section.

Definition 2.2 (Correctness). For any µ ∈M, for 0 ≤ e1 ≤ e2 ≤ T , it holds
that

Pr[UE.Dec(ke2 , cte2) 6= µ] ≤ negl(λ),

where pp← UE.Setup(1λ), ke1 , . . . , ke2 ← UE.KeyGen(pp), cte1 ← UE.Enc(ke1 , µ),
and ∆i+1 ← UE.TokGen(ki, ki+1), cti+1 ← UE.Upd(∆i+1, cti) for i ∈ [e1, e2 − 1].

Definition 2.3 (Confidentiality for Updatable Encryption [BDGJ20,
Jia20]). For x ∈ {d, r}, atk ∈ {cpa, cca}, the game Expx-ind-ue-atk

Σ,A (λ, b) is formal-
ized as follows.

– Invoke Setup and set phase := 0.
– Let O := O.{Enc,Next,Upd,Corr,Chall,UpdC̃} if atk = cpa. If atk = cca,
O.Dec is also added in O.

– Run coin′ ← AO(1λ).
– If ((K∗ ∩ C∗ 6= ∅) ∨ (x = d ∧ (e∗ ∈ T ∗ ∨ O.Upd(ct) is invoked))) then twf :=

1
– If twf = 1 then coin′ ← {0, 1}
– return coin′

We say a UE scheme is x-IND-UE-atk secure if it holds

Advx-ind-ue-atk
Σ,A (λ) := |Pr[Expx-ind-ue-atk

Σ,A (λ, 0) = 1]−Pr[Expx-ind-ue-atk
Σ,A (λ, 1) = 1]| ≤ negl(λ).

The definitions of oracles are described in Fig. 1.

The prefix d and r in the definition above indicate that we consider UE
schemes with deterministic and randomized update algorithms, respectively.

Leakage sets. We introduce leakage sets. Adversaries can obtain secret keys,
update tokens, challenge-equal ciphertexts from oracles. We record epochs in the
following sets to maintain which epoch key/token/challenge-equal-ciphertext was
given to adversaries.

– K: Set of epochs where A corrupted the epoch key via O.Corr.
– T : Set of epochs where A corrupted the update token via O.Corr.
– C: Set of epochs where A obtained a challenge-equal ciphertext via O.Chall

or O.UpdC̃.

9

Setup(1λ):

– k0 ← UE.KeyGen(1λ)
– ∆0 := ⊥; e, cnt, twf := 0
– L, L̃, C,K, T := ∅

O.Enc(µ):

– cnt := cnt + 1
– ct← UE.Enc(ke, µ)
– L := L ∪ {(cnt, ct, e;µ)}
– return ct

O.Dec(ct):

– µ′/⊥ ← UE.Dec(ke, ct)

– if
(

(x = d ∧ (ct, e) ∈ L̃∗)

∨(x = r ∧ (µ′, e) ∈ Q̃∗)
)

then twf := 1
– return µ′ or ⊥

O.Next():

– e := e + 1
– ke ← UE.KeyGen(1λ)
– ∆e ← UE.TokGen(ke−1, ke)
– if phase = 1
then ct∗e ← UE.Upd(∆e, ct∗e−1)

O.Upd(cte−1):

– if (j, cte−1, e− 1;µ) /∈ L
then return ⊥

– cte ← UE.Upd(∆e, cte−1)
– L := L ∪ {(cnt, cte, e;µ)}
– return cte

O.Corr(mode, ê):

– if ê > e then return ⊥
– if mode = key
then K := K ∪ {̂e}
return k̂e

– if mode = token
then T := T ∪ {̂e}
return ∆̂e

O.Chall(µ, ct):

– if phase = 1 then return ⊥
– phase := 1; e∗ := e
– if (·, ct, e∗ − 1;µ1) /∈ L
then return ⊥

– if b = 0
then ct∗e∗ ← UE.Enc(ke∗ , µ)
else ct∗e∗ ← UE.Upd(∆e∗ , ct)

– C := C ∪ {e∗}
– L̃ := L̃ ∪ {(ct∗e∗ , e∗)}
– return ct∗e∗

O.UpdC̃():

– if phase 6= 1 then return ⊥
– C := C ∪ {e}
– L̃ := L̃ ∪ {(ct∗e , e)}
– return ct∗e

O.Try(ct∗):

– µ′/⊥ ← UE.Dec(ke, ct∗)
– if (e ∈ K∗ ∨ (atk = ctxt ∧ (ct∗, e) ∈ L∗)
∨(atk = ptxt ∧ (µ′, e) ∈ Q∗))
then twf := 1

– if µ′ 6= ⊥ then win := 1

Fig. 1: The behavior of oracles in security experiments for updatable encryption.
Leakages sets L, L̃,L∗, L̃∗, C,K,K∗, T , T ∗,Q,Q∗, Q̃∗ are defined in Sec. 2.

We also record ciphertexts given via oracles to maintain which (updated)
ciphertexts adversaries obtained.

– L: Set of non-challenge ciphertexts (cnt, ct, e;µ) returned via O.Enc or O.Upd,
where cnt is a query index incremented by each invocation of O.Enc, ct is

10

the given ciphertext, e is the epoch where the query happens, and µ is the
queried plaintext or the plaintext in the queried ciphertext.

– L̃: Set of challenge-equal ciphertexts (ct∗e , e) returned via O.Chall or O.UpdC̃,
where ct∗e is the given challenge-equal ciphertext and e is the epoch where
the query happens.

In the deterministic update setting, where algorithm Upd is deterministic, an
updated ciphertext is uniquely determined by a token and a ciphertext. Thus, we
consider extended ciphertext sets L∗ and L̃∗ inferred from L and L̃, respectively,
by using T . Regarding L∗, we only need information about the ciphertext and
epoch. That is, L∗ consists of sets of a ciphertext and an epoch index.

In the randomized update setting, where algorithm Upd is probabilistic, an
update ciphertext is not uniquely determined. Thus, we consider sets of plaintexts
of which adversaries have ciphertexts.
– Q∗: Set of plaintexts (µ, e) such that the adversary obtained or could generate

a ciphertext of µ at epoch e.
– Q̃∗: Set of challenge plaintexts {(µ, e), (µ1, e)}, where (µ, ct) is the query

to O.Chall and µ1 is the plaintext in ct. The adversary obtained or could
generate a challenge-equal ciphertext of µ or µ1 at epoch e.

Inferred leakage sets. Lehman and Tackmann [LT18] presented the bookkeeping
technique to analyze the epoch leakage sets. We maintain leaked information by
the technique in security games.

Key leakage. Adversaries can infer some information from leakage sets K and T .
Here, “infer” means that adversaries can trivially extract some secret information
from given keys and tokens. For example, in the ElGamal-based UE scheme by
Lehman and Tackmann (called RISE) [LT18], a secret key at epoch e is ke ∈ Zp
where p is a prime and a token is ∆e+1 = ke+1/ke ∈ Zp. Thus, we can easily
extract ke from ∆e+1 and ke+1 (and vice versa).

Inferred information depends on the direction of key updates. In previous
works on UE, there are three types of directions of key updates, called bi/uni/no-
directional key updates. Formally, for kk ∈ {no, uni, bi}, we consider the following
kk-directional key update setting.

Definition 2.4 (Direction of Key Update). We define inferred leakage key
sets. The sets depend on the setting of key updates.
– No-directional key updates: K∗no := K.
– Uni-directional key updates:

K∗uni := {e ∈ [0, `] | CorrK(e) = true}

where CorrK(e) = true⇔ (e ∈ K) ∨ (CorrK(e− 1) ∧ e ∈ T)
– Bi-directional key updates:

K∗bi := {e ∈ [0, `] | CorrK(e) = true}

where CorrK(e) = true⇔ (e ∈ K)∨(CorrK(e−1)∧e ∈ T)∨(CorrK(e+1)∧e+1 ∈
T)

11

Token leakage. If two successive keys are leaked, a token generated from those
keys is also inferred.

Definition 2.5 (Inferred Token Sets). For kk ∈ {no, uni, bi},

T ∗kk := {e ∈ [0, `] | (e ∈ T) ∨ (e ∈ K∗kk ∧ e− 1 ∈ K∗kk)}

Challenge-equal ciphertext leakage. We can update ciphertexts by using tokens.
That is, we can obtain updated ciphertexts generated from a challenge ciphertext
via leaked tokens. To check whether a challenge ciphertext can be converted
into a ciphertext under a corrupted key, we maintain challenge-equal ciphertext
epochs defined below.

Definition 2.6 (Direction of Ciphertext Update). We define two types of
challenge-equal ciphertext epoch sets. For kk ∈ {no, uni, bi},

– Uni-directional ciphertext updates:

C∗kk,uni := {e ∈ [0, `] | ChallEq(e) = true}

where ChallEq(e) = true⇔ (e ∈ C) ∨ (ChallEq(e− 1) ∧ e ∈ T ∗kk)
– Bi-directional ciphertext updates:

C∗kk,bi := {e ∈ [0, `] | ChallEq(e) = true}

where ChallEq(e) = true⇔ (e ∈ C) ∨ (ChallEq(e− 1) ∧ e ∈ T ∗kk) ∨ (ChallEq(e +
1) ∧ e + 1 ∈ T ∗kk)

By considering directions of key/ciphertext updates, we can consider variants
of security notions for UE [Jia20].

Definition 2.7 ((kk, cc)-variant of confidentiality [Jia20]). Let UE be a
UE scheme. Then the (kk, cc)-notion advantage, for kk ∈ {no, uni, bi}, cc ∈
{uni, bi} and notion ∈ {r-ind-ue-cpa, d-ind-ue-cpa, r-ind-ue-cca, d-ind-ue-cca}, of
an adversary A against UE is defined as

Adv(kk,cc)-notion
UE,A (1λ) := |Pr[Exp(kk,cc)-notion

UE,A (λ, 0) = 1]−Pr[Exp(kk,cc)-notion
UE,A (λ, 1) = 1]|,

where Exp(kk,cc)-notion
UE,A (λ, b) is the same as the experiment Exptnotion

UE,A (λ, b) in Def. 2.3
except for all leakage sets are both in the kk-directional key updates and cc-
directional ciphertext updates.

Trivial winning condition. Adversaries trivially win the security game if we can
convert a challenge ciphertext into a ciphertext under a corrupted key. Thus, we
need to define trivial winning conditions.

For all confidentiality games in Def. 2.3, the trivial winning condition K∗∩C∗ 6=
∅ is checked since if the condition holds, adversaries can win the game by
decrypting a challenge-equal ciphertext by using a corrupted key.

12

For all confidentiality games for deterministic update UE, the trivial winning
condition ẽ ∈ T ∗ ∨ “O.Upd(ct) is queried” is checked since if the condition holds,
adversaries can win the game by checking the challenge ciphertext is equal to an
updated ciphertext generated from the token and a queried ciphertext to O.Chall.

We need to consider other trivial winning conditions in the CCA setting (both
for randomized and deterministic updates) and integrity setting. However, we do
not consider these settings in this work. We do not explain those conditions. See
the paper by Jiang [Jia20] for the detail.

Firewall and insulated region.

Definition 2.8 (Firewall [LT18, KLR19, BDGJ20, Jia20]). An insulated
region with firewalls fwl and fwr is a consecutive sequence of epochs [fwl, fwr] for
which:

– No key in the sequence of epochs [fwl, fwr] is corrupted. That is, it holds
[fwl, fwr] ∩ K = ∅.

– The tokens ∆fwl and ∆fwr+1 are not corrupted if they exist. That is, it holds
fwl, fwr + 1 /∈ T .

– All tokens (∆fwl+1, . . . ,∆fwr) are corrupted. That is, [fwl + 1, fwr] ⊆ T .

Definition 2.9 (Insulated Region [LT18, KLR19, BDGJ20, Jia20]).
The union of all insulated regions is defined as IR :=

⋃
[fwl,fwr]∈FW [fwl, fwr],

where FW is the set of insulated region with firewalls.

On security definitions. Boyd et al. prove that r-IND-UE-CPA implies both the
standard CPA security for UE and unlinkability of updated ciphertext. See their
paper [BDGJ20] for the detail.

3 Backward-Leak Uni-Directional Key Update and
Relations

3.1 Definition

We introduce a new notion for the direction of key updates in this section. The
notion is categorized in uni-directional key updates, but the direction is the
opposite of the uni-directional key updates in Def. 2.4.

Definition 3.1 (Uni-Directional Key Update (revisited)). We define two
types of uni-directional key updates. One is the same as that in Def. 2.4. To
distinguish two types of uni-directional key updates, we rename the original one
in Def. 2.4 to forward-leak uni-directional key updates. The definitions of two
notions are as follows.

– forward-leak uni-directional key updates: K∗f-uni := K∗uni.

13

– backward-leak uni-directional key updates:

K∗b-uni := {e ∈ [0, `] | CorrK(e) = true}

where CorrK(e) = true⇔ (e ∈ K) ∨ (CorrK(e + 1) ∧ e + 1 ∈ T)

By using the definition above, we can consider Def. 2.5 and 2.6 for kk ∈
{no, f-uni, b-uni, bi}. We illustrate leaked information in the setting of forward/backward-
leak uni-directional key updates settings in Fig. 2.

set e− 1 e e + 1

K∗f-uni × X inferred
T ∗f-uni X X

set e− 1 e e + 1

K∗b-uni inferred X ×
T ∗b-uni X X

Fig. 2: Inferred keys in the forward-leak/backward-leak uni-directional key updates
settings. Symbol X means the key/token was given via O.Corr. Symbol × means we
cannot trivially obtain the information. The text “inferred” means we can trivially
extract the information from given values.

3.2 Observations on Definitions

On the meaningfulness of backward-leak uni-directional key updates. First of
all, all ciphertext-independent UE schemes rely on public key encryption power
in some sense [LT18, BDGJ20, Jia20].4 This fact is endorsed by the result by
Alamati, Montgomery, and Patranabis [AMP19], which shows any ciphertext-
independent UE scheme that is forward and post-compromise secure implies
PKE. Thus, we can assume that an epoch key consists of a secret key part ske
and a public key part pke.

To achieve the ciphertext update mechanism of UE, a token ∆e+1 must
include information about ske since an update algorithm essentially decrypts a
ciphertext at epoch e and generates a ciphertext for epoch e + 1. The question
is: “Do we really need ske+1 for updating a ciphertext from e to e + 1?”. The
answer is no. The point is that we need only the public key part of an epoch key
to generate a ciphertext in most existing ciphertext-independent UE schemes.
Thus, we might be able to construct an update token by using only ske and pke+1.
More specifically, we might be able to transform a ciphertext for epoch e by using

4Everspaugh et al. [EPRS17] presented a ciphertext-independent UE scheme from
authenticated encryption (AE). However, they assume an AE scheme is secure against
related key attacks. So far, it seems that we need the power of public key encryp-
tion (such as DDH) to achieve related key secure AE [HLL16]. In addition, Ev-
erspaugh et al. retracted the ciphertext-independent construction in their full version
paper (https://eprint.iacr.org/2017/527/20180903:192110).

14

encryption of ske under pke+1 and homomorphic properties. This is what we do
in Sec. 4. This insight comes from a few constructions of uni-directional proxy
re-encryption [Gen09, ABPW13, CCL+14, NX15].

Based on the observations above, we can say the backward-leak uni-directional
key updates setting is natural. If a token∆e+1 is generated by using (ske, pke+1), it
is likely we can infer ske from ∆e+1 and ske+1 (our backward-leak uni-directional
scheme is an example). However, it might be difficult to extract information
about ske+1 from ske and ∆e+1 since only pke+1 is embedded in ∆e+1. In fact, it
is difficult in our backward-leak uni-directional scheme.

In the forward-leak uni-directional key updates setting, we assume that it is
easy to infer ske+1 from ∆e+1 and ske. In some sense, this says ske+1 is directly
embedded in ∆e+1. We might be able to execute bi-directional key/ciphertext
updates if a token enables us to update a ciphertext (in the forward direction).
Here, “directly embedded” means that a secret key is not encrypted. In fact,
in all existing UE schemes bi-directional (and forward-leak uni-directional) key
updates, ske+1 is directly embedded in ∆e+1 [LT18, KLR19, BDGJ20, Jia20]. In
addition, generating a token ∆e+1 from ske+1 and pke is unnatural since it is
unlikely such ∆e+1 can update a ciphertext under pke.

Note that the argument above does not consider obfuscation [BGI+12]. If we
can somehow obfuscate secret keys in a token, it could be difficult to infer secret
keys in the token even if we use those secret keys to generate the token. This is
what we do in Sec. 5 to achieve a no-directional key updates scheme.

As we argue in Sec. 1.1, backward-leak uni-directional key updates are more
suitable than forward-leak ones in practice. In fact, we prove that confidentiality
in the backward-leak uni-directional key updates setting is strictly stronger than
that in the forward-leak uni-directional key updates setting.

On meaningful combination with bi/uni-directional ciphertext updates. For cipher-
text updates, it is natural to consider only the uni-directional ciphertext updates
in Def. 2.6 since updating ciphertext should go forward direction due to the
nature of UE. Of course, we can define another uni-directional ciphertext updates
(called “backward uni-directional” or “downgrade-only” ciphertext updates), but
it is not meaningful.

Jiang considered a setting where key updates are uni-directional (this is
forward-leak uni-directional by our definition) and ciphertext updates are bi-
directional. This is meaningful only in the forward-leak uni-directional key updates
since forward-leak uni-directional and bi-directional key updates are equivalent
by Jiang’s result. However, it is unnatural to consider bi-directional ciphertext
updates with backward-leak uni-directional key updates. This is because we
show that backward-leak uni-directional key updates are strictly stronger than
bi-directional key updates. In addition, it is difficult to use ∆e+1 to convert a
ciphertext under ke+1 into one under ke in the backward-leak uni-directional
key updates setting. This observation affects a theorem proved by Jiang [Jia20,
Theorem 3.2 in the ePrint ver.] (Thm. 3.5 in this paper), which we explain later.

15

Relaxed firewall. As we observed above, it is natural to consider uni-directional
ciphertext updates in the backward uni-directional key updates setting. In this
setting, adversaries cannot convert a ciphertext at the challenge epoch into a
ciphertext at an older epoch by using tokens. Thus, even if a token ∆fwl at a left
firewall fwl is given to adversaries when a challenge epoch is in between fwl and
fwr, adversaries cannot obtain a challenge-equal ciphertext at an epoch whose
secret key is corrupted. We define this modified firewall notion as relaxed firewall
below.

Definition 3.2 (Relaxed Firewall). A relaxed insulated region with relaxed
firewalls fwl and fwr is a consecutive sequence of epochs [fwl, fwr] for which:

– No key in the sequence of epochs [fwl, fwr] is corrupted. That is, it holds
[fwl, fwr] ∩ K = ∅.

– The token ∆fwr+1 is not corrupted if they exist. That is, it holds fwr + 1 /∈ T .
– All tokens (∆fwl, . . . ,∆fwr) can be corrupted. That is, [fwl, fwr] ⊆ T .

The difference from Def. 2.8 is that ∆fwl can be corrupted.

Definition 3.3 (Relaxed Insulated Region). The union of all relaxed insu-
lated regions is defined as rIR :=

⋃
[fwl,fwr]∈rFW [fwl, fwr], where rFW is the set

of relaxed insulated region with relaxed firewalls.

As we will see in the proof of Thm. 3.4, there exists an epoch such that it
is set as the challenge ciphertext epoch (does not trigger the trivial winning
condition), but not in a firewall area under Def. 2.8 (the original definition of
firewall). In the example in Fig. 3, which will appear later, epoch {5} is such an
area. Therefore, we introduce the modified notion.

Summary of observations. We summarize possible combinations for token gen-
eration and directions of key and ciphertext updates in Table 1. Note that we
do not consider using obfuscation in this table. In each field, possible types are
written. In the key update column, “forward-leak? or bi?” means that it can be
forward-leak, but in this case, it might not be able to update a ciphertext in
the forward direction. If it can update, it essentially includes ske and should be
bi-directional. In the ciphertext update column, “backward-leak? or bi?” means
that it can be backward, but it does not fit the nature of UE, and if it can
be forward, it essentially has the power of bi-directional updates. That is, the
second-row case could collapse to the first-row case in Table 1 if the second case
works as UE (ciphertext updates are in the forward direction). Lastly, “?” means
that we do not know whether this type can update a ciphertext or not (or it is
unlikely that the type can update a ciphertext).

All previous ciphertext-independent updates UE schemes fall into the first row
category. Our scheme in Sec. 4 falls into the third row category. There might be
a hope that we can achieve a no-directional UE scheme by using obfuscation-like
techniques (but without obfuscation) in the third row case. It is an interesting
open question.

16

Table 1: Possible combinations for token generation from pk or sk and its relationship
to possible directions of key updates and ciphertext updates.

use pk or sk key update type ct update type

TokGen(ske, ske+1) bi bi
TokGen(pke, ske+1) forward-leak? or bi? backward? or bi?
TokGen(ske, pke+1) backward-leak forward
TokGen(pke, pke+1) no ?

3.3 Relationships

We show that bi-directional key updates does not imply backward-leak uni-
directional key updates in this section. More precisely, we prove the following

Theorem 3.1. There exist secure r-IND-UE-CPA UE schemes in the bi-directional
key updates setting that are not r-IND-UE-CPA in the backward-leak uni-directional
key updates setting.

On the equivalence between bi-directional and uni-directional key updates. First,
we review a simple fact. It is easy to see that the following theorem holds by the
definition of confidentiality (Def. 2.3).

Theorem 3.2. If a UE scheme is r-IND-UE-CPA in the backward-leak uni-
directional, forward-leak uni-directional, or no-directional key updates setting, it
is also r-IND-UE-CPA secure in the bi-directional key updates setting.

Next, we review Jiang’s equivalence theorem.

Theorem 3.3 ([Jia20, Theorem 2]). Let UE be an UE scheme and notion ∈
{d-ind-ue-cpa, r-ind-ue-cpa, d-ind-ue-cca, r-ind-ue-cca, int-ctxt, int-ptxt}. For any kk, kk′ ∈
{f-uni, bi}, cc, cc′ ∈ {uni, bi}, and any (kk, cc)-notion adversary A against UE,
there exists a (kk′, cc′)-notions adversary B against UE such that

Adv(kk,cc)-notion
UE,A (1λ) = Adv(kk′,cc′)-notion

UE,B (1λ).

The key lemma for proving Jiang’s theorem (Thm. 3.3) for the confidentiality
case is the following.

Lemma 3.1 ([Jia20, Lemma 6]). For any K, T , C, we have K∗f-uni∩C∗f-uni,uni 6=
∅ ⇔ K∗bi ∩ C∗bi,bi 6= ∅.

See Def. 2.6 and 3.1 for the sets in the lemma. Note that this lemma holds
for forward-leak uni-directional key updates. We show a counterexample to this
lemma (for confidentiality) in the case of the backward-leak uni-directional key
updates setting.

17

0 {1} 2 3 4 5 {6 7} 8

K X × × × X × × × X
T × × × X X X × X ×
K∗bi X × " " X " × × X
T ∗bi × × × X X X × X ×
K∗f-uni X × × × X " × × X
T ∗f-uni × × × X X X × X ×
K∗b-uni X × " " X × × × X
T ∗b-uni × × × X X X × X ×

Fig. 3: Example of leakage sets in the setting of bi/forward/backward-leak uni-
directional key updates where K := {0, 4, 8}, T := {3, 4, 5, 7}, IR = {1, 6, 7}. Here, ×
and X indicates an epoch key or token is not corrupted and corrupted, respectively. The
boldface check mark "indicates an epoch key or token is inferred from other corrupted
keys/tokens.

Counterexample in backward-leak uni-directional key updates setting. Looking
at an example is the best thing to understand relationships. We consider an
example of epoch key leakage sets in Fig. 3.

In the example in Fig. 3, the firewall area is IR = {1, 6, 7}. The difference
between the bi-directional setting and forward-leak uni-directional setting is the
epochs 2 and 3. The difference between the bi-directional setting and backward-
leak uni-directional setting is the epoch 5. (Both differences are underlined
in Fig. 3.) We investigate each difference in the forward/backward-leak uni-
directional settings.

The case of bi/forward-leak uni-directional key updates: First, we consider the
bi/forward-leak uni-directional key updates settings. If we set C = {3}, it holds
C∗bi,bi = {2, 3, 4, 5} and C∗f-uni,uni = {3, 4, 5}. Thus, K∗bi ∩ C∗bi,bi = {2, 3, 4, 5} 6= ∅
and K∗f-uni∩C∗f-uni,uni = {4, 5} 6= ∅. If we set C = {5}, it holds that K∗bi∩C∗bi,bi =
{2, 3, 4, 5} 6= ∅ and K∗f-uni∩C∗f-uni,uni = {5} 6= ∅. This is consistent with Lem. 3.1
(Jiang’s Lemma 6 [Jia20]). Note that if we set C = {2}, we obtain a similar
result to C = {3}.

The case of bi/backward-leak uni-directional key updates: Next, we consider the
bi/backward-leak uni-directional key updates settings. If we set C = {3}, it
holds C∗bi,bi = {2, 3, 4, 5} and C∗b-uni,uni = {3, 4, 5} since ∆5 is given even though
k5 is not given in the backward-leak uni-directional setting. Thus, it holds
K∗bi ∩C∗bi,bi = {2, 3, 4, 5} 6= ∅ and K∗b-uni ∩C∗b-uni,uni = {3, 4} 6= ∅. However, if we
set C = {5}, the difference between forward/backward directional key updates
is clear. Now, K∗bi ∩ C∗bi,bi = {2, 3, 4, 5} 6= ∅, but K∗b-uni ∩ C∗b-uni,uni = ∅ since we
cannot infer k5 (the key at epoch 5) due to the definition of backward-leak
uni-directional key updates (we cannot go to forward direction even if we
are given k4 and ∆5.). This means that even if we set C = {5}, the trivial
winning condition is not triggered in the backward-leak uni-directional set-
ting. However, the trivial winning condition in the bi-directional setting is

18

triggered. Therefore, this is a counterexample to Lem. 3.1 (Jiang’s Lemma
6 [Jia20]) when we use the definition of backward-leak uni-directional key
updates.

By using the example above, we immediately obtain the following theorem.

Theorem 3.4. The ciphertext-independent UE schemes Lehman and Tack-
mann [LT18], Boyd et al. [BDGJ20], and Jiang [Jia20] do not satisfy confi-
dentiality in the backward-leak uni-directional setting.

Proof. We use the leakage sets example K and T in Fig. 3 and set C = {5}.
This does not trigger the trivial winning condition in the backward-leak uni-
directional setting. However, an adversary can infer k5 by using k4 and ∆5
in the bi-directional key updates schemes described in the theorem statement.
Thus, the adversary trivially wins the confidentiality game in the backward-leak
uni-directional setting since a challenge ciphertext is encrypted under k5.

By Thm. 3.4 and the results by Lehman and Tackmann [LT18], Boyd et al. [BDGJ20],
and Jiang [Jia20], we immediately obtain Thm. 3.1 since they show that their
schemes satisfy confidentiality in the bi-directional key updates setting. Therefore,
surprisingly (or unsurprisingly), UE with backward-leak uni-directional (and
no-directional) key updates is strictly stronger than UE with bi-directional key
updates by Thms. 3.1 and 3.2.

On equivalence between no/uni/bi-directional key updates in bi-directional cipher-
text update setting. We give an observation on the equivalence theorem about
no-directional key updates. Jiang also proves the following theorem.

Theorem 3.5 ([Jia20, Theorem 3.2 in the ePrint ver.]). Let UE be an
UE scheme and notion ∈ {d-ind-ue-cpa, r-ind-ue-cpa, d-ind-ue-cca, r-ind-ue-cca}.
For any (no, bi)-notion adversary A against UE, there exists a (f-uni, bi)-notions
adversary B against UE such that

Adv(no,bi)-notion
UE,A (1λ) = Adv(f-uni,bi)-notion

UE,B (1λ).

This theorem seems to contradict our conclusion above, which says UE with
no-directional key updates is strictly stronger than UE with forward-leak uni-
directional key updates. Recall that no-directional key updates is stronger than
backward-leak uni-directional key updates. We also note that bi-directional key
updates and forward-leak uni-directional key updates are equivalent.

The source of the puzzle above comes from the fact that the theorem holds
for bi-directional ciphertext updates. The key lemma for proving Jiang’s theorem
above (Thm. 3.5) is the following.

Lemma 3.2 ([Jia20, Lemma 3.15 in the ePrint ver.]). For any K, T , C,
we have K∗f-uni ∩ C∗f-uni,bi 6= ∅ ⇒ K∗no ∩ C∗no,bi 6= ∅.

19

The proof of the lemma above heavily relies on the bi-directional ciphertext
update setting. As we argued in Sec. 3.2, it is unnatural to consider bi-directional
ciphertext updates with backward-leak uni-directional (and no-directional) key
updates. Thus, if we exclude such an unnatural or artificial setting, the equivalence
theorem above (Thm. 3.5), which is counterintuitive, does not hold in the case of
the backward-leak uni-directional key updates setting.

4 Construction with Backward-Leak Uni-Directional Key
Update

In this section, we present a backward-leak uni-directional key update scheme
from the LWE assumption.

4.1 Scheme Description and Design Idea

We present a UE scheme with backward-leak uni-directional key updates based
on the Regev PKE scheme [Reg09], and denoted by RtR. A proxy re-encryption
scheme by Nishimaki and Xagawa [NX15] inspired this construction idea.

The ciphertext update technique is based on the key-switching technique [BV14,
BV11, BGV14]. In particular, we use that for multi-bit plaintexts [BGH13]. In
the following, we denote a plaintext by µ ∈ {0, 1}` and error distributions by χ
and χns.

A variant of Regev PKE scheme. We review a variant of Regev PKE scheme [Reg09]
in the multi-user settings.

– Setup(1λ): Choose A← Zm×nq and output pp := (A, 1λ, 1n, 1m, 1`, q, χ, χns).
– Reg.Gen(pp): Choose S ← Zn×`q and X ← χm×`, compute B := AS +X ∈

Zm×`q , and outputs pk = B and sk = S.
– Reg.Enc(pk,µ): Choose r ← {−1,+1}m and e′ ← χ`ns and output (u, c) :=

(rA, rB + e′ + bq/2cµ).
– Reg.Dec(sk, (u, c)) Compute d := c− uS and output µ := b(2/q)de mod 2.

Key-switching technique. We review the key-switching technique in the multi-bit
version for our update algorithm. Let η := dlg qe. We give the definitions of the
binary-decomposition algorithm BD(·) and the powers-of-2 algorithm P2(·).

– BD(x ∈ Znq): It decomposes x =
∑η
k=1 2k−1uk, where uk ∈ {0, 1}n, and

outputs (u1,u2, . . . ,uη) ∈ {0, 1}nη.
– P2(s ∈ Zn×1

q): It outputs [1, 2, . . . , 2η−1]> ⊗ s = [s; 2s; . . . ; 2η−1s] ∈ Znη×1
q ,

where ⊗ denotes the standard tensor product. We extend the domain of P2
by setting P2([s1 . . . s`] ∈ Zn×`q) = [P2(s1) . . . P2(s`)] ∈ Znη×`q .

By the definition, it holds that BD(x) · P2(S) = x · S ∈ Z`q for any x ∈ Znq and
S ∈ Zn×`q .

20

Let Se,Se+1 ∈ Zn×`q be two secret keys at epoch e, e + 1, respectively. The
key-switching technique enables us to homomorphically decrypt a ciphertext
at epoch e and obtain a ciphertext at epoch e + 1 by using encryption of Se
under the key at epoch e + 1. More formally, the key-switching matrix M e+1
is [A′ | A′Se+1 + Y] + [O | −P2(Se)], where A′ ← Znη×nq , Y ← χnη×`. To
update a ciphertext (u, c) under Se to one under Se+1, we compute (u′, c′) =
(0, c) + BD(u)M e+1. By simple calculation, we have that

(u′, c′) = (0, c) + BD(u)
(
[A′ | A′Se+1 + Y] + [O | −P2(Se)]

)
= (BD(u)A′, c− uSe + BD(u)A′Se+1 + BD(u) · Y).

To decrypt ciphertext by secret key Se+1, we compute

c′ − u′Se+1 = c− uSe + BD(u)A′Se+1 + BD(u) · Y − BD(u)A′Se+1

= c− uSe + BD(u) · Y .

Thus, the decryption is correct if the magnitude of additional noises BD(u) · Y
is small.

backward-leak uni-directional update. In fact, we do not need the secret key Se+1
at epoch e + 1 for update. We set Be+1 = ASe+1 + Y e+1, which we call the
public key part of the key at epoch e + 1. We choose Re+1 ← {−1,+1}nη×m and
compute an update token

M e+1 = Re+1[A | Be+1] + [O | −P2(Se)]
= [A′ | A′Se+1 + Y ′] + [O | −P2(Se)],

whereA′ = Re+1A and Y ′ = Re+1Y j . By usingM e+1, we can update ciphertext
(u, c) at epoch e. Thus, even if given the key Se at epoch e and the token M e+1,
we cannot infer Se+1 since only the public key part Be+1 (this is pseudorandom
by the LWE assumption) of the key at epoch e + 1 is embedded in M e+1. Note
that Se and Se+1 are independently chosen. However, if given the key Se+1 at
epoch e + 1 and the token M e+1, we can easily infer Se since Se is encrypted
under Se+1. Thus, this update mechanism is a backward-leak uni-directional key
update and uni-directional ciphertext update.

How to achieve randomized update. The update algorithm above is deterministic.
To re-randomize an updated ciphertext, we set the update token as M e+1 and
Be+1, which is the public key part at epoch e + 1. First, we convert ciphertext
(u, c) at epoch e into (u′, c′) using M e+1 as above and masking (u′, c′) with a
new ciphertext (ũ, ṽ) := r̃[A | Be+1] of the plaintext 0. This is not enough for
confidentiality since it includes information about Be+1 and is not random. To
overcome this issue, we randomize [A | Be+1] into N e+1 = R′e+1 · [A | Be+1],
where R′e+1 ← {−1,+1}m×m and add it to ∆e+1. Since the matrixN e+1 consists
of m ciphertexts of the message 0, this is pseudorandom. The update token
consists of key-switching matrix M e+1 and randomized matrix N e+1.

21

Backward-leak uni-directional key update scheme. A UE scheme, RtR, is defined
as follows:

Setup(1λ):
1. Choose A← Zm×nq .
2. Output pp := (A, 1λ, 1n, 1m, 1`, q, χ, χns).

Gen(pp):
1. Generate (Be,Se)← Reg.Gen(1λ).
2. Output ke := (ske, pke) := (Se,Be).

Enc(ke,µ ∈ {0, 1}`):
1. Parse ke = (Se,Be).
2. Generate (u, c)← Reg.Enc(Be,µ).
3. Output ct := (u, c) ∈ Znq × Z`q.

Dec(ke, ct):
1. Parse ke = (Se,Be) ct = (u, c).
2. Compute and output µ← Reg.Dec(Se, ct).

TokGen(ke, ke+1):
1. Parse ke = (Se,Be) and ke+1 = (Se+1,Be+1).
2. Compute M e+1 := Re+1 · [A | Be+1] + [O | −P2(Se)], where Re+1 ←
{−1,+1}nη×m.

3. Compute N e+1 := R′e+1 · [A | Be+1], where R′e+1 ← {−1,+1}m×m.
4. Output ∆e+1 := (M e+1,N e+1).

Upd(∆e+1, cte):
1. Parse ∆e+1 = (M e+1,N e+1) and cte = (ue, ce).
2. Compute (u′, c′) := BD(ue)M e+1;
3. Compute (ũ, ṽ) := r̃ ·N e+1, where r̃ ← {−1,+1}m;
4. Output cte+1 := (ū, c̄) := (u′ + ũ, ce + c′ + ṽ).

For notational convenience, we call pke = Be and ske = Se public key and secret
key of epoch e, respectively. Note that we can run Enc without ske = Se (we
need only pke = Be). We also note that we can run TokGen(ke, ke+1) without
ske+1 (we need only pke+1 and ske).

The scheme is correct and r-IND-UE-CPA secure. We prove the following
theorems in Sections 4.2 and 4.3. Let T be the maximum number of the epoch.

Theorem 4.1. Let χ and χns be B-bounded and B′-bounded distributions, re-
spectively, such that B/B′ = negl(λ) and m = 2n lg q + ω(

√
lg λ). Suppose that

(1 + nη +m)mB +B′ ≤ q/4T . Then RtR is correct.

Theorem 4.2. Suppose that m ≥ (n+ `) lg q + ω(lg λ). Under the LWE(n, q, χ)
assumption, RtR is r-IND-UE-CPA secure in the backward-leak uni-directional
setting. That is, Adv(b-uni,uni)-r-ind-ue-cpa

RtR,A (1λ) ≤ negl(λ).

22

4.2 Correctness

We give rough estimations on B-bounded and B′-bounded distributions χ and
χns, respectively, for simplicity. However, if we set χ = Ψ̄α or DZ,s, we can obtain
tighter bounds.

Proof of Thm. 4.1. The theorem follows from Prop. 4.1 and 4.2 below.

Proposition 4.1. The scheme is correct for the encryption algorithm if mB +
B′ < q/4.

Proposition 4.2. The scheme is correct for the update algorithm if (1 + nη +
m)mB +B′ < q/4T .

Those correctness easily follows from the proof by Regev [Reg09]. We omit
them due to space limitations. See the full version for the proofs.

4.3 Confidentiality

We show RtR is r-IND-UE-CPA in the backward-leak uni-directional setting.
Although it is trivial that RtR satisfies uni-directional ciphertext updates from
its security, we confirm it below.
Lemma 4.1. If (Setup,Reg.Gen,Reg.Enc,Reg.Dec) is IND-CPA secure PKE,
adversaries cannot convert a ciphertext under a public key pke+1 into one under
a public key pke even if they are given ∆e+1.

Proof. We construct an algorithm B that breaks IND-CPA security under pke+1
by using an adversary D that converts a ciphertext under pke+1 into one under
pke by using (pke, ske), pke+1, and ∆e+1.

First, B is given pke+1. B generates (pke, ske) and ∆e+1 ← TokGen(ske, pke+1),
selects any (m0,m1), sends (m0,m1) to its challenger, and receives a target cipher-
text ct∗ ← Reg.Enc(pke+1,mb) where b← {0, 1}. Next, B sends ((pke, ske), ∆e+1, ct∗)
toD.D outputs a ciphertext ct′ under pke. Then, B computesm′ ← Reg.Dec(ske, ct′)
by using ske and if m′ = mb′ , it outputs b′.

It is easy to see that if D can convert ct∗ into a ciphertext under pke, B
outputs b′ = b. This completes the proof.

Second, we look at the detail of the update procedure again. By simple
calculation, we obtain

(ū, c̄) = (0, ce) + BD(ue) ·M e+1 + r̃ ·N e+1

= (r†A, r†Be+1 + e′e + rXe + bq/2cµ) where r† := BD(ue)Re+1 + r̃R′e+1
s
≈ (r†A, r†Be+1 + e′e + bq/2cµ). (1)

The last equation (statistical indistinguishability) holds by the noise smuding
lemma [AJL+12]. This equation shows that we can simulate an update ciphertext
by using the original ciphertext, its plaintext and randomness, the new epoch
public key, and randomness for generating the token ∆e+1 (not the token itself).

To show the security, we define auxiliary algorithms for simulation.

23

Hyb.Upd(cte,Be+1,µ; e′e, (Re+1,R
′
e+1)):

– Parse cte = (ue, ce).
– Choose r̃ ← {−1,+1}m and set r† := BD(ue)Re+1 + r̃R′e+1.
– Set cte+1 := (ū, c̄) := (r†A, r†Be+1 + e′e + bq/2cµ).
– Output (cte+1; e′e).

Sim.Gen(pp):
– Choose and output pke := B+

e ← Zm×`q .
Sim.TokGen(pp):

– Choose and output ∆+
e+1 := (M+

e+1,N
+
e+1)← Znη×(n+`)

q × Zm×(n+`)
q .

Sim.Upd(pp):
– Choose and output cte+1 := (ū, c̄)← Znq × Z`q.

Sim.Enc(pp):
– Choose and output cte := (ū, c̄)← Znq × Z`q.

Lemma 4.2. Upd(∆e+1, cte)
s
≈ Hyb.Upd(cte,Be+1,µ; e′e, (Re+1,R

′
e+1))

By Eq. (1), Lem. 4.2 immediately holds. That is, we can simulate O.Upd(cte)
by using Hyb.Upd(cte,Be+1,µ; e′e, (Re+1,R

′
e+1)).

We follow the firewall technique [LT18, KLR19, BDGJ20, Jia20] to prove
security, but we use the relaxed firewall notion in Def. 3.2.

Proof of Thm. 4.2. Let T be the upper bound of the number of epoch. We
consider a sequence of hybrid games. First, we define the following hybrid game:

Hybi(b): This is the same as Exp(b-uni,uni)-r-ind-ue-cpa
RtR,A (λ, b) except the following

difference: When the adversary sends a query (µ, ct) to O.Chall or an empty
query to O.UpdC̃ at epoch j,
– for j < i, return an honestly generated challenge-equal ciphertext. That

is, if b = 0, UE.Enc(k̃e, µ) else UE.Upd(∆ẽ, ct).
– for j ≥ i, return a random ciphertext.

It is easy to see that HybT+1(b) is the same as the original r-INE-UE-CPA
game in the backward-leak uni-directional setting Exp(b-uni,uni)-r-ind-ue-cpa

RtR,A (λ, b).
Let U(λ) be a random variable distributed uniformly in [0, T], by the standard
hybrid argument, we have

Adv(b-uni,uni)-r-ind-ue-cpa
RtR,A (λ) ≤ (T + 1)|Pr[HybU(λ)+1(1) = 1]− Pr[HybU(λ)(1) = 1]|

+ (T + 1)|Pr[HybU(λ)+1(0) = 1]− Pr[HybU(λ)(0) = 1]|,

where we use Pr[U(λ) = i] = 1/(T + 1). Note that Hyb0(0) = Hyb0(1) trivially
holds since all challenge-equal ciphertexts are random ciphertexts. Thus, our goal
is to prove |Pr[HybU(λ)+1(b) = 1]− Pr[HybU(λ)(b) = 1]| ≤ negl(λ) for b ∈ {0, 1}.

Hereafter, we write Hybi(b) instead of HybU(λ)(b) for simplicity. Next, we
define the following hybrid game:

24

Hyb′i(b): This is the same as Hybi(b) except that the game chooses fwl, fwr ←
[0, T]. If the adversary corrupts kj such that j ∈ [fwl, fwr] or ∆fwr+1, the game
aborts.

The guess is correct with probability 1/(T + 1)2. We have

|Pr[Hybi(b) = 1]−Pr[Hybi−1(b)]| ≤ (T+1)2|Pr[Hyb′i(b) = 1]−Pr[Hyb′i−1(b) = 1]|.

If |Pr[Hyb′U(λ)+1(b) = 1] − Pr[Hyb′U(λ)(b) = 1]| ≤ negl(λ), we complete the
proof of Thm. 4.2.

Lemma 4.3. If the LWE assumption holds, it holds that |Pr[Hyb′i+1(b) = 1]−
Pr[Hyb′i(b) = 1]| ≤ negl(λ).

Proof. Note that the difference between these two games appears when the
challenge query is sent at epoch i, so we can assume ẽ = i. We start from
Hyb′i+1(b) and gradually change it to Hyb′i(b). We define another sequence of
games.

Hybr
i(b): This is the same as Hyb′i(b) except that we use the hybrid update
algorithm Hyb.Upd to simulate O.Upd. More precisely, O.Upd(cte−1) act as
follows:
– If (·, cte−1, e− 1; e′e−1;µ) /∈ L, then return ⊥
– Otherwise, (cte, e

′
e)← Hyb.Upd(cte−1,Be,µ; e′e−1, (Re,R

′
e)).

– L := L ∪ {(·, cte, e; e′e,µ)}.
Note that Re and R′e are randomness used in TokGen, so anyone can choose
them. Simulators internally choose and record them.

Proposition 4.3. |Pr[Hyb′i(b) = 1]− Pr[Hybr
i(b) = 1]| ≤ negl(λ).

It is easy to see Prop. 4.3 holds by Lem. 4.2. The next goal is proving |Pr[Hybr
i+1(b) =

1]− Pr[Hybr
i(b) = 1]| ≤ negl(λ). We define the following games.

Gj(i, b): This is the same as Hybr
i(b) except the following difference.

– For i ≤ k < j, pkk and ∆k are honestly generated as in the real.
– For fwr ≥ k ≥ j, pkk and ∆k are uniformly random.

That is, we gradually erase information about UE secret keys from newer epochs
to older epochs. We note that j ∈ [i, fwr + 1] and i is fixed. By the definition, we
have

Gfwr+1(i+ 1, b) = Hybr
i+1(b) and Gfwr+1(i, b) = Hybr

i(b). (2)

We prove that

|Pr[Gj+1(i+ 1, b) = 1]− Pr[Gj(i+ 1, b) = 1]| ≤ negl(λ) for j ∈ [i, fwr] (3)
|Pr[Gi(i+ 1, b) = 1]− Pr[Gi(i, b) = 1]| ≤ negl(λ) (4)
|Pr[Gj+1(i, b) = 1]− Pr[Gj(i, b) = 1]| ≤ negl(λ) for j ∈ [i, fwr]. (5)

25

From these equations, we immediately obtain

|Pr[Gfwr+1(i+ 1, b) = 1]− Pr[Gfwr+1(i, b)]| ≤ negl(λ).

By combining this with Prop. 4.3 and Eq. (2), we obtain what we want to prove
(Lem. 4.3). Thus, all we must do is proving Eqs. (3) to (5).

First, we prove Eq. (3). We define a few hybrid games as follows.

– Game-0(b): This is the same as Gj+1(i+ 1, b). At this point, public keys and
tokens of epochs in [i, j] are real values while those at epochs in [j + 1, fwr]
are already random values.

– Game-1(b): This is the same as Game-0(b) except that we modify the public
key part of epoch j. We use B+

j ← Zm×`q instead of Bj such that (Sj ,Bj)←
Reg.Gen(1λ). Note that we do not use the secret key Sj of epoch j anywhere
in this game since ∆j+1 is already a random value.

– Game-2(b): This is the same as Game-1(b) except that we modify the token
generation algorithm for token ∆j . We use ∆j := (M+

j ,N
+
j)← Znη×(n+`)

q ×
Zm×(n+`)
q instead of (M j ,N j)← TokGen(kj−1, kj).

Obviously, Game-2(b) is the same as Gj(i+ 1, b). It is easy to see if we prove the
following, we complete the proof of Eq. (3).

Proposition 4.4. If the LWE assumption holds, it holds that |Pr[Game-1(b) =
1]− Pr[Gj+1(i+ 1, b) = 1]| ≤ negl(λ).

Proposition 4.5. It holds that |Pr[Game-2(b) = 1] − Pr[Game-1(b) = 1]| ≤
negl(λ).

We will prove these propositions above later.
Next, we prove Eq. (4). The only difference between Gi(i+ 1, b) and Gi(i, b)

is the challenge-equal ciphertext at epoch i. That is, Gi(i, b) is the same as
Gi(i+ 1, b) except that we modify the challenge-equal ciphertext for b at epoch
i. We use (ū, c̄)← Znq × Z`q instead of (ū, c̄)← Upd(∆+

i , ct) (the case b = 1) or
(ū, c̄)← Enc(ki, µ0) (the case b = 0). We prove the following proposition later.

Proposition 4.6. It holds that |Pr[Gi(i+ 1, b) = 1]−Pr[Gi(i, b) = 1]| ≤ negl(λ).

Lastly, we prove Eq. (5). Once the challenge-equal ciphertext at epoch i
becomes random, we need to go back to games where public keys and tokens
are real. In Gj(i, b) for j ∈ [i, fwr], publics keys and tokens (from epochs j to
fwr) are also random. We need to change them from random to real since we
need to arrive at Hybri , where public keys and tokens are real (but ciphertext at
epoch i is random). Thus, we need to prove Eq. (5). These backward transitions
are possible by using the proof of Eq. (3) in a reverse manner. We summarize
how public keys, update tokens, and challenge-equal ciphertexts at epoch i are
generated in Fig. 4.

Thus, we complete the proof of Lem. 4.3 if we prove Prop. 4.4 to 4.6. We
write those proofs below.

26

Value Gi+1(i+ 1, b) Game-1 Game-2 = Gi(i+ 1, b) Gi(i, b)

pki Reg.Gen(1λ) Sim.Gen(pp) Sim.Gen(pp) Sim.Gen(pp)
∆i TokGen(ski−1, pki) TokGen(ski−1, pki) Sim.TokGen(pp) Sim.TokGen(pp)
ct∗i,1 Upd(∆i, cti−1) Upd(∆i, cti−1) Upd(∆+

i , cti−1) Sim.Upd(pp)
ct∗i,0 Enc(pki, µ0) Enc(pki, µ0) Enc(pki, µ0) Sim.Enc(pp)

Fig. 4: The differences of public keys, update tokens, challenge-equal ciphertexts at
epoch i in hybrid games. We focus the case where i = ẽ.

Proofs of core propositions. We give the proofs of Prop. 4.4 to 4.6.

Proof of Prop. 4.4. We construct a reduction B that solves the LWE problem by
using the distinguisher A for the two games.

Recall that the key kj of epoch j consists of (skj , pkj). B is given an LWE
instance (A,B) and set Bj := B. That is, B is used as the public key pkj of
epoch j. Note that B can simulate all values in epoch k ∈ [0, T]\ [fwl, fwr] since all
values in epoch k (outside the firewall) are independent of the secret key of epoch
j. (Note that such values may be related to the public key of epoch j via tokens.)
That is, B can choose the secret key Sk. We also note that B can simulate O.Upd
by using Hyb.Upd. In [fwl, fwr], values are related to the secret key S behind B.
However, in Gj+1(i+ 1, b) (and Game-1(b)), all values in [j+ 1, fwr] are uniformly
random values. Note that the original update token ∆j+1 needs skj and pkj+1.
However, ∆j+1 was already changed to ∆+

j+1, which is uniformly random value,
and we do not need skj .

Thus, the issue is how to simulate values in epoch j′ such that j′ ∈ [fwl, j]
(including the case where fwl = j). As we see in the definition of TokGen, we
do not need skj to generate ∆j and B can simulate ∆j . Therefore, B can also
simulate ct∗j,b for both b = 0, 1. For j′′ ∈ [fwl, j−1], public keys and tokens are not
related to skj . Thus, B chooses Sj′′ and can simulate all values (pkj′′ , ∆j′′ , ct∗j′′,b)
by using the normal algorithms.

If B = AS +X where S ← Zn×`q and X ← χm×`, the distribution is the
same as Gi+1(i + 1, b). If B is uniformly random, the distribution is the same
as Game-1(b). Therefore, B distinguish the instance if A distinguishes the two
games. This completes the proof.

Proof of Prop. 4.5. The difference between these two games is as follows:

Game-1(b): ∆j = (M j ,N j):

M j := Rj · [A | Bj] + [O | −P2(Sj−1)],N j := R′j · [A | Bj],

where Rj ← {−1,+1}nη×m,R′j ← {−1,+1}m×m.
Game-2(b): ∆+

j = (M+
j ,N

+
j): (M+

j ,N
+
j)← Znη×(n+`)

q × Zm×(n+`)
q .

27

In Game-1(b) and Game-2(b), the public key Bj ← Zm×`q is uniformly random.
Thus, we can apply the leftover hash lemma and these differences are statistically
indistinguishable. This completes the proof.

Proof of Prop. 4.6. The difference between these two games is as follows: For
b = 1,
Gi(i+ 1, 1): ct∗i,1 = (ū, c̄): (u′+ũ, ci−1 +c′+ṽ) = (0, ci−1)+BD(ui)M+

i +r̃N+
i ,

where r̃ ← {−1,+1}m.
Gi(i, 1): ct∗i,1 = (ū, c̄): (ū, c̄)← Znq × Z`q.

n In Gi(i+ 1, b) and Gi(i, b), N+
i is uniformly random. Thus, we can apply the

leftover hash lemma and these differences are statistically indistinguishable. For
b = 0,
Gi(i+ 1, 0): ct∗i,0 = (u, c): (rAi, rB

+
i + e′ + bq/2cµ0), where A ← Zm×q , r ←

{−1,+1}m, e′ ← χ`ns, and B+
i ← Zm×`q .

Gi(i, 0): ct∗i,0 = (u, c): (u, c)← Znq × Z`q.

In Gi(i + 1, b) and Gi(i, b), the public key B+
i ← Zm×`q is uniformly random.

Thus, we can apply the leftover hash lemma and these differences are statistically
indistinguishable. This completes the proof.

5 Construction with No-Directional Key Update

5.1 Scheme Description

We present a no-directional key update scheme UEio from puncturable PRFs and
IO. Let PRF : {0, 1}λ × {0, 1}n → {0, 1}` and PRG : {0, 1}τ → {0, 1}n. We will
set τ := λ, n := 2λ.

Setup(1λ) : Does nothing.
KeyGen(1λ) :

– Generate K← PRF.Gen(1λ) and output ke := K.
TokGen(ke, ke+1)

– Generate and output ∆e+1 ← iO(Cre[ke, ke+1]) where circuit Cre is de-
scribed in Fig. 5.

Enc(ke, µ ∈ {0, 1}`) :
– Choose r ← {0, 1}τ and compute t := PRG(r).
– Compute y := PRF(K, t) and output ct := (t, y ⊕ µ).

Dec(ke, ct) :
– Parse ke = K ct = (t, c).
– Compute µ′ := c⊕ PRF(K, t) and output µ′.

Upd(∆e+1, cte)
– Parse ∆e+1 = iO(Cre[ke, ke+1]) and choose re+1 ← {0, 1}τ .
– Compute and output (t, c) := iO(Cre[ke, ke+1])(cte, re+1).

Theorem 5.1. UEio is an r-IND-UE-CPA secure UE scheme in the no-directional
key updates setting.

We omit the proof due to space limitations. See the full version.

28

Update Function Cre[ke, ke+1](cte, re+1)

Hardwired: ke, ke+1.
Input: A ciphertext cte and randomness re+1 ∈ {0, 1}τ .
Padding: This circuit is padded to size padT := padT(λ), which is determined in analysis.

1. Parse cte = (te, ce)
2. Compute µ′ := ce ⊕ PRF(ke, te).
3. Compute t′ := PRG(re+1) and y′ := PRF(ke+1, t

′)
4. Return cte+1 := (t′, y′ ⊕ µ′).

Fig. 5: The description of Cre

Acknowledgments

The author would like to thank Fuyuki Kitagawa for giving a pointer to the right
reference about an RKA-secure AE scheme. The author also thanks anonymous
reviewers of PKC 2022 for useful comments.

References

ABPW13. Y. Aono, X. Boyen, L. T. Phong, and L. Wang. Key-Private Proxy Re-
encryption under LWE. In INDOCRYPT 2013, pages 1–18. 2013.

AJL+12. G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and
D. Wichs. Multiparty Computation with Low Communication, Computation
and Interaction via Threshold FHE. In EUROCRYPT 2012, pages 483–501.
2012.

AMP19. N. Alamati, H. Montgomery, and S. Patranabis. Symmetric Primitives with
Structured Secrets. In CRYPTO 2019, Part I, pages 650–679. 2019.

BDGJ20. C. Boyd, G. T. Davies, K. Gjøsteen, and Y. Jiang. Fast and Secure Updatable
Encryption. In CRYPTO 2020, Part I, pages 464–493. 2020.

BEKS20. D. Boneh, S. Eskandarian, S. Kim, and M. Shih. Improving Speed and
Security in Updatable Encryption Schemes. In ASIACRYPT 2020, Part III,
pages 559–589. 2020.

BGH13. Z. Brakerski, C. Gentry, and S. Halevi. Packed Ciphertexts in LWE-Based
Homomorphic Encryption. In PKC 2013, pages 1–13. 2013.

BGI+12. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan,
and K. Yang. On the (im)possibility of obfuscating programs. Journal of
the ACM, 59(2):6:1–6:48, 2012.

BGV14. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) Fully Homo-
morphic Encryption without Bootstrapping. ACM Trans. Comput. Theory,
6(3):13:1–13:36, 2014.

BLMR13. D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key Homo-
morphic PRFs and Their Applications. In CRYPTO 2013, Part I, pages
410–428. 2013.

BV11. Z. Brakerski and V. Vaikuntanathan. Fully Homomorphic Encryption from
Ring-LWE and Security for Key Dependent Messages. In CRYPTO 2011,
pages 505–524. 2011.

29

BV14. Z. Brakerski and V. Vaikuntanathan. Efficient Fully Homomorphic Encryp-
tion from (Standard) LWE. SIAM Journal on Computing, 43(2):831–871,
2014.

CCL+14. N. Chandran, M. Chase, F.-H. Liu, R. Nishimaki, and K. Xagawa. Re-
encryption, Functional Re-encryption, and Multi-hop Re-encryption: A
Framework for Achieving Obfuscation-Based Security and Instantiations
from Lattices. In PKC 2014, pages 95–112. 2014.

CLT20. L. Chen, Y. Li, and Q. Tang. CCA Updatable Encryption Against Malicious
Re-encryption Attacks. In ASIACRYPT 2020, Part III, pages 590–620.
2020.

DN21. N. Döttling and R. Nishimaki. Universal Proxy Re-Encryption. In PKC 2021,
Part I, pages 512–542. 2021.

EPRS17. A. Everspaugh, K. G. Paterson, T. Ristenpart, and S. Scott. Key Rotation
for Authenticated Encryption. In CRYPTO 2017, Part III, pages 98–129.
2017.

FMM21. A. Fabrega, U. Maurer, and M. Mularczyk. A Fresh Approach to Updatable
Symmetric Encryption. IACR Cryptol. ePrint Arch., 2021:559, 2021.

Gen09. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009. crypto.stanford.edu/craig.

HLL16. S. Han, S. Liu, and L. Lyu. Efficient KDM-CCA Secure Public-Key En-
cryption for Polynomial Functions. In ASIACRYPT 2016, Part II, pages
307–338. 2016.

Jia20. Y. Jiang. The Direction of Updatable Encryption Does Not Matter Much.
In ASIACRYPT 2020, Part III, pages 529–558. 2020.

JLS21. A. Jain, H. Lin, and A. Sahai. Indistinguishability Obfuscation from Well-
Founded Assumptions. In STOC 2021, 2021.

KLR19. M. Klooß, A. Lehmann, and A. Rupp. (R)CCA Secure Updatable Encryption
with Integrity Protection. In EUROCRYPT 2019, Part I, pages 68–99. 2019.

LR21. F. Levy-dit-Vehel and M. Roméas. A Composable Look at Updatable
Encryption. IACR Cryptol. ePrint Arch., 2021:538, 2021.

LT18. A. Lehmann and B. Tackmann. Updatable Encryption with Post-
Compromise Security. In EUROCRYPT 2018, Part III, pages 685–716.
2018.

Nis21. R. Nishimaki. The Direction of Updatable Encryption Does Matter. IACR
Cryptol. ePrint Arch., page 221, 2021.

NX15. R. Nishimaki and K. Xagawa. Key-Private Proxy Re-Encryption from
Lattices, Revisited. IEICE Transactions, 98-A(1):100–116, 2015.

Reg09. O. Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM, 56(6):34:1–34:40, 2009.

SS21. D. Slamanig and C. Striecks. Puncture ’Em All: Stronger Updatable En-
cryption with No-Directional Key Updates. IACR Cryptol. ePrint Arch.,
2021:268, 2021.

SW21. A. Sahai and B. Waters. How to Use Indistinguishability Obfuscation:
Deniable Encryption, and More. SIAM Journal on Computing, 50(3):857–
908, 2021.

30

crypto.stanford.edu/craig

	 *-7ex The Direction of Updatable Encryption Does Matter *-2ex

