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Abstract. We introduce verifiable partially-decryptable commitments
(VPDC), as a building block for constructing efficient privacy-preserving
protocols supporting auditability by a trusted party. A VPDC is an ex-
tension of a commitment along with an accompanying proof, convincing
a verifier that (i) the given commitment is well-formed and (ii) a cer-
tain part of the committed message can be decrypted using a (secret)
trapdoor known to a trusted party.
We first formalize VPDCs and then introduce a general decryption

feasibility result that overcomes the challenges in relaxed proofs arising
in the lattice setting. Our general result can be applied to a wide class
of Fiat-Shamir based protocols and may be of independent interest.
Next, we show how to extend the commonly used lattice-based ‘Hashed-

Message Commitment’ (HMC) scheme into a succinct and efficient
VPDC. In particular, we devise a novel ‘gadget’-based Regev-style (par-
tial) decryption method, compatible with efficient relaxed lattice-based
zero-knowledge proofs. We prove the soundness of our VPDC in the set-
ting of adversarial proofs, where a prover tries to create a valid VPDC
output that fails in decryption.
To demonstrate the effectiveness of our results, we extend a private

blockchain payment protocol, MatRiCT, by Esgin et al. (ACM CCS ’19)
into a formally auditable construction, which we call MatRiCT-Au, with
very low communication and computation overheads over MatRiCT.

Keywords: Lattice · Zero Knowledge · Verifiable Partially-Decryptable
Commitment · Auditable RingCT · Accountable Ring Signature

1 Introduction

Commitment schemes and accompanying zero-knowledge proofs (ZKPs) have
become crucial tools used in countless privacy-preserving protocols. For exam-
ple, they are extensively used in privacy-aware blockchain applications such as
Monero and Zcash cryptocurrencies to hide sensitive information such as user
identities and transaction amounts. In many such privacy-preserving applica-
tions, there is a need for auditability, i.e., the ability of a trusted third-party to
revoke the privacy or anonymity of the protocol, in order to catch or punish mis-
behaving entities. For instance, it is well known that the privacy features of cryp-
tocurrencies have been exploited by cyber criminals to hide their illegal financial
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activities, and some level of government oversight may be required in future to
allow such activities to be traced by law authorities. Many applications where
such an auditability feature is needed exist, including group signatures [5], fair
exchange [1], key escrow [23] and e-voting. To enable the auditability property of
the privacy protocol, we would like the protocol to use a decryptable commitment
scheme, supporting a trapdoor decryption algorithm that enables the authority
with some trapdoor to recover a message from a given commitment.3 At the
same time, to prevent malicious parties from escaping the auditability property,
the protocol must support a verifiable decryptable commitment, which allows
protocol parties to verify that a commitment is decryptable by the authority,
while still hiding its contents from all other parties.

A problem similar to constructing verifiable decryptable commitments has
been previously studied under the name of verifiable encryption [4] in the clas-
sical setting of DL-based and factoring-based public-key cryptography. The ap-
proach here is to use a public-key encryption scheme as the commitment (with
the secret key known to the authority), and attach to it a zero-knowledge proof
of plaintext knowledge in order to turn it into a verifiable commitment. This ap-
proach was extended to the post-quantum lattice-based setting in [18], instanti-
ating the encryption scheme by a variant of Regev’s encryption scheme [21] based
on (Ring/Module)-LWE. We note that Regev’s encryption scheme can also be
viewed as a decryptable short message variant of the ‘Unbounded-Message Com-
mitment’ (UMC) scheme [3] (see the full version of this paper on IACR’s ePrint
archive). Despite allowing Regev-style decryption, UMC also has the practical
efficiency drawbacks we discuss below.

The use of verifiable Regev encryption as in [18] can result in very long com-
mitments and communication overheads in typical applications. This is because
both the randomness length and commitment length of Regev-encryption com-
mitments have an additive term proportional to the dimension of the message
vector. In typical lattice-based ZKPs such as [7, 9, 10, 12], the structure of the
protocol requires the prover to send commitments to a large number of messages
including masking randomness values as well as auxiliary terms, in addition to
the commitment of the ‘real’ message which needs to be decrypted by the open-
ing authority (e.g., the payment amount, or payer/payee identity in cryptocur-
rencies). The protocol also requires the prover to send masked variants of the
commitment randomness. Both those factors lead to long proofs with Regev en-
cryption commitments. To illustrate, in the MatRiCT cryptocurrency protocol
of [12], an aggregated binary proof is used (see [12, Section 1.2]) to significantly
reduce the proof length. In this proof, it is necessary to commit to individual
bits of integers by separate ring elements so that each bit can be manipulated
independently. As a result, the total message dimension in a commitment over
the underlying polynomial ring Rq is in the order of several hundreds (the ‘real’
message is still a few hundreds dimensional). If one were to use a Regev-style

3 We note here that our notion of a decryptable commitment is different from a trap-
door commitment. For a given commitment and a message, the latter allows a trap-
door holder to find a properly distributed opening randomness for the commitment.
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encryption for this commitment, the commitment alone would cost around 100-
200 KB. In comparison, this commitment costs only about 13 KB in MatRiCT
thanks to the use of a compressing commitment.

To reduce the length of commitments/proofs, an alternative approach (used
in [12]) to Regev-encryption commitments is to instead use lattice-based ‘Hashed-
Message Commitments’ (HMC), where message hashing leads to a short commit-
ment dimension independent of the total dimension of the committed messages.
In HMC, message hashing is achieved by multiplying the (long) message vector
by a random ‘fat’ (i.e., compressing) matrix and one relies on the hardness of
(Ring/Module)-SIS to accomplish the binding property. However, in our context
of decryptable commitments, the lack of a unique decryption for such HMC com-
mitments (due to compression) makes them not directly suitable. Therefore, we
study HMC in the partial decryption setting where the committed message has
two parts: (i) a decryptable message (that contains the ‘real’ message the author-
ity wants to recover), and (ii) a non-decryptable/auxiliary message (that contains
other auxiliary terms that need not be recovered). This way, we can achieve both
of our succinctness and (partial) decryptability goals simultaneously. We note
that a straightforward combination of using UMC for the decryptable part of
the message and HMC for the non-decryptable message part, although it deals
with the auxiliary terms, still suffers from an overhead of at least two commit-
ments plus the large cost of a UMC commitment. In contrast to HMC, the latter
UMC commitment dimension over Rq is linear in the message dimension over
Rq, which is over 100 in the context of MatRiCT discussed above.

An initial attempt to overcome the above-mentioned efficiency issues of UMC-
like commitments in constructing VPDCs, was proposed in [12, Section 6.1],
where a method of incorporating a lightweight Regev-style decryption trapdoor
into an HMC commitment was proposed. However, although a promising direc-
tion to combine the best of both HMC and Regev encryption commitments, the
work of [12] does not give a full solution to the problem, as it does not address
two main technical challenges that we now explain.

Firstly, the decryption algorithm in [12] is only analyzed for honestly-created
commitments without a rigorous framework. The analysis against adversarially-
created commitments/proofs that pass the verification check, which is an im-
portant requirement in the auditability setting of VPDCs, is missing. We recall
that for the underlying efficient ZKPs of opening for the HMC scheme we study
in this work (see, e.g., [9,10]), the ZKP soundness only guarantees the existence
of a relaxed commitment opening (m, r, y) of a commitment C, satisfying the
relaxed opening relation

(yC = Comck(ym; r)) ∧ (y ∈ ∆C) ∧ (m ∈M), (1)

where y is a short non-zero relaxation factor,∆C is the set of challenge differences
andM is a public message space. Observe that the message opening m is proven
to be in some set M, which is important for our analysis, and for example,
M = {0, 1}v for some v ≥ 1 for the proof systems in [9, 10, 12]. Also, note that
the relaxation factor y is unknown to the decryption algorithm as it is part of
the prover’s secret. Thus, it is not clear how one could enable such a decryption
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feature in the setting of relaxed proofs as the decryptor does not even know
what to decrypt exactly. The work by Lyubashevsky and Neven [18] addresses
this problem in the setting of verifiable Regev encryption. Particularly in [18],
it is shown that choosing a random y from the set of possible relaxation factors
is in fact a good way to go, and the expected running time for their decryption
algorithm is shown to be proportional to the number of random oracle queries
made by the prover to generate the protocol transcript4. However, this result
is specific to the Fiat-Shamir (FS) protocol5 and the Regev-style decryption
described in [18].

A second technical challenge in constructing an HMC-based partially de-
cryptable commitment following the approach of [12] is that even if a suitable
relaxation factor y is known by the decryption algorithm, decrypting the commit-
ment with the Regev-style trapdoor key does not directly yield the decryptable
message, but reveals a noisy inner-product (over the underlying polynomial ring
Rq) of the message with a known random vector a, of the form ⟨ya,m⟩+ e for
some short noise term e (and y the relaxation factor). This leaves the question
of how to efficiently recover the message m from this noisy information. The
work of [12] addressed this issue only for small message spaces (and honestly
generated commitments) by performing an exhaustive search over all possible
messages, which is very restrictive and computationally expensive. How to make
decryption work efficiently for exponentially large message spaces and guarantee
the decryption soundness even against adversarially constructed commitments
having such a relaxed opening has since remained unaddressed.

1.1 Our Contributions

Verifiable Partially-Decryptable Commitments. In this work, we first for-
malize the notion of a Verifiable Partially-Decryptable Commitment (VPDC),
which is closely related to proofs of plaintext knowledge and verifiable encryp-
tion. In particular, a VPDC extends a commitment scheme C and a matching
Non-Interactive Zero-Knowledge Proof (NIZK) Σ of opening for C by adding a
trapdoor key generation algorithm CAddTd and a matching decryption algorithm
CDec for C. The VPDC ensures that any valid commitment-proof pair (C, π) can
be (partially) decrypted using the (secret) trapdoor td output by CAddTd.

The above notion is similar to verifiable encryption except that C is not
an encryption, but rather a commitment. The differences, as pointed out in
the introduction, are as follows. First, a commitment scheme in general allows
for a more succinct encoding of a message (i.e., can be compressing unlike an
encryption) and is readily compatible with many existing proof systems (see,
e.g., [2, 3, 9–12]), hence has a matching NIZK already available. Second, in a
VPDC, there are two message spaces: (i) a decryptable message space D, whose
elements can be committed and recovered in decryption, and (ii) an auxiliary

4 We refer to [18] for methods that can be used to restrict an attacker from making a
lot of random oracle queries.

5 We call a public-coin proof made non-interactive via the Fiat-Shamir transformation
as a Fiat-Shamir (FS) protocol.
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message space U , whose elements can be used to create a commitment, but are
not decryptable. As a result, a VPDC eliminates the need for an additional
set of requirements due to an encryption scheme, avoids potential compatibility
issues and enables partial decryption while still permitting a succinct encoding
of the whole message (together with additional auxiliary terms). We therefore
believe VPDCs can serve as an important building block in constructing efficient
cryptographic schemes supporting accountability, such as group signatures, fair
exchange protocols, key escrow and e-voting.
Generalized analysis of decryption feasiblity for relaxed ZKPs. To ad-
dress the first main technical challenge of handling relaxed ZKPs in decryption of
VPDCs, we show how to abstract and generalize the decryption algorithm of [18]
that works only for the specific Regev-based (UMC-like) encryption considered
therein, to design an efficient decryption algorithm for any VPDC satisfying a
few natural properties. In particular, the expected number of iterations until the
decryption function terminates is about the number of random oracle queries
made by the prover in generating the transcript to be decrypted as in [18]. Our
general result is applicable to any VPDC whose underlying NIZK is derived via
the Fiat-Shamir transform in the random oracle model from a Sigma protocol
satisfying a variant of special soundness that is satisfied by all known instantia-
tions of such Sigma protocols.
A novel gadget-based Regev-style decryption for HMC. Building on
the above general foundations, we construct a VPDC extending one of the most
commonly used lattice-based commitment schemes, namely HMC6. For example,
the HMC scheme is an integral part of one of the most efficient post-quantum
ring signatures and set membership proofs in [11], arising from [9,12], as well as
sublinear-sized arithmetic circuit satisfiability proofs in [2].

In particular, to address the second main technical challenge, we introduce
an HMC-compatible trapdoor decryption method that works even when the de-
cryptable message opening is proven to be in a set of exponential size (such
as 2256). We analyze this method in the setting of adversarially-created VPDC
outputs and provide decryption soundness guarantees. As opposed to the trap-
door decryption of [12], where the trapdoor decryption yields ⟨ya,m⟩ + e for
a random vector a, small noise e and relaxation factor y (which is hard to de-
crypt), our new Regev-style partial trapdoor embeds a structured ‘gadget’ vector
t̄g in place of a in the HMC submatrix corresponding to the decryptable mes-
sage. With this, trapdoor decryption of a commitment yields t̄y⟨g,m⟩ + e for
a ‘large’ integer t̄, which is efficiently decryptable by exploiting the structure
of the gadget vector t̄g using a rounding procedure similar to standard Regev
decryption. The runtime of our new trapdoor decryption is polylogarithmic in
the message space size |D| and we prove that it works correctly even against
adversarially-generated commitments and ZKPs, as long as the system modulus
q is sufficiently large and the message is proven to be a part of a decryptable
message space D.

6 This distinguishes our VPDC construction from the verifiable encryption scheme
of [18], that extends a UMC-type commitment scheme.
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Table 1. Comparison between MatRiCT [12] and MatRiCT-Au (this work).

Anonymity level 1/10 1/100

# of inputs → # of outputs 1→ 2 2→ 2 1→ 2 2→ 2

Proof MatRiCT [12] 93 110 103 120
Size MatRiCT-Au 96 113 106 123

Spend / Verify MatRiCT [12] 242 / 20 375 / 23 360 / 31 610 / 40
Runtimes MatRiCT-Au 233 / 21 414 / 25 402 / 33 654 / 42

Parameters MatRiCT [12] PK Size: 4.36 KB Moduli: < 253.0

MatRiCT-Au PK Size: 4.36 KB Moduli: < 255.3

Our lightweight Regev-style ‘partial trapdoor’ also avoids the heavyweight
machinery of ‘full’ lattice trapdoors a-la [19], and still supports SIS-style HMC
commitment, compatible with efficient ZKP techniques used in [9, 12]. Using
the ‘full’ trapdoors in [19] in our commitments (with ternary coordinate trap-
door vectors) requires SIS matrices with n rows and m ≥ n log q columns over
the underlying ring, while the ‘partial trapdoor’ commitments we use, m = 2n
columns are sufficient (still with ternary coordinate trapdoor vectors). We save
a significant factor ≈ log q in both public parameter length and the length of
masked messages in the ZKP protocol, for the same security level.
MatRiCT-Au: Auditable RingCT based on standard lattice assump-
tions. As an application of our compact lattice-based VPDC, we show how it
can enable an extension of the lattice-based RingCT-like private cryptocurrency
protocol MatRiCT [12] easily and efficiently into an auditable variant we call
MatRiCT-Au, where an auditor with access to a (secret) trapdoor can revoke
the anonymity of certain users (e.g., in case of misbehaviour). The auditability
feature can be optional (i.e., each user individually decides whether and by whom
she wants to be audited) or enforced by a simple public check. Our construction
allows adversarially-generated transactions to be audited, whereas, in [12], the
discussion about auditability is incomplete, as the decryption method given there
may fail in the adversarial transaction setting, potentially allowing adversaries
to avoid auditability. Furthermore, the proposal in [12] requires an exhaustive-
search-based approach while we can very efficiently run Audit function over
a message space of size > 2128. To analyze auditability formally in confidential
transactions, we also extend the formal model for RingCT-like protocols in [12] to
add the auditability property and prove formally that MatRiCT-Au is auditable.
We compute concrete parameters for MatRiCT-Au and present implementation
results7. Our evaluation demonstrates the practicality of MatRiCT-Au, and in
particular there are very little communication and computation overheads intro-
duced over the original MatRiCT protocol [12] as shown in Table 1 (see the full
version of this paper for more run-time results).

We believe that our new techniques will find further applications in the set-
tings where accountable anonymity is desired. Particularly, our extension of

7 The source code of our MatRiCT-Au implementation is available at https://

gitlab.com/raykzhao/matrict_au.

https://gitlab.com/raykzhao/matrict_au
https://gitlab.com/raykzhao/matrict_au
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HMC into a VPDC with soundness against adversarially-created outputs ex-
tends the group (or accountable ring) signature in [12] so as to enable efficient
anonymity revocation (i.e., opening of a group signature) against cheating sign-
ers. Interesting research directions from here would be, for example, to design
efficient post-quantum e-voting, auction and anonymous credential schemes by
exploiting the accountable anonymity provided by our VPDC.

1.2 Our Results and Techniques

A novel gadget-based Regev-style decryption for HMC. Suppose that
we work over a cyclotomic ring Rq = Zq[X]/(Xd + 1), and have a binary secret
vector b ∈ {0, 1}v ⊂ Rv

q that forms the decryptable message to be recovered in
decryption. As explained above, in a typical application protocol, we commit to
this message b together with a non-decryptable message u as C = Comck(b,u; r)
under some commitment randomness r. The application protocol also proves
knowledge of a relaxed opening of C (i.e., knowledge of (y, b′,u′, r′) such that
yC = Comck(yb

′,u′; r′) and b′ ∈ {0, 1}v). For simplicity, let us consider the case
y = 1. After dealing with this case, we will discuss how we lift the restriction of
y = 1 using our generalized decryption analysis results from Sec. 4.

The HMC commitment we use has the form C = Comck(b,u; r) = Ar+Bb+
Cu and we recover the decrypted message as an element of Rt for some t ≥ 1.
To allow trapdoor decryption of b, but not r and u, our trapdoor key generation
algorithm embeds a Regev-style ‘gadget trapdoor ’ into the last row t⊤B of matrix
B and a Regev-style ‘error trapdoor ’ into the last row t⊤A (resp. t⊤C) of matrix A

(resp. C). That is, for the ‘gadget trapdoor’ matrix, we have B =

(
B′

t⊤B

)
with

‘gadget trapdoor’ row t⊤B = s′
⊤
B′ + e⊤B + t̄g⊤, where t̄ = ⌊q/t⌋, eB is a short

error, s′ is a random secret, and g⊤ is a ‘gadget’ vector with coordinates of the
form (2iXj)i<τ,j<d where 2τ ≤ t. While for the ‘error trapdoor’ matrices, we

have A =

(
A′

t⊤A

)
and C =

(
C ′

t⊤C

)
with ‘error trapdoor’ rows t⊤A = s′

⊤
A′ + e⊤A

and t⊤C = s′
⊤
C ′ + e⊤C , where eA, eC are short errors. Let s⊤ = (−s′⊤, 1) be the

trapdoor. We remark that in the prior work [12], the matrix B was a random
SIS matrix with no decryption trapdoor, which led to an inefficient exhaustive
search decryption over the message space.

Now, it is easy to observe that C ′ := ⟨s, C⟩ = e+⟨t̄g, b⟩, where e := (⟨eA, r⟩+
⟨eB , b⟩+ ⟨eC ,u⟩) is a small error. Thanks to the structure of the gadget vector
t̄g⊤, the integer coefficients of ⟨t̄g, b⟩ are multiples of the large integer t̄ and
encode the bits of the decryptable message b in their binary representation.
Thus, b can be recovered from C ′ in the decryption algorithm by rounding out
the small error term e to a multiple of t̄ and performing binary decomposition,
whereas the non-decryptable message/randomness u, r only contribute to the
error term e.

To apply our gadget-based Regev-style decryption for HMC to adverserially-
generated commitments with a relaxed proof of opening, we apply the general
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result of Theorem 1. To apply the latter theorem, we give a generalized decryp-
tion algorithm for our Regev-style HMC trapdoor and analyse (in Theorem 2
in Sec. 5.5) its correctness and soundness against (i) ‘false rejection’ decryp-
tion errors (where the algorithm fails to recover a decryptable message opening,
even though the latter exists), as well as (ii) ‘false acceptance’ decryption er-
rors (where the algorithm recovers a different decryptable message than the
one in the valid opening), respectively. For (i), to recover the decryptable mes-
sage b even for adverserial commitments C with a non-trivial relaxed opening
yC = Comck(yb,u; r) with some short relaxation factor y, our decryption al-
gorithm recovers y⟨g, b⟩ mod t after rounding ⟨s, yC⟩ to a multiple of t̄, and we
rely on invertibility of relaxation factors y mod t to recover b. For (ii), we show
that a mildly larger choice of modulus q than needed for (i) guarantees that in-
correct (non-unique) decryptable messages are never returned by our decryption
algorithm, even with adverserial commitments/proofs and relaxation factors y.

We remark that the high-level structure of our HMC gadget-based Regev-
style decryption trapdoor is similar to the full LWE inversion trapdoor of [19],
but there are several important technical differences due to our HMC setting that
are crucial to our scheme’s efficiency and security. First, our use of the gadget
during decryption is in some sense ‘dual’ to its use in [19]: in the LWE inversion
problem considered in [19], the LWE secret s is assumed to be uniformly random
mod q (rather than ‘short’), so that trapdoor decryption yields c = G·s+e′ for a
gadget matrix G and short error vector e′. Here, to efficiently recover the ‘large’
coordinate secret s from c, the gadget matrix G is constructed to have log q
powers of 2 (up to q/2) along each of its columns so that the mapping s 7→ G ·s
effectively performs bit decomposition of the coordinates of s. This approach
expands the dimension of s by a factor log q to allow recovery of each bit of
each coordinate of s from the corresponding row of Gs. Whereas in our ‘dual’
HMC decryption algorithm, the decryptable message s is binary (and hence
‘short’), so that when our trapdoor decryption similarly yields c = G · s + e′,
we can choose the gadget matrix G = g⊤ to have powers of 2 along its row so
that the mapping s 7→ G · s performs binary reconstruction of integers whose
bits are the coordinates of s. Our approach compresses the dimension of s to
a single element over the underlying ring, and minimises the dimension of the
underlying matrices/commitments. Hence, our algorithm can also be viewed as
a more efficient inversion trapdoor for LWE in ‘dual’ knapsack form (c = Bb for
‘short’ b and ‘fat’ B) rather than the more usual ‘primal’ form (c = As+ e for
‘short’ e and ‘tall’ A) addressed in [19]. A second difference from [19] is our use
of error trapdoors for the HMC submatrices corresponding to non-decryptable
message/randomness. And thirdly, as outlined above, our decryption algorithm
analysis handles the adverserial commitment case with relaxed opening proofs,
whereas [19] only analyses decryption for honestly created LWE samples.
MatRiCT-Au application. To show the usefulness of our novel decryption
method in practice, we apply it in the setting of MatRiCT [12]. In MatRiCT, a
commitment B encodes (i) an index in binary form that identifies the real user
creating the transaction, and (ii) the bits of the transaction amount. Therefore,
we can apply our novel decryption method to decrypt this commitment. Overall,
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in addition to revoking the anonymity, we can enable an auditor to recover the
hidden transaction amount. This is similar in spirit to traceable range proofs [15]
(though the techniques are completely different).

Recently, a newer version of MatRiCT was published in [11]. Our techniques
apply also to this newer version, called MatRiCT+, and the overhead of extend-
ing MatRiCT+ to support auditability is just an increase of about 20% in proof
size. We discuss further details in the full version of this paper.
Organization of the paper. Section 2 covers preliminaries. We introduce the
formal definitions of a VPDC in Section 3. Our generalized analysis of decryption
runtime for relaxed ZKPs is introduced in Section 4. Then, in Section 5, we pro-
vide, along with the ordinary HMC scheme, the details of our new lattice-based
VPDC, its decryption algorithm, and its adversarial soundness and run-time
analyses. We discuss how VPDC can be used to construct MatRiCT-Au in Sec-
tion 6 and, due to limited space, provide the full details relating to MatRiCT-Au
in the full version of this paper on IACR’s ePrint archive. Particularly, our ex-
tended formal model for RingCT-like protocols, the full description of MatRiCT-
Au (including parameter setting and implementation details), and the security
discussions of MatRiCT-Au are provided in the full version.

2 Preliminaries

For an odd modulus q, the ring of integers modulo q, Zq = Z/qZ, is repre-
sented by the range

[
− q−1

2 , q−1
2

]
. To denote column vectors and matrices, we

use bold-face lower-case letters such as x and bold-face capital letters such as
V , respectively (hence, x⊤ denotes a row vector). (x,y) is used to denote con-
catenation of the two vectors x and y to form a single longer vector. For a

vector x = (x0, . . . , xn−1), we define the following norms ∥x∥ =
√∑n−1

i=0 x2
i ,

∥x∥∞ = maxi |xi| and ∥x∥1 =
∑n−1

i=0 |xi|. When considering a norm of a poly-
nomial f , we define the same norms on the coefficient vector of f . For a vec-

tor f = (f0, . . . , fs−1) of polynomials, we further define ∥f∥ =
√∑s−1

i=0 ∥fi∥
2
,

∥f∥1 =
∑s−1

i=0 ∥fi∥1 , ∥f∥∞ = maxi ∥fi∥∞ . The Hamming weight of the (con-
catenated) coefficient vector of f is denoted by HW(f). U(S) denotes uniform
distribution on a set S.

Capital letters such as C denote commitments, and we write Sd·k when a total
of kd coefficients are sampled from a set S in order to generate k polynomials in
R = Z[X]/(Xd + 1) of a power-of-2 degree d. SB denotes the set of polynomials
in R, where each coefficient has an absolute value bounded by B ∈ Z+.

2.1 Security Assumptions

In our applications, we use a commitment scheme whose security relies on the
following well-known lattice problems.

Definition 1 (M-SISn,m,q,βSIS). Given A← Rn×m
q sampled uniformly at ran-

dom, the Module-SIS (M-SIS) problem asks to find a short x ∈ Rm
q such that

Ax = 0 over Rq and 0 < ∥x∥ ≤ βSIS.
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Definition 2 (M-LWEn,m,q,B). The Module-LWE (M-LWE) problem asks to
distinguish between the following two cases: (i) (A,As + e) for A ← Rm×n

q , a
secret vector s← SnB and an error vector e← SmB , and (ii) (A, t) for A← Rm×n

q

and t← Rm
q .

It is known that the secret s can equivalently be sampled from U(Rn
q ).

2.2 Zero-Knowledge Proofs

A Relaxed NIZK Σ = (K,P,V) for relation Rσ and its relaxed counterpart R′
σ

with Rσ ⊆ R′
σ (parameterized by a common reference string σ) and their corre-

sponding languages Lσ = {u : ∃r s.t. (u, r) ∈ Rσ} and L′
σ = {u : ∃r s.t. (u, r) ∈

R′
σ} respectively, consists of the following algorithms (here, u denotes a language

member and r denotes a witness):

σ ← K(1λ) : is the PPT common reference string generation algorithm of Σ that
outputs a common reference string σ.

π ← PH(σ, u, r) : is the PPT prover algorithm of Σ that, given a common refer-
ence string σ, access to a random oracle H and a language member u and a
witness r with (u, r) ∈ Rσ, outputs a proof π.

0/1← VH(σ, u, π) : is the PPT verification algorithm of Σ that, given a common
reference string σ, access to a random oracle H and a language member u
and proof π, outputs 0 (invalid) or 1 (valid).

We remark that our lattice-based constructions regard the commitment key as
part of the CRS σ (a similar issue arises in both DL-based Pedersen and lattice-
based commitments). We refer to the full version of this paper for the standard
definitions of completeness, soundness and zero-knowledge for NIZK proofs.

Our VDPC construction is based on a NIZK obtained using the Fiat-Shamir
(FS) transform [13] applied to an interactive Zero-Knowledge Sigma protocol
ΣI = (KI,PI,VI) for relations Rσ,R

′
σ (parameterised by a common reference string

σ) with a challenge space C and public-private inputs (u, r) with same notations
for relations as above. We refer to the full version of this paper for the standard
definitions of completeness, special soundness and honest-verifier zero-knowledge
for Sigma protocols. The FS heuristic transforms ΣI into a NIZK using a random
oracle H, by letting the prove algorithm compute the verifier’s challenge from
the common reference string σ, public input u, and commitment message w,
setting x = H(σ, u, w).

2.3 Commitment Schemes

A commitment scheme C = (CKeygen,Commit,COpen) consists of three algo-
rithms:

pp = (ck,M,R)← CKeygen(1λ) : is a PPT key generation algorithm returning
pp containing a commitment key ck and descriptions of message space M
and randomness space R. Note pp is an implicit input to the remaining
algorithms.



Verifiable Partially-Decryptable Commitments from Lattices 11

(C, o)← Commit(m) : is a PPT commitment algorithm which for message m ∈
M, outputs a commitment C to m together with an opening o.

0/1← COpen(C, o) : is a deterministic poly-time opening algorithm that given
commitment C and opening o, checks whether o is a valid opening of C.

An opening o of a commitment is a tuple containing a message m, randomness
r, and possibly also relaxation factors used by the opening algorithm (e.g., the
relaxation factor y used in the lattice-based HMC commmitment in Sec. 5.1).
We write m(o) to denote the message part of opening o. We refer to the full
version of this paper for standard definitions of correctness, hiding and binding
properties of commitment schemes.

3 VPDC: Verifiable Partially-Decryptable Commitments

A VPDC is an extension of two building blocks: (1) a (non-decryptable) com-
mitment scheme C, and (2) a NIZK relaxed proof of opening protocol Σ for C.
The VPDC adds a new trapdoor key generation algorithm CAddTd to embed a
hidden partial decryption trapdoor td in the commitment key of C, such that
with this trapdoor, efficient partial decryption of commitments accompanied by
a valid relaxed proof of opening is possible, using the VPDC’s partial decryp-
tion algorithm CDec. In particular, for VPDC, we view the commitment scheme’s
message spaceM as the product of two sets D and U , where D is the decryptable
message space and U is the auxiliary message space. For a commitment opening
o, we let µ(o) denote the decryptable message part of o.

Formally, a Verifiable Partially-Decryptable Commitment scheme VPDC =
(C,Σ,CAddTd,CDec) consists of a (non-decryptable) commitment scheme C =
(CKeygen,Commit,COpen) with message space M = D × U (the decryptable
message space D and auxiliary message space U respectively), and a matching
NIZK relaxed proof of opening protocol Σ = (K,P,V) for C, a trapdoor key
generation algorithm CAddTd and a partial decryption algorithm CDec.

We say that the underlying NIZK Σ is a matching NIZK relaxed proof of
opening for C if:

– On input 1λ, the CRS generation algorithm K returns a CRS of the form σ =
(pp, σ′), where pp = (ck,M,R) is C’s public parameters pp← CKeygen(1λ).
(i.e. Σ has pp in its CRS).

– Σ satisfies the standard completeness, soundness and zero-knowledge prop-
erties with respect to the following commitment opening relations RC,pp ⊆
R′
C,pp (parameterised by the commitment key pp from the CRS):

RC,pp = {(C, o) : ∃(m, r) ∈ (M×R) with (C, o) = Commit(m; r)}

and
R′
C,pp ⊆ RCOpen

C,pp := {(C, o) : COpen(C, o) = 1} .

In addition to the algorithms (CKeygen,Commit,COpen) of C and the algo-
rithms (K,P,V) of Σ, VPDC adds two new algorithms to enable decryptability,
with the following syntax:
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(cktd, td)← CAddTd(ck,D,U) : a PPT algorithm that on input a commitment
key ck and a description of the decryptable and auxiliary message spaces D
and U such thatM = D × U , outputs a ‘trapdoored’ commitment key cktd

and a partial decryption trapdoor td.
µ′ ← CDectd(C, π) : is a probabilistic algorithm that on input a commitment C

with a corresponding proof π and a trapdoor td, outputs a message µ′ ∈ D.

We now list several additional properties for a VPDC, all of which are enjoyed
by our construction:

Succinctness: The bit length of the commitment should depend only poly-
logarithmically on the bit length of the auxiliary message.8

Additive Homomorphism: The commitment message and randomness spaces
are subsets of modules with operations (+, ·) over some underlying scalar
ring R, the commitment space is a subset of a module with operations
(⊕,⊗) over R, and there exists a set S ⊆ R of scalars, such that for
all messages m1,m2 ∈ M, randomness r1, r2 ∈ R and scalar α ∈ S, we
have C = α ⊗ C1 ⊕ C2 for (C, ·) := Commit(α · m1 + m2;α · r1 + r2),
(C1, ·) := Commit(m1; r1) and (C2, ·) := Commit(m2; r2).

Small Integer Decryptable Message Space: The decryptable message space
D ⊂ Rv is of the form D := Zv

B, where ZB ⊆ Z is a set of integers of small
maximum absolute value B = λo(1), and v is the decryptable message di-
mension over the underlying scalar ring R.

The succinctness property is essential for the efficient application of our
VPDC in ZKPs. For our concrete VPDC construction, U is a much bigger set
than D. Thus, one can commit to auxiliary terms together with the target mes-
sage to be decrypted under a single succinct commitment to save significant
communication thanks to the commitment’s compression feature (which is not
available in encryption-based commitments). Here, we stress that partial decryp-
tion (as opposed to full decryption) is an important feature, not a drawback. If
we required full decryption, then we would not be able to achieve succinctness.
Similarly, the additively homomorphic property is needed to support efficient
(e.g., ‘Schnorr-like’ [22]) ZKPs that rely on this property. Note that such a
homomorphism is needed also for the non-decryptable message parts. This pre-
cludes a simple VPDC solution that would commit by hashing the auxiliary
message part with a non-homomorphic collision-resistant hash function. The
‘Small Integer Decryptable Message Space’ property is required to efficiently
support certain classes of ZK proofs needed in applications, such as the binary
proofs, range proofs and 1-out-of-N proofs in [9, 12, 14]. Here, the fact that the
message coordinates are integers, rather than general ring elements, allows for
independent manipulation of the committed decryptable message coordinates
(e.g., for computing an integer vector inner-product or independent evaluation
of a quadratic function on all message coordinates) as needed in the verification
of such ZK proofs. Their smallness bound (size B = λo(1)) allows the length of
such proofs to be kept short.

8 Note that succinctness cannot be achieved for the decryptable message.
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It is important to note that our VPDC model allows all of the following three
properties together within the same environment:

– one can commit to any message inM, where decryption is (computationally)
infeasible. Such commitments are simply ordinary commitments and in this
case, the commitment key ck should be used.

– one can commit to any message µ in D together with an auxiliary message
in U , where recovery of µ is possible using td. In this case, the commitment
key cktd should be used.

– one can commit to any message in M, where decryption is not necessarily
needed. Here, both commitment keys ck or cktd can be used and commit-
ments created this way are easily compatible with the rest of the protocol.

We require that C satisfies the standard correctness, hiding and binding
properties of commitment schemes. Furthermore, we recall that NIZK proof
Σ is required to be a matching NIZK for C (see above), and so satisfies the
completeness, (relaxed) soundness and zero-knowledge properties for relations
(RC,pp,R

′
C,pp) defined above.

In addition, as a partially-decryptable extension of a given commitment
scheme C and matching ZK proof Σ, we would like the VPDC’s trapdoor key
generation algorithm for C to preserve the functionality and security properties
of C and Σ. Accordingly, we say that C (resp. Σ) satisfies the VPDC trapdoor key
variants of correctness, hiding, and binding properties for C (respectively, the
trapdoor key variants of completeness, (relaxed) soundness and zero-knowledge
for Σ) if the properties are still satisfied when the commitment key generation
calls pp = (ck,M,R) ← CKeygen in C (resp. its call in K of Σ) are followed
by the trapdoor commitment key generation calls (cktd, td)← CAddTd(ck) and
pp′ = (cktd,M,R) replaces pp. For ease of reference, we define from hereon
(cktd, td,M,R) ← CKeygenTd(1λ) as the function that runs (ck,M,R) ←
CKeygen(1λ) and (cktd, td) ← CAddTd(ck), and returns (cktd, td,M,R). The
following commitment Key Indistinguishability property for a VPDC suffices for
this purpose (see Proposition 1).

Key Indistinguishability. A VPDC scheme is said to satisfy key indistin-
guishability if any PPT adversaryA wins the following game with probability
1/2 + negl(λ):
1. pp0 = (ck,M,R)← CKeygen(1λ),
2. pp1 ← (cktd,M,R), where (cktd, td)← CAddTd(ck).

3. b
$← {0, 1},

4. b′ ← A(ppb).
5. A wins the game if b′ = b.

The following proposition is immediate from the fact that the trapdoor key
td does not appear in the view of the adversary in the security games defining
the trapdoor key variants of the C and Σ properties. Therefore, by key indistin-
guishability, any attack against the VPDC trapdoor key variant properties of C
(resp. Σ) would imply a corresponding attack contradicting the assumed (non
trapdoor key variant) property of C (resp. Σ).
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Proposition 1. If a VPDC scheme VPDC = (C,Σ,CAddTd,CDec) satisfies key
indistinguishability, then C (resp. Σ) satisfies the VPDC trapdoor key variants of
correctness, hiding, and binding properties for C (respectively, the VPDC trapdoor
key variants of completeness, (relaxed) soundness and zero-knowledge for Σ).

In some applications, it is desirable to strengthen the binding requirement for
the VDPC so it holds even against attackers that are given the partial decryption
trapdoor key td (e.g. in our blockchain application as we do not want auditors
to create fake proofs). We call this requirement trapdoor-binding.

Trapdoor-Binding. A VPDC is (computationally) trapdoor-binding if, for
(pp, td) ← CKeygenTd(1λ), the following probability (over the randomness
of PPT A and CKeygen) is negligible

Pr[(C, o, o′)← A(pp, td) : m(o) ̸= m′(o) ∧ COpen(C, o) = COpen(C, o′) = 1].

We capture the decryptability requirements for VPDC by the Decryption
Soundness and Decryption Feasibility properties defined as follows.

Decryption Soundness. A VPDC scheme is said to satisfy Decryption Sound-
ness if any PPT adversary wins the following Exp:Soundness game with
negl(λ) probability.
1. P := (cktd, td,M,R)← CKeygenTd(1λ)
2. (C, π)← A(P ),
3. b← Vcktd(C, π),
4. µ′ ← CDectd(C, π).
A wins the game if b = 1 and one of the following conditions holds
(i) There exists no opening o such that COpen(C, o) = 1, or
(ii) There exists an opening o such that COpen(C, o) = 1 and µ(o) ̸= µ′.

Decryption Feasibility. A VPDC scheme is said to satisfy Decryption Fea-
sibility if, for any α ≥ 1 and any PPT adversary A, if b = 1 in Step 3 of
game Exp:Soundness above, the running time of CDectd(C, π) in Step 4 of
game Exp:Soundness is at most α · TA · poly(λ), except with probability
≤ 1

α + poly
(
TA
2λ

)
, where TA is the runtime of A.

Remark 1 (Decryption Soundness). The decryption soundness property captures
the informal requirement that it should be infeasible for an attacker to output a
maliciously-created commitment and proof (C, π) that passes the V verification
check, but where C cannot be decrypted into the correct decryptable message
µ using the trapdoor decryption algorithm CDectd. The latter may occur either
because of the non-existence of a decryptable message opening (case i), or be-
cause of the existence multiple decryptable message openings that may cause a
‘false accept’ decryption error (case ii).

Remark 2 (Decryption Feasibility). The decryption feasibility requirement cap-
tures the property that the decryption algorithm does not run for ‘too long’.
Here, a too long decryption time corresponds to exceeding the attacker run-
time by a super-polynomial factor. Jumping ahead to our construction, similarly
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to [18], this attacker time corresponds to the number of queries made by the at-
tacker to a certain random oracle. Such a runtime as given in our decryption
feasibility definition (arising from our results generalizing those of [18]) is cur-
rently the best one can achieve for relaxed proofs, where the relaxation factor is
unknown to the decryptor.

There are examples of VPDC-like constructions in the literature satisfying
some but not all of our desired properties. For example, the proofs of plaintext
knowledge in general are an example, where the commitment is an encryption
scheme and U = ∅. For a lattice-based construction, one may see the discussions
in [18, Section 3.3] and [7]. The “extractable” commitment scheme in [12] is
another (weaker) example, where the decryption soundness holds only against
honest provers and decryption runtime is linear in |D|. The main motivation for
our VPDC notion is that we want the additional properties of succinctness (i.e.,
C should be compressing, which is not possible for encryption) and decryption
feasibility and soundness against cheating provers. These properties are achieved
by our concrete construction VPDCHMC (Section 5).

4 Generalized Decryption Feasibility for Relaxed Proofs

In this section, we study the decryption algorithms for relaxed NIZK proofs and
show a general result on the Partial-Decryption Feasibility of any VPDC in which
the underlying NIZK Σ is derived from a suitable interactive Sigma protocol ΣI

using the Fiat-Shamir (FS) transform. Our result generalizes previous results
of [18]. The discussion is kept abstract in this section to preserve the generality
of our results. Our concrete lattice-based instantiation of decryption algorithms
is given in the next section.

The questions we focus on are as follows. If one is given a valid transcript
tr = (C,w, x, z) for Σ and a trapdoor td that enables recovering a message from a
well-formed commitment of the form x̄C for an unknown relaxed opening factor
x̄ (also known as a relaxation factor) and a known commitment C, how should
one precisely design the overall decryption algorithm? Moreover, what is the
expected number of iterations until the decryption algorithm terminates?

To answer these questions, we prove the general result in Theorem 1 below
for the generic decryption algorithm given in Algorithm 1. This approach first
allows us to put our decryption methodology into a general framework. Then,
we identify the connections between the components of Algorithm 1 that must
be satisfied so that the decryption runs in polynomial time. As the result can be
applied to any suitable functions F,Rec, V ′ in Algorithm 1, we can use this result
to analyze the run-time of different decryption methods. Besides the Partial-
Decryption Feasibility, there is, of course, also the Partial-Decryption Soundness
aspect that depends on the concrete instantiation of CDec, which will be analyzed
in the next section.

Our Partial-Decryption Feasibility result applies to VPDCs in which the un-
derlying NIZK Σ is derived via the FS transform from an interactive Sigma
protocol with the following mild variant of the special soundness property, that
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we call existential special-soundness. This property relaxes the standard PPT
efficiency requirement for extractor E , but requires that the extracted witness
contains a component (relaxation factor x̄ = x−x′ in Schnorr-like protocols) de-
pending on only the two input transcript challenges via a poly-time computable
function F (the latter syntactic requirement is used in our decryption compat-
ibility definition below). Therefore, the existential special-soundness is directly
implied by the standard special-soundness property for a large class of known
Schnorr-like Sigma protocols, in which E is efficient, and F (x, x′) = x− x′.

Definition 3 (Existential Special-Soundness). We say that a Sigma proto-
col ΣI = (KI,PI,VI) for relations RC,pp,R

′
C,pp (parameterised by a common refer-

ence string pp) with a challenge space C and public-private inputs (C, o), satisfies
existential special-soundness if the following holds.

• Existential special-soundness: There exists an extractor E and a deter-
ministic poly-time algorithm F such that, given (pp, σ′)← KI(1

λ) and two ac-
cepting protocol transcripts tr = (C,w, x, z) and tr′ = (C,w, x′, z′) with x ̸= x′,
computes an extracted witness of the form ō = (x̄, ō′) where x̄ = F (x, x′), sat-
isfying (C, ō) ∈ R′

C,pp with probability 1− negl(λ) over the choice of σ.

The following definition captures the properties of a decryption algorithm
CDec that are sufficient to ensure it terminates in feasible time, if the underlying
Sigma protocol ΣI satisfies existential special-soundness.

Definition 4 (Compatible CDec). Let VPDC = (C,Σ,CAddTd,CDec) with Σ
a matching NIZK relaxed proof of opening for C, and Σ is obtained from a Sigma
protocol ΣI using the Fiat-Shamir transform.

We say that CDec is compatible with Σ if it satisfies the following properties:

P1 : CDec has a structure as in Algorithm 1, where Rec is a PPT algorithm.
P2 : On input td (generated by running (cktd, td,M,R)← CKeygenTd(1λ)) and

any tr, if, for some loop iteration, Step 3 of CDec computes a “good” x̄ (such
that there exists an opening of the form ō = (x̄, ō′) satisfying (C, ō) ∈ R′

C,pp),
then CDec terminates in this loop iteration, i.e. Rec recovers a message m′

deemed “valid” by V ′(m′) = 1.

The function Rec in Alg. 1 is a procedure that recovers the message from a
well-formed commitment and will be instantiated depending on our decryption
method. One may imagine it being similar to the decryption of Regev encryption
scheme. However, the Rec function always returns a message m′ that may simply
be useless. Therefore, there is an additional check V ′ to make sure that the given
message is “valid” (where “valid” is protocol-dependent).

Theorem 1 below shows that the only task required to use our results is to
design a compatible decryption algorithm as in Def. 4 (as existential special-
soundness is implied by special-soundness). In essence, this task itself reduces to
making sure that the message recovery algorithm Rec returns a “valid” message
from any given “good” x̄ for the relaxed relation R′

C,pp. In the next section, we
will show how our VPDC allows the recovery of the same message used to create
the proof transcript.
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Algorithm 1 CDectd(tr)

INPUT: tr = (C, π = (w, x, z)) ΣI protocol transcript; td trapdoor
OUTPUT: (m′, x′) such that V ′(m′) = 1 for some validity check V ′

1: loop

2: x′ $← C ▷ Choose a random challenge
3: x̄ = F (x, x′) ▷ F (x, x′) = x− x′ for 2-sound FS proofs
4: m′ = Rec(x̄, tr, td) ▷ Tries to decrypt a well-formed commitment
5: if V ′(m′) = 1 then ▷ Check if the recovered message is “valid”
6: return (m′, x′)
7: end if
8: end loop

To make it easier to read Theorem 1, let us interpret it in the case of ‘Schnorr-
like’ FS proofs that work as follows. For a homomorphic commitment Com (we
use additive notation as it is the case in the lattice setting), let C = Com(r) be
an input commitment whose opening the prover wants to prove knowledge of.
The prover computes a ‘masking’ commitment w = Com(ρ) for some masking
value ρ. Then, she computes a challenge x← H(pp, C,w), followed by a response
z = ρ+x·r, where r is the prover’s witness. The verification V in this case checks

w+x·C ?
= Com(z). It is easy to see from here that this proof has the ‘2-soundness’

property, i.e., a knowledge extractor can extract a (relaxed) opening of C given
two ‘rewinded’ accepting transcripts with distinct challenges. In particular, given
accepting (C,w, x, z) and (C,w, x′, z′) with x ̸= x′, we have x̄C = Com(z̄) for
x̄ := x − x′ and z̄ := z − z′. Therefore, the concrete functions in this case are
F (x, x′) = x− x′ and (C, (x̄, z̄)) ∈ R′

C,pp iff x̄C = Com(z̄), i.e., R′
C,pp in Theorem

1 corresponds to the relaxed commitment opening relation COpen(C, (x̄, m̄, r̄))
where z̄ = (m̄, r̄). Here, (x̄, z̄) serves as an extracted witness/opening for C.
It is easy to see that the existential special-soundness property follows from
the special-soundness of the ‘Schnorr-like’ protocol. Although in the setting of
the Schnorr proof of knowledge of discrete-log [22], one may further recover an
exact opening of u by computing z̄/x̄, this approach does not work in the lattice
variants [16,17] as z̄/x̄ must be short (relative to the system modulus q), which
cannot be guaranteed unless some costly measures are implemented9.

Theorem 1. Let VPDC = (C,Σ,CAddTd,CDec) with Σ a matching NIZK re-
laxed proof of opening for C, and Σ is obtained from a Sigma protocol ΣI using
the Fiat-Shamir transform with random oracle H : {0, 1}∗ → C.

If ΣI satisfies Existential Special Soundness (Def. 3), CDec is compatible with
Σ (Def. 4) and |C| ≥ 2λ, then VPDC satisfies Decryption Feasibility.

Concretely, let Ĥ and D̂ be the random coins of H and CDec, respectively,
and T be the number of loop iterations in the execution of CDec in Step 6 of
game Exp:Soundness when b = 1. Then, for any A that makes at most qH − 1

9 For example, exact lattice proofs (see, e.g., [7]) require around 40-50 KB in compar-
ison to 2-3 KB for relaxed lattice proofs.
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queries to H and any positive α,

Pr
Ĥ,D̂

[T ≥ α · qH ] ≤ 1

α
+ 2 ·

√
qH

α · |C|
+

qH
|C|

. (2)

Proof (Theorem 1). The proof follows essentially the same blueprint as in the
proof of [18, Lemma 3.2], but we show precisely where the properties in the
theorem statement are needed.

Let pp be some public parameters. For a given tr = (C,w, x, z) of ΣI, define
the set of “good” challenges Gtr as follows

Gtr = {x′ ∈ C : ∃z′ : VI(C,w, x
′, z′) = 1 } . (3)

Here, VI denotes the verification algorithm of ΣI. Let G be the event that A

produces tr with |Gtr| > f for f =

⌈√
|C|
αqH

⌉
.

Claim: For any valid tr = (C,w, x, z), if CDec chooses x′ with x′ ∈ Gtr \ {x},
then CDec terminates.
The claim follows from the following facts. If the assumption of the claim holds,
then there exist (C,w, x, z) (as the input) and (C,w, x′, z′) such that VI(C,w, x, z) =
VI(C,w, x

′, z′) = 1 by the definition of Gtr. Then, by the existential special sound-
ness of ΣI, there exists (x̄, ō′) such that x̄ = F (x, x′) and (C, (x̄, o′)) ∈ R′

C,pp.
Now, by the property P2 of CDec, the claim follows.

As a result, the probability that CDec terminates in one iteration is at least
|Gtr|−1

|C| . Therefore, we have

ExpD̂
[
T | AH outputs tr

]
≤ |C|
|Gtr| − 1

, and also (4)

ExpD̂
[
T | AH outputs tr ∧ G

]
≤ |C|

f
. (5)

We say that “AH outputs tri” if AH outputs tr = (C,w, x, z) such that the
output of A’s i-th random oracle query is x. As in [18], without loss of generality,
we consider an adversary A that (1) makes qH random oracle queries, (2) uses
one of the random oracle outputs in his output transcript and (3) only makes
random oracle queries for transcripts tri with |Gtri | > f as we are conditioning
on G. Then, similar to [18], we have the following

ExpĤ,D̂ [T | G]=

qH∑
i=1

Pr
Ĥ

[
AH outputs tri | G

]
ExpD̂

[
T | AH outputs tri ∧ G

]
. (6)

For each random oracle query made byA for a transcript tri, the probability (over
Ĥ) that A outputs tri is at most the probability that the random oracle query
output is in Gtri , as otherwise there exists no response z such that VI(C,w, x, z) =

1. Therefore, each tri can be output with probability at most
|Gtri

|
|C| . Then, using

this fact and (4), we get

ExpĤ,D̂ [ T | G ] ≤
qH∑
i=1

|Gtri |
|C|

|C|
|Gtri | − 1

≤ qH · max
i=1,...,qH

(
|Gtri |
|Gtri | − 1

)
≤ qH(f + 1)

f
.
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For any random oracle query, the probability that A outputs a transcript with
|Gtr| ≤ f is at most f/|C|. Therefore, we have

Pr
Ĥ,D̂

[ ¬G ] ≤ f · qH
|C|

. (7)

Using now Markov’s inequality and (7), we get

Pr
Ĥ,D̂

[T ≥ αqH ] = Pr
Ĥ,D̂

[T ≥ αqH | G ] Pr
Ĥ,D̂

[ G ] + Pr
Ĥ,D̂

[T ≥ αqH | ¬G ] Pr
Ĥ,D̂

[ ¬G ]

≤
ExpĤ,D̂ [ T | G ]

α · qH
+ Pr

Ĥ,D̂
[ ¬G ] ≤ f + 1

α · f
+

f · qH
|C|

=
1

α
·
(
1 +

1

f

)
+

f · qH
|C|

.

Plugging in the value of f =

⌈√
|C|
αqH

⌉
proves the result. ⊓⊔

5 HMC-based VPDC from Lattices

5.1 Instantiation of (ordinary) HMC

We start by describing the (ordinary) Hashed-Message Commitment (HMC)
scheme C underlying our lattice-based VPDC. Let n,m, q be positive integers
with m > n. If we want to commit to a v1-dimensional ‘real’ message over Rq

for v1 ≥ 1 together with a v2-dimensional auxiliary message for v2 ≥ 0, then
HMC is instantiated as follows.

– CKeygen(1λ) : Sample A ← Rn×m
q , B ← Rn×v1

q and C ← Rn×v2
q . Output

ck = G = [A ∥B ∥C ] ∈ R
n×(m+v1+v2)
q , message space M = D × U with

D := Sv1α and U := Sv2β , and R := SmB for some α, β,B ≥ 1.
– Commitck(m,u) : Sample r ← SmB . Output C and o = (1,m,u, r), where

C = Comck(m,u; r) = G · (r,m,u)⊤ = A · r +B ·m+C · u.

– COpenck(C, (y,m
′,u′, r′)) : If yC = Comck(ym

′,u′; r′), ∥(r′, ym′,u′)∥ ≤
γcom, and dim(m′) = v1, dim(u′) = v2 and dim(r′) = m over Rq, return 1.
Otherwise, return 0.

One can easily observe that HMC is additively homomorphic. Moreover, note
that the opening algorithm is relaxed, where an additional relaxation factor
y ∈ Rq is involved. This relaxation is needed to obtain efficient lattice-based
ZKPs. For classical commitment schemes such as Pedersen commitment, the
relaxation factor is always 1. The same is true for honestly-created lattice-based
commitments. However, efficient lattice-based ZKPs do not always prove that
this is the case. For example, for the exact proof of knowledge of a commitment
opening with y = 1 as in [7], the proof length is more than 40 KB while a relaxed
variant leads to a proof length of only a few KBs. Therefore, the relaxation factor
can be a non-trivial value when created by a cheating prover (that still succeeds
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in the ZKP verification). For HMC used within our VPDC below, we say that the
trapdoor-binding property is satisfied w.r.t. to the same relaxation factor if the
relaxation factors in o and o′ in the binding definition in Section 3 are restricted
to be the same. This same-relaxation trapdoor-binding property is sufficient for
our applications as well as many prior ones, e.g., [9,10,12], and can be based on a
harder variant of the MSIS problem than the general trapdoor-binding property
(see Lemma 1).

We remark that in some applications, the COpen algorithm checks a slightly
different relation than above, of the form yC = Comck(m

′,u′; r′), where the
relaxation factor y does not multiply the decryptable message. However, in this
paper, we need the stronger variant in the above definition. Despite the relaxation
factor, HMC defined above is still (computationally) binding and hiding as we
will discuss in Lemma 1.

5.2 Instantiation of NIZK

Our lattice-based VPDC can be instantiated with any suitable Schnorr-like
lattice-based relaxed NIZK proofs of opening for HMC commitments derived
from a Sigma protocol via the Fiat-Shamir transform, such as the one-shot re-
laxed binary proof protocols in [9,11,12]. For compatibility with such protocols,
we define the challenge space

Cdw,p = {x ∈ Z[X] : deg(x) < d ∧ HW(x) = w ∧ ∥x∥∞ ≤ p}.

The same set is also defined in [9] and |Cdw,p| =
(
d
w

)
(2p)w. Thus, given d, it is

easy to set (w, p) such that |Cdw,p| > 2256. Throughout the manuscript, we assume

that (d,w, p) is set so that |Cdw,p| is exponentially large. We also let ∆Cdw,p denote

the set of differences of challenges in Cdw,p except for the zero element. We design
our VPDC to work with the following definition of relaxed “well-formedness”
of a commitment relation. We refer the reader to Lemma 2 in the Sec. 6 for
a concrete example of such a relaxed NIZK protocol Σ in our cryptocurrency
protocol application.

Definition 5 (γ-valid commitment opening relation R′
C,pp). We say that

o := (y, (m,u, r)) is a γ-valid opening of a commitment C with a decryptable
message space D, denoted by (C, o) ∈ R′

C,pp, if the following holds:

– y ∈ ∆Cdw,p,
– m ∈ D,
– yC = Comck(ym,u; r),
– ∥(ym,u, r)∥ ≤ γ for γ ∈ R+,
– dim(m) = v1, dim(u) = v2 and dim(r) = m over Rq.

The above relation definition is very similar to COpen except that we addi-
tionally have the first two requirements. For our proof systems (as in Schnorr-
like proofs), the commitment w of the Fiat-Shamir protocol as given in Section
4 is uniquely determined by the rest of the proof output. Hence, it need not
be included in the non-interactive proof transcript and therefore its notation is
omitted in the rest of the paper.
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5.3 VPDC Trapdoor for HMC

Now, we present our gadget-based Regev-style VPDC trapdoor algorithm
CAddTd for our lattice-based VPDC based on the HMC commitment described
in Sec. 5.1.

Our trapdoor s is designed to allow partial decryption of the latter HMC
commitment, i.e., to recover the decryptable binary message m ∈ {0, 1}v1 from

the commitment C = Comck(m,u; r) = G ·

 r
m
u

, where G = [A ∥B ∥C ] ∈

R
n×(m+v1+v2)
q is the commitment key matrix, and r and u are the short non-

decryptable commitment randomness and auxiliary message, respectively. Our
trapdoor s is embedded into the matrix G such that s⊤ · G ≈ [0, t̄g⊤,0] ∈
Rm+v1+v2

q (with the approximate equality up to a ‘short’ error vector) where t̄g⊤

(with t̄ = ⌊q/t⌋) is a large gadget vector of the form t̄ · (1, 2, 22, . . . , 2τ−1, X,X ·
2, . . . , X · 2τ−1, . . .). This means that VPDC partial decryption of the commit-
ment C can be carried out by computing s⊤C ≈ t̄g⊤m. The (approximately)
0 entries in s⊤ · G annihilate the non-decryptable r and u vectors in decryp-
tion (these vectors only contribute to the short error terms in the approximate
equality), whereas the gadget vector t̄g⊤ entry of s⊤ ·G ‘selects’ the decryptable
message m and compresses its dimension by reconstructing and packing groups
of τ bits in m into the integer coefficients of 1, X,X2, . . . in the ring element
g⊤m. To achieve the desired trapdoor condition s⊤[A ∥B ∥C ] ≈ [0, t̄g⊤,0], for
the ‘selection’ gadget, we embed a Regev-style LWE decryption ‘gadget trapdoor ’
into the last row t⊤B of matrix B, setting t⊤B ≈ s′⊤B′ + t̄g⊤, where B′ consists
of the top n − 1 rows of B and s′ ∈ Rn−1

q is random, and we use the form

s = (−s′, 1) for the trapdoor. For the annihilating 0 entries of s⊤ ·G, we embed
a Regev-style ‘error trapdoor ’ into the last rows t⊤A (resp. t⊤C) of matrices A
(resp. C), setting them to ≈ s′⊤A′ (resp. ≈ s′⊤C ′), where A′ (resp. C′) denote
the top n− 1 rows of A (resp. C). Due to the errors in the above approximate
equalities, to an attacker not knowing the secret trapdoor s′, the trapdoor rows
of matrix G are indistinguishable from uniformly random rows, assuming the
hardness of the rank-(n− 1) M-LWE problem with respect to the secret s′.

We now summarise our new gadget-based Regev-style HMC VPDC construc-
tion and start with instantiating CAddTd.

– CAddTd(ck) : Let ck = [A ∥B ∥C ] ∈ R
n×(m+v1+v2)
q where A =

[
A′

a⊤

]
for

A′ ∈ R
(n−1)×m
q and a ∈ Rm

q , B =

[
B′

b⊤

]
for B′ ∈ R

(n−1)×v1
q and b ∈ Rv1

q , and

C =

[
C ′

c⊤

]
for C ′ ∈ R

(n−1)×v2
q and c ∈ Rv2

q . Sample s′ ← Rn−1
q , e0 ← SmBe

,

e1 ← Sv1Be
, and e2 ← Sv2Be

, and set Atd =

[
A′

t⊤0

]
, Btd =

[
B′

t⊤1

]
, Ctd =

[
C ′

t⊤2

]
where t0 = A′⊤s′ + e0, t1 = B′⊤s′ + e1 + t̄g and t2 = C ′⊤s′ + e2, with

g⊤ := (20X0, . . . , 2τ−1X0, 20X1, . . . , 2τ−1X1, . . . , 20Xd′
, . . . , 2ℓ−1Xd′

) ∈ Rv1 ,
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τ :=
⌈
v1

d

⌉
, d′ := ⌊ v1τ ⌋ (note that d′ ≤ d) and ℓ := v1 mod τ ∈ {0, . . . , τ − 1}.

Output (cktd, td) = ([Atd ∥Btd ∥Ctd ], s) where s =

(
−s′
1

)
.

The following lemma follows from the hiding/binding properties of standard
HMC commitments, and the M-LWE based key indistinguishability property of
CAddTd. The proof is given in the full version of this paper.

Lemma 1. Let the ring Rq split into s fields Fp1
, . . . ,Fps

with p = min{p1, . . . , ps}.
If n·s

pm−n+1 is negligible, then HMC under ‘trapdoored’ commitment keys as output
by CAddTd defined above is

– correct if γcom ≥
√
B2md+ (γyαd)2v1 + β2v2d,

– computationally trapdoor γcom-binding with respect to the same relaxation
factor (resp. γcom-binding) if M-SISn−1,m+v1+v2,q,2γcom

is hard (resp. if M-
SISn−1,m+v1+v2,q,2

√
dγY ·γcom

is hard, where γY := maxy∈Y ∥y∥, and Y is the
set of valid relaxation factors accepted by COpen; for our VPDC, it suffices to
use Y := ∆Cdw,p as in Def. 5).

– computationally hiding if M-LWEm−n,m,q,B and M-LWEn−1,m+v1+v2,q,B prob-
lems are hard.

Additionally, if M-LWEm−n,m,q,B and M-LWEn−1,m+v1+v2,q,B problems are hard,
any commitment vector is computationally indistinguishable from a uniformly
random element in Rn

q .

Note that there are two main differences in Lemma 1 compared to the as-
sumptions required for standard HMC (see [12, Lemma 2.3], [6, Lemma 3.4]): (i)
the module rank of M-SIS is reduced by 1 (from n to n−1), and (ii) the hardness
of M-LWEn−1,m+v1+v2,q,B is additionally required. As mentioned before, bind-
ing w.r.t. the same relaxation factor is sufficient for many applications (including
ours) since the reduction creates a challenge commitment with a known exact
opening (i.e., y = 1) and recovers another relaxed opening by rewinding the
adversary. The former exact opening can be multiplied by the relaxation factor
of the latter to solve an M-SIS problem.

5.4 Gadget-based Regev-style Decryption for HMC

We now present the decryption algorithm CDecGR for our lattice-based VPDC.
When a commitment key with a trapdoor is used to generate a proof, the ZKPs
we use prove knowledge of an opening (y,m,u, r) of a commitment C such that

yC = Comcktd(ym,u; r) = Atdr +Btdym+Ctdu. (8)

Note that the opening message is also multiplied by the relaxation factor y.
From here, we can try to eliminate the randomness r and the auxiliary message
u by multiplying both sides by the secret trapdoor s. However, the decryptor
does not know what y is. For an honest user, we simply have y = 1, but for
adversarially-generated proofs, that may not be the case. Thankfully, we can
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Algorithm 2 CDecGR(C, x, td, v1)

INPUT: a commitment C ∈ Rn
q ; a challenge x ∈ Cdw,p; trapdoor td = s ∈ Rn

q ; the
dimension v1 such that D = {0, 1}v1
OUTPUT: (m′, x′) ∈ D × Cdw,p

1: loop
2: x′ ← Cdw,p

3: y′ = x− x′ ▷ y′ = 1 is assumed to be tried first
4: C′ = ⟨s, y′C⟩
5: C′′ = Rndt̄(C

′) where t̄ = ⌊q/t⌋
6: m̄′ = (t̄)−1 · C′′ ∈ R ▷ Note that C′′ is a multiple of t̄ in R
7: m′′ = (y′)−1 · m̄′ ∈ Rt ▷ If y′ is not invertible in Rt, restart from Step 2
8: m′ = BDτ,v1(m

′′)
9: e′ = C′ − C′′

10: if (∥e′∥∞ < ∥e∥bnd,∞) and (m′′ ∈ [0, . . . , 2τ − 1]d) then
11: return (m′, x′)
12: end if
13: end loop

use our new results from Section 4 to overcome this problem. Let us first present
the full procedure in Algorithm 2. In this algorithm, the decrypted message is
encoded as an element of Rt for some positive integer t, and we define the integer
t̄ := ⌊q/t⌋. We also use the following two functions. The function BDτ,v1(m

′′)
performs bit decomposition of the coefficients of the Rt-encoded message m′′ =
m′′

0 +m′′
1X + · · · +m′′

d−1X
d−1 and returns the resulting binary vector message

m′ = (m′
0, . . . ,m

′
v1−1) ∈ {0, 1}v1 . Namely, for j ∈ {0, . . . , v1 − 1}, it sets m′

j to
the k-th bit of the coefficient m′′

⌊j/τ⌋ where k := j mod τ . The function Rndt̄(C
′)

rounds each coefficient of C ′ ∈ R to the nearest integer multiple of t̄.
As mentioned in Sec. 4, an important task is to prove that the message re-

turned by the decryption algorithm (Alg. 2) is “valid”. We prove this in Theorem
2 below so that, for a commitment C with a valid NIZK relaxed proof of opening
and a sufficiently large q, the message output by Alg. 2 is the same as the one
used to generate the commitment C. In the theorem below, we show the decryp-
tion feasibility (which relies on the results from Sec. 4) and also the decryption
soundness of our construction.

Theorem 2 (HMC Decryption). Let VPDCHMC = (C,Σ,CAddTd,CDecGR)
denote our lattice-based VPDC construction with HMC commitment scheme C,
Σ a matching NIZK relaxed proof of γ-valid opening relation R′

C,pp as in Def. 5,
with D := {0, 1}v1 . Suppose that Σ is obtained from a Sigma protocol ΣI using
the Fiat-Shamir transform with random oracle H : {0, 1}∗ → C, ΣI satisfies
Existential Special Soundness (Def. 3), that for any fixed x ∈ Cdw,p, x−x′ ∈ ∆Cdw,p

is invertible in Rt except with negligible probability pni over the uniformly random
choice of x′ ∈ Cdw,pand |Cdw,p| ≥ 2λ.
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For an adversary A against soundness game Exp:Soundness making qH − 1
queries to its random oracle, let

∥e∥bnd,∞ :=
√
(m+ v1 + v2)dBeγ + 2pw(2τ − 1) + t/2. (9)

Suppose that t ≥ 2τ and

t̄ := ⌊q/t⌋ >4pw∥e∥bnd,∞ + t(1/2 + 2pw). (10)

Then the following holds:

1. Decryption Feasibility: The scheme VPDCHMC satisfies Decryption Feasi-
bility. Concretely, the number of iterations T of the loop over x′ in CDecGR

is upper bounded by α · qH , except with probability at most 1
α +2

√
qH

α·|Cd
w,p|

+
qH

|Cd
w,p|

+ αqHpni.

2. Decryption soundness: The scheme VPDCHMC satisfies Decryption Sound-
ness. Concretely, we have

AdvExp:Soundness(A) ≤ qH/|Cdw,p|.

Proof (Thm. 2). Decryption Feasibility: To prove the run-time claim, we
apply Theorem 1. For this, we need to show that the assumptions of Theorem 1
are satisfied. First, by our assumption on ΣI, the existential special-soundness
property is satisfied. For the compatibility of CDecGR and ΣI, the property P1

is satisfied by structure of the algorithm CDecGR. For the property P2, we show
that if y′ in some iteration of the loop in Step 3 of Algorithm CDecGR is ‘good’ in
the sense that y′ is invertible in Rt and there exists a γ-valid opening (y′,m,u, r)
of C as in Def. 5, then decryption will terminate and return m′ = m. Let us
denote by E0 the bad event that y′ is not invertible in Rt. We first observe
that E0 occurs with negligible probability, i.e. Pr[E0] ≤ αqHpni over at most
αqH iterations of CDecGR, since at each iteration y′ = x− x′ where x′ sampled
uniformly from Cdw,p independently of x. Now we show that P2 holds if E0 does

not occur. Indeed, by γ-validity of (y′,m,u, r), we have y′C = Atdr+Btdy′m+
Ctdu and m ∈ {0, 1}v1 .

Multiplying the γ-valid relation by s⊤, defining ⟨e0, r⟩+⟨e1, y′m⟩+⟨e2,u⟩ :=
e, and using s⊤ · Atd = e⊤0 , s⊤ · Btd = t̄g⊤ + e⊤1 and s⊤ · Ctd = e⊤2 , we
have ⟨s, y′C⟩ = t̄y′⟨g,m⟩ + e over Rq. Writing y′⟨g,m⟩ = (y′⟨g,m⟩ mod t) +

t⌊y
′⟨g,m⟩

t ⌉, we get the following equality over Rq:

⟨s, y′C⟩ = t̄(y′⟨g,m⟩ mod t) + e+ ẽ, (11)

where ẽ := t̄t · ⌊y
′⟨g,m⟩

t ⌉ mod q. We have ∥t̄(y′⟨g,m⟩ mod t)∥∞ ≤ ⌊q/t⌋(t −
1)/2 ≤ q/2 − t̄/2. Hence, if ∥e + ẽ∥∞ < t̄/2, there is no wraparound mod q
on the right hand side of (11), and since t̄y′⟨g,m⟩ is a multiple of t̄ in R,
the rounded polynomial C ′′ = Rndt̄(C

′) (recall C ′ = ⟨s, y′C⟩ mod q) will be
equal to t̄(y′⟨g,m⟩ mod t) and decryption will succeed and return m. It re-
mains to show that ∥e + ẽ∥∞ < t̄/2. By the Schwartz inequality, ∥e∥∞ ≤
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∥(e0, e1, e2)∥ · ∥(r, ym,u)∥ ≤
√

(m+ v1 + v2)dBeγ using ∥(r, ym,u)∥ ≤ γ by
γ-validity. Also, writing t̄ = q/t− ϵ for 0 ≤ ϵ < 1, we have ∥ẽ∥∞ = ∥(q/t− ϵ)t ·
⌊y

′⟨g,m⟩
t ⌉ mod q∥∞ = ∥ϵt · ⌊y

′⟨g,m⟩
t ⌉∥∞ ≤ ∥t⌊y

′⟨g,m⟩
t ⌉∥∞ ≤ t/2 + ∥y′⟨g,m⟩∥∞,

and ∥y′⟨g,m⟩∥∞ ≤ ∥y′∥1∥⟨g,m⟩∥∞ ≤ (2pw)(2τ − 1) using ∥y′∥1 ≤ 2pw and
∥⟨g,m⟩∥∞ ≤ 2τ − 1 since m ∈ {0, 1}v1 . Overall, we have ∥e + ẽ∥∞ ≤ ∥e∥∞ +
∥ẽ∥∞ ≤

√
(m+ v1 + v2)dBeγ + (2pw)(2τ − 1) + t/2 := ∥e∥bnd,∞, which is less

than t̄/2 by condition (10), as required.
Decryption Soundness: To show the decryption soundness claim, let E1 de-
note the event thatA wins and case (i) in Exp:Soundness occurs, i.e., V(C, x,z) =
1 but a γ-valid opening (C, y, (m,u, r)) of C with y = x − x′′ and x′′ ∈ Cdw,p

does not exist. Similarly, let E2 be the event that A wins and case (ii) in
Exp:Soundness occurs, i.e., V(C, x,z) = 1 and a γ-valid opening (C, y, (m,u, r))
of C with y = x− x′′ and x′′ ∈ Cdw,p exists, but CDecGR returns the wrong mes-
sage m′ ̸= m. We show that Pr[E1] + Pr[E2] ≤ qH

|Cd
w,p|

.

We first claim that Pr[E1] ≤ qH
|Cd

w,p|
. Indeed, for each H-query of A of the

form (pp, C, ·), we have that for any query answer x′ ̸= x, there does not exist
a z′ such that V(C, x′, z′) = 1 (otherwise, by existential special-soundness of
the protocol ΣI, a γ-valid opening (C, y, (m,u, r)) of C with y = x − x′ would
exist, a contradiction with E1). It follows that Pr[E1] is upper bounded by the
probability that A receives the special challenge x for which a z exists in one of
the ≤ qH queries to H. Since the special challenge is returned with probability
1/|Cdw,p| in each query, the claimed bound on Pr[E1] follows.

Next, we claim that Pr[E2] = 0. On the one hand, if E2 occurs, then the
existence of the γ-valid opening (C, y, (m,u, r)) of C with y = x − x′′ means
that yC = Atdr +Btdym + Ctdu. Similarly to (11), multiplying the latter by
s⊤ gives us the following relation over Rq:

⟨s, yC⟩ = t̄(y⟨g,m⟩ mod t) + e+ ẽ, (12)

where e := ⟨e0, r⟩ + ⟨e1, ym⟩ + ⟨e2,u⟩ and ẽ := t̄t · ⌊y⟨g,m⟩
t ⌉ mod q. The same

bound ∥e∥bnd,∞ on ∥e + ẽ∥ applies by the same argument as in the run-time
proof, based on Schwartz inequality. On the other hand, let y′ = x − x′ be the
value chosen in the iteration of the loop in CDecGR for which the message m′ is
returned. Then m̄′ = t̄(y′⟨g,m′⟩ mod t) ∈ R, and we get the following relation
over Rq:

⟨s, yC⟩ = t̄(y′⟨g,m′⟩ mod t) + e′, (13)

where ∥e′∥∞ < ∥e∥bnd,∞ by the decryption check of CDecGR.
We now multiply (12) by y′ and subtract (13) multiplied by y. Let b1 :=

y′(y⟨g,m⟩ mod t) ∈ R, b2 := y(y′⟨g,m′⟩ mod t) ∈ R. Note that b1 − b2 =
y′y⟨g,m−m′⟩ mod t. Writing b1−b2 = (y′y⟨g,m−m′⟩ mod t)+ t⌊ b1−b2

t ⌉ gives
the following relation over Rq:

t̄(y′y⟨g,m−m′⟩ mod t) = y′(e+ ẽ)− ye′ − ẽ′, (14)
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where ẽ′ := t̄t⌊ b1−b2
t ⌉ mod q. We claim that the relation (14) leads to a contra-

diction, so that Pr[E2] = 0. To see this, first observe that the relation actually
holds over R, not just Rq. Indeed, there is no wraparound mod q in the left hand
side of (14), since the left hand side norm is at most ∥⌊q/t⌋ · t/2∥∞ < q/2. Since
m−m′ ̸= 0, and m−m′ ∈ {−1, 0, 1}v1 , we have ∥⟨g,m−m′⟩∥∞ ≤ 2τ − 1 < t
so ⟨g,m −m′⟩ ≠ 0 mod t. Note that y is non-zero in R (since γ-validity of
(C, y, (m,u, r)) implies y ∈ ∆Cdw,p) and y′ is also non-zero in R (since it caused
termination of CDecGR and hence is invertible in Rt) and R is an integral
domain, the left hand side of (14) is a non-zero multiple of t̄ in R. But the
norm of the error terms on the right-hand side of (14) is bounded as follows.
First, ∥y′(e + ẽ) − ye′∥∞ < ∥y′∥1∥e + ẽ∥∞ + ∥y∥1∥e′∥∞ ≤ 4pw∥e∥bnd,∞ using
∥y′∥1 ≤ 2pw, ∥y∥1 ≤ 2pw, ∥e + ẽ∥∞ < ∥e∥bnd,∞ and ∥e′∥∞ < ∥e∥bnd,∞. Also,
∥ẽ′∥∞ = ∥t̄t⌊ b1−b2

t ⌉ mod q∥∞ ≤ t⌊ b1−b2
t ⌉ ≤ t( 12+2pw) using |t̄t mod q| < t, and

∥⌊ b1−b2
t ⌉∥∞ ≤

1
2 + 2pw using ∥b1∥∞ ≤ ∥y′∥1∥y⟨g,m⟩ mod t∥∞ ≤ (2pw)(t/2) ≤

pw, and similarly, ∥b2∥∞ ≤ pw. Overall, the norm of the right-hand side of (14)
is bounded as ∥y′(e + ẽ) − ye′ − ẽ′∥∞ < 4pw∥e∥bnd,∞ + t( 12 + 2pw), which is
smaller than t̄ by condition (10). So, the left-hand side cannot be a non-zero
multiple of t̄ in R, implying the claimed contradiction. This completes the proof
that Pr[E2] = 0 and the claimed soundness bound. ⊓⊔

5.5 Generalized Decryption

Our gadget-based Regev-style decryption trapdoor presented in the previous
section, which handles a binary decryptable message space D = {0, 1}v1 , can
be readily generalised to handle more general decryptable message spaces D =
({0, . . . , β−1}[X]<δ)v1 whose coordinates are polynomials in the ring R of degree
< δ with β-ary coefficients for some positive integers δ, β > 1. This generalisation
can naturally be achieved via the appropriate generalisation of the reconstruction
gadget vector g, by setting

g⊤ := (β0X0, . . . , βτ−1X0, β0Xδ, . . . , βτ−1Xδ, . . . , β0Xd′δ, . . . , βℓ−1Xd′δ) ∈ Rv1 ,

with τ :=
⌈

v1
⌊d/δ⌋

⌉
, d′ := ⌊ v1τ ⌋ ≤ ⌊d/δ⌋. The decryption soundness result, Thm 2,

directly extends to this generalised case with the term 2τ replaced by βτ .

5.6 Succinctness of Our HMC-based VPDC

An HMC commitment C as defined in Section 5.1 costs nd log q bits, i.e.,

bitlen(C) = nd log q. (15)

We show that we can choose parameters such that succinctness of the VPDC
is satisfied, i.e., bitlen(C) = logO(1)(bitlen(u)), where bitlen(u) is the bit length of
honestly generated auxiliary messages, assuming the following very mild assump-
tions: (i) v1/d = O(log λ) and (ii) γ = (λ∥u∥)O(1), a condition that is typically
satisfied by the soundness extractor of the associated ZKP. The auxiliary message
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space is defined as U := Sv2

B with B = λO(1). Then bitlen(u) := dv2 log(2B). Set
d = Θ(λ), v1 = Θ(λ) (with v1/d = O(log λ)), v2 = λO(1), p = O(1), w = Θ(λ)
(so that |Cdw,p| ≥ (d/w− 1)w ≥ 2λ), Be = Θ(1) and n,m = Θ(log γ). As a result,

we have t = O(2τ ) = O(2v1/d) = λO(1).
In general, we require two conditions to be satisfied: decryption soundness

requirements and M-SIS security requirements (note that M-LWE security affects
the number of columns of the commitment matrix, and thus not the commitment
size). Let us analyze these two aspects.
(1) Partial-Decryption Soundness and Feasibility (Thm. 2):

q > Ω(tpwγBe

√
d(m+ v1 + v2) + t2pw) = Ω(λO(1)γ log γ). (16)

(2) M-SIS security (Lemma 1): The hardness of M-SISn,m,q,βSIS
requires

(see [9, Section 1.2]):

nd log q ≥ Ω(λ log2(βSIS)) = Ω(λ log2(γ)). (17)

Note that βSIS = 2γ as given in Lemma 1. We can satisfy both conditions
with some log q = Θ(log(λγ)) (ignoring log log γ). With this choice, we get
commitment length bitlen(C) = nd log q = Θ(λ log2(γ)). To show it is polylog

in bitlen(u), it suffices to show that log γ = logO(1)(bitlen(u)). Assuming that
γ = (λ∥u∥)O(1), we have log γ ≤ O(log(λ∥u∥)) = O(log λ + log(dv2) + logB) =
logO(1)(bitlen(u)), as required.

6 Extending MatRiCT to Auditable Setting

Having dealt with the core task of constructing and analysing a VPDC, we
now explain how our VPDC construction can be applied to extend a privacy-
preserving confidential transaction blockchain protocol MatRiCT [12] to the au-
ditable setting. Unlike the auditability feature of the original MatRiCT protocol,
where auditing may fail against adversarially-created transactions, our auditable
MatRiCT variant, called MatRiCT-Au, takes advantage of our VPDC to effi-
ciently provide auditability soundness guarantees against adverserial transac-
tions. More specifically, we show that only minor modifications to MatRiCT are
sufficient to add the auditability feature. As the whole MatRiCT protocol is
quite involved, in this section, we only briefly review MatRiCT, focusing on the
specific parts of the protocol which we modify.

MatRiCT follows the blueprint of RingCT-like [20] private blockchain pay-
ment protocols, in which there are two main entities: (i) spenders/payers, who
create transactions together with a proof of validity, and (ii) verifiers, who check
that the proof and transaction is valid. The goal of the private payment proto-
col is to enable users to conduct transactions on blockchain while hiding sensi-
tive transaction information such as the payer/payee identities and the payment
amount. Once such information is concealed from the verifiers, it gets harder to
validate transactions as we cannot, for example, simply check that the transac-
tion amount is positive and the total balance of the transaction is zero (i.e., the
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amount spent equals the amount received). To this end, the payers create a NIZK
proof showing that they are not creating an invalid transaction, for example, by
proving that the balance is preserved.

To hide the payer identity, MatRiCT makes use of a 1-out-of-N NIZK proof
(or a ring signature), where the identity of the real payer is hidden within a
set of possible payers. This involves committing to the unary representation of
an index ℓ ∈ [0, N − 1]. To hide the payment amount, a commitment to the
bits of the transaction amount is used. In fact, the bits representing the user
index and those representing the transaction amount are committed in a single
commitment. To enable an authority to recover these two critical data pieces, we
apply our new VPDC from Section 5 for this commitment, so that the VPDC
decryption algorithm recovers (i) the real payer’s index among N users, and (ii)
the transaction amount. Let us investigate more details.

In MatRiCT, an HMC commitment B = Comck(b,u; r) is computed, where
b is a binary vector over Rq̂ for some q̂ ∈ Z+ (i.e., b = (b0, b1, . . .) such that
bi ∈ {0, 1} ⊂ Rq̂), u is some short auxiliary message and r is some short ran-
domness. Here, the binary vector b is comprised of three components: (i) the
unary representation of an index ℓ that identifies the real payer (i.e., spender)
index among N parties in a ring signature or a 1-out-of-N proof, (ii) the bits
in the binary representation of all output amounts, and (iii) the bits in the so-
called “corrector values”. Our target is to recover the first two components in
decryption so that the authority can learn the two hidden data pieces mentioned
above. Note that the payer indeed proves in zero-knowledge that she owns the
ℓ-th public key and that certain bits (with known indices) in b construct the
output coins. Hence, recovering b guarantees that the real payer index and the
output amounts (and thus the transaction amount) are revealed.

As it is expensive to perform an exact binary proof on B, MatRiCT performs
a relaxed binary proof on B. Let us recall a simplified version of the relation
proven in MatRiCT for the commitment B, which also applies to our variant
MatRiCT-Au.

Lemma 2. Assume that q̂ is sufficiently large and that HMC is γbin-binding
for some γbin that depends on the system parameters. For an input commitment
B ∈ Rn̂

q̂ and a commitment key ck = Ĝ = [A ∥B ∥C ] defined over Rq̂, our
binary proof proves knowledge of (y, b, ĉ, r̂) such that

– y ∈ ∆Cdw,p, ĉ ∈ Rv2
q̂ and r̂ ∈ Rm̂

q̂ for some v2, m̂ ≥ 1,
– yB = Comck(yb, ĉ; r̂) = Ar̂ +Byb+Cĉ,
– All coordinates bi of b are in {0, 1}, i.e., b ∈ {0, 1}v1 ⊂ Rv1

q̂ , where v1 =

kβ+Sr+⌈log(M+S−1)⌉(r−1) for parameters k, β satisfying N = βk, M,S
denoting the number of input/output accounts and r denoting the bit length of
each amount,

– ∥(yb, ĉ, r̂)∥ ≤ γB for some γB ∈ R+ with γB < q̂.

The above relation is effectively what we study in Def. 5 with D = {0, 1}v1 .
So, the extension we need to make over MatRiCT is to let the spender use the
VPDC from Section 5 for the commitment B. In particular, the spender just
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needs to update ck = Ĝ with a ‘trapdoored’ commitment key cktd generated
by CAddTd. This simply means that the spender replaces the last row of ck =
Ĝ with trapdoor rows published by an authority. This way, the authority in
possession of the corresponding trapdoor td can execute CDecGR (Alg. 2) to
recover the vector b, which in turn reveals the real payer index ℓ ∈ [0, N − 1]
and the transaction amount, which is equal to the sum of the output amounts.
In particular, since the commitment algorithm for our VPDC remains exactly
the same as the standard HMC commitment algorithm used in MatRiCT, our
VPDC can be directly plugged in and used with the same efficient NIZK proof of
transaction well-formedness used in MatRiCT. For the invertibility of challenge
differences in Rt as required in Theorem 2, we use the results of [8, 11].

For the concrete parameter setting in MatRiCT with N = 100, we have
dim(b) = v1 = 291 as (k, β) = (1, N) and (M,S, r) = (1, 2, 64) with the first
kβ = 100 bits having exactly a single ‘1’. As a result, there are more than 2191

possibilities for b (i.e., |D| > 2191). Hence, it is infeasible to do an exhaustive
search over D (as done in [12]) for decryption. As our new decryption’s runtime
is polylogarithmic in |D|, we can efficiently execute it. In particular, as we dis-
cuss in the full version of this paper, to guarantee auditability soundness against
adversarially-created commitments based on our VPDC security bounds while
maintaining the same security level as MatRiCT against best-known lattice at-
tacks, we only need to increase (i) the system modulus q̂ to a 55-bit value from a
53-bit value and (ii) the commitment matrix dimensions slightly. As shown in the
full version of this paper, the decryption runs very fast despite the exponentially
large message space.

It is important to note here that MatRiCT and MatRiCT-Au crucially re-
lies on an aggregate binary proof for compactness, where many messages are
committed together inside a single commitment B. Therefore, the additional
succinctness feature of VPDC plays an important role. If one were to replace
this HMC commitment with an encryption (or an encryption-like commitment
as in [3]), the proof/commitment length would significantly increase (as also dis-
cussed in the introduction) due to the large input message dimension (several
hundreds) over the polynomial ring Rq̂.

In the full version of this paper, we describe MatRiCT-Au in full details,
and show that addition of a trapdoor as in CAddTd is effectively the only mod-
ification required over MatRiCT. We instantiated MatRiCT-Au concretely and
implemented it in C/C++ (see the full version). We compare MatRiCT and
MatRiCT-Au in Table 1. Our results show that the overhead of MatRiCT-Au
over MatRiCT is very small in both communication and computation.
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