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Abstract. We derive the first adaptively secure IBE and ABE for t-CNF,
and selectively secure ABE for general circuits from lattices, with 1−o(1)
leakage rates, in the both relative leakage model and bounded retrieval
model (BRM).
To achieve this, we first identify a new fine-grained security notion for
ABE – partially adaptive/selective security, and instantiate this notion
from LWE. Then, by using this notion, we design a new key compress-
ing mechanism for identity-based/attributed-based weak hash proof sys-
tem (IB/AB-wHPS) for various policy classes, achieving (1) succinct se-
cret keys and (2) adaptive/selective security matching the existing non-
leakage resilient lattice-based designs. Using the existing connection be-
tween weak hash proof system and leakage resilient encryption, the succinct-
key IB/AB-wHPS can yield the desired leakage resilient IBE/ABE schemes
with the optimal leakage rates in the relative leakage model. Finally, by
further improving the prior analysis of the compatible locally computable
extractors, we can achieve the optimal leakage rates in the BRM.

1 Introduction

Leakage-resilient cryptography aims to create crypto systems that maintain se-
curity even when partial information of the secret key is leaked. This line of
studies is motivated by both theoretic curiosities and perhaps more important-
ly, real-world scenarios, where some secure crypto systems might be completely
broken if some partial key leakage is given to the attackers. One famous example
is the side-channel attacks where the adversary can obtain leakage from measur-
ing some physical behavior of an implementation, e.g., [1,27]. Another source of
leakage comes from imperfect erasure where the attacker can obtain partial in-
formation before the content is completely erased, e.g., the cold boot attacks [23].
On the other hand, leakage resilience can be used to achieve security for other
more complicated systems. For example, in the design of non-malleable codes,
the work [17,26,31] leveraged leakage resilience to prove non-malleability. There-
fore, leakage resilience has been an active research subject for the community,
e.g., [4–6,8, 16,25,33], to name a few.



Main Goal. As motivated above, we aim to determine how to derive encryption
schemes with better leakage rates, stronger security, and more expressive access
control functionalities. More specifically, our goal is to construct leakage resilient
encryption schemes in both the relative leakage model and the bounded retrieval
model (BRM) with (1) optimal leakage rates, i.e., 1 − o(1), (2) post-quantum
security and (3) more fine-grained access control, i.e., IBE and ABE for various
classes of policy functions.

The Leakage Models. Various leakage models have been studied in the lit-
erature, capturing information leaked to the adversary. This work focuses on a
simple yet general model called the bounded-leakage model (also known as the
memory leakage model), allowing the attacker to learn arbitrary information
about the secret key sk, as long as the number of leaked bits is bounded by some
parameter `. This model has drawn a lot of attentions (e.g., [4, 5, 25, 33]) for
its elegance and simplicity, and can be used as a building block towards more
sophisticated and realistic models, such as the continual leakage model [9, 14]
(see [25]). Thus, understanding this model is not only of theoretic interests but
also a necessary step towards realizing security for broader physical attacks.

The bounded leakage model would require ` < |sk|, as otherwise, the attacker
can trivially obtain the whole secret key, and thus no meaningful security can
be attained. To further characterize this requirement, there are two important
models studied in the literature that treat the relation between ` and sk in a
different way: (1) relative leakage model, and (2) bounded retrieval model (BRM).

In the former, the secret key and public-key are chosen in the same way as
a standard crypto system (not necessary leakage resilient), and then the leakage
parameter ` would be determined. The latter model generalizes the former by
considering ` as an independent parameter whose growth (essentially) only goes
with |sk|, but would barely affect the other parameters, such as the public-key
size, encryption running time, and ciphertext size. Basically, both models can
scale up ` to allow an arbitrarily long leakage. But their difference is that the
former would require to scale up the security parameter and thus all the other
parameters, while the latter would only scale up the secret-key size and keep the
other parameters essentially the same. Thus, constructions in the BRM is more
desirable yet more challenging.

Leakage rate, i.e., the ratio `/|sk|, is an important measure of efficiency for
crypto systems in these two models. Particularly, rate 1−o(1) is the best we can
hope for – in order to tolerate ` bits of leakage, the system only needs to scale
|sk| slightly larger than `, optimizing the security/efficiency tradeoff.

Current State of the Arts and Challenges. We first notice that for the pre-
quantum settings, leakage resilience can be achieved via the beautiful framework
– dual system encryption, even for IBE/ABE and with optimal leakage rates,
e.g., [28]. However, current instantiations of the dual system encryption are all
group-based [11, 20, 28, 29, 41, 42], and thus cannot defend against quantum al-
gorithms. It is an interesting yet extremely challenging open question how to
instantiate a dual system from a post-quantum candidate, such as LWE or LPN.
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For post-quantum leakage resilient encryption schemes, we notice that there
are some limitations of the current techniques in achieving the optimal leakage
rate beyond the basic PKE. In prior work, there have been constructed LWE/LPN-
based PKE schemes with leakage rates 1−o(1), e.g., [10,13], but their ideas do not
generalize to more advanced settings, such as IBE and ABE. In a subsequent work,
Hazay et al. [25] proposed a unified framework, showing that (1) PKE implies
leakage resilient PKE in the relative leakage model, and (2) IBE implies leakage
resilient PKE/IBE in the BRM. Moreover, the leakage resilient IBE achieves the
same level of adaptive/selective security as that of the underlying IBE. Their
idea can be generalized to construct leakage resilient ABE, but this approach
inherently yields a very low leakage rate (i.e., 1/O(λ)).

A recent work [35] somewhat mitigated this issue by improving the leakage
rates, yet at the cost of weaker security guarantees for the post-quantum instan-
tiations. Particularly, they construct LWE-based leakage resilient IBE schemes in
both the relative leakage model and the BRM, achieving 1 − o(1) leakage rate
in the former and 1 − O(1) (for any arbitrarily small constant) in the latter.
Their improvement relies on a novel key-compression mechanism that shortens
the secret key length required in the framework of Hazay et al. [25]. Due to
some technical limitation in the mechanism, their IBE scheme however, can only
achieve the selective security. From these works [25,35], we see a tradeoff between
security and leakage rate, i.e., either we have an adaptively secure IBE with a
low leakage rate, or a selectively secure IBE with a higher leakage rate.

Main Question. In this work, we aim to further determine whether the tradeoff
between (selective/adaptive) security and leakage rates as above is inherent.
Particularly, we ask the following:

Can we achieve the optimal leakage rate (1−o(1)) for IBE (and ABE) in
both relative and bounded retrieval models with security matching existing
non-leakage resilient IBE (ABE), under LWE?

1.1 Our Contributions

In this work, we give positive answers in many settings of the main question.
Our central idea is a refinement of the framework of [25,35] by designing a new
key compression mechanism from ABE with succinct keys. Below we describe our
contributions in more details.

– As a warm-up, we propose a new leakage model for ABE that incorporates
parameters ` and ω, where ` is the number of bits allowed to leak per key and
ω is the number of keys the adversary can leak. We note that for PKE and
IBE, there is only one possible secret key corresponding to the challenge id.
In this case, it is without loss of generality to just consider ω = 1. However,
for the ABE setting, there could be many possible secret keys corresponding
to the challenge attribute, so specifying ω is natural and necessary in the
leakage model. We call a scheme (`, ω)-leakage resilient if the scheme can
tolerate leakage on ω keys, each within ` bits.
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– Next, we design improved instantiations of attribute-based weak hash proof
system (AB-wHPS), which generalizes (identity-based) weak hash proof sys-
tem [5, 25] by associating each ciphertext with an attribute and each secret
key with a policy function. Particularly, we construct lattice-based AB-wHPS
from ABE for various function classes, achieving two important new features:
(1) succinct secret keys, i.e., the secret key length is |f | + o(|f |) where f is
the policy function, and (2) security matching currently the best known
lattice-based ABE schemes (not necessarily leakage resilient). More specifi-
cally, we construct adaptively secure AB-wHPS for the class of comparison
functions (which is the IB-wHPS) and the class t-CNF∗5, and selectively se-
cure AB-wHPS for general circuits.

– By using AB-wHPS for class F with succinct keys, we are able to construct
(`, 1)-leakage resilient ABE for F , with leakage rate `/|sk| = (1−o(1)) in the
relative leakage model.
We view AB-wHPS with succinct key as an improved key compression mech-
anism from prior works [25, 35] in the following two aspects: (1) AB-wHPS
has better expressibility of policy function (the prior work [35] can only
express the comparison function), and (2) we can derive adaptively secure
AB-wHPS with succinct keys for classes which we have adaptively secure
(non-leakage resilient) ABE. Prior to our work, for lattice-based schemes, we
only had either a selectively secure IB-wHPS with succinct secret keys [35]
or an adaptively secure IB-wHPS with non-succinct keys [25].

– From our AB-wHPS, we can further derive (`, 1)-leakage resilient ABE in the
BRM, via an amplification and a connection with locally computable extrac-
tors as pointed out by [25]. However, prior compatible locally computable
extractors [5] can only achieve 1−O(1) leakage rate for an arbitrarily small
constant. To achieve 1− o(1) leakage rate, we improve the prior analysis [5]
by refining their proof technique via the framework of Vadhan [40].

– Finally, we present a bootstrapping mechanism that generalizes our prior
(`, 1)-leakage resilient ABE schemes to (`, ω)-leakage resilient schemes for
any bounded polynomial ω, in both relative leakage model and bounded
retrieval model. The resulting leakage rate is still optimal (i.e., 1 − o(1))
against block leakage functions, a slightly more restricted class.

1.2 Overview of Our Techniques

Our central insight is a new key-compression mechanism for the framework in
[25]. To illustrate our new idea, we first briefly review the prior framework [25]
and point out the barrier of their leakage rates. Then we will describe our new
ideas for the improvement.

(Weak) Hash Proof System. A hash proof system can be described as a key
encapsulation mechanism that consists of four algorithms (Setup,Encap,Encap∗,

5 This is the dual class of t-CNF where the function is an assignment x and attribute
is a description of t-CNF. We use the dual class as we are working on Key-policy
ABE while the prior work [38] worked on Ciphertext-policy ABE.
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Decap): (1) Setup outputs a key pair (pk, sk), (2) Encap(pk) outputs a pair (CT, k)
where k is a key encapsulated in a “valid” ciphertext CT, (3) Encap∗(pk) outputs
an “invalid” ciphertext CT∗, and (4) Decap(sk,CT) outputs a key k′. A (weak)
hash proof system requires the following:

– Correctness. For a valid ciphertext CT, Decap always outputs the encap-

sulated key k′ = k, i.e., Decap(sk,CT) = k, where (CT, k)
$←− Encap(pk).

– Ciphertext Indistinguishability. Valid ciphertexts and invalid cipher-
texts are computationally indistinguishable, even given the secret key. This
condition is essential for achieving leakage resilience [5, 33].

– Universality. The decapsulation of an invalid ciphertext has information
entropy, even for unbounded adversaries. Here, the randomness of invalid
decapsulation comes from randomness in generating secret keys. A weak
HPS (wHPS) only requires this property to hold for a random invalid cipher-

text, i.e. CT∗
$←− Encap∗(pk), while a full-fledged HPS requires this to hold

for any invalid ciphertext.

As noted in prior work [5], a wHPS already suffices to achieve leakage resilience,
though it is not sufficient for the CCA2 security, for which the HPS was originally
intended to design [12]. Roughly speaking, the leakage resilient scheme derived
from wHPS [5, 25, 33] can tolerate ` ≈ |k| − λ bits of leakage, i.e., the length
of encapsulated key minus security parameter, and thus the leakage rate of the

derived encryption scheme would be `/|wHPS.sk| ≈ |k|−λ
|wHPS.sk| .

Moreover, the idea can be generalized to IB-wHPS and AB-wHPS where an
additional id or attribute x is associated with the ciphertext, and id or a policy
function f is associated with the secret key. In the same way [25], IB-wHPS and
AB-wHPS suffice to derive leakage resilient IBE and ABE.

wHPS from Any PKE and Generalizations [25]. While there were several
instantiations of wHPS from specific assumptions [5,33], Hazay et al. [25] showed
somewhat surprisingly, any PKE implies wHPS. Their construction [25] can be
thought as the following two steps: (1) construct a basic wHPS that only outputs
1 bit (or log λ-bits), (2) amplify the output of the wHPS via parallel repetition.
As pointed out in the work [25], parallel repetition might not amplify HPS in
general, yet it does for wHPS as required in the application of leakage resilience.

The basic wHPS is simple: given any PKE = (Enc,Dec), the wHPS.pk consists
of two public keys pk0, pk1 from PKE, and wHPS.sk is (b, skb) for a random bit
b where skb corresponds to pkb. The Encap algorithm outputs a valid ciphertext
CT = (Encpk0

(k),Encpk1
(k)) to encapsulate a uniformly random key k ∈ {0, 1}.

The Encap∗ algorithm outputs an invalid ciphertext CT∗ = (Encpk0
(k),Encpk1

(1−
k)) for a uniformly random bit k. With a parallel repetition of n times, i.e.,
wHPS‖.pk := {pki,0, pki,1}i∈[n] and wHPS‖.sk := {(i, bi), ski,bi}i∈[n], we can get
a wHPS‖ with |k| = n for an arbitrarily large n� λ, and thus a leakage resilient
encryption that tolerates ` = n− λ ≈ n− o(|wHPS‖.sk|).

Naturally, this elegant approach can be generalized to construct IB-wHPS and
AB-wHPS for class F from any IBE and ABE for F , and the (adaptive/selective)
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security of the IB-wHPS and AB-wHPS matches the underlying IBE and ABE.
Therefore, this framework provides a powerful way to design leakage resilient IBE
and ABE from any IBE and ABE that can tolerate an arbitrarily large leakage `.

Technical Challenges from Prior Work. This technique of [25] achieves al-
most everything one would desire, except for the leakage rate. The main reason
comes from the secret key size of wHPS‖, which is also scaled up by the paral-

lel repetition, resulting in a low leakage rate as `
|wHPS‖.sk|

=
n−o(|wHPS‖.sk|)
|wHPS‖.sk|

≈
n−o(n|PKE.sk|)

n|PKE.sk| ≈ 1
|PKE.sk| . To further improve the rate, it suffices to decrease

|wHPS.sk| as observed by [35]. In particular, if we can shrink the secret key
size of the wHPS to roughly |wHPS‖.sk| ≈ n + |PKE.sk|, then the leakage rate

would be
n−o(|wHPS‖.sk|)
|wHPS‖.sk|

≈ n−o(n+|PKE.sk|)
n+|PKE.sk| ≈ 1 − o(1), for sufficiently large n.

Therefore, now the goal becomes to design a compact form of wHPS‖.sk that
can encode n possible keys in a succinct way.

The work [35] achieved this goal and the more general IB-wHPS by proposing
a novel key compression mechanism from a new primitive called multi -IBE. Then
they instantiated the required multi-IBE from inner-product encryption (IPE) [3,
11, 42] with succinct keys. However, for lattice-based IPE schemes [3], only the
selective security can be achieved under currently known techniques. Thus, the
work [35] can only derive selectively secure leakage resilient IBE from lattices.

At this point, we summarize two limitations from the prior key compression
mechanism [35]: (1) the approach is tied to IBE/IB-HPS, and it is unclear whether
we can further generalize the technique for further expressive policies, i.e., ABE;
(2) the lattice-based instantiations are only selectively secure under currently
known techniques. Below we show our new ideas to break these limitations.

Our New Key Compression Mechanism. We first present a new key com-
pression mechanism that can be generalized to more expressive policy functions,
i.e., ABE. To illustrate our core insight, we first describe how to use the tech-
nique of key-policy (KP)-ABE to encode wHPS‖.sk succinctly. The idea can be
naturally generalized to compress IB-wHPS and AB-wHPS. To facilitate further
discussions, we first recall the concept of KP-ABE.

In a KP-ABE scheme, a secret key is associated with a policy function f :
{0, 1}∗ → {0, 1}, and a ciphertext is associated with an attribute x. The secret
key can decrypt and recover the encrypted message if and only if f(x) = 1.

Now we explain our key compression mechanism. Let us describe the for-

mat of a valid ciphertext of wHPS‖ as CT :=
{
Encpki,0(ki),Encpki,1(ki)

}
i∈[n]

,

and a secret key is of the form {(i, bi), ski,bi}i∈[n]. From another angle look-
ing at the ciphertext, we can view the indices (i, b)’s as attributes in an ABE,
i.e. CT := {ABE.Enc(mpk, (i, 0), ki),ABE.Enc(mpk, (i, 1), ki)}i∈[n]. Then we can

use a single ABE secret key to encode the set of keys {(i, bi), ski,bi}i∈[n] as fol-
lows. Let b = (b1, b2, . . . , bn) ∈ {0, 1}n be a binary vector, and define the fol-
lowing policy function gb(i, z) = 1 iff bi = z for each i ∈ [n]. In this way,
only this set of attributes {(i, bi)}i∈[n] satisfies the policy function gb, so the
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ABE decryption algorithm with skgb can successfully recover the encrypted mes-
sages from {ABE.Enc(mpk, (i, bi), ki)}i∈[n]. The other part of the ciphertext, i.e.,
{ABE.Enc(mpk, (i, 1 − bi), ki)}i∈[n] is hidden by the security of the ABE. This
approach can be naturally extended to the setting of IB-wHPS and AB-wHPS
by adding an additional string x ∈ {0, 1}∗ (either an ID or general attribute)
to the existing attributes as above, resulting in ciphertexts of the form CT :=
{ABE.Enc(mpk, (x, i, 0), ki),ABE.Enc(mpk, (x, i, 1), ki)}i∈[n]. It is not hard to check

these designs satisfy the requirements of (IB/AB)-wHPS.

Here we can conclude: (1) skgb is functionally equivalent to the set of se-
cret keys {(i, bi), ski,bi}i∈[n], and (2) as long as skgb has a succinct representa-
tion, i.e., |skgb | only depends on the depth but not the size of the function gb
when gb is given, we can achieve the optimal leakage rate. We can instantiate
the desired ABE by the lattice-based schemes [7, 22], and consequently derive a
PKE/IBE/ABE with the optimal rate in the relative leakage model.

Adaptive Security for Various Function Classes. A careful reader may
already observe that the underlying ABE schemes of [7,22] do not achieve adap-
tive security, and neither do the IB-wHPS and AB-wHPS as constructed above.
Moreover, it seems that lattice-based ABE that supports the computation gb(·)
with succinct keys (e.g., general circuits [7,22]) can only achieve selective securi-
ty. Thus, existing techniques plus the above approach do not suffice for our goal
on adaptive security.

To overcome the limitation, we further observe that our constructions of
IB-wHPS and AB-wHPS above actually do not require the full adaptive security
of the whole attribute (x, (i, b)) from the underlying ABE. We only need the
selective security over the second part (i, b), as this part is generated by the
honest key generation algorithm, instead of being challenged by the adversary.

With this insight, we define a more fine-grained security notion that con-
siders partially adaptive/selective security over partitioned attributes (x, (i, b)).
Intuitively, if the underlying ABE is adaptively (or selectively) secure over x
and selective secure over (i, b), then we can prove the AB-wHPS is adaptive-
ly (resp. selectively) secure. Furthermore we instantiate the required partial-
ly adaptive-selective ABE for various function classes. As a result, we obtain
an adaptively secure IB-wHPS and AB-wHPS for t-CNF∗, and selectively secure
AB-wHPS for general circuits. This matches the function classes for which we
know how to construct adaptively secure ABE without leakage.

Application. Our AB-wHPS with succinct keys immediately yields a (`, 1)-
leakage resilient ABE with leakage rate 1 − o(1) in the relative leakage model,
followed from the framework [25]. More specifically, by using our adaptively
secure AB-wHPS for the comparison function (i.e., IB-wHPS) and the t-CNF∗

functions, we get leakage resilient and adaptively secure ABE for these classes
with optimal leakage rates. Additionally, we can have selectively secure leakage
resilient ABE for general circuits, with leakage rate 1− o(1).
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Extension I. As pointed out by [25], we can further derive (`, 1)-leakage re-
silient ABE in the BRM from AB-wHPS, via an amplification and a connection
with locally computable extractors [40]. However, the analysis from prior com-
patible locally computable extractors only yields 1 − O(1) rate for the leakage
resilient encryption scheme. It was left as an interesting open question by [35]
how to improve the analysis of the extractor. We solve this open question by
improving the analysis of the sampler [5] required by the general construction of
Vadhan [40]. With our improved analysis, we are able to achieve 1−o(1) leakage
rate in the BRM.

Extension II. Finally, we show how to derive (`, ω)-leakage resilient ABE with
the optimal leakage rate in the block leakage setting for both relative model and
BRM, for any bounded polynomial ω. Inspired by the work [21], we derive a new
bootstrapping mechanism by connecting secret sharing with our AB-wHPS. We
leave it as an interesting open question how to achieve leakage resilient ABE even
for an unbounded polynomial ω.

1.3 Other Related work

AB-wHPS has been studied to construct leakage resilient ABE schemes in [43,44].
Particularly, in [43], the authors focus on AB-wHPS supporting linear secret
sharing schemes as the policy function class, from the pre-quantum decisional
bilinear Diffie-Hellman assumption. The work in [44] constructed an AB-wHPS
from a post-quantum, i.e, LWE, assumption. However, the constructions only
achieve selective security for linear secret sharing schemes. And both of these
related work only consider security in the relative leakage model. Compared
with the prior works, our design/analysis approach is more modular, supporting
broader function classes and/or stronger (adaptive) security.

2 Preliminaries

We use several standard mathematical notations, whose detailed descriptions
are deferred to the full version of this paper, due to space limit.

2.1 Attribute-based Encryption (ABE)

Definition 2.1 (ABE [37]) An attribute-based encryption (ABE) scheme for a
function class Fλ = {f : Xλ → {0, 1}} consists of four algorithms
ABE.{Setup,KeyGen,Enc,Dec} as follows.

– Setup. ABE.Setup(1λ) takes a security parameter λ as input, and generates
a pair of master public key and master secret key (mpk,msk), where mpk
contains the attribute space Xλ, message space M and ciphertext space CT .

– Key generation. ABE.KeyGen(f,msk) takes as input a function f ∈ Fλ
and the master secret key msk, and generates a secret key (f, skf ). Without
loss of generality, we think the secret key contains two parts, the function
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description f , and an extra skf . The secret key is succinct if |skf | = o(|f |).
When the context is clear, we often omit the description of f .

– Encryption. ABE.Enc(mpk,x, µ) takes as input the master public key mpk,
an attribute x ∈ Xλ and a message µ ∈M, and outputs a ciphertext ct ∈ CT .

– Decryption. ABE.Dec(skf , ct) takes as input a secret key skf and a cipher-
text c, and outputs µ ∈ M if f(x) = 1 and ⊥ if f(x) = 0, where x is the
corresponding attribute used to generate ct.

Correctness. We require that for all f ∈ F , x ∈ Xλ, µ ∈ M, for correctly

generated (mpk,msk)
$←− ABE.Setup(1λ), skf

$←− ABE.KeyGen(msk, f) and ct
$←−

ABE.Enc(mpk,x, µ), it holds that

– if f(x) = 1, Pr [ABE.Dec(skf , ct) = µ] ≥ 1− negl(λ).
– if f(x) = 0, Pr [ABE.Dec(skf , ct) = ⊥] ≥ 1− negl(λ).

Leakage Resilience in the Relative Leakage Model

Next, we give the formal definition of leakage-resilient key-policy ABE.

Definition 2.2 (Leakage-Resilient ABE) A leakage-resilient ABE with attri-
bute space Xλ for a class of functions Fλ = {f : Xλ → {0, 1}} in the relative leak-
age model consists of four algorithms ABE.{Setup,KeyGen,Enc,Dec}, which are
parameterized by a security parameter λ and leakage parameters `, ω. In partic-
ular, (`, ω)-leakage-resilient security can be defined by the following experiment.

Experiment ExpLR
ABE,A(λ, `, ω)

Attribute Challenge: In the setting of selective case, A chooses an challenge
attribute x∗ ∈ Xλ before the Setup stage and sends it to C; In the setting of
adaptive case, A chooses an challenge x∗ ∈ Xλ in the challenge stage, and
sends it to C.

Test Stage 1: A adaptively queries the challenger C with function f ∈ Fλ. For each
query, C responds with (f, skf ) if f(x∗) 6= 1 and ⊥ otherwise.

ω-Leakage Queries Stage: A adaptively queries the challenger C with q pairs
(fi, hi) for i ∈ [ω], where fi is a policy function such that fi(x

∗) = 1, and

hi : {0, 1}∗ → {0, 1}` is a leakage function. The adversary gets hi(skfi) from C.
Challenge Stage: A chooses two messages µ0, µ1 ∈M and sends them to C. Then

C chooses b
$←− {0, 1} and computes ctb

$←−ABE.Enc(mpk,x∗, µb). Finally, C returns
ctb to A.

Test Stage 2: A adaptively queries the challenger C with function f ∈ Fλ. Then C
responds with (f, skid,f ) if f(x∗) 6= 1 and ⊥ otherwise.

Output: The adversary A outputs a bit b′ ∈ {0, 1}.

We define the advantage of A in the above experiment6 to be

AdvLR
ABE,A(λ, `, ω) = |Pr[b = b′]− 1/2| .

6 Notice that in the above experiment ExpLR
ABE,A(λ, `, ω), we allow the adversary to

interleave key queries in Test Stage 1 and leakage queries in ω-Leakage queries Stage,
in an arbitrary way.

9



The scheme is (`, ω)-leakage resilient if for any ppt adversary A, we have
AdvLR

ABE,A(λ, `, ω) ≤ negl(λ), and the leakage rate of this ABE is `
|sk| .

Furthermore, the scheme is abbreviated as `-leakage resilient if ω = 1 in the
above experiment.

Remark 2.3 We use the parameter ω to denote the number of different chal-
lenge keys that can be conducted leakage queries. For PKE and IBE, we have
ω = 1 as for these two settings, there is a unique challenge key corresponding to
the challenge attribute. For the more general ABE, there might be many different
“1”-keys corresponding to the challenge attribute. Thus, this parameter ω would
be an important specification for the leakage resilient ABE.

Remark 2.4 In our security model, the adversary can obtain leakage on ω secret
keys adaptively one after another. The secret keys would then form a block-source
under the leakage.7 We note that it is possible to generalize the model where the
leakage function takes inputs all the ω secret keys. In this work, we focus mainly
on the block-source setting, as it already captures many useful scenarios.

Leakage Resilience in the BRM.

Below, we generalize to the setting of ABE the definition of leakage-resilience in
the BRM by Alwen et al. [5].

Definition 2.5 (ABE in the BRM) An ABE for attribute space Xλ and policy
function class F := {Xλ → {0, 1}} is (`, ω)-leakage resilient in the BRM if its
master public-key size, ciphertext size, encryption time and decryption time (and
the number of secret-key bits used by decryption) are independent of the leakage-
bound `. Besides, in the leakage resilient experiment, the adversary is allowed
to conduct key leakage attacks on ω secret keys corresponding to the challenge
attribute. More formally, there exist polynomials mpksize, ctsize, encT, decT, such

that, for any polynomial ` and any (mpk,msk)
$←− ABE.Setup(1λ, 1`(λ)), x ∈ Xλ,

µ ∈M, ct
$←− ABE.Enc(mpk,x, µ), the scheme satisfies:

1. Master public-key size is |mpk| ≤ O(mpksize(λ)), ciphertext size is |ct| ≤
O(ctsize(λ, |µ|)).

2. Run-time of ABE.Enc(µ, pk) is bounded by O(encT(λ, |µ|)).
3. Run-time of ABE.Dec(ct, skf ) and the number of bits of skf used in this

decryption bounded by O(decT(λ, |µ|)), where skf
$←− ABE.KeyGen(msk, f)

with f ∈ F such that f(x) = 1. Here we assume that the secret key skf
is stored in a random access memory (RAM), and the decryption algorithm
ABE.Dec(ct, ·) only needs to read partial bits of skf to decrypt.

7 For the case that sk := S = (S1, . . . , Sm) is an m × e block source as in [39], we
define leakage functions fi : {0, 1}∗ → {0, 1}` independently for each block Si with
all i ∈ [m]. We say (f1, . . . , fm) are block leakage functions, if the min-entropy of
Si is still large enough even given leakage (f1(S1), . . . , fi−1(Si−1)) for any i ∈ [m].
Clearly, when m = 1, this is the trivial case in Definition 2.2. Here, we call m`

|sk| the
block leakage rate of the corresponding scheme.
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The leakage rate of this scheme is defined as `
|skf | . Furthermore, the scheme is

abbreviated as `-leakage resilient if the parameter ω = 1 in the experiment.

Policy Function Classes

This work considers three function classes: (1) ID comparison functions, (2) t-
CNF∗ formulas, and (3) general circuits. (1) and (3) are clear from the literature.
We elaborate on (2). First we present the definition of the function class t-CNF.

Definition 2.6 (t-CNF [38]) A t-CNF policy f : {0, 1}` → {0, 1} is a set of
classes f = {(Ti, fi)}i, where for all i, Ti ⊆ [`], |Ti| = t and fi : {0, 1}t → {0, 1}.
For all x ∈ {0, 1}` the value of f(x) is computed as f(x) =

∧
i fi(xTi), where xT

is the length-t bit-string consisting of the bits of x in the indices T . A function
class F is t-CNF if it consists only of t-CNF policies for some fixed ` ∈ N and a
constant t ≤ `. If F is a t-CNF class, we say that t is the CNF locality of F .

In this paper, we use the “dual” form of t-CNF, called t-CNF∗. The use of
the dual version is because the prior work [38] worked on the ciphertext-policy
ABE for t-CNF, and this work presents the result in the key-policy setting.

Definition 2.7 (t-CNF∗) For any x ∈ {0, 1}` (the domain of t-CNF), let Ux(·)
denote the function for which x is hardwired into Ux(·), and Ux(·) takes f ∈ t-
CNF as input and outputs Ux(f) such that Ux(f) = f(x). Ux(·) is uniquely
determined by x. We denote the function class {Ux(·)} as t-CNF∗.

2.2 Entropy and Extractors

Definition 2.8 (Min-Entropy) The min-entropy of a random variable X, de-

noted as H∞(X) is defined as H∞(x) = − log

(
max
x0∈X

Pr[x = x0]

)
.

Definition 2.9 (Average-Conditional Min-Entropy [15]) The average-
conditional min-entropy of a random variable X conditioned on a correlated
variable Z, denoted as H∞(X|Z) is defined as

H∞(X|Z)=− log
(
Ez←Z [max

x
Pr[X = x|Z = z]]

)
=− log

(
Ez←Z [2H∞[X|Z=z]]

)
.

This notion of conditional min-entropy measures the best guess for X by an
adversary that may observe an average-case correlated variable Z.

Lemma 2.10 ( [15]) Let X,Y,Z be arbitrarily correlated random variables where
the support of Y has at most 2` elements. Then H∞(X|(Y,Z)) ≥ H∞(X|Z)− `.
In particular, H∞(X|Y ) ≥ H∞(X)− `.

We also give the definition of randomness extractors [34], which is somewhat
stronger than the average-case strong extractor [15].
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Definition 2.11 (Randomness Extractor) An efficient function Ext : X ×
S → Y is a (v, ε)-extractor if for all (correlated) random variable X,Z such that
the support of X is X and H∞(X|Z) ≥ v, we have ∆((Z, S,Ext(X;S)), (Z, S, Y ))
≤ ε, where S (also called the seed) and Y are distributed uniformly and inde-
pendently over their domains S,Y respectively.

Theorem 2.12 ( [15]) Let H = {hs : X → Y}s∈S be a universal family of hash
functions meaning that for all x = x′ ∈ X we have Prs←S [hs(x) = hs(x

′)] ≤ 1
|Y| .

Then Ext(x, s)
def
= hs(x), is a (v, ε)-extractor for any parameter v ≥ log |Y| +

2 log(1/ε).

3 Attribute-Based Weak Hash Proof Systems

In this section, we first present a generalization of the weak hash proof system
called attribute-based weak hash proof system (AB-wHPS). This notion associates
attributes and policy functions to the system following the spirit of attribute-
based encryption. Next, we show how to construct AB-wHPS from ABE that
achieves the property of succinct keys, which is the key to leakage resilience
with the optimal rate. With a new fine-grained approach, we are able to achieve
AB-wHPS with selective security for general circuits, adaptive security of identity
comparison functions (i.e., identity-based wHPS), and adaptive security for t-
CNF∗ functions8, from lattices. This would imply lattice-based leakage resilient,
adaptively secure PKE, IBE, ABE for t-CNF∗, and selectively secure ABE for
general circuits, all with the optimal rate, matching the best known non-leakage
resilient selectively/adaptively secure constructions.

3.1 Formal Definition of Attribute-Based wHPS

We first present the formal definition of an AB-wHPS.

Definition 3.1 (AB-wHPS) An attribute-based weak hash proof system
(AB-wHPS) for an attribute space Xλ = {0, 1}∗ and a class of functions Fλ =
{f : Xλ → {0, 1}} consists of five algorithms AB-wHPS.{Setup,KeyGen,Encap,
Encap∗,Decap}:

– Setup. AB-wHPS.Setup(1λ) takes a security parameter λ as input, and gen-
erates a pair of master public key and master secret key (mpk,msk). The
attribute space Xλ and the encapsulated key space K are determined by mpk.

– Key generation. AB-wHPS.KeyGen (f,msk) takes as input a function f ∈
Fλ and the master secret key msk, and generates a secret key (f, skf ). With-
out loss of generality, we think the secret key contains two parts, the function
description f , and an extra skf . The secret key is succinct if |skf | = o(|f |).
When the context is clear, we often omit the description of f .

8 We use a “dual” variant of the CNF functions as we discussed in the introduction.
The formal definition is presented in Section 2.1.
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– Valid encapsulation. AB-wHPS.Encap(mpk,x) takes as input the master
public key mpk and an attribute x ∈ Xλ, and outputs a valid ciphertext CT
and its corresponding encapsulated key k ∈ K.

– Invalid encapsulation. AB-wHPS.Encap∗(mpk,x) takes as input the mas-
ter public key mpk and x ∈ Xλ, and outputs an invalid ciphertext CT∗.

– Decapsulation. AB-wHPS.Decap(skf ,CT) takes as input a secret key skf
and a ciphertext CT, and deterministically outputs k ∈ K if f(x) = 1 and ⊥
if f(x) = 0, where x is the corresponding attribute used to generate CT.

Furthermore, an AB-wHPS needs to satisfy three properties: correctness, ci-
phertext indistinguishability, and universality.

Correctness. For (mpk,msk)
$←− AB-wHPS.Setup(λ), any x ∈ Xλ and any

f ∈ Fλ such that f(x) = 1, we have

Pr
[
k = k′

∣∣∣skf $←− AB-wHPS.KeyGen(f,msk),

(CT, k)
$←− AB-wHPS.Encap(mpk,x), k′ = AB-wHPS.Decap(skf , c)

]
= 1.

Ciphertext Indistinguishability. For any challenge attribute x∗, valid/in-
valid ciphertexts output by AB-wHPS. Encap(mpk,x∗) and AB-wHPS.Encap∗(mpk,
x∗) are indistinguishable, even given one secret “1-key” skf such that f(x∗) = 1
and perhaps many “0-keys” skf ′ such that f ′(x∗) = 0. More formally, this in-
distinguishability is always described by the experiment between an adversary
A and a challenger C in Table 1.

We define the advantage of A in the above game to be AdvAB-wHPS
Π,A,Fλ (λ) =

|Pr[A wins]− 1/2| . The indistinguishability means that AdvAB-wHPS
Π,A,Fλ (λ) ≤ negl(λ).

Remark 3.2 In this definition, we require ciphertext indistinguishability to hold
even given a single skf such that f(x∗) = 1. This suffices to achieve leakage
resilient PKE, IBE, and (`, 1)-leakage resilient ABE directly, and (`, ω)-leakage
resilient ABE for any bounded-polynomial ω via a bootstrapping procedure (re-
f. Section 6), where ` ≈ (1− o(1))|skf |.

Universality. We need one additional information theoretic property, requiring
that for any adversary with public parameters, the decapsulation of an invalid
ciphertext has information entropy. We define this property in as follow.

Definition 3.3 (Universal AB-wHPS) We say that an AB-wHPS is (l, w̄)-

universal, if for any attribute x ∈ Xλ, (mpk,msk)
$←− AB-wHPS.Setup(1λ), and

CT∗
$←− AB-wHPS.Encap∗(mpk,x), it holds

H∞(AB-wHPS.Decap(CT∗, skf )|mpk,msk,CT∗,x) ≥ w̄,

where skf = AB-wHPS.KeyGen(f,msk) with f(x) = 1, and l is the bit-length of
the decapsulated value from AB-wHPS.Decap(CT∗, sk).
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Valid/Invalid Ciphertext Indistinguishability Experiment

Attribute Challenge: In the setting of selective case, A chooses an challenge
attribute x∗ ∈ Xλ before the Setup stage and sends it to C; In the setting of
adaptive case, A chooses a challenge x∗ ∈ Xλ in any arbitrary stage before
the challenge stage, and sends it to C.

Setup: The challenger C gets a pair of (mpk,msk) by running AB-wHPS.Setup(1λ),
and sends mpk to A.

Test Stage 1: A adaptively queries the challenger C with f ∈ Fλ, and C responds
with (f, skf ).

Challenge Stage: C selects b
$←− {0, 1}.

If b = 0, C computes (CT, k)
$←−AB-wHPS.Encap(mpk,x∗).

If b = 1, C computes CT
$←−AB-wHPS.Encap∗(mpk,x∗).

Then C returns CT to A.
Test Stage 2: A adaptively queries the challenger C with f ∈ F . Then C responds

with (f, skf ).
Output: A outputs a bit b′ ∈ {0, 1}. A wins the experiment, if b = b′ and at most

one of A’s key queries f satisfies f(x∗) = 1.

Table 1.

3.2 Fine-grained Security Notions and General Construction of
AB-wHPS from ABE

In this section, we present how to construct AB-wHPS from ABE. To achieve
adaptive security for several subclasses of policy functions, we present a more
fine-grained approach as follows. We first define a notion called partially selec-
tive/adaptive security over partitioned attributes. Next we show for a specific
class G, if an ABE is (X, sel)-secure for class F∧‖G for X ∈ {sel, ada}, then we can
construct an X-secure AB-wHPS for F . Moreover, suppose the underlying ABE
has succinct keys, so does the AB-wHPS. In the next section, we show instanti-
ations of (ada, sel)-secure ABE for various function classes. Below we elaborate
on the notations and the new security definition.

Definition 3.4 Let F1 = {f1 : X1 → {0, 1}} and F2 = {f2 : X2 → {0, 1}}
be two function classes. We define the operator ∧‖ over two function classes as
follow: F := F1∧‖F2 is a function class that consists of function maps X1×X2 →
{0, 1}, where each function ff1,f2

∈ F is indexed by two functions f1 ∈ F1 and
f2 ∈ F2 such that on input x = (x1,x2) ∈ X1×X2, ff1,f2(x) = f1(x1)∧ f2(x2).

Using this composed function class in Definition 3.4, we can naturally con-
sider any combination of selective/adaptive security for ABE as follows.

Definition 3.5 (Partial Selective/Adaptive Security) For any ABE with
the attribute space X1 × X2 for the policy function class F := F1 ∧‖ F2 defined
as in Definition 3.4, we define partial selective/adaptive security as follows:
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– ada-sel security: For any challenge attribute x∗ = (x∗1,x
∗
2) ∈ X1 ×X2, x∗1 is

chosen adaptively but x∗2 is chosen selectively in the corresponding indistin-
guishability experiment.

– sel-ada security: For any challenge attribute x∗ = (x∗1,x
∗
2) ∈ X1 ×X2, x∗1 is

chosen selectively and x∗2 is chosen adaptively in the corresponding indistin-
guishability experiment.

This notion also captures the standard selective (or adaptive) security as sel-
sel (or ada-ada) security, where both parts of the challenge attribute are chosen
selectively (or adaptively).

Remark 3.6 In this work, we need a slightly weaker version of the partial se-
lective/adaptive security from ABE – the adversary is only allowed to query one
key (f, g) such that f(x∗1) = 1 and g(x∗2) = 0. The other keys are of the form
(f ′, g′) such that f ′(x∗1) = 0. Therefore, throughout this work we will use this
slightly weaker version by default.

Remark 3.7 In the same way, we can define the partial selective/adaptive ci-
phertext indistinguishability for AB-wHPS.

Remark 3.8 This definition can be defined recursively. For example, the first
part F1 can also consists of two parts, i.e., F1 = F1,1 ∧‖ F1,2. In this case, we
can consider (X-Y)-Z security for any combination of X,Y,Z ∈ {sel, ada}.

To construct our desired AB-wHPS for F , we need an ABE for F ∧‖G for this
specific G as we describe below.

Definition 3.9 Let m = m(λ) and n = n(λ) be two integer parameters, and we
define a function class G = {g : [n] × [m] → {0, 1}} as follows. Each function
gy ∈ G is indexed by a vector y = (y1, . . . , yn)> ∈ [m]n, and gy(x1, x2) = 1 if
and only if x2 = yx1

.

Remark 3.10 The class G can be captured by boolean circuits with input length

log n+ logm, and depth within O(log(n+m)), i.e.,
∨
i∈[n](i

?
= x1) ∧ (yi

?
= x2).

Given this particular class G (with parameters m,n) defined in Definition 3.9
and a class F , we show how to use ABE for F ∧‖ G to construct AB-wHPS for
F . For different classes F ’s, the AB-wHPS can be used to further derive leakage
resilient PKE, IBE, and ABE.

Construction 3.11 (AB-wHPS from ABE) Let ΠABE = ABE.{Setup,KeyGen,
Enc,Dec} be an ABE scheme with attribute-space X̄λ = Xλ×X ′λ = {0, 1}∗×{[n]×
[m]}, message-space M = Zm and ciphertext space CT for the policy-function
class F ∧‖ G for the class G as in Definition 3.9 with parameters m,n. Then, an
AB-wHPS ΠAB-wHPS with attribute space Xλ = {0, 1}∗ and the encapsulated-key-
space K = Znm for the policy-function class F = {f : {0, 1}∗ → {0, 1}} can be
constructed as follows:
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– AB-wHPS.Setup(1λ): Given the security parameter λ as input, the algorithm

runs ABE.Setup to generate (mpkABE,mskABE)
$←− ABE.Setup(1λ), and out-

puts mpk := mpkABE and msk := mskABE.
– AB-wHPS.KeyGen(msk, f): Given a master secret-key msk := mskABE and a

function f ∈ F as input, the algorithm first chooses a random vector y
$←−

[m]n, and sets f̂ := f̂f,gy ∈ F ∧‖ G. Then the algorithm runs ABE.KeyGen to

generate skABE
f̂

$←− ABE.KeyGen(mskABE, f̂), and outputs skf := (f̂ , skABE
f̂

) as

the secret key for f . Note that the description of f̂ can be expressed as (f,y)
– AB-wHPS.Encap(mpk,x): Given a master public-key mpk and an attribute

x ∈ {0, 1}∗ as input, the algorithm first samples a random vector k =
(k1, . . . , kn)> ∈ Znm, and then runs ABE.Enc mn times with attributes xi,j =
(x, i, j) ∈ {0, 1}∗ × [n]× [m] to set

CT := {cti,j
$←− ABE.Enc(mpk,xi,j , ki)}(i,j)∈[n]×[m] ∈ CT n×m, i.e.,

CT :=

ABE.Enc(x1,1, k1) . . . ABE.Enc(x1,j , k1) . . . ABE.Enc(x1,m, k1)
...

. . .
...

. . .
...

ABE.Enc(xn,1, kn) . . . ABE.Enc(xn,j , kn) . . . ABE.Enc(xn,m, kn)

 .
Finally, the algorithm outputs (CT,k).

– AB-wHPS.Encap∗(mpk,x): Given a master public-key mpk and an attribute
x ∈ {0, 1}∗ as input, the algorithm first samples a random vector k =
(k1, . . . , kn)> ∈ Znm, and then runs ABE.Enc mn times with attributes xi,j =
(x, i, j) to set

CT∗ := {ct∗i,j
$←− ABE.Enc(mpk,xi,j , ki + j)}(i,j)∈[n]×[m] ∈ CT n×m, i.e.,

CT∗ :=

ABE.Enc(x1,1, k1+1) . . . ABE.Enc(x1,j , k1+j) . . . ABE.Enc(x1,m, k1+m)
...

. . .
...

. . .
...

ABE.Enc(xn,1, kn+1) . . . ABE.Enc(xn,j , kn+j) . . . ABE.Enc(xn,m, kn+m)

,
where the addition ki+j is performed over Zm. The algorithm outputs CT∗.

– AB-wHPS.Decap(skf ,CT): Given a secret key skf := (y, skABE
f̂

) and CT :=

{cti,j}(i,j)∈[n]×[m] as input, the algorithm runs ABE.Dec to compute ki =

ABE.Dec(skABE
f̂

, cti,yi) for all i ∈ [n], and then outputs k = (k1, . . . , kn)>, if

f̂(x, i, yi) = f(x) ∧ gy(i, yi) = 1 for all i ∈ [n], and ⊥ otherwise.

Intuitively, our attribute design (the class G) allows the secret key to open
one ciphertext per row while keeps the others secret. For the valid encapsulation,
all ciphertexts in a row encrypts the same element, while for the invalid encap-
sulation, they encrypt different elements. As the secret key can only open one
per row, an adversary cannot distinguish a valid from an invalid encapsulation,
even given the secret key.

Our AB-wHPS secret key would be of length |f̂f,gy | + s(f̂f,gy ) = |y| + |f | +
s(f̂f,gy ) = n logm + |f | + s(f̂f,gy ), where s(·) is the key-size function (of the
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extra part, excluding the function description) of the underlying ABE. If the
underlying ABE has succinct keys, i.e., s(f) = o(|f |), then our AB-wHPS secret

would have size n logm + |f | + s(f̂f,gy ) = n logm + |f | + o(n logm + |f |). By
setting sufficiently large n,m, we can achieve ABE with the optimal leakage rate,
ref. Section 4.

Next we present the following theorem. Due to space limit, we defer the full
proof to the full version, due to space limit.

Theorem 3.12 (AB-wHPS from ABE) SupposeΠABE is a secureABE scheme
with attribute space X̄λ = Xλ × X ′λ = {0, 1}∗ × {[n] × [m]} for the function
class F ∧‖ G, where G is the class as in Definition 3.9 with parameters m,n,
then the construction ΠAB-wHPS described above is an (n logm,n logm)-universal
AB-wHPS with the attribute space Xλ and the encapsulated-key-space K = Znm,
for the function class F . Furthermore,

– if the ABE is X-sel secure for X ∈ {sel, ada}, then the AB-wHPS is X secure;
– if the key-size (of the extra part, excluding the function description) of the

ABE scheme for policy function f is s(f), then the key size of the AB-wHPS

for f is n logm + |f | + s(f̂f,gy ), where s(·) is the key-size function (of the
extra part, excluding the function description) of the underlying ABE.

3.3 Instantiations of AB-wHPS from Lattices

Now we show how to instantiate the required underlying ABE. By combining the
work [7] with [2] or [38], we get ABE for the following three classes.

Theorem 3.13 Assuming LWE, then there exist:

1. ada-sel-secure ABE for I ∧‖ G, where I is the comparison function (IBE).
2. ada-sel-secure ABE for t-CNF∗ ∧‖ G, where t-CNF∗ is the dual of the t con-

junctive normal form formula. (Ref. Section 2.1.)
3. sel-sel secure ABE for F ∧‖ G, where F is the general boolean circuits.

In all three cases, the size of the secret keys (excluding the function description)
depends only on the depth of the circuit but not the size.

We present the constructions in full version for completeness. As a direct
corollary of this theorem, we obtain the following AB-wHPS from lattices.

Corollary 3.14 Assuming LWE, there exists AB-wHPS that is

1. adaptively secure for the comparison functions;
2. adaptively secure for t-CNF∗ functions.
3. selectively secure for general circuits.

Moreover, the secret key size (excluding the function description) of the AB-wHPS
only depends on the depth of the function, but not the size.
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4 Optimal-rate Leakage-Resilient Encryption Schemes in
the Relative Leakage Model

Prior work (e.g., Naor and Segev [33], Alwen et al. [5], and Hazay et al. [25])
showed how to construct leakage resilient PKE/IBE from wHPS/IB-wHPS in the
relative model. The construction can be generalized to construct leakage resilient
ABE from AB-wHPS in the same spirit. To further achieve the optimal leakage
rate, we observe that all we need is an AB-wHPS with succinct keys (which do not
depend on the function size). This is what we construct in Section 3.2, i.e., Con-
struction 3.11, Theorem 3.12, AB-wHPS and the underlying ABE instantiations
in Corollary 3.14.

Construction 4.1 Let Π =AB-wHPS.{Setup,KeyGen,Encap,Encap∗,Decap}
be a (log |K|, log |K|)-universal AB-wHPS with the encapsulated-key-space K and
attribute space X = {0, 1}∗ for a class of policy functions F = {f : {0, 1}∗ →
{0, 1}}. Let Ext : K × S → M be a (log |K| − `, ε)-extractor, where three sets
K,S,M are efficient ensembles, ` = `(λ) is some parameter and ε = ε(λ) =
negl(λ) is negligible. Furthermore, assume that M is an additive group. Then, a
leakage-resilient ABE scheme ΠF = ΠF .{Setup,KeyGen,Enc,Dec} with message
space M and policy function class F can be constructed as follows:

– ΠF .Setup(1λ): The algorithm runs (mpkΠ ,mskΠ)
$←− Π.Setup(1λ), and out-

puts mpk := mpkΠ , and msk := mskΠ .
– ΠF .KeyGen(msk, f): Given a master secret-key msk and a function f ∈ F as

input, the algorithm runs AB-wHPS.KeyGen to generate and output (f, skΠf ),

where skf := skΠf
$←− AB-wHPS.KeyGen(msk, f).

– ΠF .Enc(mpk,x, µ): Given a master public-key mpk, an attribute x ∈ X =
{0, 1}∗, and a message µ ∈M as input, the algorithm runs AB-wHPS.Encap

to generate (CT′, k) ←AB-wHPS.Encap(mpk,x), and then samples s
$←− S.

Furthermore, the algorithm computes and outputs

ct = (s, ct0, ct1) = (s,CT′, µ+ Ext(k, s)).

– ΠF .Dec(skf , ct): Given a ciphertext ct = (s, ct0, ct1) and a secret key skf as
input, the algorithm runs AB-wHPS.Decap to generate
k = AB-wHPS.Decap(skf , ct0), and then output µ = ct1 − Ext(k, s).

Our construction achieves a leakage resilient ABE, and can be re-calibrated into
a leakage resilient PKE/IBE. We summarize the results in the following theorem,
and defer the full proof to the full version, due to space limit.

Theorem 4.2 Assume Π is a selectively (or adaptively, resp.) secure (log |K|,
log |K|)-universal AB-wHPS for the policy function class F , and Ext : K × S →
M be a (log |K| − `, negl(λ))-extractor. Then the above ABE scheme ΠF =
ΠF .{Setup,KeyGen,Enc,Dec} for F is a selectively (or adaptively, resp.) `(λ)-
leakage resilient attribute-based encryption scheme for the policy function class
F in the relative-leakage model. Particularly, ΠF is aslo
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– an `(λ)-leakage-resilient PKE in the relative-leakage model, if F contains
only a single function that always outputs 1.

– an `(λ)-leakage-resilient IBE in the relative-leakage model, if F contains the
following comparison functions, i.e., each function fy ∈ F is indexed by a
vector y, and fy(x) = 1 if and only if y = x.

Combining Theorem 3.12 and Theorem 4.2, we obtain the following results.
Assume there exists a sel-sel (or ada-sel) secure ABE scheme with the message
space Zm for the function class F ∧‖ G, where G is the class as in Definition 3.9
with parameters m,n, and the key-length (of the extra part, excluding the func-
tion description of f) of this underlying ABE scheme for policy function f is
s(f). Then the allowed leakage length of the above leakage resilient ABE (or
IBE or PKE) scheme ΠF for the function class F is ` = (n logm − 2λ) and the

key-length of ΠF for f is |skf | = n logm+ |f |+ s(f̂f,gy ).

Furthermore, if the secret key size s(f̂f,gy ) is succinct, i.e., s(f̂f,gy ) = o(|f̂f,gy |) =
o(n logm + |f |), then we can set sufficiently large n,m such that n logm =
ω(|f |). Consequently, the leakage rate of this scheme ΠF is n logm−2λ

n logm+|f |+s(f̂f,gy )
=

1− 2λ
n logm

1+
s(f̂f,gy

)+|f|
n logm

≈ 1− o(1), achieving the desired optimal leakage rate.

Finally, by combining Corollary 3.14 and Theorem 4.2, we obtain the follow-
ing Corollary.

Corollary 4.3 Assuming LWE, for all polynomial S = poly(λ), there exist 1 −
o(1) leakage resilient ABE schemes in the relative leakage model, which are

1. adaptively secure for the comparison functions;
2. adaptively secure for t-CNF∗ functions of size up to S;
3. selectively secure for general circuits of size up to S.

Remark 4.4 We note that our ABE schemes are leakage resilient even if the
policy function goes beyond the size bound S. The leakage rate would still be
1 − o(1) for a slightly restricted class that leaks n logm − 2λ on the part y,
the whole description of f , and the extra part of skΠf (excluding the function
description) of the underlying AB-wHPS. This is more restrictive than functions
that leak n logm− 2λ+ |f | from the whole secret key.

5 Extension I: Optimal-rate Leakage-Resilient Encryption
Schemes in the BRM

In this section, we present how to use AB-wHPS to construct optimal-rate leakage
resilient ABE in the BRM. We follow the structure of [5, 25] by first amplifying
the hash proof system and then combining it with a locally computable extrac-
tor [40]. In particular, we first amplify AB-wHPS through parallel repetition and
random sampling in Section 5.1. Then, in Section 5.2, we generalize the notion of
locally computable extractor by Vadhan [40] into one with larger alphabets, and
show that a refined analysis of this tool can be used to derive 1 − o(1) leakage
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rate in the BRM, improving the prior analysis [5, 35] that can only achieve a
constant leakage rate. Finally in Section 5.3, we present the overall construction
of our leakage resilient ABE in the BRM with the optimal leakage rate.

5.1 Amplification of AB-wHPS

Definition 5.1 Let n′ be a positive integer, and H = {h : [n′] → {0, 1}} be a
function class where each function hy ∈ H is indexed by a value y ∈ [n′], and
hy(x) = 1 if and only if x = y.

Construction 5.2 (Construction of Amplified AB-wHPS.) Let
Π = AB-wHPS.{Setup,KeyGen,Encap,Encap∗,Decap} be an AB-wHPS with the
encapsulated-key-space K and attribute space X = {0, 1}∗ × [n′] for a class of

functions F∧‖H, and let t ≤ n′ be a positive integer. Then a new AB-wHPS Πn′,t
‖

with attribute space {0, 1}∗ and the encapsulated-key-space Kt for the function
class F can be constructed.

– Πn′,t
‖ .Setup(1λ): The algorithm runs (mpkΠ ,mskΠ)

$←− Π.Setup(1λ), and

outputs mpk := mpkΠ , and msk := mskΠ .

– Πn′,t
‖ .KeyGen(msk, f): Given a function f ∈ F , the algorithm first sets f̂ i =

f̂ if,hi ∈ F ∧‖ H for every i ∈ [n′], and runs AB-wHPS.KeyGen n′ times to

generate skf̂i
$←− Π.KeyGen(mskΠ , f̂ i) for i ∈ [n′]. The algorithm outputs

skf :=
(
skf̂1 , skf̂2 , . . . , skf̂n′

)
.

– Πn′,t
‖ .Encap(mpk,x): Given mpk and an attribute x ∈ {0, 1}∗ as input, the

algorithm chooses a random subset r := {r1, . . . , rt} ⊆ [n′] and computes

(CTi, ki)
$←− Π.Encap(mpk, (x, ri)) for all i ∈ [t].

The algorithm finally outputs CT := (r,CT1, . . . ,CTt) and k = (k1, . . . , kt)
>.

– Πn′,t
‖ .Encap∗(mpk,x): Given mpk and an attribute x ∈ {0, 1}∗ as input, the

algorithm chooses a random subset r := {r1, . . . , rt} ⊆ [n′] and computes

CTi
$←− Π.Encap∗(mpk, (x, ri)) for all i ∈ [t].

Finally, the algorithm outputs CT := (r,CT1, . . . ,CTt).

– Πn′,t
‖ .Decap(skf ,CT): Given a ciphertext CT := (r,CT1, . . . ,CTt) and a se-

cret key skf :=
(
skf̂1 , skf̂2 , . . . , skf̂n′

)
, the algorithm runs Π.Decap to gen-

erate ki = Π.Decap(skf̂ri ,CTi) for i ∈ [t], and outputs k = (k1, . . . , kt)
> if

f̂ri(x, ri) = 1 for all i ∈ [t]. Otherwise, the algorithm outputs ⊥.

Next, we present the following amplification theorem, which is essential an
extension of the work [5]. Due to space limit, we defer the full proof to the full
version of this paper.
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Theorem 5.3 Assume Π is an (l, w)-universal AB-wHPS with the encapsulated-

key-space K for F ∧‖H. Then the above amplified construction of Πn′,t
‖ is an (t ·

l, t ·w)-universal AB-wHPS with the encapsulated-key-set Kt for F . Furthermore,

– if the underlying Π is selectively (or adaptively) secure, then the Πn′,t
‖ is

also selectively (or adaptively) secure;

– if the secret-key-size of Π scheme for the policy function f is (|f |+ s(f)),9

then the secret-key size of the Πn′,t
‖ for f is n′ × (|f |+ log n′ + s(f̂f,h)).

Combining Theorem 3.12 and Theorem 5.3, we obtain the following corollary.

Corollary 5.4 Assume there exists an ABE scheme with the message space
Zm for the function class F ∧‖ H ∧‖ G, where G with parameters m,n and H
with parameter n′ are as Definitions 3.9 and 5.1, then there exists an amplified
AB-wHPS with the encapsulated-key-space Ztm for the function class F .

5.2 Locally Computable Extractor

Definition 5.5 (Locally Computable Extractor, Definition 6 in [40])
An extractor Ext : {0, 1}n × {0, 1}d → {0, 1}v is said to be t-locally computable
if for every r ∈ {0, 1}d, Ext(x, r) depends only on t-bits of x ∈ {0, 1}n.

For our application (constructing leakage-resilient encryption in the BRM), we
need a generalized variant of the above notion. Let x ∈ {0, 1}nk be a vector.
We can view it as a concatenation of n vectors xi ∈ {0, 1}k for i ∈ [n], i.e.,
x = (x>1 , . . . ,x

>
n )>. In this case, each xi ∈ {0, 1}k can be viewed as a symbol of

some larger alphabet, i.e., Γ = {0, 1}k, and we will need a locally computable
extractor for Γ as follow.

Definition 5.6 (Locally Computable Extractor for Larger Alphabets)
Let Γ = {0, 1}k be some alphabet. An extractor Ext : Γn × {0, 1}d → {0, 1}v is
t-locally computable with respect to Γ if for every r ∈ {0, 1}d, Ext(x, r) depends
only on t symbols of x = (x>1 , . . . ,x

>
n )> ∈ Γn.

Generally, a locally computable extractor can be obtained in two steps [40]:
(1) the extractor uses part of the seed to select t bits (or symbols) of x, and
(2) the remaining seed is used to apply a standard extractor on the selected bit-
s/symbols in the previous step. Vadhan [40] showed that as long as the selection
in step (1) achieves an average sampler, then the combined steps would achieve
a locally computable extractor. We summarize the result of Vadhan [40] below.
We first recall the notion of an average sampler.

9 Recall that the function s(f) denotes the size of the extra part of the secret key,
excluding the description of the function.
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Definition 5.7 (Average Sampler, Definition 8 in [40]) A function
Samp : {0, 1}r → [n]t is a (µ, θ, γ) average sampler if for every function f :
[n]→ [0, 1] with average value 1

n

∑
i f(i) ≥ µ,

Pr
(i1,...,it)

$←−Samp(Ur)

1

t

t∑
j=1

f(ij) < µ− θ

 ≤ γ.
Next, we present a theorem by Vadhan in [40] that describes detailed require-
ments for a locally computable extractor.

Theorem 5.8 (Theorem 10 in [40]) Suppose that Samp : {0, 1}r → [n]t is a
(µ, θ, γ) average sampler with distinct samples for µ = (δ − 2τ)/ log(1/τ) and
θ = τ/ log(1/τ), and Ext : {0, 1}t × {0, 1}d → {0, 1}v is a strong ((δ − 3τ)t, ε)
extractor. Define Ext′ : {0, 1}n × {0, 1}r+d → {0, 1}v by

Ext′(x, (y1,y2)) = Ext(xSamp(y1),y2).

Then Ext′ is a t-local strong (δn, ε+ γ + 2−Ω(τn)) extractor.

As we mentioned above, our application needs a locally computable extractor
for larger alphabets, which may not be implied directly from Theorem 5.8. To
tackle this issue, we define the following sampling procedure Sampler 1 that
outputs t distinct symbols of samples, and then prove that Sampler 1 is in fact
a good average sampler as needed in Theorem 5.8. This would imply a locally
computable extractor for larger alphabets as required in our application.

Notations for the Sampling. Before describing the algorithm, we set up some
notations as follows. Let Γ = {0, 1}k and x = (x>1 , . . . ,x

>
n )> ∈ Γn be a vector

of n symbols, where xi = (xi1, xi2, . . . , xik)> ∈ Γ = {0, 1}k for i ∈ [n]. Let S
denote a subset of [n]× [k], i.e. S contains tuples (i, j) ∈ [n]× [k] as its elements.
In this case, we define xS = {xij}(i,j)∈S . Then, we define Sampler 1 as below.

Sampler 1: Sample a random subset R of [n] that contains t distinct elements,
i.e., R = {r1, . . . , rt}, and output S := {(ri, j)}i∈[t],j∈[k]. Then we derive the
following lemma.

Lemma 5.9 For any λ ∈ Z, µ, θ ∈ (0, 1] and γ = 2λ exp(−tθ2/4) +
(
t(t−1)

2n

)λ
,

Sampler 1 is a (µ, θ, γ) averaging sampler.

Proof. According to the natural bijection between [nk] and [n]×[k], to prove that
Sampler 1 is a good average sampler as Definition 5.7, it suffices to show that
for any f : [n] × [k] → [0, 1] such that 1

nk

∑
i∈[n],j∈[k] f(i, j) ≥ µ, the following

inequality holds:

Pr
S

$←−Sampler 1

 1

|S|
∑

(i,j)∈S

f(i, j) < µ− θ

 ≤ γ. (1)
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It might be hard to prove inequality (1) directly, since all blocks output by Sam-
pler 1 are distinct. To handle this issue, we then define the following Sampler 2
through using “sample with replacement” and rejection sampling. It is not hard
to show that these two procedures are statistically close. Furthermore, by using
use a Chernoff bound argument, we show that Sampler 2 is a good average
sampler as required in Theorem 5.8. Thus, we conclude that Sampler 1 with
any strong extractor yields a locally computable extractor for larger alphabets.

Sampler 2:

1. Sample R = {r1, . . . , rt} from [n]t uniformly at random.

– If all elements are distinct, then output S := {(ri, j)}i∈[t],j∈[k] and ter-
minate.

2. Otherwise, i.e., there is a repeated element, discard the whole sample and
redo Step 1.
Note: the algorithm will only redo Step 1 up to λ times. If the algorithm
does not produce an output by then, then output ⊥.

Next we analyze Sampler 1 and Sampler 2 by the following two claims. Due
to space limit, we defer the full proof to the full version of this paper.

Claim 5.10 For a set X consisting of n = n(λ) different blocks and the param-
eters t = t(λ) such that t(t − 1) < n, the output distributions of Sample 1 and
Sample 2 are statistically close.

Claim 5.11 For any µ, t, θ, n, Sampler 2 is a (µ, θ, γ) average sampler condi-
tioned on non-⊥ output, where γ = 2λ exp(−tθ2/4).

The proof of the lemma follows by the above Claims 5.10 and 5.11.
ut

Furthermore, by applying the Sample 1 to Theorem 5.8 with the following
parameters setting, we derive the following theorem.

Parameter Setting. Taking λ as the security parameter, we set all the pa-
rameters in the following way: k = poly(λ), n = poly(λ), t = λ log3(nk), δ =

1
log(nk) , τ = 1

6 log(nk) , µ = 2
3 log(nk) log(6 log(nk)) , θ = 1

6 log(nk) log(6 log(nk)) , γ =

2λ exp(−tθ2/4) +
(
t(t−1)

2n

)λ
, ε = negl(λ).

Theorem 5.12 Let Γ = {0, 1}k, Samp : {0, 1}r → [n]t be the Sampler 1 (as
a (µ, θ, γ) average sampler), and let Ext : Γ t × {0, 1}d → {0, 1}v be a strong
((δ − 3τ)tk, ε) extractor. Define Ext′ : Γn × {0, 1}r+d → {0, 1}v as

Ext′(x, (y1,y2)) = Ext(xSamp(y1),y2).

Then Ext′ is a t-block-local strong (δnk, ε + γ + 2−Ω(τn)) extractor, where ε +
γ + 2−Ω(τn) = negl(λ) according to the setting of parameters.
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5.3 Leakage-Resilient Encryption in the Bounded-Retrieval Model

In this section, we construct leakage-resilient encryption schemes in the BRM,
through combining an random extractor with an amplified AB-wHPS present-
ed in Section 5.1. Below, we give the specific construction of leakage resilient
ABE scheme in the BRM from an amplified AB-wHPS.

Construction 5.13 (Construction in the BRM) Let Π = AB-wHPS.
{Setup,KeyGen,Encap,Encap∗,Decap} be an amplified AB-wHPS with integer pa-
rameters n′, t, the encapsulated-key-space Kt and attribute space X = {0, 1}∗ for
a class of policy functions F = {f : {0, 1}∗ → {0, 1}}. Let Ext : Kt × S →M be
a strong extractor, where three sets K,S,M are efficient ensembles, k denotes
the size of K. Furthermore, assume that M is an additive group. Then, an ABE
scheme ΠF = ΠF .{Setup,KeyGen,Enc,Dec} with message space M and policy
function class F can be constructed as follows:

– ΠF .Setup(1λ): The algorithm runs (mpkΠ ,mskΠ)
$←− Π.Setup(1λ), and out-

puts mpk := mpkΠ , and msk := mskΠ .
– ΠF .KeyGen(msk, f): ΠF .KeyGen(msk, f): Given a master secret-key msk and

a function f ∈F as input, the algorithm runs

skΠf
$←− AB-wHPS.KeyGen(msk, f) and output skf := skΠf .

– ΠF .Enc(mpk,x, µ): Given a master public-key mpk, an attribute x ∈ {0, 1}∗
and a message µ ∈ M as input, the algorithm runs AB-wHPS.Encap to
generate (CT′,k)←AB-wHPS.Encap(mpk,x) with k ∈ Kt, and then samples

s
$←− S. Furthermore, the algorithm computes and outputs

ct = (s, ct0, ct1) = (s,CT′, µ+ Ext(k, s)).

– ΠF .Dec(skf , ct): Given a ciphertext ct = (s, ct0, ct1) and a secret key skf as
input, the algorithm runs AB-wHPS.Decap to generate k = AB-wHPS.
Decap(skf , ct0) with k ∈ Kt, and then output µ = ct1 − Ext(k, s).

Parameter Setting. For security parameter λ, we set the system parame-
ters as follows: k = poly(λ), n′ = poly(λ), t = λ log3(n′k), δ = 1

log(n′k) , τ =
1

6 log(n′k) , ε = negl(λ). Moreover, for the proof of leakage-resilience in the BRM,

we let Ext : Kt × S →M be a ((δ − 3τ)tk, ε)-extractor.

Next, we prove that the construction is a leakage resilient ABE in the BRM.
Our proof uses a technique of locally computable extractors [40], i.e., Theo-
rem 5.12, in a black-box way. Due to the space limit, we defer the detailed proof
to the full version of this paper.

Theorem 5.14 Assume Π is a selectively (or adaptively, resp.) secure amplified
AB-wHPS with integer parameters n′, t = λ log3(n′k) for the policy function class
F , and Ext : Kt × S → M be a strong extractor. Then the above ABE scheme
ΠF = ΠF .{Setup,KeyGen,Enc,Dec} for F is a selectively (or adaptively, resp.)
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`-leakage-resilient attribute-based encryption scheme with message space M in
the BRM where ` = kn′ − kn′

log(kn′) .

Particularly, ΠF is also

– an `-leakage-resilient public-key encryption scheme in the BRM with ` =
kn′ − kn′

log(kn′) , if F contains only a single function that always outputs 1.

– a selectively (or adaptively, resp.) `-leakage-resilient identity-based encryp-

tion scheme in the BRM with ` = kn′ − kn′

log(kn′) , if F contains the following

comparison functions, i.e., each function fy ∈ F is indexed by a vector y,
and fy(x) = 1 if and only if y = x.

Moreover,

1. Public-key (resp. master public-key) size of ΠF is the same as that of Π,
which is not dependent on leakage parameter `.

2. The locality-parameter is t = λ log3(n′k). Thus, the size of secret-key ac-
cessed during decryption depends on t, but not `.

3. The ciphertext-size/encryption-time/decryption-time of ΠF depends on t,
but not `.

Combining Corollary 5.4 and Theorem 5.14, we obtain the following results.
Assume there exists an ABE scheme with the message space Zm for the function
class F∧‖H∧‖G, where G with parameters m,n and H with parameter n′ are as
defined in Definitions 3.9 and 5.1, and the key-length (of the extra part, excluding
the function description of f) of this underlying ABE scheme for policy function
f is s(f). Then the largest allowed leakage length of the above ABE (or IBE or

PKE) scheme ΠF for the function class F is ` = (kn′− kn′

log(kn′) ) with k = n logm

and the key-length of ΠF for f is |skf | = n′(n logm+ log n′ + |f |+ s(f̂f,h,gy )).

Furthermore, if the secret key size s(f̂f,h,gy ))is succinct, i.e., s(f̂f,h,gy ) =

o(|f̂f,h,gy |) = o(n logm+ log n′ + |f |), then we can set sufficiently large n,m, n′

such that (log n′+|f |) = o(n logm). Consequently, the leakage rate of this scheme

ΠF is
kn′− kn′

log(kn′)

n′(n logm+logn′+|f |+s(f̂f,h,gy ))
=

1− 1
log(nn′ logm)

1+
logn′+|f|+s(f̂f,h,gy )

n logm

≈ 1 − o(1), achieving

the desired optimal leakage rate.
Finally, by combining Corollary 3.14 and Theorem 5.14, we obtain the fol-

lowing Corollary.

Corollary 5.15 Assuming LWE, for all polynomial S = poly(λ), there exist
1− o(1) leakage resilient ABE schemes in the BRM, which are

1. adaptively secure for the comparison functions;
2. adaptively secure for t-CNF∗ functions of size up to S;
3. selectively secure for general circuits of size up to S.

For unbounded polynomial S, our schemes are still leakage resilient with the
optimal rate for a smaller function class. See Remark 4.4 for the discussion.
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6 Extension II: Leakage on Multiple Keys

Our prior ABE constructions from AB-wHPS only achieve leakage resilience in
the one-key setting where the adversary can only leak on one of the all possible
decrypting keys with respect to the challenge attribute. In this section, we show
how to achieve leakage resilience in the multiple-key setting where the attacker
can obtain leakage on ω possible decrypting keys for any bounded polynomial ω.
Our construction leverages the normal AB-wHPS (where the ciphertext indistin-
guishability holds when the adversary gets one decrypting key) and a threshold
secret sharing scheme, following the bootstrapping idea of the work [21].

Construction 6.1 (Extended Leakage Resilient ABE) Let Π = Π.{Setup,
KeyGen,Encap,Encap∗,Decap} be a (log |K|, log |K|)-universal AB-wHPS with the
encapsulated-key-space K and attribute space X = {0, 1}∗ for a class of policy
functions F = {f : {0, 1}∗ → {0, 1}}. Let Ext : K×S →M be a (log |K| − `, ε)-
extractor, where K,S,M are efficient ensembles, ` = `(λ) is some parameter
and ε = ε(λ) = negl(λ) is negligible. In addition, let (Share,Rec) be a (t̂ + 1)-
out-of-n threshold secret sharing scheme with respect to secret domain M, an
additive group.

Then, a leakage-resilient ABE scheme ΠF = ΠF .{Setup,KeyGen,Enc,Dec}
with message space M for policy function class F can be constructed as follows:

– ΠF .Setup(1λ, n): The algorithm runs (mpkΠi ,mskΠi )
$←− Π.Setup(1λ) for ev-

ery i ∈ [n], and outputs mpk := {mpkΠi }i∈[n] and msk := {mskΠi }i∈[n].

– ΠF .KeyGen(msk, f): Given a master secret-key msk := {mskΠi }i∈[n] and a
function f ∈ F as input, the algorithm first chooses a random subset of

cardinality t̂ + 1, i.e., Γ = {r1, . . . , rt̂+1} ⊆ [n], and then runs sk
(ri)
f

$←−
Π.KeyGen(mskΠri , f) for i ∈ [t̂+ 1]. Finally, the algorithm outputs

skf := (Γ, sk
(r1)
f , . . . , sk

(rt̂+1)

f ).

– ΠF .Enc(mpk,x, µ): Given a master public-key mpk := {mpkΠi }i∈[n], an at-
tribute x ∈ X = {0, 1}∗ and a message µ ∈ M as input, the algorithm first

runs (µ1, . . . , µn)
$←− Share(µ). Furthermore, the algorithm runs Π.Encap to

generate (CTi, ki)
$←− Π.Encap(mpki,x) for every i ∈ [n]. Next, the algorithm

samples s1, . . . , sn
$←− S, and outputs

ct = (s1, . . . , sn, ct1, . . . , ctn, ctn+1, . . . , ct2n)

= (s1, . . . , sn,CT1, . . . ,CTn, µ1 + Ext(k1, s1), . . . , µn + Ext(kn, sn)).

– ΠF .Dec(skf , ct): Given a ciphertext ct = ({si}i∈[n], {cti}i∈[2n]) and a secret

key skf = (Γ, {sk(ri)
f }i∈[t̂+1]) as input, the algorithm first runs Π.Decap to

generate kri = Π.Decap(sk
(ri)
f , ctri) and µri = ctn+ri−Ext(kri , sri) for every

i ∈ [t̂+ 1]. Then, the algorithm outputs µ = Rec(µr1 , . . . , µrt̂+1
).
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Parameter Setting. For security parameter λ, given any ω = poly(λ), we set
t̂ = Θ(ω2λ) and n = Θ(ω2t̂). For details, we refer readers to the full version of
this paper.

Our construction achieves a leakage resilient ABE in the multiple key setting.
We summarize the results in the following theorem, and defer the full proof to
the full version, due to space limit.

Theorem 6.2 Assume Π is a selectively (or adaptively, resp.) secure (log |K|,
log |K|)-universal AB-wHPS for the policy function class F , and Ext : K × S →
M be a (log |K| − `, negl(λ))-extractor. Then the above ABE scheme ΠF =
ΠF .{Setup,KeyGen,Enc,Dec} for F is a selectively (or adaptively, resp.) (`(λ), ω(λ))-
leakage resilient attribute-based encryption scheme for F in the relative-leakage
model, for any fixed bounded polynomial ω(λ) = poly(λ).

The corresponding leakage rate is `(λ)

(t̂+1)(|skf |+logn)
. Furthermore, when the

underlying secret keys (sk
(r1)
f , . . . , sk

(rt̂+1)

f ) form a block source under each leakage

function, the corresponding leakage rate is `(λ)
(|skf |+logn) .

Combining Theorem 3.12 and Theorem 6.2, we obtain the following results.
Assume there exists an sel-ada/sel-sel (or ada-ada/ada-sel) secure ABE scheme
with the message space Zm̄ for the function class F ∧‖ G, where G is the class
as in Definition 3.9 with parameters m̄, n̄, and the key-length (of the extra part,
excluding the function description of f) of this underlying ABE scheme for policy
function f is s(f). Then the allowed leakage length of the above leakage resilient
ABE scheme ΠF with parameters n, t̂, ω as in the above paragraph setting for
the function class F is ` = (n̄ log m̄ − 2λ) and the key-length of ΠF for f is

|skf | = (t̂+ 1)(log n+ n̄ log m̄+ |f |+ s(f̂f,gy )).

Furthermore, if the secret key size s(f̂f,gy ) is succinct, i.e., s(f̂f,gy ) = o(n̄ log m̄
+|f |), then we can set sufficiently large n, m̄, n̄ such that (log n+|f |) = o(n̄ log m̄).
Consequently, when the underlying secret keys form a block source under each
leakage function, the corresponding leakage rate of this scheme ΠF is

n̄ log m̄−2λ

logn+n̄ log m̄+|f |+s(f̂f,gy )
=

1− 2λ
n̄ log m̄

1+
logn+|f|+s(f̂f,gy )

n̄ log m̄

≈ 1 − o(1), achieving the desired

optimal leakage rate.

Finally, by combining Corollary 3.14 and Theorem 6.2, we obtain the follow-
ing Corollary.

Corollary 6.3 Assuming LWE, for any S = poly(λ) and ω = poly(λ), there
exist (`, ω)-leakage resilient ABE’s in the relative leakage model, which are

1. adaptively secure for t-CNF∗ functions of size up to S;

2. selectively secure for general circuits of size up to S.

Moreover, when the underlying secret keys form a block source under the each
leakage function, the corresponding leakage rate is 1− o(1).

Furthermore, we can also achieve similar results in the BRM. By combining
Corollary 3.14, Theorem 5.3 and Theorem 6.2, we obtain the following corollary.
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Corollary 6.4 Assuming LWE, for any polynomial S = poly(λ) and ω = poly(λ),
there exist (`, ω)-leakage resilient ABE schemes in the BRM, which are

1. adaptively secure for t-CNF∗ functions of size up to S;
2. selectively secure for general circuits of size up to S.

Moreover, when the underlying secret keys form a block source under the each
leakage function, the corresponding leakage rate is 1− o(1).
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