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Abstract. We propose a general framework for non-universal SNARKs.
It contains (1) knowledge-sound and non-black-box any-simulation-
extractable (ASE), (2) zero-knowledge and subversion-zero knowledge
SNARKs for the well-known QAP, SAP, QSP, and QSP constraint lan-
guages that all by design have relatively simple security proofs. The
knowledge-sound zero-knowledge SNARK is similar to Groth’s SNARK
from EUROCRYPT 2016, except having fewer trapdoors, while the ASE
subversion-zero knowledge SNARK relies on few additional conditions.
We prove security in a weaker, more realistic version of the algebraic
group model. We characterize SAP, SSP, and QSP in terms of QAP; this
allows one to use a SNARK for QAP directly for other languages. Our
results allow us to construct a family of SNARKs for different languages
and with different security properties following the same proof template.
Some of the new SNARKs are more efficient than prior ones. In other
cases, the new SNARKs cover gaps in the landscape, e.g., there was no
previous ASE or Sub-ZK SNARK for SSP or QSP.

Keywords: NIZK, QAP, QSP, SNARK, SAP, SSP, simulation-
extractability, subversion zero-knowledge

1 Introduction

There are many different SNARKs [22,30,31,21,36,23] that differ in the target
language and the security objectives. Common target languages correspond to
specific quadratic constraint satisfaction systems, and the choice of language
depends on the application. The languages QAP [21] and SAP [23,25] are use-
ful when arguing about arithmetic circuits, while QSP [21,31] and SSP [13] are
handy when arguing about Boolean circuits.1 While QAP, providing efficient re-
ductions to arithmetic circuits, is the most useful language in general applications
like cryptocurrencies [8], other languages have their applications. In particular,
SSP is widely used in applications where Boolean circuits come naturally like
in, say, shuffle arguments, [16].

The choice of security objectives depends on the application. Knowledge-
soundness is often sufficient, but simulation-extractability (SE) is needed to get

1 Within this paper, we always (though implicitly, without mentioning it) refer to the
“strong” versions of these languages as defined in [21]. First, such versions are most
useful and needed in applications. Second, modern SNARKs like [23] and the ones
discussed in the current paper are for “strong’ variants.’ We omit further discussions.
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UC-security [12]. On the other hand, not having SE can be beneficial in appli-
cations that need malleability. Finally, security properties evolve. Both Sub-ZK
(subversion zero-knowledge [7,1,17,3]; the argument stays zero-knowledge even
if the CRS is not trusted) and non-black-box SE [25] for SNARKs were defined
in 2017, after most of the mentioned zk-SNARKs were proposed. [1,17,3] showed
that the most efficient known SNARK by Groth [23] is Sub-ZK.

This has resulted in an era of SNARK proliferation: there exist knowledge-
sound SNARKs for the mentioned four languages, some of which are Sub-ZK
or SE. Groth and Maller [25] proposed a non-black-box strong any-simulation-
extractable (SASE) SNARK that is only slightly less efficient than Groth’s
SNARK [23]. Recall that knowledge-soundness means that a successful prover
must know the witness, and SE means that the knowledge-soundness holds even
if the prover had access to the simulation oracle, [37]. Dodis et al. [15] defined
different variants of SE, see Section 2 for more information. Intuitively, in an
ASE SNARK, one is allowed to maul an argument to a different argument for
the same statement, while this is not allowed in a SASE SNARK. (Non-)black-
box SE means that a (non-)black-box extractor extracts the witness. Black-box
ASE is sufficient to obtain UC security.

However, the Groth-Maller SNARK is for the SAP language [23,25]. Since
SAP has an efficient reduction from arithmetic circuits with squaring gates in-
stead of general multiplication gates, the SNARK from [25] works with approx-
imately two times larger circuits than SNARKs for the QAP language. While
non-black-box SASE is insufficient to obtain UC security, it is a stronger secu-
rity notion than knowledge-soundness. In particular, a much simpler transfor-
mation suffices to obtain UC security when one starts with non-black-box SE
SNARKs [5]. Due to the use of SAP, this transformation is twice as costly as the
ones starting from SE SNARKs for QAP. Other known simulation-extractable
Sub-ZK SNARKs include [10], which works in the random oracle model, and [4],
based on updatable signature schemes.

Recently, [6] showed that Groth’s SNARK [23] satisfies the weaker non-black-
box any-simulation-property ASE. As argued in [29,6], (black-box or non-black-
box) ASE is sufficient in many applications. The only known SE SNARKs are
for QAP and SAP, and no previous efficient SE or Sub-ZK SNARKs are known
for SSP or QSP.

Finally, [1,3] proved the knowledge-soundness of Groth’s SNARK in the
generic group model (GGM) with hashing. The “with hashing” part means that
one allows the adversaries to use (say) elliptic curve hashing to create ran-
dom group elements without knowing their discrete logarithms. More modern
knowledge-soundness (and ASE) proofs of SNARKs are given in the algebraic
group model (AGM, [19]). Unfortunately, the AGM proof of Groth’s SNARK
in [19] does not allow the adversaries to hash. Proving the knowledge-soundness
of Groth’s SNARK in the AGM “with hashing” seems to be still an open problem.

We aim to consolidate SNARK research by investigating how the choice of
security properties and target language influences an argument system’s design.
This is important as only a few researchers have in-depth knowledge of secure
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SNARK design. It is easy for even well-established research groups to err in
such an endeavor; see, for example, [35,11,20,18] for related cryptanalysis. The
resulting complexity can be seen when following through the soundness proofs
in say [23,25]. Each existing SNARK has a tailored construction with a tailored
security proof in its specific security models, and even verifying all the security
proofs for all mentioned SNARKs is probably well beyond the most talented
cryptographer’s capability.

This brings us to the main goal of this paper:

Construct a SNARK framework for a multitude of languages (e.g., QAP,
SAP, QSP, and SSP) and satisfying a multitude of security objectives
(knowledge-soundness vs. ASE, ZK vs. Sub-ZK) that allows for (1) a
(relatively) simple security proof that can be easily modified to cover all
the languages and security objectives, and (2) results in ASE and Sub-
ZK SNARKs that are almost as efficient as the most efficient known
knowledge-sound non-Sub-ZK SNARKs. Additionally, (3) prove their se-
curity in a realistic version of AGM “with hashing”.

Our Contributions.We propose a family of 2·2·4 = 16 SNARKs that contains
both knowledge-sound and ASE, and both ZK and Sub-ZK SNARKs, for all
four mentioned languages (QAP, SAP, QSP, SSP). While the derivation of the
first two SNARKs (namely, knowledge-sound no-Sub-ZK and its ASE version)
is complicated, we obtain the other fourteen SNARKs with minor additional
work. Thus, we obtain a framework for efficient random-oracle-less pairing-based
SNARKs for both arithmetic and Boolean circuits. Previous knowledge-sound
SNARKs for all four languages were each published in a separate paper, with
corresponding ASE and Sub-ZK versions being proposed later, if at all.

The new knowledge-sound zk-SNARK Sqap for QAP is similar to Groth’s
SNARK [23], except it has only two trapdoors instead of five. We replace 3
trapdoors with a well-chosen power of one trapdoor. After an even more careful
choice of the powers, we also achieve CRS-verifiability [1,3] and thus Sub-ZK;
otherwise, the Sub-ZK version is precisely the same and thus also as efficient.
Unlike Groth, who proposed his SNARK without explaining how he arrived at
the construction, we thoroughly motivate each step of it. This enables researchers
aiming for a different goal to deviate from the construction at the appropriate
point. Importantly, we provide a simpler knowledge-soundness proof.

To prove ASE, we observe that due to the structure of the new SNARKs,
an ASE adversary can successfully use at most one simulation query answer in
the forgery attempt. We show that if the adversary used one query answer, this
was necessarily a SASE and not an ASE attack. The ASE of Sqap follows. It is
non-trivial that one-time ASE suffices. Moreover, unexpectedly, all powers of the
trapdoor that result in Sqap being knowledge-sound result in it also being ASE.

We prove knowledge-soundness and ASE in a more realistic version of the
AGM. The knowledge-soundness proof in [23] was given in the generic group
model, while [19] provided an AGM proof. However, [19] considers adversaries
that are purely algebraic and in particular do not have a capability to create
random group elements without knowing their discrete logarithms. In our proofs,
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Table 1. Efficiency comparison of QAP/SAP/SSP/QSP-based random-oracle-less
SNARKs Ψ . m (or m̃) and n (or ñ) denote the number of wires and gates (or con-
straints) in the solutions. “X” (“≈”) means that the corresponding SNARK (its slight
modification) is Sub-ZK, with a citation to the Sub-ZK construction if needed. “mι”
(“aι”) denotes scalar multiplication (addition) in group Gι, “p” denotes pairing, and
gι denotes the representation length of a Gι element in bits. In the case of |crs| and
P’s computation, we omit constant or m0-dependent addends like +(m0 + 3)g1. We
omit field operations and membership tests since they are dominated by significantly
costlier group operations. Ssap, Sssp, and Sssp are described in the full version, [33].

Ψ security |crs| P computation |π| V computation Sub-ZK

QAP-based (arithmetic circuit, with n gates), m̃ = m

[23] KS/ASE [6] (m+ 2n)g1 + ng2 (m+ 3n)m1 + nm2 2g1 + 1g2 3p + m0m1 X[1,17,3]
Sqap § 3 ASE (m+ 2n)g1 + ng2 (m+ 3n)m1 + nm2 2g1 + 1g2 3p + m0m1 X

SAP-based (arithmetic circuit, with ñ squaring gates): u = v, ñ ≈ 2n, m̃ ≈ 2m

[25] SASE (m̃+ 2ñ)g1 + ñg2 (m̃+ 2ñ)m1 + ñm2 2g1 + 1g2 5p + m0m1 ≈ [26]
Ssap ASE (m̃+ 2ñ)g1 + ñg2 (m̃+ 2ñ)m1 + ñm2 2g1 + 1g2 3p + m0m1 X

SSP-based (Boolean circuit with n gates): u = v = w, ñ = m+ n

[13] KS (m+ ñ)g1 + ñg2 2ma1 + ñm1 + ma2 3g1 + 1g2 6p + m0a1 –
Sssp ASE (m+ 2ñ)g1 + ñg2 2ma1 + ñm1 + ma2 2g1 + 1g2 3p + m0a1 X

QSP-based (Boolean circuit with n gates): w = 0, ñ ≈ 14n [31]

[31] KS – – – – –
Sqsp ASE (m̃+ 2ñ)g1 + ñg2 4m̃a1 + ñm1 + m̃a2 2g1 + 1g2 3p + m0a1 X

the adversary has such a capacity. We consider this proof (and the corresponding
realistic version of the AGM) to be another major contribution of this paper.

Based on an observation about algebraic relations between the languages,
we modify Sqap to cover SAP, QSP, and SSP. Hence, almost automatically, we
obtain a family of knowledge-sound (or ASE), and zero-knowledge (or Sub-ZK)
SNARKs for four different languages.

Table 1 compares the efficiency of random-oracle-less SNARKs. It is fair to
compare SNARKs for the same language; a comparison of SNARKs for different
languages (for example, QAP vs. SAP) has to account for the complexity of the
reduction from circuits to these languages. Note that [31] described a reduction
from Boolean circuits to QSP and a linear PCP [9] for QSP but did not describe
a SNARK. In all constructions, most of the prover’s scalar multiplications in
Table 1 are multi scalar-multiplications. As seen from the table, the new ASE
SNARK for SAP is more efficient than the (SASE) SNARK for SAP by Groth
and Maller. No previous SE or Sub-ZK SNARKs were known for SSP or QSP,
and Groth’s SNARK for QAP was only proven to be ASE in [6].
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1.1 Technical Overview

In Section 3, we propose a knowledge-sound zk-SNARK Sqap for QAP. The
argument consists of evaluations2 [A(x, y)]1, [B(x, y)]2, [Cs(x, y)]1 of three bi-
variate polynomials A(X,Y ), B(X,Y ), Cs(X,Y ) at a random point (x, y). Here,
[A(x, y)]1, [B(x, y)]2 commit to the vector of left and right inputs to all gates,
while [Cs(x, y)]1 combines a commitment to the vector of all output wires with
the rest of the argument. The verifier checks that a bivariate polynomial V, that
depends in a known way on A,B,Cs, evaluates to 0 at the same point.

As in [23], we aim to make [Cs(x, y)]1 to be computable only by the honest
prover. The prover has access to the CRS that contains the evaluation of well-
chosen polynomials at (x, y) in both G1 and G2. We optimize to get an efficient
SNARK while not sacrificing (much) in the knowledge-soundness proof’s sim-
plicity. Sqap is very similar to Groth’s SNARK [23]; however, it uses only two
trapdoors instead of five. This distinction is important: in [23], only two out of
five trapdoors are used in simulation; thus, the other three trapdoors seem not
to be needed. In general, it is important to minimize the number of components
to the bare minimum so that the importance of each component is well under-
stood. In Sqap, we use well-chosen powers of one trapdoor y as substitutes for
four out of the five trapdoors of Groth’s SNARK. (A similar technique to use
one trapdoor to align “interesting” monomials together was used, e.g., in [24].)
Knowledge-Soundness Proof And A More Realistic Variant of The AGM. The
knowledge-soundness proof is in the algebraic group model (AGM [19]). In the
AGM, one considers algebraic adversaries that always know a linear relation-
ship between their output and input group elements. As an important difference
with the AGM of [19], we additionally allow the cheating prover to sample ran-
dom elements of G1 and G2. Such an extension of the generic group model is
well-known, [7,1,3], but not established in the case of the AGM. It is also well
understood why this extension is needed since otherwise, one can prove the se-
curity of false knowledge assumptions. Really, without this extension, one can
prove that if an adversary on input [1]1 outputs [y]1, it must know y. This as-
sumption does not hold since it is easy to generate random group elements by
using hash-then-increment or elliptic curve hashing.

Fuchsbauer et al. [19] give an adversary A access to a programmable ran-
dom oracle [34] O. A can create a random group element by querying O that
returns a uniformly random group element. In the security proof, one allows
the reduction to program O by creating random group elements together with
their discrete logarithms. Unfortunately, since the reduction knows the discrete
logarithms, also in this model, one can prove the security of the above false
knowledge assumption. We overcome this issue by using a different oracle simu-
lation strategy by defining two adversaries (one for each trapdoor x and y) and by
using two different oracle programming strategies. This results in the first known

2 We use the by now standard additive bracket notation for group elements, by fixing
first a bilinear group p = (G1,G2,GT , ê), and then denoting say [a]ι = aPι ∈ Gι for
a fixed generator Pι ∈ Gι. See Section 2 for more information.
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knowledge-soundness and ASE proof of (a version) of Groth’s SNARK [23] in
a variant of the AGM with hashing where false knowledge assumptions like the
above cannot be proven. This result is of independent importance.

Choosing Powers of y. The way we choose the powers of y is interesting by itself.
In the security proof, A,B,Cs are chosen maliciously and depend on additional
indeterminates. Let Y be an indeterminate corresponding to y and X∗ be the
vector of all indeterminates, except Y , in the knowledge-soundness or ASE proof.
X∗ includes X (the indeterminate corresponding to x), indeterminates created
when the adversary samples random group elements, and (in the case of ASE)
indeterminates created by simulator queries. Since the adversary is algebraic,
the polynomials A(X), B(X), and Cs(X) belong to the span of the polynomials
in the CRS, the random oracle answers, and (in the case of the ASE) the sim-
ulator answers. We use the AGM extractor to extract their maliciously chosen
coefficients in this span, allowing us to recover the coefficients of the (Laurent)
polynomial V. The verification guarantees that V(x∗, y) = 0, where the trapdoor
x∗ instantiates the indeterminate X∗.

The knowledge-soundness proof considers two cases, when V(X∗, Y ) = 0
and V(X∗, Y ) 6= 0 as a polynomial. Consider the first case. Then, V(X∗, Y ) =∑
VY i(X∗)Y i for known polynomials VY i(X∗), where i is a linear combination

of the coefficients of a public but initially undetermined integer tuple ∆ =
(α, β, γ, δ, η). We prove that an algebraic prover is honest iff VY i(X∗) = 0 for
six critical values i. (In Groth’s security proof, the number of critical values is
significantly larger.) We choose ∆ so that the corresponding six critical values i
are distinct from each other and all other non-critical values j; in this case, we
say that ∆ is soundness-friendly. Moreover, we choose ∆ so that the SNARK is
relatively efficient. For example, we require that for all critical i, |i| is as small
as possible, and check if there is a way to make some non-critical values j to
coincide (this can shorten the CRS).

Finding a suitable ∆, satisfying all the restrictions, is a moderately com-
plex optimization problem. In particular, the number of non-zero coefficients of
VY i(X

∗) (even in the knowledge-soundness proof and without allowing the ad-
versary to create new indeterminates) is at least 30, depending on the SNARK.
Because of the complexity of the problem, we used an exhaustive computer
search to find ∆. Due to the use of exhaustive search, exponents in the resulting
SNARKs (see Eq. (11) for a recommended value of ∆ and Eq. (12) for the de-
scription of the CRS when using this value of ∆) may look somewhat obscure.
However, the soundness-friendliness of the results of the exhaustive search are
easy to verify manually (intuitively, this corresponds to checking that when∆ is
instantiated as in Eq. (11), then the critical six entries in Eq. (10) are different
from each other and all other entries). It is easy to find suboptimal choices of
the exponents; however, such choices will usually not be sufficient for Sub-ZK.
We feel that using exhaustive search adds to the strength of this paper.

Other Results. In Section 4, we prove that Sqap is ASE. We use the same proof
strategy as in the case of knowledge-soundness. By analyzing the coefficients of
V, we get that the ASE adversary can use the result of at most one simulation
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query in the forgery attempt. If she used none, ASE follows from the knowledge-
soundness. If she used one, then, due to an easily satisfiable additional require-
ment on the QAP instance, she was performing a SASE attack that is not an
attack in the sense of ASE. For this proof to work, one needs ∆ to satisfy addi-
tional restrictions on ∆; however, we will show that any soundness-friendly ∆
satisfies these requirements. Thus, any version of Sqap that is knowledge-sound
is ASE, modulo a small, easily satisfiable, technical restriction.

As we mentioned before, Sqap is very similar to Groth’s SNARK. Groth
proved knowledge-soundness in the case of symmetric pairings, and this implies
knowledge-soundness in the case of asymmetric pairing. Asymmetric pairings
are much more efficient than symmetric pairings and thus strongly preferred
in practice. We obtain a simpler direct knowledge-soundness proof by explicitly
assuming that the pairing is asymmetric. One corollary of our knowledge-sound
proof is the up to our knowledge novel observation that Groth’s SNARK has a
simple knowledge-soundness proof given that one uses asymmetric pairings. Hav-
ing simpler (or alternative) security proofs is important by itself due to the easier
verifiability; simpler proofs can also result in the construction of other protocols.
We also use a more realistic variant of the AGM to prove knowledge-soundness.
(The use of this variant of the AGM makes the security proof somewhat more
complex again.) Moreover, we emphasize that the number of critical values i is
much larger when one follows Groth’s original proof.

Our goal was not to duplicate Groth’s SNARK but to construct an efficient
SNARK with a simple knowledge-soundness proof. Our exposition of the deriva-
tion of Sqap can also be seen as an intuitive pedagogical re-derivation of (a slight
variant of) the most efficient existing pairing-based SNARK.

We make Sqap subversion-zero knowledge (Sub-
U V W

QAP
SAP = U
SSP = U = U
QSP = 0

Fig. 1. Algebraic rela-
tions between languages.

ZK). According to the template of [1,3], we construct
a public CRS verification algorithm that checks that
the CRS corresponds to some trapdoor, and then use
a knowledge assumption to recover the trapdoor and
simulate the argument. For the CRS-verifiability, we
restrict the choice of ∆ even more. This suffices: all
new SNARKs are Sub-ZK when choosing ∆ carefully.
We then use the standard BDH-KE [1,3] knowledge
assumption to recover the trapdoor and simulate the argument.

In the full version [33], we consider the languages SAP [23,25], SSP [13], and
QSP [21,31]. We explain their algebraic relation to QAP, and use it to lift Sqap

to the setting of the corresponding languages. In the case of SSP and QSP, the
algebraic relation is not obvious; we explain it in detail in the full version [33].
See Fig. 1 for a brief summary. This summary becomes clear later (e.g., QAP
states that Uz ◦ V z = Wz for an input-witness vector z, while SAP states
that Uz ◦ Uz = Wz since U = V ; here, U , V , and W are relation-dependent
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matrices that characterize the languages as constraint satisfaction problems),
but we decided to have it here for an early reference.3

Our SNARK for SAP (and SSP) has a slightly different ASE proof compared
to the SNARK for QAP. Previous research handled all four languages separately,
and our (simple) relations seem to be novel in the case of SSP and QSP. We
propose the first known either Sub-ZK or ASE SNARKs for SSP and QSP, and
more generally, for Boolean circuits. Importantly, the new Sub-ZK ASE SNARK
for SSP is more efficient than the knowledge-sound non-Sub-ZK SNARK of [13].

This work supersedes [32]. While the idea of using only two trapdoors is
already present in [32], there are too many changes to enlist.

1.2 Further Work

Applications. We concentrate on the construction of the SNARKs themselves
and leave possible applications for future work. The most evident efficiency ben-
efit is in the case of the SSP, where the verifier computes only 3 pairings instead
of 6 in [13]. This may result in more efficient shuffle arguments [16] that rely on
SNARKs for SSP. The ASE and Sub-ZK properties of the new SNARKs, on the
other hand, have the potential to guarantee the same properties in similar ap-
plications. For example, given the new ASE SNARK for SSP, it may be possible
(but we leave it to future work) to construct an ASE shuffle argument.
Universal SNARKs. There is an even more significant SNARK proliferation
when one also considers universal SNARKs. Within this paper, we only study
SNARKs with circuit-dependent CRSs. Universal SNARKs deserve their own
several papers, especially since much less is known in that scenario. (E.g., efficient
SE universal SNARKs have only been proposed in a recent eprint [28].) However,
some of the results of the current paper (like the relation between QAP, SAP,
SSP, and QSP) are also interesting in the context of universal SNARKs. We are
not aware, e.g., of any efficient universal SNARKs for SSP.

2 Preliminaries

For a matrix A, Ai denotes its ith row and A(j) denotes its jth column. Let
vect(A) be the vectorization of matrix A ∈ Zn×mp , vect(A) = (A11, A12, . . . ,
A1m, A21, . . . , Anm). Z(≤d)

p [X] denotes the set of univariate polynomials of de-
gree ≤ d over Zp. PPT denotes probabilistic polynomial-time; λ ∈ N is the
security parameter. Let negl(λ) be an arbitrary negligible function, and poly(λ)
be an arbitrary polynomial function. We write i ≈λ j if |i− j| ≤ negl(λ). For
an algorithm A, im(A) is the image of A, that is, the set of valid outputs of
A. RNDλ(A) denotes the random tape of A (for given λ), and r←$ RNDλ(A)
denotes the uniformly random choice of r from RNDλ(A). By y ← A(x; r) we
denote the fact that A, given an input x and a randomizer r, outputs y.
3 Our definitions of SSP and QSP are very slight variations of the standard SSP and
QSP. They are functionally equivalent but, to our mind, slightly more elegant. See
the full version [33] for more discussion.
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Assume n is a power of two. Let ω be the nth primitive root of unity modulo
p. (ω exists, given that n | (p−1).) Then, Z(X) :=

∏n
i=1(X−ωi−1) is the unique

degree n monic polynomial such that Z(ωi−1) = 0 for all i ∈ [1, n]. For i ∈ [1, n],
let `i(X) be the ith Lagrange polynomial, the unique degree n − 1 polynomial
such that `i(ωi−1) = 1 and `i(ω

j−1) = 0 for i 6= j. Given χ ∈ Zp, `i(χ) for
i ∈ [1, n] can be computed efficiently. Clearly, Lk(X) :=

∑n
i=1 ki`i(X) is the

interpolating polynomial of k at points ωi−1, with Lk(ωi−1) = ki.

Bilinear Groups. Let n ∈ N>0 be an upper bound of the size of a circuit in
the SNARKs. A bilinear group generator Pgen(1λ, n) returns (p,G1,G2,GT , ê),
where G1, G2, and GT are three additive cyclic groups of prime order p, and
ê : G1 × G2 → GT is a non-degenerate efficiently computable bilinear pairing.
Assume n | (p−1). As in say [7], we assume that Pgen is deterministic and cannot
be subverted. (In practice, one can use a standardized curve.) We require the
bilinear pairing to be Type-3; that is, there is no efficient isomorphism between
G1 and G2. We use the standard bracket notation, writing [c]ι to denote cPι
where Pι is a fixed generator of Gι. Note that Pι is not given in p. We denote
ê([a]1, [b]2) by [a]1 • [b]2. We use freely the bracket notation together with matrix
notation, for example, AB = C iff [A]1 • [B]2 = [C]T .

Assumptions. Let T1, T2 be sets of small integers. Pgen is (T1, T2)-PDL (Power
Discrete Logarithm) secure if for any non-uniform PPT adversary A,

Pr[p← Pgen(1λ, n), x←$Z∗p : A(p; [xi : i ∈ T1]1, [xi : i ∈ T2]2) = x] ≈λ 0 .

If T1 = [0, n], then we talk about the (n, T2)-PDL assumption. The case T2 =
[0, n] is dual.

The BDH-KE assumption [1,3] holds for Pgen, if for every PPT adversary
A, there exists a PPT extractor ExtA, such that

Pr

[
p← Pgen(1λ); r ← RNDλ(A); ([y]1, [z]2)← A(p; r);
y∗ ← ExtA(p; r) : y = z ∧ y∗ 6= y

]
= negl(λ) .

BDH-KE is one of the weakest known knowledge assumptions in the asymmetric
pairing-based setting.

Algebraic Group Model (AGM). AGM is a new idealized model [19] used
to prove the security of a cryptographic assumption, protocol, or a primitive.
In addition, [19] proposed to combine the random oracle (RO) model with the
AGM, allowing the adversary to create random group elements. Essentially, in
the AGM with random oracles, one assumes that each PPT algorithm A is al-
gebraic in the following sense. Assume A’s input includes [xι]ι and no other
elements from the group Gι. Moreover, A has an access to random oracles Oι,
ι ∈ {1, 2}, such that Oι samples and outputs a random element [qιk]ι from Gι.
The oracle access models the ability of A to create random group elements with-
out knowing their discrete logarithms qιk. However, a reduction can program [34]
the random oracle so that it knows qιk. Intuitively, one assumes that if A out-
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puts group elements [yι]ι, then A knows matrices Nι and ([q1, q2]1), such that
yι =Nι(

xι
qι ) while the reduction also knows qι.

Formally, a PPT algorithm A is (Pgen-)algebraic if there exists an effi-
cient extractor ExtA, such that for any PPT-sampleable distribution family
D = (Dp)p∈Pgen(1λ), AdvagmPgen,D,A,ExtA(λ) :=

Pr

p←$ Pgen(1λ);x = ([x1]1, [x2]2)←$Dp; r←$ RNDλ(A);
([y1]1, [y2]2)←$A(O1,O2)(x; r); (N1,N2)← ExtA(x; r) :

(y1 6=N1(
x1
q1 ) ∨ y2 6=N2(

x2
q2 ))

 = negl(λ) .

Oι, ι ∈ {1, 2} is an oracle that samples and returns a random element from Gι.
[qι]ι is the list of all elements output by Oι. We denote the version of the AGM
where the reduction can program Oι, by first sampling a random element qιk
from Zp and then returning qιk, as ROfkl-AGM. The ROfkl-AGM states that,
given such programmable random oracles, AdvagmPgen,D,A,ExtA(λ) = negl(λ) for any
PPT-sampleable D and PPT algebraic A.

SNARKs. Let RG be a relation generator, such that RG(1λ) returns a
polynomial-time decidable binary relation R = {(x,w)} together with auxil-
iary information p. Here, x is a statement, and w is a witness. We assume that
λ is explicitly deductible from the description of R. Intuitively, (p,R) is the com-
mon auxiliary input to the honest parties, the adversary, and the corresponding
extractor. We assume that p← Pgen(1λ, n) for a well-defined n. (Recall that the
choice of p and thus of the groups Gι depends on n and that p is not subvertible.)
Let LR = {x : ∃w such that (x,w) ∈ R} be an NP-language.

A non-interactive zero-knowledge (NIZK) argument system Ψ for RG con-
sists of five PPT algorithms: First, a probabilistic CRS generator G that, given
(p,R) ∈ im(RG(1λ)), outputs (crs, td) where crs is a CRS and td is a simulation
trapdoor. Otherwise, it outputs a special symbol ⊥. For the sake of efficiency
and readability, we divide crs into crsP (the part needed by the prover) and crsV
(the part needed by the verifier). Within this paper, crs explicitly encodes R. We
also implicitly assume that crs encodes p. Second, a probabilistic CRS verifier CV
that, given crs, returns either 0 (the CRS is malformed) or 1 (the CRS is well-
formed). CV is only required to exist in the case of Sub-ZK argument systems.
Third, a probabilistic prover P that, given (crsP,x,w) for (x,w) ∈ R, outputs
an argument π. Otherwise, it outputs ⊥. Fourth, a probabilistic verifier V that,
given (crsV,x, π), returns either 0 (reject) or 1 (accept). Fifth, a probabilistic
simulator Sim that, given (crs, td,x), outputs an argument π.

A NIZK argument system must be complete (an honest verifier accepts an
honest verifier), knowledge-sound (if a prover makes an honest verifier accept,
then one can extract from the prover a witness w), and zero-knowledge (there
exists a simulator that, knowing the CRS trapdoor but not the witness, can
produce accepting statements with the verifier’s view being indistinguishable
from the view when interacting with an honest prover). A Sub-ZK argument
system [1,3] must additionally satisfy Sub-ZK (zero-knowledge holds even if the
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CRS is maliciously generated); for this, one requires CRS-verifiability (CV only
accepts a CRS if there exists a trapdoor td corresponding to it).

We will now give the formal definitions. Let Ψ be a non-interactive argument.
Ψ is perfectly complete for RG, if for all λ, (p,R) ∈ im(RG(1λ)), and (x,w) ∈ R,

Pr [(crs, td)← G(p,R) : V(crsV,x,P(crsP,x,w)) = 1] = 1 .

Ψ is computationally (adaptively) knowledge-sound for RG, if for every PPT A,
there exists a PPT extractor ExtA, such that for all λ,

Pr

[
(p,R)← RG(1λ); (crs, td)← G(p,R); r←$ RNDλ(A);
(x, π)← A(crs; r);w← ExtA(crs; r) : (x,w) 6∈ R ∧ V(crsV,x, π) = 1

]
≈λ 0 .

A knowledge-sound argument system is called an argument of knowledge.
Ψ is statistically composable zero-knowledge for RG, if for all λ, (p,R) ∈

im(RG(1λ)), and computationally unbounded A, εzk0 ≈λ εzk1 , where

εzkb := Pr

[
(crs, td)← KGen(p,R), (x,w)← A(crs, td);π0 ← P(crsP,x,w);

π1 ← Sim(crs, td,x) : (x,w) ∈ R ∧ A(πb) = 1

]
.

Ψ is perfectly composable Sub-ZK for RG if one requires that εzk0 = εzk1 .
Ψ is statistically composable Sub-ZK for RG, if for any PPT subverter S

there exists a PPT ExtS , such that for all λ, all (p,R) ∈ im(RG(1λ)), and all
computationally unbounded A, εzk0 ≈λ εzk1 , where

εzkb := Pr

r←$ RNDλ(S); (crs, zS)← S(p,R; r); td← ExtS(p,R; r);

(x,w)← A(crs, zS);π0 ← P(crsP,x,w);π1 ← Sim(crs, td,x);

(x,w) ∈ R ∧ CV(crs) = 1 ∧ A(πb) = 1

 .

Ψ is perfectly composable Sub-ZK for RG if one requires that εzk0 = εzk1 .
A SNARK (succinct non-interactive argument of knowledge) is a NIZK ar-

gument system where the argument is sublinear in the input size.
Simulation-Extractability (SE). An SE argument system [37,14] stays
knowledge-sound even if the soundness adversary has access to the simulation
oracle. SE is motivated by applications like non-malleability and UC security.

Dodis et al. [15] differentiated between several favors of SE. In the case of any-
simulation-extractability (ASE), the simulator can be queried with any (poten-
tially false) statements while in the case of true-simulation-extractability (TSE),
the simulator can only be queried with true statements. The adversary wins if
she can come up with a new argument for a statement she has not queried a
simulation for. In the case of strong any-simulation-extractability (SASE), the
adversary wins even if she can come up with a new argument for a statement
she has queried a simulation for. ASE suffices for UC security.

Groth and Maller [25] define SE SNARKs, where one requires that for each
PPT knowledge-soundness adversary A with oracle access to the simulator, there
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Main Exp s ase

Ψ,A,ExtA(λ)

Q ← ∅; (p,R)← RG(1λ); (crs, td)← G(p,R);

r ← RNDλ(A); (x, π)← ASim
s asecrs,td

(crs; r);w← ExtA(crs; r);
if V(crsV,x, π) = 1 ∧ (x , π ) 6∈ Q ∧ (x,w) 6∈ R
then return 1; else return 0;fi

Sim s ase

crs,td(xj)

πj ← Sim(crs, td,xj);Q ← Q∪ {(xj , πj )}; return πj ;

Fig. 2. Any-simulation (ASE) and strong any-simulation (SASE) experiments. The
boxed part is only present in the boxed (i.e., SASE) experiment.

exists a non-black-box extractor ExtA that can extract the witness. [25]’s defi-
nition of SE corresponds to non-black-box SASE, [15]. We assume implicitly SE
means non-black-box SE. [25] proved that the argument of any (non-black-box)
SASE SNARK consists of at least three group elements and that there should
be at least two verification equations. They proposed a SASE SNARK for the
SAP (Square Arithmetic Program) language that meets the lower bounds.

The following definition of the SASE property corresponds to the definition
of SE SNARKs in [25, Definition 2.10]. All definitions are inspired by the corre-
sponding black-box definitions from [15].

Let Ψ be a SNARK for the relation R. Let x ∈ {ase, sase}. Define
AdvxΨ,A,ExtA(λ) := Pr[Expx

Ψ,A,ExtA(λ)], where the experiment Expx
Ψ,A,ExtA(λ) is

depicted in Fig. 2. Then, (i) Ψ is non-black-box any-simulation-extractable (ASE)
if for any PPT A there exists a PPT extractor ExtA, such that AdvaseΨ,A,ExtA(λ) ≈λ
0. (ii) Ψ is non-black-box strong any-simulation-extractable (SASE) if for any
PPT A there exists a PPT extractor ExtA, such that AdvsaseΨ,A,ExtA(λ) ≈λ 0.

3 Knowledge-Sound SNARK for QAP

Next, we will describe the new knowledge-sound SNARK Sqap. Its construc-
tion emphasizes two objectives: (i) simple soundness proof in the AGM and
(ii) efficiency. Sqap is similar to Groth’s SNARK from EUROCRYPT 2016 [23]
(shown to be Sub-ZK in [17]), with two major differences: (1) the use of only
two trapdoors instead of five, and (2) an alternative, much more straightfor-
ward, knowledge-soundness proof in the case of asymmetric pairings. On the
other hand, Groth provided a more complex knowledge-soundness proof that is
valid for both asymmetric and symmetric pairings.
QAP. Quadratic Arithmetic Program (QAP) was introduced in [21] as a lan-
guage where for an input x and witness w, (x,w) ∈ R can be verified by using a
parallel quadratic check. QAP has an efficient reduction from the (either Boolean
or Arithmetic) Circuit-SAT. Thus, an efficient zk-SNARK for QAP results in
an efficient zk-SNARK for Circuit-SAT.
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We consider arithmetic circuits that consist only of fan-in-2 multiplication
gates, but either input of each multiplication gate can be any weighted sum
of wire values, [21]. Let m0 < m be a non-negative integer. For an arithmetic
circuit, let n be the number of multiplication gates, m be the number of wires,
and m0 be the number of public inputs.

Let F = Zp. For the sake of efficiency, we require the existence of the nth
primitive root of unity modulo p, denoted by ω. Let U , V , and W be instance-
dependent matrices and let z be a witness. A QAP is characterized by the
constraint Uz ◦ V z = Wz. For j ∈ [1,m], define uj(X) := LU(j)(X), vj(X) :=
LV (j)(X), and wj(X) := LW (j)(X) to be interpolating polynomials of the jth
column of the corresponding matrix. Thus, uj , vj , wj ∈ Z(≤n−1)

p [X]. Let u(X) =∑
zjuj(X), v(X) =

∑
zjvj(X), and w(X) =

∑
zjwj(X). Then Uz ◦V z =Wz

iff Z(X) | u(X)v(X)−w(X) iff u(X)v(X) ≡ w(X) (mod Z(X)) iff there exists
a polynomial h(X) such that u(X)v(X)− w(X) = h(X)Z(X).

An QAP instance Iqap is equal to (Zp,m0, {uj , vj , wj}mj=1). This instance
defines the following relation:

RIqap =

{
(x,w) : x = (z1, . . . , zm0)

> ∧w = (zm0+1, . . . , zm)>∧
u(X)v(X) ≡ w(X) (mod Z(X))

}
(1)

where u(X) =
∑m
j=1 zjuj(X), v(X) =

∑m
j=1 zjvj(X), and w(X) =∑m

j=1 zjwj(X) as above. That is, (x,w) ∈ R = RIqap if there exists a (degree
≤ n− 2) polynomial h(X), such that the following key equation holds:

χ(X) := u(X)v(X)− w(X)− h(X)Z(X) = 0 , (2)

On top of checking Eq. (2), the verifier also needs to check that u(X), v(X),
and w(X) are correctly computed: that is, that (i) the first m0 coefficients zj
in u(X) are equal to the public inputs, and (ii) u(X), v(X), and w(X) are all
computed by using the same coefficients zj for j ≤ m.

SNARK Derivation. Let u(X), v(X), w(X), and χ(X) be as in Section 2.
Recall from Eq. (2) that the key equation of QAP states that the prover is honest
iff χ(X) = 0, that is, h(X) := (u(X)v(X)−w(X))/Z(X) is a polynomial. We will
use bivariate polynomials like A(X,Y ). The indeterminate X is related to the
definition of QAP. The indeterminate Y groups together correct X-polynomials
in the security proof; such a grouping approach was also used in say [24]. The
argument in the new template consists of three elements, π = ([a, cs]1, [b]2),
where a = A(x, y), b = B(x, y), and cs = Cs(x, y) for well-defined polynomials
A(X,Y ), B(X,Y ), and Cs(X,Y ). Intuitively, [a]1 is a succinct commitment to
u(X), [b]2 is a succinct commitment to v(X), and [cs]1 is the “actual” argument
that at the same time commits to w(X).

As in all most efficient random-oracle-less zk-SNARKs [21,36,31,23], we aim
to make [cs]1 to be computable only by the honest prover. The prover has access
to the CRS that contains the evaluation of well-chosen polynomials at (x, y)
in both G1 and G2. The knowledge-soundness proof is in the AGM. There, we
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show that if the verification polynomial V(X,Y ) = 0, and A(X,Y ), B(X,Y ),
and Cs(X,Y ) are in the span of the polynomials in the CRS, then it must hold
that χ(X) = 0 and thus the prover is honest.

More precisely, let∆ := (α, β, γ, δ, η) be a tuple of small integers chosen later.
We will give a complete derivation of the new SNARK. We will also derive the
conditions∆ has to satisfy for the SNARK to be knowledge-sound; in Sections 4
and 5, we add more conditions to achieve both CRS-verifiability (and thus Sub-
ZK) and ASE. We find it instructional to go first through the process with
unfixed ∆. In Eq. (11), we propose a setting of ∆ that is sufficient to obtain all
knowledge-soundness, ASE, and CRS-verifiability.

For randomizers ra and rb needed to make the commitment hiding, define

A(X,Y ) := raY
α + u(X)Y β , B(X,Y ) := rbY

α + v(X)Y β (3)

to be “commitments” to u(X) and v(X). We use different powers of Y to separate
the randomness from the committed values. Define also

C(X,Y ) :=(A(X,Y ) + Y γ)(B(X,Y ) + Y δ)− Y γ+δ

=u(X)Y β+δ + v(X)Y β+γ + u(X)v(X)Y 2β +R(X,Y )Y α

=P (X,Y ) + (u(X)v(X)− w(X))Y 2β +R(X,Y )Y α

(4)

where P (X,Y ) := u(X)Y β+δ + v(X)Y β+γ + w(X)Y 2β and R(X,Y ) :=
rb(A(X,Y ) + Y γ) + ra(v(X)Y β + Y δ).

The inclusion of Y γ and Y δ in the definition of C(X,Y ) serves three goals.
First, it introduces the addend P (X,Y ) =

∑m
j=1 zjPj(X,Y ), where

Pj(X,Y ) := uj(X)Y β+δ + vj(X)Y β+γ + wj(X)Y 2β ; (5)

this makes it easier to verify that P uses the same coefficients zj when computing
[a]1, [b]2, and [cs]1. Second, it makes it possible to verify that P uses the correct
public input. Third, the coefficient of Y 2β , u(X)v(X)−w(X), divides by Z(X)
iff the prover is honest. That is, it is h(X)Z(X) for some polynomial h(X) iff
the prover is honest and thus x ∈ LIqap .

On top of χ(X) = 0, it must be possible to check that the public input
(zj)

m0
j=1 is correct. To this end, we define polynomials Cs(X,Y ) and Cp(X,Y ),

s.t. C(X,Y ) = Cp(X,Y )Y η + Cs(X,Y )Y α. Here, [cp]1 = [Cp(x, y)]1 is recom-
puted by the verifier and thus Cp(X,Y ) must not depend on zj for j > m0 (i.e.,
on the secret information). To minimize the verifier’s computation, Cp(X,Y )
has only m0 addends. Cs depends both on public and secret inputs, and only
an honest prover should be able to compute [cs]1 = [Cs(x, y)]1. Thus, we define

Cp(X,Y ) :=
∑m0
j=1 zjPj(X,Y )Y −η

Cs(X,Y ) :=
∑m
j=m0+1 zjPj(X,Y )Y −α + (u(X)v(X)− w(X))Y 2β−α +R(X,Y ) .

(6)
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G(p,R): Sample x, y←$Z∗p such that xn 6= 1, let td← (x, y). Let

crsP ←

(
[{Pj(x, y)y−α}mj=m0+1, y

α, {xjyβ}n−1j=0 , {x
iZ(x)y2β−α}n−2j=0 , y

γ , yδ]1,

[yα, {xjyβ}n−1j=0 ]2

)
;

crsV ←
(
[{Pj(x, y)y−η}m0

j=1, y
γ ]1, [y

α, yδ, yη]2, [y
γ+δ]T

)
;

crs← (crsP, crsV); return (crs, td);

P(crsP, (zj)
m0
j=1, (zj)

m
j=m0+1):

u(X)←
∑m
j=1 zjuj(X); v(X)←

∑m
j=1 zjvj(X); w(X)←

∑m
j=1 zjwj(X);

h(X)← (u(X)v(X)− w(X))/Z(X);
(ra, rb)←$Z2

p; [a]1 ← ra[y
α]1 + [u(x)yβ ]1; [b]2 ← rb[y

α]2 + [v(x)yβ ]2;
[cs]1 ←

∑m
j=m0+1 zj [Pj(x, y)y

−α]1 + [h(x)Z(x)y2β−α]1 + rb ([a]1 + [yγ ]1) +

ra([y
δ]1 + [v(x)yβ ]1);

return π ← ([a, cs]1, [b]2);

V(crsV, (zj)
m0
j=1, π = ([a, cs]1, [b]2)):

[cp]1 ←
∑m0

j=1 zj [Pj(x, y)y
−η]1; Check that

[cp]1 • [yη]2 + [cs]1 • [yα]2 = [a + yγ ]1 • [b + yδ]2 − [yγ+δ]T . (7)

Sim(crs, td = (x, y),x = (zj)
m0
j=1): // x is not used by the simulator

[cp]1 ←
∑m0

j=1 zj [Pj(x, y)y
−η]1; d←$Zp; e←$Zp; [a]1 ← d[1]1; [b]2 ← e[1]2;

[cs]1 ← y−α((de+ yδd+ yγe)[1]1 − yη[cp]1);
return π ← ([a, cs]1, [b]2);

Fig. 3. The new SNARK Sqap. Moreover, Sqsp is exactly like Sqap, except wj(X) = 0.

Here, we use the factors Y η and Y α to separate the public input and the witness
in the security proof. For efficiency reasons, we use Y α, instead of a new power
of Y : now Cs(X,Y ) has an addend rbA(X,Y ) that reuses the value A(X,Y ).

As mentioned before, the SNARK argument is π = ([a, cs]1, [b]2). The verifier
recomputes [cp]1 ← [Cp(x, y)]1 and [C(x, y)]T ← [cp]1 • [yη]2 + [cs]1 • [yα]2.
Then, the verifier checks that C(x, y) is computed correctly by checking that
C(x, y) = (A(x, y) + yγ)(B(x, y) + yδ)− yγ+δ.

We are now ready to describe the SNARK Sqap, see Fig. 3. The CRS consists
of elements needed by the honest prover, the honest verifier, and the simulator.
We will explain the simulator in the proof of Theorem 1. The CRS has two
trapdoors (x and y), but the simulator uses only one of them (y). ([1,3] formalized
the difference by defining two different types of trapdoors, CRS trapdoors tdcrs

and simulation trapdoors tdsim. In Sqap, tdcrs = (x, y) and tdsim = y.)
Security Intuition. We prove knowledge-soundness in the AGM with random
oracles. Recall that an algebraic adversary can use the oracle Oι, ι ∈ {1, 2}, to
create new random group elements [q1i]ι. Let Qι be the vector of corresponding
indeterminates in Gι. Let X = (X,Q1,Q2, Y ) (resp., x = (x, q1, q2, y)) be the
tuple of all indeterminates (resp., corresponding random integers).
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Write the CRS in Fig. 3 as crs = (crs1, crs2), where crsι = [(f(x, y))f∈Γι ]ι for
a public set Γι of polynomials. For example, Γ2 = {Y α, Y δ, Y η} ∪ {XjY β}n−1j=0 .
(As an optimization, the CRS of Sqap also includes [yγ+δ]T , but it can be
recomputed from the available elements in G1 and G2.) Since we work in the
AGM, the malicious prover is algebraic and thus we can extract matrices N1

and N2, such that ( a
cs ) = N1(

crs1
q1 ) and b = N2(

crs2
q2 ). This means, that we

can write a = A†(x), b = B†(x), and cs = C†s(x), where A†(X), B†(X), and
C†s(X) are maliciously computed polynomials with known coefficients. We can
recover all coefficients of A†(X), B†(X), and C†s(X) fromN1 andN2, as follows:

A†(X) :=
∑m0

j=1 a
∗
jPj(X,Y )Y −η +

∑m
j=m0+1 a

∗
jPj(X,Y )Y −α + raY

α+

ua(X)Y β + ha(X)Z(X)Y 2β−α + aγY
γ + aδY

δ +
∑
k qakQ1k ,

C†s(X) :=
∑m0

j=1 c
∗
jPj(X,Y )Y −η +

∑m
j=m0+1 c

∗
jPj(X,Y )Y −α + rcY

α+

uc(X)Y β + hc(X)Z(X)Y 2β−α + cγY
γ + cδY

δ +
∑
k qckQ1k ,

B†(X) :=rbY
α + vb(X)Y β + bδY

δ + bηY
η +

∑
k bqkQ2k ,

(8)

where, say a∗j ∈ Zp, ua(X) ∈ Z(≤n−1)
p [X], and ha(X) ∈ Z(≤n−2)

p [X].
The verification equation Eq. (7) guarantees V(x) = 0, where

V(X) := (A†(X)+Y γ)(B†(X)+Y δ)−Y γ+δ−Cp(X,Y )Y η−C†s(X)Y α . (9)

Note that Cp is honestly computed. Since we know all coefficients of polynomials
like A†(X), we also know all coefficients of V(X).
On the Use of AGM. In the knowledge-soundness proof, we assume that the
knowledge-soundness adversary A is algebraic and then break the PDL as-
sumption. More precisely, with use the AGM with random oracles. However,
we note that ROfkl-AGM is not realistic since it allows to prove the security
of false knowledge assumptions. 4 Really, consider the assumption that any
PPT adversary A, that on input [1]1 generates [x]1, must know x. This as-
sumption is false in the settings where A has access to an efficient method
(e.g., hash-and-increment or elliptic curve hashing) of creating random group el-
ements without knowing their discrete logarithms. However, in the ROfkl-AGM,
one can extract an integer vector N and group element vector [q]1, such that
[x]1 =N>

[
1
q

]
1
= N1[1]1+

∑
i≥1N1+i[qi]1. Moreover, the reduction can program

the random oracle by first creating the discrete logarithms qk of each coordinate
of [q]1. Then, [x]1 = (N1+

∑
i≥1N1+i)[1]1 and thus the reduction can output its

discrete logarithm x ← N1 +
∑
i≥1N1+i. One has exactly the same issue when

using AGM without random oracles (in this case, q has length 0).
The problem is that the reduction knows q and can thus compute x. The

knowledge of q should be impossible if A has created [qk]1 by using elliptic curve
hashing. We modify the AGM with random oracles so that one can still prove the
4 This is probably one reason why [19] uses AGM with random oracles in the case
where the analyzed protocol itself uses random oracles. [19] proves the knowledge-
soundness of Groth’s SNARK in the AGM without random oracles.



A Unified Framework for Non-Universal SNARKs 17

security of (thought to be) secure knowledge assumptions but not of assumptions
of the above type. The first idea is to restrict the way the reduction is allowed to
program the random oracle: given that the input of the reduction (who aims to
break the PDL assumption) is xA = (p; [xi : i ∈ T1]1, [xi : i ∈ T2]2), we require
that the reduction programs the random oracle Oι by creating random integers
s, t←$Zp and then outputting s[x]ι+ t. Such “linear programming” was already
used in [19] but in a different context. For example, it was used to implicitly
create other CRS trapdoors from xA and in one case (the security proof of the
RO-model BLS signature) also to program the random oracle. However, our
usage of this strategy is in a novel context and for a novel goal.

We modify the strategy of AGM with random oracles of [19] even further.
When using the described “linear programming” strategy to construct a PDL ad-
versary B that obtains input, depending on one trapdoor (say, x), and then uses
this to create a multivariate crs for the knowledge-soundness adversary A. For
the reduction to be successful, B creates other trapdoors (notably, including qιk)
implicitly as linear functions of x. E.g., B sets [y]1 ← sy[x]1 + ty[1]1, for random
sy and ty, and similarly [yi]1 ← [(syx + ty)

i]1; this assums that [1, x, . . . , xi]1
are given in the CRS. In the security proof, this means that one can write V as
a univariate (Laurent) polynomial Vx(X) = V(X) and then use a polynomial
factorization algorithm to compute x in the case V(X) 6= 0 but V(x) = 0.

This strategy has some undesirable properties. First, for every monomial
[xiyj ]ι in the CRS, we need to give [xi+j ]ι as an input to the PDL adversary.
Since max i,max j < max(i + j) and (n + 1, n′)-PDL is stronger than (n, n′)-
PDL in the AGM, one uses a stronger PDL assumption. Second, this strategy is
challenging to implement when, as in our case, the CRS depends on the negative
powers of some trapdoors. Really, given [1/xi]1 for various i-s, it is presumably
hard to compute [1/(sx+ t)j ]1 for j > 1 and random s and t; due to this
reason, the “linear programming” strategy cannot be used to prove the knowledge-
soundness of Sqap (or Groth’s SNARK since it also involves negative powers of
trapdoors).5 Finally, the degree of Vx is related to the total degree of V.

We use a different strategy. We define two different adversaries, one aiming
to compute x (given a PDL input that depends on x) and another aiming to
compute y (given a PDL input that depends on y). Both adversaries generate
the second trapdoor randomly. The reduction programs the oracles differently,
by using the “linear programming” strategy in one case and the ROfkl strategy in
another case. (This is detailed in Fig. 4.) As a direct benefit, inside the reduction,
we deal with polynomials of smaller degrees. Moreover, instead of giving [xi+j ]ι
to the adversary, we give [xi]ι as an input to one adversary and [yj ]ι to another
adversary. Hence, we can potentially rely on a weaker PDL assumption. Finally,

5 In the case of the original Groth’s SNARK, this holds true since there are two
different trapdoors that are given in negative power in the CRS. One can solve
this issue by modifying Groth’s SNARK: for example, one can multiply all its CRS
elements with a positive power of such trapdoors (but then one has to be carefully
check that Sub-ZK still holds); [19] solved this issue by having an additional game
inside the knowledge-soundness proof that modified the CRS correspondingly.
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since the second adversary (By in Fig. 4) uses the ROfkl strategy, it is easy
to handle CRS elements of type [y−1]1 since one chooses y randomly. On the
other hand, since the first adversary uses the “linear programming” strategy, one
cannot prove the security of the false knowledge assumption described above.
On the Choice of Exponents. Another complicated part of the knowledge-
soundness proof is the analysis of what happens if V(X) 6= 0 as a Laurent poly-
nomial, but the verification succeeds, that is, V(x) = 0. Let X∗ = (X,Q1,Q2)
and x∗ = (x, q1, q2). Writing V(X) =

∑
i VY i(X∗)Y i for known Laurent

polynomials VY i(X∗), we get VY i(X∗) = 0 for each i. There are 29 non-trivial
coefficients VY i(X∗), for i ∈{

2α, 2β , α+ β, 3β − α, α+ γ, β + γ ,−α+ 2β + γ, 2δ , α+ δ, β + δ ,

− α+ 2β + δ, γ + δ ,−α+ β + γ + δ,−α+ β + 2δ, α+ 2β − η, 3β − η,
α+ β + γ − η, 2β + γ − η, α+ β + δ − η, 2β + δ − η, β + γ + δ − η, β + 2δ − η,
α+ η, β + η,−α+ 2β + η, γ + η ,−α+ β + γ + η, δ + η,−α+ β + δ + η

}
.

(10)

It is possible but very tedious to show that from VY i(X∗) = 0 for each twenty
nine i-s, we get that χ(X) = 0 and thus, the prover is honest. To simplify the
knowledge-soundness proof, we constructed Sqap so that there exists a small set
Crit of six elements, such that χ(X) = 0 follows from VY i(X∗) = 0 for Y i ∈ Crit.

For this idea to work, we need to restrict the choice of ∆: namely, ∆ has to
be such that the exponents in Crit are different from each other and all other
exponents of Y in V(X). More precisely, define Coeff := {Y i : VY i(X∗) 6= 0},

Crit := {Y 2β , Y β+γ , Y β+δ, Y γ+δ, Y γ+η, Y 2δ} ,

and let Crit := Coeff\Crit be the “symbolic” complement of Crit; that is, Y j ∈ Crit
if j is symbolically not the same as one of the exponents in Crit, so |Coeff| = 29
and |Crit| = 29 − 6 = 23. We highlighted the 6 critical coefficients in Eq. (10),
not highlighted coefficients correspond to coefficients in Crit.

We say that ∆ is soundness-friendly if Crit consists of mutually different
powers of Y (|Crit| = 6) and Crit ∩ Crit = ∅. We will give a concrete soundness-
friendly suggestion for∆ in Eq. (11). We depict the critical coefficients VY i(X∗),
Y i ∈ Crit, in Table 2. (The last rows in Table 2 are only relevant for the ASE
proof in Section 4.) In the knowledge-soundness proof of Theorem 1, we show
that if VY i(X∗) = 0 for Y i ∈ Crit, then χ(X) = 0 and thus the prover is honest.

3.1 Security Theorem

Theorem 1. Let Iqap = (Zp,m0, {uj , vj , wj}mj=1) be a QAP instance. Let Sqap

be the SNARK in Fig. 3. Let T xι be the minimal set of exponents i such that
the CRS of Sqap in Fig. 3 can be computed by an algebraic adversary given
[xi : i ∈ T x1 ]1, [x

i : i ∈ T x2 ]2 and y. We define T yι dually.
(1) Assume∆ is soundness-friendly. Then, Sqap is knowledge-sound in the AGM
under the (T x1 , T x2 )-PDL and the (T y1 , T

y
2 )-PDL assumptions.

(2) Sqap is perfectly zero-knowledge.
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Table 2. Sqap: the critical coefficients in the knowledge-soundness proof (up, left),
addends to the same coefficients in the ASE proof (up, right), and coefficients that
only occur in the ASE proof (bottom). Here, z̃j = zj − bηa∗j for j ≤ m0, z̃j = c∗j − rba∗j
for j > m0, u(X) =

∑m
j=1 z̃juj(X), v(X) =

∑m
j=1 z̃jvj(X), w(X) =

∑m
j=1 z̃jwj(X),

and h(X) = hc(X)− rbha(X).

Y i · · · VY i···(X∗) (KS and ASE) V̂Y i1 ···(X∗) (ASE only)

Y γ+δ (aγ + 1)(bδ + 1)− 1
Y γ+η (aγ + 1)bη
Y 2δ (bδ + 1)aδ
Y β+δ (bδ + 1)ua(X) + aδvb(X)− u(X)

∑
k (sc2k − rbsa2k)

∑
j σkjuj(X)

Y β+γ (aγ + 1)vb(X)− v(X)
∑
k (sc2k − rbsa2k)

∑
j σkjvj(X)

Y 2β ua(X)vb(X)− w(X)− h(X)Z(X)
∑
k (sc2k − rbsa2k)

∑
j σkjwj(X)

Used only in the ASE proof

Y −α+2δDk (bδ + 1)sa2k
Y γEk rbsa2k + (aγ + 1)sbk − sc2k
DkEk rbsa2k + sa1ksbk − sc2k
Y δDk rbsa2k + (bδ + 1)sa1k − sc2k
Used only in the case (ii) in the ASE proof, if sa1k = aγ + 1 and sc2k = (aγ + 1)sbk

Dk1Ek2 , k1 6= k2 sa1k1sbk2
Y βEk ua(X)sbk

Here, T x1 = [0, 2n − 2], T x2 = [0, n − 1], T y1 = {β − α + δ, β − α + γ, 2β −
α, α, β, 2β − α, γ, δ, β − η+ δ, β − η+ γ, 2β − η}, and T y2 = {α, β, δ, η}. This can
be contrasted to [19] that provided an AGM knowledge-soundness proof under
the stronger ([1, 2n− 1], [1, 2n− 1])-PDL assumption.

We emphasize that the following knowledge-soundness proof depends mini-
mally on the concrete SNARK: the only intrinsically Sqap-dependent part is the
analysis of the abort probability. The rest of the proof can essentially be copied
to the knowledge-soundness (and ASE ) proofs of all following SNARKs.

Proof. (1: knowledge-soundness) Let A be an algebraic knowledge-soundness
adversary. Assume that A(O1,O2)(crs; rA) outputs (x, π), such that V accepts
with a non-negligible probability εA. Let crs = (crs1, crs2), with crsι =
[{f(x)}f∈Γι ]ι, as before. Since A is algebraic and the distribution Dp of crs
is PPT-sampleable, there exists an extractor ExtA, such that with probability
εA − εExt, where εExt = AdvagmPgen,D,A,ExtA(λ) = negl(λ), ExtA(crs; rA) succeeds.

We construct two different PDL adversaries, Bx and By, see Fig. 4. Intuitively,
the main difference between them is that they use the knowledge-soundness
adversary A, whose input depends on either x or y, to break PDL with respect
to x or y, correspondingly.

Let z ∈ {x, y} and Z ∈ {X,Y }, correspondingly. Bz obtains an input
xz = ([zk : k ∈ T z1 ]1, [z

k : k ∈ T z2 ]2). Intuitively, Bz reduces the actions of
A to a univariate case by sampling the second trapdoor (y or x) uniformly at
random. The verification equation states that V(x∗, y) = 0, where V(X∗, Y ) is a
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By(p,R,xy) Bx(p,R,xx) // xz = ([zk : k ∈ T z1 ]1, [z
k : k ∈ T z2 ]2)

q1 ← ∅; q2 ← ∅; ξ1 ← 0; ξ2 ← 0;

x←$Z∗p y←$Z∗p ;Create crs from (p,R, xy, x xx, y );

rA ←$RNDλ(A); ([a, cs]1, [b]2)← A(O1,O2)(p,R; crs, rA);
(N1,N2)← ExtA(crs; rA);
if ExtA does not succeed then abort fi ; // Abort probability: εExt
Compute the coefficients of V(X∗, Y ) from Nι;
(∗)if V(X∗, Y ) = 0 then abort fi ; // Abort prob.: 0
Let bad be the event V(x∗, Y ) = 0;

if bad then abort fi ;
// Now, V(x∗, Y ) 6= 0

{yj} ← roots(V(x∗, Y ), Y );

y ← yj s.t. [yδj ]1 = [yδ]1;
return y;

if bad then abort fi ;
// Now, V(x∗, Y ) = 0

Write V(X∗, Y ) =
∑
Vi(X∗)Y i;

Let i be s.t. Vi(X∗) 6= 0 but Vi(x∗) 6= 0;
{xj} ← roots(Vi(X∗), X);
return x← xj s.t. [xj ]1 = [x]1;

Oι // ι ∈ {1, 2}

ξι ← ξι + 1; qιξι ←$Zp ; sιξι , tιξι ←$Zp; [qιξι ]ι ← sιξι [x]ι + tιξι [1]1 ; return [qιξι ]ι;

Fig. 4. The adversarjes Bz(p,R,xy), z ∈ {x, y}, and how they emulate Oι to A in the
proof of Theorem 1. The parts where the two adversaries differ are boxed. Full-boxed
entries are only in By and its emulation, and dash-boxed entries are only in Bx and
its emulation. E.g., By samples a random x and By samples a random y.

known Laurent polynomial due to the use of the AGM. The adversary aborts if
V(X∗, Y ) = 0 as a Laurent polynomial. The most complicated part of the proof
is to show that if A is successful, then V(X∗, Y ) 6= 0 and thus the abort on this
step is never executed. (For this, we need to analyze the six critical coefficients
of V, and we will do it at the end of the proof.)

Otherwise, we choose a polynomial f(Z), such that f(Z) 6= 0 but f(z) = 0.
Note that By samples the oracle answers qιk uniformly at random, while Bx sets
implicitly qιk ← sιkx+ tιk. (Differently from [19], we only use this technique in
the case of Bx.) Thus, Qι = sιX + tι. If V(X∗, Y ) 6= 0 but V(x∗, Y ) = 0, then
V ′(X,Y ) := V(X, s1X + t1, s2X + t2, Y ) satisfies V ′(x, Y ) = 0. We set f(X) to
be equal to some non-zero coefficient V ′i(X) 6= 0 of V ′(X,Y ) =

∑
V ′i(X)Y i.

Bz finds all the roots of f(Z) and then checks which of the roots is equal to
z by using information given in her input. For this, we define event bad = 1 if
V(x∗, Y ) = 0 as a Laurent polynomial, where x is either the value imminent in
the input of Bx or sampled by By. By aborts if bad = 1 and otherwise finds y.
Bx aborts if bad = 0 and otherwise finds x. Clearly,

Pr[A succeeds] ≤Pr[ExtA failed] + Pr[ExtA succeeds|bad] + Pr[ExtA succeeds|bad]

≤Pr[ExtA failed] + Pr[Bx succeeds|bad] + Pr[By succeeds|bad] .
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Analysis of the abort probability in step (*). Both Bx and By abort if V(X∗, Y ) =
0 as a Laurent polynomial. Assume now that V(X) = 0, thus VY i(X∗) = 0 for
Y i ∈ Crit. We must show that (a) the critical coefficients are as in Table 2 and
(b) from “VY i(X∗) = 0 for Y i ∈ Crit” it follows that χ(X) = 0.

One can derive a by inspection (we verified it by using computer algebra),
assuming that Crit satisfies the theorem conditions. For example, the coefficient
of Y γ+δ in V(X) is (aγ+1)(bδ+1)−1 since the coefficient of Y γ+δ in (A†(X)+
Y γ)(B†(X)+Y δ) is (aγ+1)(bδ+1). Other coefficients can be checked similarly.

Now, b follows. Really, since VY γ+δ(X∗) = bδ + aγ(bδ + 1) = 0, we get
aγ = −bδ/(bδ+1). Thus, aγ , bδ 6= −1 and (aγ+1)(bδ+1) = 1. Since VY γ+η (X∗) =
(aγ + 1)bη = 0 and aγ 6= −1, we get bη = 0. Thus, z̃j = zj − bηa∗j = zj for
j ≤ m0. Since VY 2δ(X∗) = (bδ + 1)aδ = 0 and bδ 6= −1, we get aδ = 0. From
the remaining coefficients, we get (bδ +1)ua(X) = u(X), (aγ +1)vb(X) = v(X),
and u(X)v(X)− w(X) = Z(X)h(X). Thus, (x,w) ∈ RIqap .

(2: zero-knowledge) To see that V accepts, note that (a + yγ)(b + yδ) −
csy

α − cpy
η − yγ+δ = de + dyδ + eyγ − (de + dyδ + eyγ − cpy

η) − cpy
η = 0.

Sim’s output comes from the correct distribution since a and b are individually
uniform in Zp, and c is chosen so that V accepts. ut

Efficiency. Compared to [23], see Table 1, Sqap has fewer trapdoors but other-
wise the same complexity. For example, crsP has (m−m0)+1+n+(n−1)+1 =
m + 2n − m0 + 1 elements from G1 and n + 2 elements from G2. More-
over, crsV has m0 + 1 elements from G1, 3 elements from G2, and one el-
ement from GT . Since crsP and crsV have one common element in G1 then
|crs| = (m + 2n + 2)g1 + (n + 4)g2 + gT . (Recall that gι denotes the repre-
sentation length of an element of Gι.) Clearly, [a]1 can be computed from [yα]1
and [xiyβ ]1 by using n + 1 scalar multiplications. It takes ≈ m + 2n additional
scalar multiplications to compute [c]1.

A Soundness-Friendly Choice of ∆. Recall that we need to find values for
∆ = (α, . . .), such that Crit ∩ Crit = ∅ and |Crit| = 6. We require that both sets
Γ1 and Γ2 contain a non-zero monomial corresponding to Y 0 = 1 (then we can
publish [1]1 and [1]2) and that the values i, for which i ∈ T y1 ∪T

y
2 , have as small

absolute values as possible. The latter makes the PDL assumption somewhat
more reasonable and additionally enables us to construct a CRS verification
algorithm and thus prove Sub-ZK [1,3] in Section 5. We are also interested in
minimizing the CRS length.

Since there are many coefficients to take into account, we have a moderately
hard optimization problem. We used a computer search to find all possible values
for α, β, . . . under the restriction that each has an absolute value at most 7.
See Table 3 for the full list of found tuples∆. Note that for each∆ = (α, β, . . .),
this table contains also −∆ = (−α,−β, . . .).

We recommend to use the following setting:

α = 0, β = −2, γ = −3, δ = 7, η = 2. (11)
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Table 3. Soundness-friendly values of ∆ with each parameter having absolute value
≤ 7. “X” in the last column means that this choice of ∆ results in a Sub-ZK SNARK

α β γ δ η Sub-ZK

−1 0 −7 3 −2
0 −1 6 −4 1
0 −1 7 −4 1
0 −1 7 −5 1
0 −2 −3 7 2 X

α β γ δ η Sub-ZK

0 −2 6 7 2 X
0 −3 5 7 1
0 1 −6 4 −1
0 1 −7 4 −1
0 1 −7 5 −1

α β γ δ η Sub-ZK

0 2 −6 −7 −2 X
0 2 3 −7 −2 X
0 3 −5 −7 −1 X
1 0 7 −3 2

As we will see in Sections 4 and 5, this is one of the settings that allow obtaining
both ASE and Sub-ZK security. Assuming the setting of Eq. (11), Crit =
{Y −4, Y −5, Y 5, Y 4, Y −1, Y 14} and

crsP =

(
[{uj(x)y5 + vj(x)y

−5 + wj(x)y
−4}mj=m0+1, y

0, {xjy−2}n−1
j=0 ]1,

[{xiZ(x)y−4}n−2
j=0 , y

−3, y7]1, [y
0, {xjy−2}n−1

j=0 ]2

)
,

crsV =
(
[{uj(x)y3 + vj(x)y

−7 + wj(x)y
−6}m0

j=1, y
−3]1, [y

0, y7, y2]2, [y
4]T
)
.

(12)

In addition, our computer search tries to minimize the CRS length, but none of
the choices of ∆ in Table 3 results in a shorter CRS.
On 2-Phase Updatability. Each of Y α, Y β , . . . can be changed to an indepen-
dent indeterminant, Yα, Yβ , . . ., without invalidating the knowledge-soundness
(or ASE) proof. This offers us the flexibility of choosing the number of trapdoors.
In particular, Kohlweiss et al. proved recently [27] that Groth’s SNARK [23] is
two-phase updatable. Similarly, Sqap is two-phase updatable, when one defines
three trapdoors, x, y, z, and uses well-chosen powers of z instead of yα and yη
throughout the construction of Sqap. Then, one can update x and y in the first
and z in the second phase. We will omit further discussion.

4 Any-Simulation Extractability of Sqap

Next, we prove that Sqap is ASE. The ASE proof is similar to the knowledge-
soundness proof Theorem 1. The main difference is the handling of the case
when V(X) = 0 as a Laurent polynomial. We use some monomials of V(X) to
simplify the formulas and then arrive at a crossroad: in one case, the adversary
did not use simulation query results, and thus we are back to the knowledge-
soundness proof. In the second case, the adversary used some of the query results;
then, we use specific coefficients of V(X) to argue that she used the result of
precisely one query. After that, we show that the adversary used the same input
to the simulator in this query as in the forgery attempt. (This result relies on an
additional assumption that each uj(X), for j ≤ m0, is linearly independent of
all other ui(X), i ≤ m. This assumption can be easily satisfied by adding to the
QAP m0 dummy constraints uj · 1 = uj , similarly to [21].) Hence, this is not an
ASE but a SASE attack, and thus not valid in our context. Thus, Sqap is ASE.
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In the ASE proof, the algebraic adversary A also sees the outputs of
the simulator. Thus, A has more inputs than in the knowledge-soundness
proof. Let σk = (σkj)

m0
j=1 be the maliciously chosen simulator input

that the adversary used, instead of (zj)
m0
j=1, during the kth query. Let

X = (X,Q1,Q2,D,E, Y ) and X∗ = (X,Q1,Q2), where Dk (resp., Ek) is the
indeterminate corresponding to the trapdoor d = dk (resp., e = ek) generated
by the simulator during the kth query. Observing Fig. 3, Sim answers with
([dk, y

−α((dkek + yδdk + yγek) −
∑m0

j=1 σkjPj(x, y))]1, [ek]2). Thus, in the ASE
proof, A†(X), B†(X), and C†s(X) have the following additional addends:

A†(X) = . . .+
∑
k sa1kDk +

∑
k sa2kY

−α((DkEk + Y δDk + Y γEk)−
∑m0
j=1 σkjPj(X,Y )) ,

C†s (X) = . . .+
∑
k sc1kDk +

∑
k sc2kY

−α((DkEk + Y δDk + Y γEk)−
∑m0
j=1 σkjPj(X,Y )) ,

B†(X) = . . .+
∑
k sbkEk .

Here, the coefficients like sa1k are chosen by the adversary. Let V(X) =∑
i1,i2,i3,i4,k1,k2,k3

V
Y i1D

i2
k1
E
i3
k2
E
i4
k3

(X∗)Y i1Di2
k1
Ei3k2E

i4
k3
. The addition of new ad-

dends to polynomials like A†(X) means that the existing critical coefficients
of VY i1 ··· of V(X) change by extra addends; we have denoted these extras
by V̂Y i··· in Table 2. Moreover, there are a number of new critical coeffi-
cients, depicted in the bottom of Table 2. For example, VY β+δ(X∗) = (bδ +
1)ua(X) + aδvb(X) − u(X) +

∑
k(sc2k − rbsa2k)

∑
j σkjuj(X) and, for any k,

VY γEk(X∗) = rbsa2k + (aγ + 1)sbk − sc2k. Since here, the index Y i1Di2
k1
Ei3k2E

i4
k3

of VY i1 ··· depends on a non-constant number of indeterminates, here both
Coeffse := {Y i1Di2

k1
Ei3k2E

i4
k3

: V
Y i1D

i2
k1
E
i3
k2
E
i4
k3

(X∗) 6= 0} and

Critse ={Y 2β , Y β+γ , Y β+δ, Y γ+δ, Y γ+η, Y 2δ} ∪ {Y −α+2δDk}k ∪ {Y γEk}k∪
{Dk1Ek2}k1,k2 ∪ {Y δDk}k ∪ {Y βEk}k

also contain a non-constant number of coefficients. For example, Critse contains
Dk1Ek2 for any k1, k2 ≤ qs, where qs is the number of simulation queries. How-
ever, there are only 12 “families” of critical coefficients, and the members of the
same family (say D1E2 and D7E2) can be analyzed similarly.

For Critse to consist of different monomials and for Critse ∩ Critse, the new
critical monomials Y i1Di2

k E
i3
k (see Table 2, the last 6 monomials) must be dif-

ferent from all other monomials. We say that ∆ is ASE-friendly if these condi-
tions are satisfied. While the number of additional monomials in Crit and Coeff
is huge, ascertaining that the new critical monomials are unique is relatively
easy, even if tedious, since one needs to guarantee that for each fixed (i2, i3),
if Y i1Di2

k E
i3
k ∈ Critse and Y i

′
1Di2

k E
i3
k ∈ Coeffse then i1 6= i′1. By inspection, one

can establish that it means the following.
(a) When i2 = 1 and i3 = 0, we need −α+2δ 6= δ (i.e., δ 6= α, which follows from

the fact that Y β+δ ∈ Crit and Y α+β ∈ Crit) and −α + 2δ, δ 6∈ {α, β,−α +
β + δ, η,−α+ δ + η}.
This guarantees, say, that Y −α+2δDk (which is a critical monomial) is not
equal to Y −α+δ+ηDk.
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(b) When i2 = 0 and i3 = 1, we need γ 6= β and γ, β 6∈ {α,−α + 2β,−α + β +
γ, δ,−α+ β + δ,−α+ γ + δ, 2β − η, β + γ − η, β + δ − η,−α+ γ + η}.

(c) When i2 = 1 and i3 = 1, we need 0 6∈ {−α+ β,−α+ δ,−α+ η}.
By simple but tedious case analysis, one can prove the following lemma.

Lemma 1. If ∆ is soundness-friendly, then it is also ASE-friendly.

Proof. (a) Here, −α+2δ 6= δ (i.e., δ 6= α) follows from the fact that Y β+δ ∈ Crit
and Y α+β ∈ Crit. Moreover, −α + 2δ 6= α and δ 6= α follow since α 6= δ,
−α + 2δ 6= β follows since Y 2δ ∈ Crit and Y α+β ∈ Crit, δ 6= β follows since
Y 2β , Y 2δ ∈ Crit, −α + 2δ 6= −α + β + δ follows since β 6= δ, δ 6= −α + β + δ
follows since α 6= δ, −α + 2δ 6= η follows from Y 2δ ∈ Crit and Y α+η ∈ Crit,
δ 6= η follows from Y γ+δ, Y γ+η ∈ Crit, −α+2δ 6= −α+ δ+ η follows from δ 6= η,
δ 6= −α+ δ + η follows form Y γ+η ∈ Crit and Y α+γ ∈ Crit.

(b) Next, γ 6= β follows from Y 2β , Y β+γ ∈ Crit, γ 6= α follows from Y β+γ ∈
Crit and Y α+β ∈ Crit, β 6= α follows from Y 2β ∈ Crit and Y α+β ∈ Crit, γ 6=
−α + 2β follows from Y 2β ∈ Crit and Y α+γ ∈ Crit, β 6= −α + 2β follows from
α 6= β, γ 6= −α+ β + γ follows from α 6= β, β 6= −α+ β + γ follows from α 6= γ,
γ 6= δ follows from Y β+γ , Y β+δ ∈ Crit, β 6= δ is already proven, γ 6= −α+ β + δ
follows from Y β+γ ∈ Crit and Y −α+2β+δ ∈ Crit, β 6= −α + β + δ follows from
α 6= δ, γ 6= −α+γ+δ follows from α 6= δ, β 6= −α+γ+δ follows from Y γ+δ ∈ Crit
and Y α+β ∈ Crit, γ 6= 2β − η follows from Y 2β , Y γ+η ∈ Crit, β 6= 2β − η (i.e.,
β 6= η) follows from Y β+γ , Y γ+η ∈ Crit, γ 6= β + γ − η follows from β 6= η,
β 6= β + γ − η (i.e., γ 6= η) follows from Y β+δ ∈ Crit and Y β+γ+δ−η ∈ Crit,
γ 6= β + δ− η follows from Y β+δ, Y γ+η ∈ Crit, β 6= β + δ− η follows from δ 6= η,
γ 6= −α + γ + η follows from Y γ+η ∈ Crit and Y α+γ ∈ Crit, β 6= −α + γ + η
follows from Y γ+η ∈ Crit and Y α+β ∈ Crit.

(c) Finally, α 6= β and α 6= δ is already known, and α 6= η follows from
Y γ+η ∈ Crit and Y α+γ ∈ Crit. ut

Theorem 2. Let T xι and T yι be as in Theorem 1. Let Iqap = (Zp,m0,
{uj , vj , wj}mj=1) be a QAP instance. Let Sqap be the SNARK in Fig. 3. Assume
∆ is soundness-friendly. Assume uj(X), j ≤ m0, are linearly independent from
each other and from other polynomials ui for i > m0. Sqap is non-black-box ASE
in the AGM under the (T x1 , T x2 )-PDL and (T y1 , T

y
2 )-PDL assumptions.

Proof. The ASE proof is similar to the knowledge-soundness proof. There are two
main differences. First, B also has to emulate Sim to A. Second, the analysis of
the abort probability is different due to the larger number of critical monomials.

Hence, we refer to the proof of Theorem 1, except that the full description of
Bz in Fig. 5 contains also the emulation of simulation queries. (Obviously, there
is more going on behind the scene: for example, V is defined differently, and X∗
includes D,E, but we already explained that part.)

The only thing left to do now is the different (more complicated) analysis of
the abort probability.
Analysis of the abort probability in step (*). Assume that V(X) = 0, thus also
VY i1 ···(X∗) = 0 for all critical monomials (see Table 2). From the coefficient of
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By(p,R,xB) Bx(p,R,xB)

[d]1 ← ∅; [e]2 ← ∅; ζ ← 0;
Run Bz(p,R,xB) in Fig. 4, except give A also access to OSim;

OSim((σj)
m0
j=1)

[cp]1 ←
∑m0
j=1 σj [Pj(x, y)y

−η]1;

ζ ← ζ + 1; dζ , eζ ←$Zp ; s′ζ , s′′ζ , t′ζ , t′′ζ ←$Zp ;
[dζ ]1 ← s′ζ [x]1 + t′ζ [1]1; [eζ ]2 ← s′′ζ [x]2 + t′′ζ [1]2 ; [a]1 ← [dζ ]1; [b]2 ← [eζ ]2;

[cs]1 ← y−α([aeζ ]1 + yδ[a]1 + yγ [eζ ]1 − yη[cp]1); return [qιξι ]ι;

Fig. 5. B(p,R,xB) in the proof of Theorem 2, and the emulation of OSim. Full-boxed
and dashed-boxed are defined as in Fig. 4.

Y γ+δ of V, we get bδ = −aγ/(aγ+1) and thus aγ , bδ 6= −1. From the coefficients
of Y γ+η and Y 2δ, and since aγ , bδ 6= −1, we get bη = 0 and aδ = 0. Up to now,
the proof looks similar to that of Theorem 1. The rest of the coefficients have to
be handled differently.

From the coefficients of Y β+δ and Y β+γ , we get

ua(X) =(aγ + 1)(u(X) +
∑
j (
∑m0

k=1 σkj(rbsa2k − sc2k))uj(X)) ,

vb(X) =(v(X) +
∑
j (
∑m0

k=1 σkj(rbsa2k − sc2k)) vj(X))/(aγ + 1) .

From the coefficient of Y −α+2δDk, we get sa2k = 0. From the coefficients of
Y γEk and DkEk, we get sc2k = (aγ + 1)sbk = sa1ksbk. Thus, for all k, either (i)
sbk = sc2k = 0 or (ii) sa1k = aγ + 1 6= 0 and sc2k = (aγ + 1)sbk 6= 0.

If the case (i) holds for all k, then the first three polynomials V̂Y i in Table 2
are 0 and we are back to the knowledge-soundness case. One can then follow the
remaining proof of Theorem 1, and obtain knowledge-soundness and ASE. Note
that then, from the coefficient of Y δDk, it follows that also sa1k = 0 for all k.
Thus, the adversary did not benefit from the simulation queries.

Consider the case when at least for one k, (ii) holds. From the coefficient
of Y δDk of this k, we get 0 = rbsa2k + (bδ + 1)sa1k − sc2k = 1 − (aγ + 1)sbk
and thus sbk = 1/(aγ + 1). From the coefficient of Dk1Ek2 for any k1 6= k2,
we get sa1k1sbk2 = 0. Thus, if some sa1k2 6= 0, then (since we are in the case
(ii)) also sbk2 6= 0, and thus sa1k1 = sbk1 = sc2k1 = 0 for all k1 6= k2. Hence,
rbsa2k1 − sc2k1 = 0, and thus making the k1th simulation query, k1 6= k2, does
not help the adversary. Thus, we can assume that A makes only one query, say
the k2th one, with the simulator input σ = (σj).

From the coefficient of Y βEk2 , we get sbk2ua(X) = 0. Since sbk2 6= 0 and
aγ 6= −1,

∑
j≤m0

(σj(rbsa2k2 − sc2k2) + zj)uj(X) +
∑
j>m0

z̃juj(X) = 0. Since
sa2k2 = 0 and sc2k2 = 1,

∑
j≤m0

(zj − σj)uj(X) +
∑
j>m0

z̃juj(X) = 0. Since
uj(X) are linearly independent for j ≤ m0, it means zj = σj for all j ≤ m0.
Thus, A made the only simulation query on the same input that she used to
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cheat on, and thus this corresponds to a SASE but not an ASE attack. Hence,
A did not succeed in an ASE attack and thus χ(X) = 0. ut

On Lower-Bound of [25].Groth and Maller proved that in any SASE SNARK,
the verifier has to perform two verification equations. Our result does not con-
tradict it since we achieve ASE, a weaker property. (Similarly, the ASE SNARK
of [6] has only one verification equation.)

5 Subversion-Zero Knowledge

In a subversion zero-knowledge (Sub-ZK) SNARK [7,1,17,3], the goal is to obtain
zero-knowledge even if the CRS creator cannot be trusted. As noted in [2], one
has to use non-falsifiable assumptions to achieve Sub-ZK. Next, we show that
Sqap is Sub-ZK (under the BDH-KE assumption), assuming ∆ satisfies some
additional requirements. The same argument applies in the case of all other new
SNARKs. In particular, five different choices of ∆ in Table 3 result in a Sub-ZK
SNARK; this includes the setting of Eq. (11).

According to the blueprint of [1,17,3], one can follow the next steps to make
a SNARK subversion-resistant:
1. Construct a public CRS verification algorithm CV that checks that the CRS

is correct (that is, it corresponds to some trapdoor td).
2. To facilitate public verification, this can mean adding new elements to

the CRS. Let us denote the set of new elements by crsCV. If crsCV is
non-empty, then one must reprove knowledge-soundness and/or simulation-
extractability, taking crsCV into account.

3. Under a reasonable knowledge assumption, extract td from the CRS.
4. Show how to simulate the argument by using the extracted trapdoor.
This blueprint is formalized in [3], and we refer the reader to it for a further dis-
cussion, including proof that trapdoor-extractability and ZK suffice to get Sub-
ZK. Moreover, for trapdoor-extractability, it suffices to have CRS-verifiability
and a strong enough extractability assumption.

Let us show that under the setting in Eq. (11) with CRS as in Eq. (12), the
correctness (that is, that it corresponds to some choice of trapdoors) of the CRS
of Sqap can be verified by using a public CV algorithm. Modelling after [1,3], CV
needs to check that (1) all trapdoors belong to correct domain (for example, it
checks y ∈ Z∗p by checking that [y]1 6= [0]1), and that (2) all CRS elements [f(x)]ι,
where f is a public rational function, are correctly computed from trapdoors x.
The last verification can be done step by step, starting from simpler (for example,
lower-degree) functions and then using the already verified values as helpers to
verify more complex functions.

We present the CRS verification algorithm CV for Sqap in Fig. 6. Note that
here we assume uj(X) =

∑
ujiX

i, vj(X) =
∑
vjiX

i, and wj(X) =
∑
wjiX

i. It
is easy (though tedious) to check that CV suffices to check that the CRS of Sqap

has been correctly generated but for the following two exceptions:
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CV(crs, crsCV):

1 : Check that the following holds:
2 : // Trapdoors are not 0 and xn 6= 1:
3 : [xyβ ]1 6= [0]1; [Z(x)y

2β−α]1 6= [0]1;
4 : // The bracketed elements y4 = y

δ
, z, x

j
y
β
= x

j
y in G1 and G2 are consistent:

5 : [yδ]1 • [1]2 = [1]1 • [yδ]2;
6 : for j = 0 to n− 1 do [xjyβ ]1 • [1]2 = [1]1 • [xjyβ ]2; endfor
7 : // Degrees of yi are consistent: depends on ∆; recall α = 0, β = −2, γ = −3, δ = 7, η = 2

8 : [1]1 • [yη]2 = [y]1 • [y]2; [yβ ]1 • [yη]2 = [1]1 • [1]2; [yγ ]1 • [y]2 = [yβ ]1 • [1]2;
9 : [yγ ]1 • [yδ]2 = [yη]1 • [yη]2;

10 : // Degrees of xjyβ = x
j
y are consistent:

11 : for j = 1 to n− 2 do [xj+1yβ ]1 • [yβ ]2 = [xjyβ ]1 • [xyβ ]2; endfor
12 : // xjZ(x)y

2β−α
= x

j
Z(x)y

2 are consistent:

13 : [Z(x)y2β−α]1 • [1]2 =
[
xyβ−α

]
1
• [xn−1yβ ]2 −

[
yβ−α

]
1
• [yβ ]2;

14 : for j = 0 to n− 3 do [xj+1Z(x)y2β−α]1 • [yβ ]2 = [xjZ(x)y2β−α]1 • [xyβ ]2; endfor
15 : // Polynomials Pj(x, y)y

−η
= uj(x)y

β−η+δ
+ vj(x)y

β−η+γ
+ wj(x)y

2β−η are consistent:
16 : for j = 1 to m0 do
17 : [Pj(x, y)y

−η]1 • [yη]2 =
18 :

∑n−1
i=0 uji[x

iyβ ]1 • [yδ]2 + [yγ ]1 •
∑n−1
i=0 vji[x

iyβ ]2 +
∑n−1
i=0 wji[x

iyβ ]1 • [yβ ]2;
19 : endfor
20 : // Polynomials Pj(x, y)y

−α
= uj(x)y

β−α+δ
+ vj(x)y

β−α+γ
+ wj(x)y

2β−α are consistent:
21 : for j = m0 + 1 to m do
22 : [Pj(x, y)y

−α]1 • [1]2 =

23 :
∑n−1
i=0 uji[x

iyβ ]1 •
[
y−α+δ

]
2
+
[
y−α+γ

]
1
•
∑n−1
i=0 vji[x

iyβ ]2+

24 :
∑n−1
i=0 wji[x

iyβ ]1 •
[
yβ−α

]
2
;

25 : endfor

Fig. 6. The CRS verification algorithm CV in Sqap. dashed elements are guaranteed
to be in the CRS if α = 0. dotted equalities and the integer exponents in comments
depend on the concrete of ∆ (namely, Eq. (11))

1. The dashed elements are not guaranteed to be in the CRS unless ∆ is well-
chosen. A simple way of solving this problem is to set α← 0. This is not too
restrictive, since 12 out of 14 ∆-s in Table 3 have α = 0.

2. One must verify that, for some ι such that [yκ]ι is in the CRS, yκ is correctly
computed, where κ ∈ {β, γ, δ, η}. (Recall that α = 0.)
This involves adding a small number of pairing equations of type [yi]1•[yj ]2 =
[yk]2•[y`]2, such that each equation introduces exactly one new degree (either
i, j, k or `) and reuses three degrees that are already “verified”. For example,
in the first equation i, j, k ∈ {0, 1}. In this case, one can use pairings to
establish the correctness of y` for ` ∈ {−1, 0, 1, 2}. This means we need to
put additional restrictions on ∆.

Lemma 2. From the 14 settings of ∆ in Table 2, the five ones marked with X
are CRS-verifiable.
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Proof. Intuitively, we just need to describe how we (manually) found which of the
choices of∆ from Table 3 satisfy both above restrictions. As already mentioned,
the first restriction is straightforward to satisfy. Now, assuming that α = 0,
consider two cases of ` from the first pairing equation in the second restriction:
1. ` = −1. In the second pairing equation, then (say) i, j, k ∈ {−1, 0, 1}. In this

case, one can establish the correctness of y` for ` ∈ [−3, 3].
To solve this, we look at the possible ∆-s in Table 3, such that α = 0 and
one of β, γ, δ, η is equal to either −1 or 2. This only weeds out one additional
possibility (namely, ∆ = (0,−3, 5, 7, 1)).
In the case one of β, γ, δ, η is equal to −1, we will look at the
cases when one of the three other values κ ∈ {β, γ, δ, η} belongs
to [−3, 3]. This leaves still several possibilities, ∆ ∈ {(0,−1, 6,−4, 1),
(0,−1, 7,−4, 1), (0,−1, 7,−5, 1), . . .}.
However, in only one case, ∆ = (0, 3,−5,−7,−1), it is possible to verify
all 5 values yκ for κ ∈ {α, β, γ, δ, η}: namely, by checking that (say) [yη]1 •
[y]2 = [1]1 • [1]1, [yη]1 • [yβ ]2 = [y]1 • [y]1, [yγ ]2 • [yβ ]1 = [yη]1 • [yη]1, and
[yδ]2 • [y]1 = [yγ ]1 • [yη]1.

2. ` = 2. Then, in the second equation, one can establish the correctness of y`
for ` ∈ [−2, 3]. W.l.o.g., we assume that ` 6= −1 (otherwise we are back to the
previous case). Thus, after two verification equations, we have the following
cases left: ∆ ∈ {(0,−2,−3, 7, 2), (−2, 6, 7, 2), (2,−6,−7, 2), (2, 3,−7,−2)}.
A simple inspection establishes that in all the three cases, where both −2 and
2 are present, one has an efficient CRS-verification algorithm. For example,
one can take ∆ = (−2,−3, 7, 2), that is, the setting in Eq. (11). Then,
one has to verify that [1]1 • [yη]2 = [y]1 • [y]2, [yβ ]1 • [yη]2 = [1]1 • [1]2,
[yγ ]1 • [y]2 = [yβ ]1 • [1]2, and [yγ ]1 • [yβ ]2 = [yη]1 • [yη]2. (Those are the
dotted equations in Fig. 6.) ut

For the sake of concreteness, we recommend to choose ∆ as in Eq. (11).
However, one can use any of the five checkmarked choices in Table 3.

One can significantly speed up CV in Fig. 6 by using batching techniques, as
explained in [1,3]. CV for other new SNARKs are essentially the same, modulo
some simplifications due to say wi(X) = 0 in the case of the QSP.

Trapdoor-Extractability and Sub-ZK. Trapdoor-extractability [3] means
that if CV accepts the CRS, then one can extract the simulation trapdoor. In
all new SNARKs, the simulation trapdoor is equal to td = y since Sim does not
use x. Clearly, in all new SNARKs, if CV accepts crs, one can use the BDH-KE
assumption to extract y. Thus, BDH-KE guarantees trapdoor-extractability, and
the CRS-verifiability and the trapdoor-extractability together guarantee that one
can extract td. Hence, by the general result of [3], all new SNARKs are Sub-ZK,
assuming that their CRS is verifiable and that the BDH-KE holds.

Corollary 1. Under the five X-ed settings of ∆ in Table 2, Sqap is statistically
composable Sub-ZK under the BDH-KE assumption.
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