
ECLIPSE: Enhanced Compiling method for
Pedersen-committed zkSNARK Engines?

Diego F. Aranha1, Emil Madsen Bennedsen2, Matteo Campanelli1,
Chaya Ganesh3, Claudio Orlandi1, and Akira Takahashi1

1 Aarhus University, Aarhus, Denmark
{dfaranha, matteo, orlandi, takahashi}@cs.au.dk

2 Concordium, Denmark
emil@bennedsen.eu

3 Indian Institute of Science, India
chaya@iisc.ac.in

Abstract. We advance the state-of-the art for zero-knowledge commit-
and-prove SNARKs (CP-SNARKs). CP-SNARKs are an important class
of SNARKs which, using commitments as “glue”, allow to efficiently
combine proof systems—e.g., general-purpose SNARKs (an efficient way
to prove statements about circuits) and Σ-protocols (an efficient way to
prove statements about group operations). Thus, CP-SNARKs allow to
efficiently provide zero-knowledge proofs for composite statements such
as h = H(gx) for some hash-function H.
Our main contribution is providing the first construction of CP-SNARKs
where the proof size is succinct in the number of commitments.
We achieve our result by providing a general technique to compile Al-
gebraic Holographic Proofs (AHP) (an underlying abstraction used in
many modern SNARKs) with special “decomposition” properties into
an efficient CP-SNARK. We then show that some of the most efficient
AHP constructions—Marlin, PLONK, and Sonic—satisfy our compila-
tion requirements.
Our resulting SNARKs achieve universal and updatable reference strings,
which are highly desirable features as they greatly reduce the trust
needed in the SNARK setup phase.

1 Introduction

Zero-knowledge (ZK) proofs and argument systems (ZK) [35] are one of the
most fascinating concepts in modern cryptography, as they allow proving that
a statement is valid without revealing any additional information as to why
said statement is true. Even further, Succinct Non-interactive ARguments of
Knowledge (zk-SNARKs), allow to do so in such a way that the size of the
proof and the work the verifier needs to perform in order to check the proof is
sublinear in the size of the statement. Today, zk-SNARKs are a fundamental
building block in complex cryptographic systems such as e.g., Zcash [9], where
succinct zero-knowledge proofs are used to provide integrity while maintaining
privacy. In such applications, it is crucial that the verification time is minimal
? Full version available at [3].

(as every user in the system has to perform the verification) and that the proofs
are short and non-interactive (as they need to be posted on the Blockchain).

In this work we focus on commit-and-prove SNARKs (CP-SNARKs) (intro-
duced in [21]).

This is an important family of SNARKs in which the witness is committed
using Pedersen commitments (the de-facto lingua franca of commitments). The
presence of these commitments allow to “glue” together different proof systems.
An important application of CP-SNARKs is proving composite statements using
the most efficient tool for each part of the statement. Such modularity of the
CP proof system enhances interoperability with other protocols specialized for
efficiently proving certain algebraic relations: consider a composite computation
that naturally presents different components, like an arithmetic circuit for a
hash function, and algebraic representation for group exponentiation. A general-
purpose zero-knowledge proof system for such a computation requires a single
homogeneous representation, thus incurring a high cost in performance. Ideally,
one would like to take advantage of the nuances of a computation and choose
the best proof system for each component of the computation, e.g., SNARKs
for an arithmetic circuit and Σ-protocol for an algebraic relation. One of the
simplest examples of such a statement is proving knowledge of the secret key
corresponding to a Bitcoin address e.g., proving knowledge of some x such that
y = H(gx) (without revealing gx).

There are many other practical scenarios where the CP extension is use-
ful, including, but not limited to, anonymous credentials [24, 29, 2], verifiable
encryption [44], proof stitching [26, 47, 53, 52], and e-voting [44]. Given these
various potential applications, a working group focused on CP-ZK has recently
been launched as part of the ZKProof Standards [12].

Unfortunately, existing CP-SNARKs are not truly “succinct” since their
proof size scales linearly with the number of commitments containing subvectors
of the witness. In this work, we fill this gap in the literature and provide the first
truly succinct CP-SNARK.

1.1 Applications

To further motivate the need for succinct CP-SNARKs, we now provide some
example applications. In all these applications, the commitments to (subset of)
the witness are part of the public statement and, in practice, often exist prior to
the time we prove properties on them. Motivated by this, we do not count the
commitments as part of the proof size in this work.

We denote by ` the number of individual commitments containing the partial
witness vector.
1. Anonymous and Delegated Credentials. In the application of making digital

certificates anonymous, one would like to prove knowledge of a message m
and a signature σ, where σ is a valid signature on message m with respect to
some public verification key. The main challenge is that the statement being
considered is a composite statement containing both Boolean (hash function)

2

and algebraic (group operations) components, since either the message is
hashed before being signed or one needs to prove properties on the signed
message. Efficient NIZK for composite statements that use a zk-SNARK for
the circuit part and Σ-protocols for the algebraic would yield a proof system
that is more efficient for the prover.
Consider now the setting of “delegated credentials”. Each citizen or member
of an organization can have associated a bundle of properties (credentials),
e.g., credit and employment history or digital certificates issued by govern-
ments. We assume these properties are fingerprinted through a (compressing)
commitment and that each of these users delegates the storage of these prop-
erties to a service. Every time the user needs to prove a statement on these
credentials with respect to the public commitment, it can issue an order to
the service. Instead of providing a single proof per user, a service can wait to
accumulate ` orders and provide a single proof for all of them. If the result-
ing proof is succinct in `, then this batching technique results in important
savings. Note here that in this application it would not be feasible to commit
to the credentials of all users in a single (vector) commitment, because the
` commitments to the credentials already exist and each single user should
be able to verify that on their own.4

2. Blockchains. CP-SNARKs are useful in many Blockchain applications like
confidential transactions [49] where range proofs are required on commit-
ted values, and in systems balancing privacy and accountability [28] where
credentials are proven on committed values.
An example Blockchain application where ` > 1 and succinct CP-SNARKs
are desirable is proof of solvency. In privacy-preserving proof of solvency [2],
the number of commitments ` is typically large. This is because in proof
of liabilities, each customer has to check that their own balance has been
included in the total liabilities published by the exchange. This is done by
having the exchange send the decommitment information to each customer
privately. Thus, in this application too, using a single (vector) commitment
is not a feasible solution. Since each customer’s balance is private, there must
be as many commitments as the number of customers instead of one vector
commitment to all balances.

3. Machine Learning. Another example of an application that benefits from
succinct CP-SNARKs is verifying integrity of Machine Learning (ML) mod-
els. A hospital owns sensitive patient data, and one wishes to construct a
model by running a training algorithm on this sensitive data. The hospital
does not wish to and/or legally cannot release the data; making it a challenge
to check the integrity of the model. Such settings have been considered, for
example, in [54]. One way to do this is to have the hospital use a zkSNARK

4 The service can afford to wait for ` orders depending on the application, and the
expected throughput and time-to-service of the application. As an example, the ID-
Layer in Concordium [28] orders may be even serviced each epoch.

3

to prove that the model is the output obtained by training it on the sensitive
data and that public commitments indeed open to the same sensitive data.
In practice, ML algorithms are run on data held by different entities (hos-
pitals in the example above). Each of the ` entities publishes a commitment
to their sensitive data. Now a single trusted party can perform training on
the combined data, but has to prove integrity with respect to commitment
of each individual entity. Succinct CP-SNARKs provide efficiency benefits
also in this case.

1.2 Our Contributions

In this work we present the first CP-SNARKs whose proof size is succinct in the
number of commitments to the partial witness vectors. To do so, we combine
state-of-the-art SNARKs with state-of-the-artΣ-protocols, inheriting several im-
portant properties of the underlying tools which we use.

An important property of our resulting proof system is that it has univer-
sal, updatable and linear-size reference string: Since we are interested in practi-
cally efficient and succinct proof systems, our starting points are preprocessing
SNARKs, in which some form of trusted setup (in the form of a structured refer-
ence string or SRS) is required. If the trusted setup is compromised, it becomes
possible to break the soundness property of the proof system. However, using
SNARKs with universal and updatable setup (as introduced in [38]) the trust in
the setup phase can be reduced to a minimum, as this allows participants to dy-
namically update the SRS was proposed. Even though this does not completely
remove the problem of trusted setup, the security now depends on at least one
honest party deleting the contributed randomness. Moreover, the SRS is uni-
versal in the sense that it allows to prove statements about all circuits of some
bounded size (as opposed to earlier systems in which a different SRS was needed
for each circuit, thus increasing the need for trusted setups). Furthermore, the
size of the setup will be linear in the size (or upper bound of) the circuit to be
proven.

From a technical point of view, our contributions can be summarized as
follows:
– Compiler from AHP to CP-SNARK. In Sec. 3 we present a compiler that

takes an AHP (Algebraic Holographic Proof, the information-theoretic pro-
tocol underlying many existing zkSNARKs) and compiles it into a CP-
SNARK. Our compiler is similar in spirit to compilers of [18, 25, 20] that
convert information-theoretic protocols to succinct arguments, but it nat-
urally allows efficient CP extensions because of our “decompose–and–link”
paradigm outlined in Sec. 1.3. The main technical challenge in building this
compiler is that existing SNARK constructions employ different ways to en-
code the witness into a polynomial, even though the underlying information-
theoretic objects can be described in the language of AHP. This makes it
hard to identify how to generically & succinctly link committed values to
only a small fraction of the large witness vector used in SNARK. Yet, we are

4

able to abstract out a set of basic properties that AHPs and commitment
schemes should satisfy, in order to apply the same paradigm. Thanks to our
abstract approach, one does not need to examine the entire machinery of
the AHP protocol; instead, it is sufficient to look at a few witness-carrying
polynomials present in the AHP, check if they satisfy the properties required
by our compiler theorem, and then focus on designing a sub-protocol per-
forming a minimum set of tasks for “linking”. We believe that our techniques
are general enough to extend to future AHPs and commitment schemes.

– Concrete instantiations. We then apply our compiler to the AHPs of Mar-
lin, PLONK and Sonic to obtain concrete CP-SNARKs.5 This immediately
allows us to prove that the inputs (and/or outputs) used in the zk-SNARK
for an arithmetic circuit/Rank 1 constraint system statement are the same
as the values inside an algebraic (Pedersen) commitment. This helps to hide
intermediate outputs of a composite statement by committing to it, thus
allowing switching between the algebraic (Σ-protocols) and arithmetic (zk-
SNARK) worlds. In order to make the argument for the composite statement
succinct, we use recent advances in compressed Σ-protocol theory. We cast
the statement about consistency with Pedersen commitments as statements
about knowledge of pre-image of group homomorphisms. This allows us to
apply the compression techniques of [15, 4] that achieve logarithmic commu-
nication for the canonical Σ-protocol and the amortization technique that
proves many statements efficiently. Thus, our linking protocol that needs
to prove ` statements, where each statement is about equality of vectors of
size d, achieves communication complexity O(log(`d)), so the overall proof
(the size of the SNARK together with the size of the linking proof) is still
succinct.

1.3 Technical Overview

Most recent constructions of updatable SRS zkSNARKs [18, 25, 32] follow a
modular approach where an information-theoretic protocol is constructed in an
abstract model like Probabilistically Checkable Proof (PCP), linear PCP, Inter-
active Oracle Proof (IOP) etc., and then the information-theoretic protocol is
compiled via a cryptographic compiler to obtain an argument system. While sev-
eral abstractions for this information-theoretic parts exist, it is folklore among
researchers in this community that these formalizations are to some extent equiv-
alent. In this paper, we rely on the formalization of (public-coin) Algebraic Holo-
graphic Proofs (AHP) of [25] and we cast the other SNARKs (PLONK [32] and
Sonic [48]) in the same language.
5 The reason why we apply our compiler to all three proof systems is that Marlin,

PLONK and Sonic are a sort of rock-paper-scissor for AHPs (the first can outperform
the second, which can outperform the third, which can in turn outperform the first).
This is because they use different models of computations, and therefore it may be
possible to prove some statements more efficiently with one system rather than the
others.

5

Plain AHP-to-SNARK framework. In an AHP the prover P takes a state-
ment x and a witness vector w = (w1, . . . , wn) as inputs and sends some oracle
polynomials to the verifier V in each round, who responds with a random chal-
lenge. In the query phase, V can query an oracle polynomial p with an evaluation
point z to obtain v = p(z). V can iterate this process for several different polyno-
mials and evaluation points. Finally, V outputs a decision bit indicating “accept”
or “reject”, based on the result of the evaluation queries.

An AHP can be turned into an argument system by replacing the oracles and
the query phase with a polynomial commitment scheme (PCS). As proposed by
[42], PCS can be succinctly instantiated by using the discrete log-based encoding
of polynomial: PC.Comck(p(X)) := gp0+p1χ+...pn−1χ

n−1 with a commitment key
ck = (g, gχ, . . . , gχn−1). Then upon receiving an evaluation point z, the prover
responds with an evaluation proof to convince the verifier that evaluation v =
p(z) is done correctly.

Witness-carrying polynomials and CP extension. Typically, one or few
oracles sent by an AHP prover are witness-carrying polynomials (WCP) [20],
meaning that they encode the entire witness vector w. For ease of exposition,
we assume the AHP has a single WCP w(X) here, but our abstract compiler
works for AHP with multiple WCP as well. The encoding/decoding method dif-
fers depending on the protocol. For example, Sonic employs a simple coefficient
encoding, therefore, decoding works by mapping the coefficients to a witness vec-
tor, i.e., w(X) :=

∑
i wiX

i; PLONK and Marlin use interpolation, and decoding
works by evaluating WCP on some prescribed set, i.e., w(X) :=

∑
i wi · Li(X),

where (Li(X))i∈[n] are the Lagrange polynomials associated with some set H of
size n.

In our CP scenario, we additionally consider a commitment scheme AC for
Auxiliary Commitments. They are “auxiliary” in the sense that they are used
as auxiliary inputs to parts of the witness, and in some applications, these com-
mitments already exist. For example, if a subvector of witness (wi)i∈Icom with
Icom ⊂ [n] is committed in advance via vector Pedersen commitment, an argu-
ment system additionally takes ĉ = AC.Comack((wi)i∈Icom ; r) := Hr

∏
i∈Icom

Gwi
i

as part of the statement, where ack := ((Gi)i∈Icom , H). The goal of CP extension
is to guarantee consistency between what is committed to via PC and AC. To
this end, it should suffice to provide a sub-protocol for relation

R :=
{

((c, ĉ), (w, r)) : c =
∏n
i=1 g

wi
i ∧ ĉ = Hr

∏
i∈Icom

Gwi
i

}
.

where gi = gχ
i−1 or gi = gLi(χ), depending on how the AHP under consideration

encodes the witness into WCP.
A naïve approach would be to describe an arithmetic circuit for R and invoke

another instance of SNARK. However, if the committing function of AC involves
certain algebraic operations, e.g., group exponentiation or elliptic curve scalar
multiplications as required in the Pedersen commitment, it would be very costly

6

for the prover to express them in a circuit6. This is where a Σ-protocol comes
into play.
Decomposing WCP and linking with Σ-protocol. A simple Σ-protocol
can be used for proving equality of Pedersen-committed messages. However, be-
cause naïve instantiation of such a protocol for R inevitably proves knowledge
of the entire vector w, it would incur O(n) proof size and verification time,
losing succinctness. Although it is possible to apply the compressed Σ-protocol
theory [15, 4] to achieve O(log(n)) proof size, if logarithmic proof size is ac-
ceptable, one could instead use Bulletproofs, which supports CP extensions with
the Pedersen commitment by construction and already achieves O(log(n)) proof
size.

In fact, proving R turns out to be quite wasteful, since at the end of the day
we only care about a small fraction of w that are committed beforehand. We
circumvent the issue by additively decomposing the WCP w(X) into two parts
wcom(X) and wmid(X), such that w(X) = wcom(X) +wmid(X), wcom(X) encodes
the committed part of the witness (wi)i∈Icom , and wmid(X) contains the rest.
In Sec. 3.2 we formally define this intuition. Accordingly, assuming additively
homomorphic PCS (satisfied by KZG), one can also decompose a polynomial
commitment c into ccom and cmid such that c = ccom + cmid = PC.Comck(wmid) +
PC.Comck(wcom). Now we only need to link ccom and ĉ; it suffices to cast ccom to
the Σ-protocol for relation

R′ :=
{

((ccom, ĉ), (w, r) : c =
∏
i∈Icom

gwi
i ∧ ĉ = Hr

∏
i∈Icom

Gwi
i

}
which only incurs O(log(|Icom|)) proof size and verification time.
Proving “non-overlapping” decomposition. The above idea needs addi-
tional care in order to preserve knowledge soundness since it is not guaranteed
that a cheating prover honestly decomposes WCP. For example, what if a prover
crafted w̃mid(X) such that it decodes to w̃mid,i for some i ∈ Icom? In that case,
the knowledge extractor for SNARK outputs w̃i = w̃com,i + w̃mid,i as one of
the witness vector elements, whereas the Σ-protocol only proves that ĉ contains
w̃com,i. This breaks consistency between the value in ĉ and the actual witness
used in SNARK. To fix this issue, we require a prover to show the decomposed
WCPs are “non-overlapping”, meaning that wmid(X) only maps to (wi)i/∈Icom .7
In Sec. 5, 6, we present different ways to instantiate this additional check: for
Sonic it amounts to perform a degree bound check for wmid(X), while for PLONK
and Marlin it suffices to verify wmid(X) vanishes on certain evaluation points.
Compressing and aggregating many equality proofs. So far we have only
considered a single auxiliary commitment ĉ. But clearly, as described earlier,
we are interested in the case where the number ` of commitments is large and
6 While there are approaches that mitigate this problem [43, 1, 22], they are curve-
dependent—hindering generality and interoperability—and still relatively expensive
(at 4-6 constraints per curve operation).

7 While it is also necessary to prove wcom(X) only maps to (wi)i∈Icom , this is trivially
achieved by knowledge soundness of the Σ-protocol.

7

|π| Prove (time) Verify (time)

This work O (log(` · d)) O (n+ ` · d) O (` · d)
Lunar [20] O (`) O (n+ ` · d) O (`)
LegoUAC [21] O

(
` log2(n)

)
O(n) + ` · Õ (d) O

(
` log2(n)

)
Table 1. Efficiency comparison among CP-SNARK constructions with universal and
updatable SRS. Proving time expresses group operations. The first line refers to our
compiler applied to AHPs with suitable decomposition properties (See Sec. 3). In the
above we denote by n the number of constraints in an R1CS system, by ` the number of
input commitments and by d the size of each committed vectors. (The same asymptotics
apply also to other constraints systems with slight variations though. For example, they
apply to the AHPs in PLONK if n above refers to the total number of gates).

we want our proof to be succinct in `. Naïvely, the above ideas can easily be
generalized by invoking ` instances of the equality proof for R′ with statement
(ccom, ĉk) for k ∈ [`]. This in turn would incur in a multiplicative factor of O(`)
overhead in the proof size. In Sec. 4 we show how to amortize ` different protocol
instances to achieve O(log(`d)) proof size by adapting the amortization technique
from [5], where d is a dimension of the vector committed to in each ĉk.

1.4 Related Work

Σ-protocols are proof systems that are efficient for proving algebraic state-
ments about discrete logarithms, roots, or polynomial relationships among val-
ues [51, 39, 27, 19]. They yield short proof sizes, require a constant number of
public-key operations, and do not impose trusted setup requirements. Moreover,
they can be made non-interactive using the efficient Fiat-Shamir transforma-
tion [30]. A recursive argument for an inner product relation of committed val-
ues was presented in [15] and was subsequently improved in Bulletproofs [17].
These can be used to prove statements on algebraically committed inputs, and
the proof can be made non-interactive using Fiat-Shamir. Even though proof
sizes scale logarithmically, unfortunately, the verification time scales linearly
with the size of the circuit. Recent work on compressed Σ-protocol theory [4]
is a strengthening of Σ-protocols that compress the communication complexity
from linear to logarithmic. The underlying pivot of the compressed protocol is a
standard Σ-protocol for opening linear forms on Pedersen vector commitments,
i.e., a Σ-protocol for proving that a committed vector x satisfies L(x) = y for a
public scalar y and public linear form L.

The seminal paper of [33] proposed a pairing-based zk-SNARK for general
NP statements based on the NP complete langauge of Quadratic Span Pro-
grams (QSP) for Boolean circuits and Quadratic Arithmetic Programs (QAP)
for arithmetic circuits. This built on previous works of [40, 36, 45] and led to
several follow ups [13, 50, 10, 46, 11, 37] which have proofs that are very short
and have fast verification time.

8

The first zk-SNARK with an updatable SRS was introduced by [38]. How-
ever, here the size of this universal updatable SRS is quadratic in the number
of multiplication gates of the circuit representing the statement. In [48], the au-
thors construct Sonic, the first zkSNARK that is universal and updatable with a
linear-sized SRS. A different solution to SNARKs with universal and updatable
SRS is to use a secure multi-party computation protocol (MPC) to conduct the
setup [16], and as long as at least one party is honest, the setup remains secure.

Although several works on general-purpose CP-ZK exist in the literature,
such as Geppetto [26], Cinderella [29], and [47], there are few examples of effi-
cient zero-knowledge proof systems for composite statements like those we con-
sider in this paper. The first paper in this important line of work [24] presents a
zero-knowledge proof that can be used to prove that F (x) = 1 given a Pedersen
commitment to x, where F is represented as a Boolean circuit. They provide an
efficient way of combining the garbled-circuit based proof of [41] for circuit-based
statements with Σ-protocols for algebraic parts. However, this is inherently in-
teractive which is inherited from the interactivity of [41] where the verifier uses
private coins. In [8], the authors show how to extend the MPC-in-the-head tech-
niques of ZKBoo [34] and ZKB++ [23] to allow algebraic statements on Peder-
sen commitments. While allowing for non-interactive proofs via the Fiat-Shamir
transform, this approach results in larger proof sizes. In [2], protocols combining
zk-SNARKs with Σ-protocols are presented. This overcomes the disadvantage of
interactivity, and also gives a system suitable for applications that require short
proofs. Not only does their approach lead to more efficient anonymous creden-
tials than Cinderella, but it also found new applications to the blockchain, such
as proof-of-solvency. Our approach achieves better asymptotic efficiency as well
as further generality compared to [2], which relies on naïve Σ-protocols and a
specific QAP-based SNARK construction with non-updatable SRS.

The works most closely related to ours are LegoSNARK and Lunar. LegoS-
NARK [21] is a framework for CP-SNARKs that gives general composition tools
to build new CP-SNARKs from proof gadgets in a modular way. The construc-
tion LegoUAC in [21] is a CP-SNARK with a universal and updatable SRS. Lu-
nar [20] obtains CP-SNARKs with a universal and updatable SRS and presents
proof systems for “linking” committed inputs to the polynomial commitments
used in AHP-based arguments. Table 1 shows the efficiency comparison between
our work, Lunar and LegoUAC. Note that Lunar constructions and ECLIPSE
outperform each other in different settings. See also §1.2 of [20] for a technical
comparison of Lunar and ECLIPSE.

2 Preliminaries

Notation. For positive integers a and b such that a < b we use the integer
interval notation [a, b] to denote {a, a+ 1, . . . , b}; we use [b] as shorthand for
[1, b]. A finite field is denoted by F. We denote by κ a security parameter. When
we explicitly specify the random tape ρ for a randomized algorithm A, then we
write a ← A(srs; ρ) to indicate that A outputs a given input srs and random

9

tape ρ. For a pair of randomized algorithms A and EA, we often use the handy
notation (a;x) ← (A||EA)(srs) which denotes that A outputs a on input srs,
and EA outputs x given the same input srs, and A’s random tape. We denote
by Pr

[
A : B

]
the conditional probability of an event A under the condition

B. Throughout, G denotes an Abelian group of prime order q. For vectors of
generators g = (g1, . . . , gd) ∈ Gd and exponents x = (x1, . . . , xd) ∈ Zdq we often
write gx :=

∏d
i=1 g

xi
i .

Definition 1 (Indexed relation [25]). An indexed relation R is a set of
triples (i, x,w) where i is the index, x is the instance, and w is the witness;
the corresponding indexed language L(R) is the set of pairs (i, x) for which there
exists a witness w such that (i, x,w) ∈ R. Given a size bound N ∈ N, we denote
by RN the restriction of R to triples (i, x,w) ∈ R with |i| ≤ N.

A zero-knowledge proof (or argument)8 for L allows a prover P to convince
a verifier V that x ∈ L for a common input x without revealing w. A proof of
knowledge captures not only the truth of a statement x ∈ L, but also that the
prover is in “possession” of a witness w.

Definition 2 (Preprocessing Argument with Universal SRS [25]). A
Preprocessing Argument with Universal SRS is a tuple ARG = (S, I,P,V) of
four algorithms. S is a probabilistic polynomial-time setup algorithm that given
a bound N ∈ N samples a structured reference string srs supporting indices of
size up to N. The indexer algorithm I is deterministic and, given oracle access
to srs produces a proving index key and a verifier index key, used respectively by
P and V. The latter two are probabilistic polynomial-time interactive algorithms.
Completeness For all size bounds N ∈ N and efficient A,

Pr

 (i, x,w) 6∈ RN ∨
〈P (ipk, x,w) ,V (ivk, x)〉 = 1 :

srs← S(1κ,N)
(i, x,w)← A(srs)
(ipk, ivk)← Isrs(i)

 = 1

Succinctness We call the argument succinct if the communication complexity
between prover and verifier is bounded by poly(κ) · polylog(|x|+ |w|).

In [3] we recall the standard definitions of knowledge soundness and zero
knowledge. We have the following two optional requirements on the arguments
defined above. We say that an argument is public-coin if all the messages from the
verifier are uniformly random strings of a bounded length. We say it is updatable
if there exists an update algorithm that can be run by anyone at any time and
to update the SRS. This algorithm guarantees security as long as at least one of
the (sequential) updates have been carried out honestly.

8 We use proof and argument as synonymous in this paper, as we are only interested
in computational soundness.

10

2.1 Algebraic Holographic Proofs

Below we recall the definition of AHP from Marlin.

Definition 3 (AHP [25]). An Algebraic Holographic Proof (AHP) over a field
family F for an indexed relation R is specified by a tuple AHP = (k, s, d, I,P,V)
where k, s, d : {0, 1}∗ → N are polynomial-time computable functions and I,P,V
are three algorithms known as the indexer, prover, and verifier. The parameter k
specifies the number of interaction rounds, s specifies the number of polynomials
in each round, and d specifies degree bounds on these polynomials. The protocol
proceeds as follows:
– Offline phase The indexer I receives as input a field F ∈ F and index i for
R, and outputs s(0) polynomials p0,1, . . . , p0,s(0) ∈ F[X] of degrees at most
d(|i|, 0, 1), . . . , d(|i|, 0, s(0)) respectively. Note that the offline phase does not
depend on any particular instance or witness, and merely considers the task
of encoding the given index i.

– Online phase Given an instance x and witness w such that (i, x,w) ∈ R, the
prover P receives (F, i, x,w) and the verifier V receives (F, x) and oracle access
to the polynomials output by I(F, i). The prover P and the verifier V interact
over k = k(|i|) rounds. For i ∈ [k], in the i-th round of interaction, the
verifier V sends a message ρi ∈ F∗ to the prover P; then the prover P replies
with s(i) oracle polynomials pi,1, . . . , pi,s(i) ∈ F[X]. After k interactions, the
verifer outputs additional randomness ρk+1 ∈ F∗ which serves as auxiliary
input to V in subsequent phases. We note that ρ1, . . . , ρk, ρk+1 ∈ F∗ are public
and uniformly random strings.

– Query phase Let p = (pi,j)i∈[k],j∈[s(i)] be a vector consisting of all polyno-
mials sent by the prover P. The verifier may query any of the polynomials
it has received any number of times. Concretely, V executes a subroutine QV
that receives (F, x; ρ1, . . . , ρk+1) and outputs a query set Q consisting of tu-
ples ((i, j), z) to be interpreted as “query pi,j at z ∈ F”. We denote a vector
consisting of query answers p(Q).

– Decision phase The verifier outputs “accept” or “reject” based on the an-
swers to the queries (and the verifier’s randomness). Concretely, V executes
a subroutine DV that receives (F, x,p(Q); ρ1, . . . , ρk+1) as input, and outputs
the decision bit.
The function d determines which provers to consider for the completeness
and soundness properties of the proof system. In more detail, we say that a
(possibly malicious) prover P̃ is admissible for AHP if, on every interaction
with the verifier V, it holds that for every round i ∈ [k] and oracle index
j ∈ [s(i)] we have deg(pi,j) ≤ d(|i|, i, j). The honest prover P is required to
be admissible under this definition.
We require an AHP to satisfy completeness, (knowledge) soundness and zero-

knowledge as defined below.

Completeness. An AHP is complete if for all F ∈ F and any (i, x,w) ∈ R, the

11

checks returned by VI(F,i)(F, x) after interacting with (honest) P(F, i, x,w) are
always satisfied.
Soundness. An AHP is ε-sound if for every field F ∈ F , relation-instance tuple
(i, x) 6∈ LR and prover P∗ we have Pr[〈P∗,VI(F,i)(F, x)〉 = 1] ≤ ε.
Knowledge Soundness.An AHP is ε-knowledge-sound if there exists a polynomial-
time knowledge extractor E such that for any prover P∗, field F ∈ F , relation i,
instance x and auxiliary input z:

Pr
[
(i, x,w)∈ R : w← EP∗(F, i, x, z)

]
≥ Pr[〈P∗(F, i, x, z),VI(F,i)(F, x)〉=1]− ε

where E has oracle access to P∗, i.e., it can query the next message function of
P∗ (and rewind it) and obtain all the messages and polynomials returned by it.
Zero-Knowledge. The property of (b,C)−Zero-Knowledge for AHPs models
the existence of a simulator that can interact with a malicious verifier and can
effectively simulate under two conditions: there is a bound b on the number of
evaluation queries asked by the verifier; these queries need to satisfy an admis-
sible test modelled a a circuit C. We say an AHP is zero-knowledge for some
bound b = poly(λ) and some efficient checker circuit C. We refer the reader to
Section 4 in [25] for formal details.
Public coins and non-adaptive queries. In the remainder of this work, we
only consider AHPs that are public coin and non-adaptive: the messages of
the verifier are random elements and its checks are independent of the prover’s
messages.
Generalization to multivariate polynomials. Even though the above for-
malization is tailored to univariate polynomial oracles, it is straightforward to
generalize it to support multivariate, Laurent polynomials pi,j ∈ F[X1, X

−1
1 ,

. . . , Xm, X
−1
m]. In that case, a query set Q consists of ((i, j), (z1, . . . , zm)) and

is to be interpreted as “query pi,j at (z1, . . . , zm) ∈ Fm”. Likewise, the polyno-
mial commitment scheme definition can also be adapted to support multivariate
polynomials as inputs. Our Theorem 1 in the next section holds under this gener-
alization because the proof does not rely on whether polynomials are univariate
or not. This is analogous to the compiler theorem of [25]. However, the gen-
eralization is only required for Sonic and PLONK, and Marlin only deals with
univariate polynomials. Therefore, we focus on the univariate version in the main
body for ease of exposition.

2.2 Polynomial Commitment

Polynomial commitment schemes were introduced by Kate–Zaverucha–Goldberg [42].
Below we recall the definition of standard polynomial commitment scheme. The
definition is taken verbatim from Section 6.1 of [25].

Definition 4 (Polynomial Commitment Scheme). A polynomial commit-
ment scheme (PCS) over a field family F is a tuple PC = (Setup,Trim,Com,Open,Check)
such that

12

– Setup(1κ, D)→ pp. On input a security parameter κ, and a maximum degree
bound D ∈ N, Setup samples public parameters pp. The parameters contain
the description of a finite field F ∈ F .

– Trimpp(1κ,d) → (ck, rk). Given oracle access to public parameters pp, and
on input a security parameter κ, and degree bounds d, Trim deterministically
computes a key pair (ck, rk) that is specialized to d.

– Comck(p,d;ω) → c. On input ck, univariate polynomials p = (pi)ni=1 over
the field F with deg(pi) ≤ di ≤ D, Com outputs commitments c = (ci)ni=1
to the polynomials p. The randomness ω is used if the commitments c are
hiding.

– Openck(p,d, Q, ξ;ω) → π. On input ck, univariate polynomials p, degree
bounds d, a query set Q consisting of (i, z) ∈ [n]×F, and opening challenge
ξ, Open outputs an evaluation proof π. The randomness must equal the one
previously used in Com.

– Checkrk(c,d, Q,v, π, ξ) ∈ {0, 1}. On input rk, commitments c, degree bounds
d, query set Q, alleged evaluations v = (v(i,z))(i,z)∈Q, evaluation proof π, and
opening challenge ξ, Check outputs 1 iff π attests that, for every (i, z) ∈ Q,
the polynomial pi evaluates to v(i,z) at z.

We recall a set of basic properties that the KZG scheme [42] and its variants
described in Marlin and Sonic already satisfy.
Completeness. For every maximum degree bound D ∈ N and efficient adver-
sary A,

Pr


deg(p) ≤ d ≤ D

=⇒ Checkrk(c,d, Q,v, π, ξ) :

pp← Setup(1κ, D)
(p,d, Q, ξ,ω)← A(pp)
(ck, rk)← Trimpp(1κ,d)
c← Com(ck,p,d;ω)

v← p(Q)
π ← Open(ck,p,d, Q, ξ;ω)

 = 1

Homomorphism. A PC is additively homomorphic if for every D ∈ N, ev-
ery d such that di ≤ D, every query set Q, every opening challenge ξ, every
p1,p2,ω1,ω2 that are consistent with the degree bound d,

Pr

c1 + c2 = Comck(p1 + p2,d;ω1 + ω2) :

pp← Setup(1κ, D);
(ck, rk) = Trimpp(1κ,d)
c1 = Comck(p1,d;ω1)
c2 = Comck(p2,d;ω2)

 = 1

In [3] we recall formal security requirements for PCS: extractability, binding,
and hiding. On a high-level, the extractability property assures that the prover
actually knows the polynomial p committed to c whenever the verifier accepts
an evaluation proof π.

13

2.2.1 The KZG scheme. Below we recall the polynomial commitment scheme
due to Kate–Zaverucha–Goldberg [42], denoted by PCKZG. The scheme is proven
extractable under the strong Diffie–Hellman (SDH) assumption in the algebraic
group model (AGM) [31], polynomial binding under the discrete-log assumption,
and perfectly hiding [25, 42]. For simplicity we omit challenge ξ used for batch
opening as well as the Trim function, and set ck = rk = pp. See Appendix B of
[25] for details of such optimization techniques.
– Setup(1κ, D) → (g, gχ, . . . , gχD

, g, gγχ, . . . , gγχ
D

, hχ) where it determines a
bilinear group public parameters (q,G1,G2,GT , e, g, h), with g ∈ G1 and
χ, γ ∈ F are randomly chosen. We denote exponentiation in Gi by [·]i.

– Comck(p,D;ω)→ [p(χ) + γω(χ)]1, where ω ∈ F≤D[X] is a random masking
polynomial.

– Openck(p,D, z;ω) computes W (X) = p(X)−p(z)
X−z , W̄ (X) = ω(X)−ω(z)

X−z , Π :=
[W (χ) + γW̄ (χ)]1, v̄ := W̄ (z) and outputs π := (Π, v̄).

– Checkrk(c,D, z, v, π) checks e(Π, [χ]2/[z]2) ?= e(C/([v]1 · [γv̄]1), h).

3 AHP-to-CP-SNARK compiler

In this section, we present our general compiler that turns AHPs to commit-
and-prove zkSNARKs.

3.1 Additional Preliminaries for Compiler

Auxiliary Commitment Scheme AC We will assume a commitment scheme
AC for Auxiliary Commitments. They are “auxiliary” in the sense that they are
used as auxiliary inputs to parts of the witness. We assume AC to satisfy the
standard properties of (computational) binding and (computational or other-
wise) hiding. As we explicitly support a vector x ∈ Fd as committed message,
the definition is specialized for a vector commitment scheme. Specifically we
assume AC = (Gen,Com) such that AC.Gen(1λ, d) → ack is a randomized algo-
rithm returning a commitment key ack for messages of dimension d ∈ N, where
d ∈ poly(λ), and AC.Comack(x; r) is a committing algorithm returning a commit-
ment ĉ on input x ∈ Fd for some randomness r. In our concrete instantiations,
we use the Pedersen vector commitment scheme as AC.
Commit-and-Prove Relation Our goal is to construct a general compiler that
turns AHP for R into ARG for the relation over commitments Rcom. Throughout
we assume an indexed relation where the witness can be represented as a vector
in Fn.

Definition 5 (Commit-and-prove relation). Let R be an indexed relation,
AC a commitment scheme as defined above and ack an auxiliary commitment key

14

in the range of AC.Gen. We define the corresponding commit-and-prove relation

Rcom =

 ((i, n, `, d, Icom, (Ik)k∈[`], ack),
(x, (ĉk)k∈[`]), ((wi)i∈[n], (rk)k∈[`]))

:

(i, x, (wi)i∈[n]) ∈ R ∧
Icom ⊂ [n] ∧ |Icom| = `d ∧

Icom =
⋃
k∈[`] Ik ∧ |Ik| = d ∧

ĉk = AC.Comack((wi)i∈Ik
; rk)


3.2 Additional properties for AHP

We present basic properties that the underlying AHPs of PLONK, Marlin and
Sonic already satisfy. First we describe our variant of Definition 3.3 from [20]:
straight-line extractability for AHP. We note that our definition is in the AHP
model, while that in [20] is for Polynomially Holographic Proofs. The reason why
we explicitly define witness-carrying polynomials (WCPs) is that our compiler
needs to identify a minimum set of polynomials containing enough information
about the whole witness, with which auxiliary commitments are shown to be
consistent. Note that we also restrict WitExt to be deterministic so that it can
be essentially seen as a witness decoding algorithm that works for both honest
and malicious provers once and for all.

Definition 6 (AHP with S-straight-line extractor). Fix AHP for indexed
relation R and index set S ⊆

{
(i, j) : i ∈ [k], j ∈ [s(i)]

}
. An AHP is ε-knowledge

sound with S-straight-line extractor if there exists an efficient deterministic ex-
tractor WitExt such that for any admissible P∗, every field F ∈ F , every index i
and instance x,

Pr[(i, x,WitExt({pi,j(X)}(i,j)∈S)) ∈ R] ≥ Pr[〈P∗(i),VI(F,i)〉(F, x) = 1]− ε

where {pi,j(X)}(i,j)∈S is a subset of the polynomials output by P∗ in an exe-
cution of 〈P∗,VI(F,i)〉(F, x). Let W be a smallest set such that there exists an effi-
cient extractor satisfying the condition above. Then we say that {pi,j(X)}(i,j)∈W
are witness-carrying polynomials (WCPs) of AHP. If all WCPs are sent during
the same round kw ≤ k, we call kw a witness-committing round.

Definition 7 (Disjoint witness-carrying polynomials). We say that WCPs
are disjoint if there exists some disjoint index sets Ii,j such that [n] =

⋃
(i,j)∈W Ii,j

and the corresponding WitExt independently invokes WitExti,j on pi,j to obtain
(wι)ι∈Ii,j

.

Remark 1. Let nw = |W |. For Marlin and Sonic we have nw = 1 and kw = 1;
for PLONK we have nw = 3 and kw = 1 and disjoint WCPs. In our compiler
formalization, we always assume that W is such that kw is minimum, and that
AHP has a witness-committing round.

The following two definitions are needed to guarantee completeness of our
compiler.

15

Definition 8 (Unique extraction). Consider an AHP for relation R with S-
straight-line extractor WitExt. We say that WitExt performs unique extraction,
if for any honest prover P and every (i, x,w) ∈ R, WitExt({pi,j(X)}(i,j)∈S) = w,
where {pi,j(X)}(i,j)∈S is a subset of the polynomials output by P in an execution
of 〈P(i,w),VI(F,i)〉(F, x).

Definition 9 (Decomposable witness-carrying polynomials). Consider
an AHP for relation R withW -straight-line extractor WitExt. Let (pi,j(X))(i,j)∈W
be WCPs of AHP. We say that polynomials (pi,j(X))(i,j)∈W are decomposable if
there exists an efficient function Decomp((pi,j(X))(i,j)∈W , I)→ (p(1)

i,j (X), p(2)
i,j (X))(i,j)∈W

such that it satisfies the following properties for any I ⊂ [n].

– Additive decomposition: pi,j(X) = p
(1)
i,j (X) + p

(2)
i,j (X) for (i, j) ∈W .

– Degree preserving: deg(p(1)
i,j (X)) and deg(p(2)

i,j (X)) are at most deg(pi,j(X))
for (i, j) ∈W .

– Non-overlapping: Let w = WitExt((pi,j(X))(i,j)∈W), w(1) = WitExt((p(1)
i,j (X))(i,j)∈W),

and w(2) = WitExt((p(2)
i,j (X))(i,j)∈W). Then

(wi)i∈I = (w(1)
i)i∈I (wi)i/∈I = (w(2)

i)i/∈I (w(1)
i)i/∈I = (0) (w(2)

i)i∈I = (0)

Remark 2. If the above decomposition function is invoked on WCPs, one can
observe that witness extraction/decoding is also additively homomorphic on such
honest inputs, i.e.,

WitExt((pi,j(X))(i,j)∈W) = WitExt((p(1)
i,j (X))(i,j)∈W + (p(2)

i,j (X))(i,j)∈W)

=WitExt((p(1)
i,j (X))(i,j)∈W) + WitExt((p(2)

i,j (X))(i,j)∈W).

3.3 Our compiler

In order to prove the relation Rcom above, our compiler will use a commit-
and-prove NIZKAoK subprotocol for following relation. Although the abstract
relation Rlnk looks cumbersome for the sake of generality, the actual instantia-
tion of CPlnk will be rather simple: it can be achieved by “linking” committed
witness sub-vectors and proving “non-overlapping” decomposition as outlined in
1.3. See Figs. 3 and 4 for concrete examples.

Definition 10 (Commitment-linking relation). Fix an AHP for relation
R with W -straight-line extractor WitExt and with witness carrying polynomials
(pi,j(X))(i,j)∈W , a polynomial commitment scheme PC, and an auxiliary com-

16

mitment scheme AC. We define the linking relation

Rlnk =



((n, `, d, Icom, (Ik)k∈[`], ck, ack),
((ĉk)k∈[`],v, Q,

(ccom
i,j (X), cmid

i,j (X))(i,j)∈W),
((pcom

i,j (X), pmid
i,j (X))(i,j)∈W ,

(ωcom
i,j (X), ωmid

i,j (X))(i,j)∈W ,
(rk)k∈[`]))

:

Icom ⊂ [n] ∧ |Icom| = `d ∧
Icom =

⋃
k∈[`] Ik ∧ |Ik| = d ∧

ccom
i,j = PC.Comck(pcom

i,j (X), d(|i|, i, j);ωcom
i,j) ∧

cmid
i,j = PC.Comck(pmid

i,j (X), d(|i|, i, j);ωmid
i,j) ∧

ĉk = AC.Comack((wi)i∈Ik
; rk) where

w = WitExt((pcom
i,j (X) + pmid

i,j (X))(i,j)∈W) ∧
v((i,j),z) = pcom

i,j (z) + pcom
i,j (z)

for all ((i, j), z) ∈ Q such that (i, j) ∈W


Remark 3. On a high-level the relation guarantees “the prover knows polyno-
mials committed via PC, such that their sum correctly decodes to the partial
witnesses committed via AC”. Although the correctness of polynomial evaluation
(i.e., the condition “v((i,j),z) = pcom

i,j (z) + pcom
i,j (z)”) is also part of Rlnk, we re-

mark that this is redundant since it is to be proven by the opening algorithm of
PC outside CPlnk anyway. Looking ahead, security proof of our compiler indeed
holds even without showing such a condition within CPlnk. We rather include
this for the ease of proving knowledge soundness of CPlnk; in concrete instan-
tiations, an extractor of CPlnk typically needs to extract what is committed to
cmid
i,j by internally invoking an extractor of PC, which however is only guaranteed
to succeed if the evaluation proof is valid. Hence, by letting CPlnk take care of
evaluation proof by default we can easily make such an argument go through. In
later sections our CPlnk for Sonic takes advantage of this generalization, while
the ones for PLONK and Marlin don’t since they create a special evaluation proof
independent of the AHP query phase.

Intuition about the compiler. The compiler in Figure 1 is close to those in
Marlin [25], Lunar [20] and DARK [18]. One important difference is the use of
polynomial decomposition where the prover will commit separately to each of the
“parts” of the WCPs. This separate commitment will allow efficiently proving
the commitment-linking relation.

Theorem 1. Let F be a field family and R be an indexed relation. Consider the
following components:
– AHP = (k, s, d, I,P,V) is a knowledge sound AHP for R with W -straight-

line unique extractor WitExt, and with a decomposition function Decomp for
witness-carrying polynomials (pi,j(X))(i,j)∈W ;

– PC = (Setup,Com,Open,Check) is an additively homomorphic polynomial
commitment over F with binding and extractability;

– CPlnk = (Ilnk,Plnk,Vlnk) is (preprocessing) non-interactive argument of knowl-
edge for Rlnk (Definition 10)

Then the construction of ARG = (S, I,P,V) in Fig. 1 is a preprocessing ar-
gument system for the relation Rcom. If PC is hiding, CPlnk is zero-knowledge,
and AHP is zero-knowledge as defined in Definition 3, then ARG is also zero-
knowledge.

17

Moreover, if we additionally assume that the witness-carrying polynomials
are disjoint and Icom ⊂ Ii∗,j∗ for some (i∗, j∗) ∈ W , then the above claim holds
even if CPlnk shows a variant of Rlnk such that all “(i, j) ∈W” are replaced by
(i∗, j∗) and WitExt is replaced by WitExti∗,j∗ .

Remark 4. While in the description of our compiler we generically commit all
polynomials with the same type of polynomial commitments, our instantiations
use some ad-hoc tweaks. In particular, we commit to the witness carrying poly-
nomials using a special version of KZG (see for example the input format of
commitments in Figure 3) different than the one we use for the rest of the or-
acle polynomials. Note that this is a standard optimization trick already used
in previous works, e.g., [25],[32],[48], and we are still able to satisfy the security
requirements of the general compiler this way.

Proof sketch Full proofs are deferred to [3]. Completeness follows from inspec-
tion. In particular, we benefit from a combination of homomorphism of PC and
additive, non-overlapping decomposition of WCP. For zero-knowledge, we con-
struct a simulator S by using the simulators SimPC from the polynomial com-
mitment (hiding property), the zero-knowledge simulator Simlnk of CPlnk and
the zero-knowledge simulator SimAHP of AHP. For knowledge soundness, we con-
struct the extractor EARG that works as follows: (1) Extract the polynomials from
the polynomial commitments sent at each round through the extractor EPC for
the polynomial commitments; (2) From these, for each (i, j) ∈W reconstruct the
WCP as p̃i,j(X); (3) On the other hand, extract auxiliary commitment random-
ness (r̃k)k∈[`] as well as decomposed WCP (pcom

i,j (X), pmid
i,j (X))(i,j)∈W such that

pi,j(X) = pcom
i,j (X) + pmid

i,j (X), by invoking the extractor Elnk for CPlnk; (4) Ex-
tract witness (w̃i)i∈[n] from theW -straight-line extractor as WitExt(p̃i,j(X))(i,j)∈W ;
(5) Return ((w̃i)i∈[n], (r̃k)k∈[`]).

4 Compressed Σ-protocol for Equality

We describe how to construct an efficient protocol proving equality of committed
vectors, following the framework due to Attema and Cramer [4] and Attema,
Cramer and Fehr [5]. This allows us to instantiate CPlnk with proof size of only
O(log(`d)) when ` Pedersen commitments are received as inputs.

4.1 AmComEq: Amortization of ` commitment equality proofs
In our application, we would like to show equality of vectors within a single
commitment containing vector of size `d (corresponding to a polynomial com-
mitment) and ` chunks of vector of size d in multiple Pedersen commitments.
Concretely, our goal is to give an efficient protocol for relation

RAmComEq =


((g,h,G,H, d, d′, d′′, `),

(C, Ĉ1, . . . , Ĉ`),
(w,α,β1, . . . ,β`))

:
C = gwhα, Ĉi = GwiHβi ,

g ∈ G`d,G ∈ Gd,h ∈ Gd′ ,H ∈ Gd′′ ,
wi ∈ Zdq ,α ∈ Zd′q ,βi ∈ Zd′′q ,w = [w1, . . . ,w`]


(1)

18

Protocol ECLIPSE compiler

Setup S(1κ,N, d). The setup S on input a security parameter κ ∈ N and size bound N ∈ N, uses N to compute a maximum degree bound
D, samples pp ← PC.Setup(1κ, D), samples ack ← AC.Setup(1κ, d), and then outputs srs := (pp, ack). The integer D is computed to be the
maximum degree bound in AHP for indices of size N. In other words,

D := max{d(N, i, j)|i ∈ {0, 1, . . . , k(N)}, j ∈ {1, . . . , s(i)}}

Indexer Isrs(i, Icom, (Ik)k∈[`]). The indexer I upon input i, commitment index sets Icom, (Ik)k∈[`] and given oracle access to srs, deduces the
field F ∈ F contained in srs = (pp, ack), runs the AHP indexer I on (F, i) to obtain s(0) polynomials (p0,j)s(0)

j=1 ∈ F[X] of degrees at most
(d(|i|, 0, j))s(0)

j=1. Then it proceeds by computing (ck, rk) := PC.Trimpp(d), where d = (d(|i|, i, j))i∈[k],j∈[s(i)], and generating (de-randomized)
commitments to index polynomials (c0,j)s(0)

j=1 = PC.Comck((p0,j)s(0)
j=1). It also invokes the indexer of CPlnk: (ipklnk, ivklnk)← Isrs

lnk(Icom, (Ik)k∈[`]).
The indexer outputs ipk := (ck, i, (p0,j)s(0)

j=1, (c0,j)s(0)
j=1, ipklnk) and ivk := (rk, (c0,j)s(0)

j=1, ivklnk).
Input. The ARG prover P receives (ipk, (x, (ĉk)k∈[`]), ((wi)i∈[n], (rk)k∈[`])) and the verifier V receives (ivk, (x, (ĉk)k∈[`])).
Online phase. For every round i ∈ [k], P and V run the i-th round of interaction between the AHP prover P(F, i, x,w) and verifier V(F, x).

1. V receives random challenge ρi ∈ F from V, and forwards it to P.
2. P forwards ρi to P, which replies with polynomials pi,1, . . . , pi,s(i) ∈ F[X] with deg(pi,j) ≤ d(|i|, i, j).
3. P computes and outputs commitments as follows.

– If i = kw (i.e. witness-committing round), then P first decomposes witness-carrying polynomials as

(pcom
i,j (X), pmid

i,j (X))(i,j)∈W := Decomp((pi,j(X))(i,j)∈W , Icom)

such that pi,j(X) = pcom
i,j (X) + pmid

i,j (X).
– For every (i, j) ∈W , P sends

ccom
i,j := PC.Comck(pcom

i,j (X), d(|i|, i, j);ωcom
i,j)

cmid
i,j := PC.Comck(pmid

i,j (X), d(|i|, i, j);ωmid
i,j)

to V, where ωcom
i,j and ωmid

i,j are uniformly sampled masking polynomials according the polynomial commitment scheme. P lets ωi,j :=
ωcom
i,j + ωmid

i,j . V computes ci,j := ccom
i,j + cmid

i,j .
– For every (i, j) /∈W , P sends

ci,j := PC.Comck(pi,j(X), d(|i|, i, j);ωi,j)

to V.
After k rounds of interaction, V obtains an additional challenge ρk+1 ∈ F∗ from the AHP verifier V, used in the next phase. Let c :=
(ci,j)i∈[k],j∈[s(i)], p := (pi,j)i∈[k],j∈[s(i)], ω := (ωi,j)i∈[k],j∈[s(i)] and d := (d(|i|, i, j))i∈[k],j∈[s(i)].

Query phase.
1. V sends ρk+1 ∈ F∗ that represents randomness for the query phase of V(F, x) to P.
2. P uses the query algorithm of V to compute the query set Q := QV(F, x; ρ1, . . . , ρk, ρk+1).
3. P replies with answers v := p(Q).
4. V samples and sends an opening challenge ξ ∈ F to P.
5. P replies with an evaluation proof to demonstrate correctness of all claimed evaluations.

πEval := PC.Openck(p,d, Q, ξ;ω)

Linking phase. P invokes

Plnk(ipklnk, ((ĉk)k∈[`],v, Q, (ccom
i,j (X), cmid

i,j (X))(i,j)∈W), ((pcom
i,j (X), pmid

i,j (X))(i,j)∈W , (ωcom
i,j (X), ωmid

i,j (X))(i,j)∈W , (rk)k∈[`]))

to obtain and send linking proof πlnk.
Decision phase. V accepts if and only if the following conditions hold:

– the decision algorithm of V accepts the answers, i.e., DV(F, x,v, ρ1, . . . , ρk, ρk+1) = 1;
– the alleged answers pass the test, i.e., PC.Checkrk(c,d, Q,v, πEval, ξ) = 1;
– the alleged linking proof is verified, i.e., Vlnk(ivklnk, ((ĉk)k∈[`],v, Q, (ccom

i,j (X), cmid
i,j (X))(i,j)∈W), πlnk) = 1;

Fig. 1. Compiler from AHP to Interactive AoK for Rcom. The differences with the Marlin compiler are marked in red.
19

Protocol AmComEq

1. V sends random challenge x ∈ Zq. Both parties compute G̃ = [G,Gx, . . . ,Gx`−1
].

2. P samples random r ∈ Z`dq , δ ∈ Zd
′
q , γ ∈ Zd

′′
q , and sends A = grhδ and Â = G̃rHγ

3. V sends random challenge e ∈ Zq.

4. P sends z = r + ew, ω = δ + eα, and Ω = γ + e
∑`

i=1 βix
i−1.

5. V checks gzhω ?= ACe and G̃zHΩ ?= Â
∏`

i=1(Ĉx
i−1
i)e.

Fig. 2. Four-move protocol for amortized equality of many vector Pedersen commitments.

where we assume d′ and d′′ are small constants (for concrete instantiations in
later sections, we only need d′ ≤ 4 and d′′ = 1). Our starting point is a naïve
ComEq Σ-protocol proving equality of vectors committed in two Pedersen com-
mitments, with proof size of O(d). To avoid invoking ComEq individually for
many commitments we first amortize the statements. The main idea of amorti-
zation is to introduce additional challenge x ∈ Zq and use it to take a random
linear combination in the exponent. A similar idea has appeared in many con-
texts, e.g., amortization of many range proofs in Bulletproofs [17] and batch
verification of EdDSA signatures. Note that the protocol below can be seen
as a verifier-optimized version of the technique described by Attema–Cramer–
Fehr [5, §3.4]. For completeness, in [3] we include a version derived by invoking
their amortization of multiple group homomorphisms in a black-box way. The
advantage of our AmComEq over AmComEq′ is that it allows to save ` group
exponentiations on verifier’s side (i.e., computation of H̃), by letting the prover
precompute amortization of commitment randomness βi. However, the proof
sizes are identical.

Note also that the protocol is 4-round where the first message is a challenge,
which does not really fit into the format of standard Fiat–Shamir transform [30].
However, one can easily make it applicable by either introducing additional round
where the prover first sends a dummy randomness, or let them send A before
receiving challenge x. Security proof is deferred to [3].

Theorem 2. AmComEq is a four-move protocol for the relation RAmComEq. It
is perfectly complete, computationally (`, 2)-special sound if finding non-trivial
discrete-log relation for the generators [g,h] is hard, and special HVZK. More-
over, the communication costs are:
– P → V: 2 elements of G and `d+ d′ + d′′ elements of Zq.
– V → P: 2 elements of Zq.

4.2 CompAmComEq: Recursive compression

The major drawback of AmComEq is that its proof size is still linear in the vector
dimension `d, due to the response vector z ∈ Z`dq . Notice however that once the

20

rest of transcript x,A, Â, e,ω,Ω is fixed, it should be sufficient to prove knowl-
edge of z such that gz = Y := ACeh−ω and G̃z = Ŷ := Â

∏`
i=1(Ĉxi−1

i)eH−Ω,
instead of sending z. This is where the compressed Σ-protocol theory [4, 5, 7, 6]
comes into play. That is, the last move of AmComEq can invoke another protocol
CompDLEq of proof size O(log(`d)), for the relation

RDLEq =
{

((g, G̃, `d), (Y, Ŷ), z) : Y = gz, Ŷ = G̃z
}
. (2)

The protocol CompDLEq for RDLEq is described in [3]. From [4, Theorem 2]
we immediately get the following result.

Corollary 1. Let CompAmComEq be a protocol identical to AmComEq, except
that its last move is replaced by CompDLEq. CompAmComEq is a (2µ + 4)-
move protocol for the relation RAmComEq, where µ = dlog2(`d)e − 1. It is per-
fectly complete and computationally (`, 2, k1, . . . , kµ)-special sound if finding non-
trivial discrete-log relation for the generators [g,h] is hard, where ki = 3 for all
i ∈ [1, µ]. Moreover, the communication costs are:
– P → V: 4 dlog2(`d)e − 2 elements of G and 2 + d′ + d′′ elements of Zq.
– V → P: dlog2(`d)e+ 1 elements of Zq.

5 Instantiation with PLONK

In this section we apply our ECLIPSE compiler to PLONK. We first go over the
essential part of the PLONK protocol, using the language of AHP. More detailed
preliminaries are provided in [3].

5.1 PLONK AHP

We consider an arithmetic circuit with fan-in two over F, consisting of n gates.
The PLONK AHP essentially proves knowledge of left, right and output wire
values for every gate i ∈ [n] in the circuit, such that they are also consis-
tent with the constraints determined by the circuit topology. The per-gate con-
straints are specified by selector vectors qL,qR,qO,qM ,qC ∈ Fn. We call C =
(n,m,L,R,O,qL,qR,qO,qM ,qC) constraint systems.

AHPPLONK relies on a multiplicative subgroup H =
{
ζ, ζ2, . . . , ζn

}
⊂ F∗

generated by an nth primitive root of unity ζ ∈ F∗. It follows that an associated
vanishing polynomial vH(X) = Xn − 1 splits completely in F[X], i.e., Xn − 1 =∏n
i=1(X− ζi). Then we have the corresponding Lagrange basis Li(X) ∈ F<n[X]

for i ∈ [n] such that Li(ζi) = 1 and Li(ζj) = 0 for j 6= i.
During the first round of AHPPLONK, the prover sends the following WCPs

encoding both statement and witness ((wi)i∈[l], (wi)i∈[l+1,3n]):

fL(X) =
∑
i∈[n]

wiLi(X) fR(X) =
∑
i∈[n]

wn+iLi(X) fO(X) =
∑
i∈[n]

w2n+iLi(X)

(3)

21

To achieve zero-knowledge these polynomials are masked by polynomials
(ρL,1X + ρL,2)vH(X), (ρR,1X + ρR,2)vH(X) and (ρO,1X + ρO,2)vH(X) where
each coefficient is randomly sampled by the AHP prover.

5.2 CP-PLONK

Our goal is to turn AHPPLONK into CP-PLONK with our compiler. We first de-
scribe a commit-and-prove variant of relation R′PLONK. The auxiliary commit-
ment scheme AC is instantiated with vector Pedersen commitment and its key
ack consists of randomly chosen generators of G with unknown relative discrete
logarithms: G = (G1, . . . , Gd) and H.

We assume without loss of generality that every committed witness (wi)i∈Icom

is left input to gate i. Then we use the following disjoint witness index sets:
Ipub = [l], Icom = [l+1, l+`d], Imid = [l+`d+1, n], assuming that wl+1, . . . ,wl+`d
are `d witness values committed in advance. Moreover, every d values are batched
into a single commitment, that is, every vector compound of d wires wi, for
i ∈ Ik = [l+1+d(k−1), l+dk], is committed to in the kth auxiliary commitment
Ĉk = G(wi)i∈IkHrk for k ∈ [`]. Then we have Icom =

⋃
k∈[`] Ik.

Definition 11 (CP-PLONK indexed relation). The indexed relation RCP-PLONK
is the set of all triples

((F, n,m, l,qL,qR,qO,qM ,qC , σ, TC , Icom, (Ik)k∈[`], ack), ((wi)i∈[l], (Ĉk)k∈[`]), ((wi)i∈[l+1,3n], (rk)k∈[`]))

such that

∀i ∈ [n] : wi = wσ(i)

∀i ∈ [l] : (qL)i · wi + (qR)i · wn+i + (qO)i · w2n+i + (qM)iwiwn+i + (qC)i − wi = 0
∀i ∈ [l + 1, n] : (qL)i · wi + (qR)i · wn+i + (qO)i · w2n+i + (qM)iwiwn+i + (qC)i = 0

∀k ∈ [`] : Ĉk = G(wi)i∈IkHrk

5.2.1 Applying our compiler We show that AHPPLONK as well as the poly-
nomial commitment scheme meets the requirements of Theorem 1.
– Decomp takes nw = 3 masked WCPs (fL, fR, fO) and Icom ⊂ [n], parses fL

as
∑
i∈[n] wiLi(X) + (ρ1X + ρ2)vH(X), and decompose them as follows.

fL,com(X) :=
∑
i∈Icom

wiLi(X) + (λcom,1X + λcom,2)vH(X) fR,com(X) := 0 fO,com(X) := 0

fL,mid(X) :=
∑

i∈[n]\Icom

wiLi(X) + (λmid,1X + λmid,2)vH(X) fR,mid(X) := fR(X) fO,mid(X) := fO(X)

where λcom,i’s are randomly chosen and λmid,i := ρi − λcom,i. Clearly, the
decomposition is additive, degree-preserving, and non-overlapping.

22

– WitExt takes WCPs (fL, fR, fO) and uniquely extracts witness vectors for
every i ∈ [n]

wi = fL(ζi) wn+i = fR(ζi) w2n+i = fO(ζi)

As it’s independently extracting witness values within disjoint index sets
IL = [n], IR = [n+ 1, 2n], and IO = [2n+ 1, 3n], respectively, we have that
fL, fR and fO are disjoint (see Definition 7).

– As PLONK retains zero-knowledge by masking WCPs, but without hiding
commitment9, we use de-randomized version of PCKZG.Comck (see Sect. 2.2.1)
that takes polynomial f ∈ F≤D[X] and outputs [f(χ)]1. Hence the poly-
nomial commitment key is ck = pp = (g, gχ, . . . , gχD). Clearly, this is an
additively homomorphic commitment scheme. Its binding and extractability
were formally shown in Appendix B-D of [25]. As mentioned in [32] and from
how WitExt works, the knowledge soundness of PLONK holds only by en-
forcing degree bound to the maximum degree D for committed polynomials
so the plain KZG construction should suffice for compiling AHPPLONK.
We now define a suitable commitment-linking protocol CPlnk in Fig. 3. Since

WCPs are disjoint it is enough to provide linking w.r.t. a polynomial fL. The
main idea is to (1) prove consistency between fL,com and auxiliary commitments
Ĉk with the AmComEq protocol from previous section, and (2) force the prover
to show fmid vanishes at all points in Hcom =

{
ζi
}
i∈Icom

. The latter is in partic-
ular crucial for WitExt to successfully output a witness vector consistent with
auxiliary commitments, even after taking the sum of fL,com and fL,mid. This step
only incurs constant overhead in the evaluation proof thanks to the batch eval-
uation technique proposed in [14]. On the other hand, the consistency between
fcom and ` vector Pedersen commitments Ĉk = G(wi)i∈IkHrk for k ∈ [`] are
handled by CompAmComEq protocol (see Sect. 4).

Lemma 1. Assuming extractability of PCKZG and argument of knowledge of
CompAmComEq, the protocol CPlnk (Fig. 3) is an argument of knowledge. As-
suming zero knowledge of Fiat–Shamir-transformed CompAmComEq, the protocol
CPlnk is zero-knowledge in the SRS model.

Proof is deferred to [3].

9 More formally, if the underlying AHP is (b + 1,C)-zero knowledge, where b is the
maximum number of queries made by the verifier to polynomials, one can retain ZK
of the resulting SNARK by compiling AHP via PCS with somewhat hiding security,
a weaker notion of hiding [20]. Because the deterministic KZG is already somewhat
hiding and every WCP in AHPPLONK is queried once, it suffices to add vH multiplied
by a masking polynomial of degree 1 to tolerate 2 openings (i.e., one evaluation and
one commitment).

23

Protocol CPlnk for PLONK

Indexing Isrs
lnk(Icom, (Ik)k∈[`]) precomputes [vHcom (χ)]2 such that vHcom (X) =

∏
a∈Hcom

(X − a) and Hcom ={
ζi : i ∈ Icom

}
⊂ H, obtains generators gi := [Li(χ)]1 for i ∈ Icom, g := (gi)i∈Icom , h1 = [χvH(χ)]1,

h2 = [vH(χ)]1, G and H by accessing srs. It outputs (ipklnk, ivklnk) such that

ipklnk = (pp, vHcom (X), g, h1, h2,G, H) and ivklnk = ([vHcom (χ)]2, g, h1, h2,G, H).

Input. Plnk (resp. Vlnk) receives ipklnk (resp. ivklnk). The statement ((Ĉk)k∈[`], (CL,com, CL,mid)) is a com-
mon input. The Plnk has as input witness (fL,com(X), fL,mid(X), (rk)k∈[`]) such that Ĉk = G(wi)i∈IkHrk ,
CL,com = [fL,com(χ)]1, CL,mid = [fL,mid(χ)]1, fL,com(X) =

∑
i∈Icom

wiLi(X) + (λcom,1X + λcom,2)vH(X),
and fL,mid(X) =

∑
i∈[n]\Icom

wiLi(X) + (λmid,1X + λmid,2)vH(X).

Prove.
– Compute a proof πComEq of the following statement.

CompAmComEq :PK
{

((wi)i∈Icom , (rk)k∈[`], λcom,1, λcom,2) : Ĉk = G(wi)i∈IkHrk∧
CL,com = g(wi)i∈Icomh

λcom,1
1 h

λcom,2
2

}
– Compute evaluation proof W (X) = fL,mid(X)

vHcom (X) and Π := [W (χ)]1. Output πlnk = (Π,πComEq).

Verify. Given πlnk, verify πComEq and check that fL,mid vanishes on Hcom: e(CL,mid, h) ?= e(Π, [vHcom (χ)]2).

Fig. 3. Commitment-linking protocol for PLONK

6 Instantiation with Marlin

In this section we apply our compiler to Marlin. As in the previous section, we
first identify WCPs and how it encodes the witness vector in AHP. More detailed
preliminaries are provided in [3].

6.1 Marlin AHP

Notations. For a finite field F and a subset S ⊆ F, we denote by vS(X) the
vanishing polynomial of S that is the unique non-zero monic polynomial of degree
at most |S| that is zero everywhere on S. We denote by FS the set of vectors
indexed by elements in a finite set S. For a function f : S → F, we denote by
f̂ , the univariate polynomial over F with degree less than |S| that agrees with
f , that is, f̂(a) = f(a) for all a ∈ S. In particular, the polynomial f̂ can be
expressed as a linear combination

f̂(X) =
∑
a∈S

f(a) · La,S(X)

where {La,S(X)}a∈S are the Lagrange basis polynomials of degree less than |S|
such that La,S(a) = 1 and La,S(a′) = 1 for a′ ∈ S \{a}.
Constraint systems. Unlike PLONK, Marlin’s AHP is for R1CS (Rank-1 con-
straint satisfiability) indexed relation defined by the set of tuples (i, x,w) =(
(F,H,K, A,B,C), x, w

)
, where F is a finite field, H and K are subsets of F,

such that n = |H| and m = |K|, A,B,C are H × H matrices over F with
|K| ≥ max{‖A‖ , ‖B‖ , ‖C‖}, and z := (x,w) is a vector in FH such that
Az ◦Bz = Cz.

24

Following [25], we assume efficiently computable bijections φH : H→ [n] and
φK : K→ [m], and denote the first l elements in H and the remaining elements,
via setsH[≤ l] :=

{
a ∈ H : 1 ≤ φH(a) ≤ l

}
andH[> l] :=

{
a ∈ H : l < φH(a) ≤ n

}
respectively. We then denote the first part of the vector z as the public compo-
nent x ∈ FH[≤l] and the second part as witness component w ∈ FH[>l].
WCP. In AHPMarlin, the prover P receives as input the instance x ∈ FH[≤l], a
witness w ∈ FH[>l]. The verifier V receives as input x, and obtains oracle access
to the nine polynomials output at the end of the preprocessing phase.

Let x̂(X) ∈ F<l[X] and ŵ(X) ∈ F≤n−l[X] be polynomials that agree with
the instance x on H[≤ l], and with the shifted witness on H[> l] respectively.
Concretely, these polynomials are defined as follows:

x̂(X) :=
∑

a∈H[≤l]

x(a) · La,H[≤l](X)

ŵ(X) :=
∑

a∈H[>l]

(
w(a)− x̂(a)
vH[≤l](a)

)
· La,H[>l](X) + ρ · vH[>l](X)

where the second term of ŵ is added to retain zero-knowledge when the number
of evaluation queries to ŵ is 1 (which is the case in Marlin AHP) and ρ is sampled
uniformly at random from F. Let z := (x,w) denote the full assignment. Then
the polynomial ẑ(X) := ŵ(X) · vH[≤l](X) + x̂(X) agrees with z on H.

6.2 CP-Marlin

We now turn AHPMarlin into CP-Marlin by applying our compiler. We begin by
giving a commit-and-prove relation for R1CS.
Relation for CP-Marlin. We define an extended relation to accommodate con-
sistency of partial witness wire values and commitment. For convenience we de-
fine the following subsets: Hpub := H[≤ l],Hcom := H[> l,≤ l + d`],Hmid := H[>
l+ d`], assuming that w(a) for a ∈ Hcom are d` values committed to in advance.
Moreover, every d values are batched into a single commitment, that is, every
vector compound of d wires w(a), for a ∈ Hcom,k = H[> l + d(k − 1),≤ l + dk],
is committed to in the kth auxiliary commitment Ĉk = G(w(a))a∈Hcom,kHrk for
k ∈ [`]. Then we have Hcom =

⋃
k∈[`] Hcom,k.

Definition 12 (CP-Marlin indexed relation). The indexed relation RCP-Marlin
is the set of all triples

(i, x,w) =
(
(F,H,K, n,m, l, `, d, A,B,C), (x, (Ĉk)k∈[`]), (w, (rk)k∈[`])

)
where F is a finite field, H and K are subsets of F, such that n = |H| and
m = |K|, A,B,C are H×H matrices over F with |K| ≥ max{‖A‖ , ‖B‖ , ‖C‖},
and z := (x,w) is a vector in FH such that

Az ◦Bz = Cz and ∀k ∈ [`], Ĉk = AC.Commitack((w(a))a∈Hcom,k
; rk)

25

Applying our compiler. We now show that AHPMarlin and the polynomial
commitment scheme PCKZG [42] meet the requirements of Theorem 1.
– Unique witness extraction: WitExt takes ŵ(X), evaluates ŵ(X) on every
a ∈ H[> l], multiplies the results by vH[≤l](a), and add x̂(a) to constructs
a vector of values w ∈ FH[>l]. It is easy to see that WitExt satisfies unique
extraction (Definition 8).

– Decomposable WCP: Decomp takes ŵ(X) and Hcom, and outputs ŵcom and
ŵmid of degree at most n− l as follows:

ŵcom(X) :=
∑
a∈Hcom

(
w(a)− x̂(a)
vH[≤l](a)

)
· La,H[>l](X) + λcom · vH[>l](X)

ŵmid(X) :=
∑
a∈Hmid

(
w(a)− x̂(a)
vH[≤l](a)

)
· La,H[>l](X) + λmid · vH[>l](X)

where λcom was sampled from F uniformly at random and λmid := ρ −
λcom. Clearly, the decomposition is additive, degree-preserving and non-
overlapping.

– Marlin compiles AHPMarlin using the plain KZG polynomial commitment ex-
cept that degrees of hiding polynomials are minimized. That is, to com-
mit to the WCP PCKZG.Comck takes ŵ(X) and ω(X) := ω0 + ω1X as
input and outputs [ŵ(χ) + γω(χ)]1, where ω0, ω1 ∈ F are randomly sam-
pled masking coefficients. As mentioned in §9.2 of [25] and as it’s clear
from how WitExt works, the knowledge soundness of Marlin holds only by
enforcing degree bound to the maximum degree D for committed poly-
nomials. In order to construct our commitment-linking protocol for Mar-
lin, we modify how hiding is achieved. Specifically, we now mask the two
decomposed WCPs independently as follows: commitment to ŵcom(X) is
masked by a random polynomial ωcom(X) := ωcom,0+ωcom,1X and ŵmid(X) is
masked by a random polynomial ωmid(X) that vanishes on Hcom; ωmid(X) :=
(ωmid,0 + ωmid,1X)vHcom(X). Note that, for ŵmid, we do not apply Marlin’s
optimization of minimising the degree.
Following PLONK and Lunar, one may alternatively compile AHPMarlin with
the deterministic KZG by increasing the degree of masking factor to 1 (i.e.,
ρ1X + ρ2) to hide one evaluation and the commitment. In this way, decom-
position of WCPs as well as CPlnk can be done as in CP-PLONK and the
number of SRS elements does not grow due to the CP extension.
In Fig. 4 we present a suitable commitment-linking protocol CPlnk. The key

idea is to have the prover commit to an encoding of the assignment in subsets
Hcom and Hmid into separate polynomials, and then show that ŵmid(X) vanishes
at Hcom, together with the consistency of ŵcom(X) with vector Pedersen com-
mitments Ĉk = G(w(a))a∈Hcom,kHrk for k ∈ [`] via CompAmComEq protocol (see
Sect. 4). We assume that Hcom =

⋃
k∈[`] Hcom,k, Hcom,k’s are disjoint with each

other and of same cardinality d = |Hcom,k|.

26

Protocol CPlnk for Marlin

Indexing Isrs
lnk(Icom, (Ik)k∈[`]) precomputes [vHcom (χ)]2 such that vHcom (X) =

∏
a∈Hcom

(X−a), obtains gen-
erators ga := [La,H[>l](χ)/vH[≤l](a)]1 for a ∈ Hcom, g := (ga)a∈Hcom , h1 := [vH[>l](χ)]1, h2 := [γ]1, h3 :=
[γχ]1, G and H by accessing srs. It outputs (ipklnk, ivklnk) such that

ipklnk = (pp, vHcom (X), g, h1, h2, h3,G, H) and ivklnk = ([vHcom (χ)]2, g, h1, h2, h3,G, H).

Input. Plnk (resp. Vlnk) receives ipklnk (resp. ivklnk). The statement ((Ĉk)k∈[`], (Ccom, Cmid)) is a common
input. The Plnk has as input witness (ŵcom(X), ŵmid(X), (rk)k∈[`]) such that Ĉk = G(w(a))a∈Hcom,kHrk ,
Ccom = [ŵcom(χ) + γωcom(χ)]1, Cmid = [ŵmid(χ) + γωmid(χ)]1, and

ŵcom(X) =
∑
a∈Hcom

(
w(a)− x̂(a)
vH[≤l](a)

)
· La,H[>l](X) + λcom · vH[>l](X)

ŵmid(X) =
∑
a∈Hmid

(
w(a)− x̂(a)
vH[≤l](a)

)
· La,H[>l](X) + λmid · vH[>l](X)

Prove.
– Compute a proof πComEq of the following statement where C̄com := Ccom · g(x̂(a))a∈Hcom .

PK
{

((w(a))a∈Hcom , (rk)k∈[`],
λcom, ωcom,0, ωcom,1) : Ĉk = G(w(a))a∈Hcom,kHrk

∧ C̄com = g(w(a))a∈Hcomhλcom
1 h

ωcom,0
2 h

ωcom,1
3

}
– Compute evaluation proof Π = [W1 + γW2(χ)]1, where W1(X) = ŵmid(X)

vHcom (X) ,W2(X) = ωmid(X)
vHcom (X) . Set

πlnk = (Π,πComEq). Note that since ωmid(X) vanishes on Hcom, is divisible by vHcom , and therefore
W2 is a polynomial.

Verify. Given πlnk, verify πComEq, and check that ŵmid vanishes on Hcom: e(Cmid, h) ?= e(Π, [vHcom (χ)]2).

Fig. 4. Commitment-linking protocol for Marlin

Lemma 2. Assuming extractability of PCKZG and argument of knowledge of
CompAmComEq, the protocol CPlnk (Fig. 4) is an argument of knowledge. As-
suming zero knowledge of Fiat–Shamir-transformed CompAmComEq, the protocol
CPlnk is zero-knowledge in the SRS model.

Proof is deferred to [3].

Acknowledgments

The authors are grateful for Sean Bowe, Ben Fisch, Ariel Gabizon, and Mary
Maller for clarifying the details of their works. We thank the anonymous re-
viewers of PKC 2022 for helpful comments. This work has been supported by:
the Concordium Blockchain Research Center, Aarhus University, Denmark; the
Carlsberg Foundation under the Semper Ardens Research Project CF18-112
(BCM); the European Research Council (ERC) under the European Unions’s
Horizon 2020 research and innovation programme under grant agreement No
803096 (SPEC).

References

1. What is Jubjub? https://z.cash/technology/jubjub

27

https://z.cash/technology/jubjub

2. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for
composite statements. In: CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 643–673.
Springer, Heidelberg

3. Aranha, D.F., Bennedsen, E.M., Campanelli, M., Ganesh, C., Orlandi, C., Taka-
hashi, A.: Eclipse: Enhanced compiling method for pedersen-committed zksnark
engines. Cryptology ePrint Archive, Report 2021/934

4. Attema, T., Cramer, R.: Compressed Σ-protocol theory and practical application
to plug & play secure algorithmics. In: CRYPTO 2020, Part III. LNCS, vol. 12172,
pp. 513–543. Springer, Heidelberg

5. Attema, T., Cramer, R., Fehr, S.: Compressing proofs of k-out-of-n partial knowl-
edge. Cryptology ePrint Archive, Report 2020/753

6. Attema, T., Cramer, R., Kohl, L.: A compressed σ-protocol theory for lattices.
Cryptology ePrint Archive, Report 2021/307

7. Attema, T., Cramer, R., Rambaud, M.: Compressed σ-protocols for bilinear group
arithmetic circuits and applications. Cryptology ePrint Archive, Report 2020/1447

8. Backes, M., Hanzlik, L., Herzberg, A., Kate, A., Pryvalov, I.: Efficient non-
interactive zero-knowledge proofs in cross-domains without trusted setup. In:
PKC 2019, Part I. LNCS, vol. 11442, pp. 286–313. Springer, Heidelberg

9. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE Computer Society Press

10. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In: CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg

11. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: USENIX Security 2014. pp. 781–
796. USENIX Association

12. Benarroch, D., Campanelli, M., Fiore, D., Kim, J., Lee, J., Oh, H., Querol, A.:
Proposal: Commit-and-prove zero-knowledge proof systems and extensions. 4th
ZKProof Workshop

13. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: TCC 2013. LNCS, vol. 7785,
pp. 315–333. Springer, Heidelberg

14. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Efficient polynomial commitment
schemes for multiple points and polynomials. Cryptology ePrint Archive, Report
2020/081

15. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge ar-
guments for arithmetic circuits in the discrete log setting. In: EUROCRYPT 2016,
Part II. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg

16. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report
2017/1050

17. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy. pp. 315–334. IEEE Computer Society Press

18. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 677–706. Springer, Heidel-
berg

19. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups
(extended abstract). In: CRYPTO’97. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg

28

20. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodríguez, H.: Lunar: a tool-
box for more efficient universal and updatable zksnarks and commit-and-prove
extensions. Cryptology ePrint Archive, Report 2020/1069

21. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: Modular design and compo-
sition of succinct zero-knowledge proofs. In: ACM CCS 2019. pp. 2075–2092. ACM
Press

22. Campanelli, M., Hall-Andersen, M.: Veksel: Simple, efficient, anonymous pay-
ments with large anonymity sets from well-studied assumptions. Cryptology ePrint
Archive, Report 2020/1069

23. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: ACM CCS 2017. pp. 1825–1842. ACM Press

24. Chase, M., Ganesh, C., Mohassel, P.: Efficient zero-knowledge proof of algebraic
and non-algebraic statements with applications to privacy preserving credentials.
In: CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 499–530. Springer, Heidelberg

25. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: Pre-
processing zkSNARKs with universal and updatable SRS. In: EUROCRYPT 2020,
Part I. LNCS, vol. 12105, pp. 738–768. Springer, Heidelberg

26. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M.,
Parno, B., Zahur, S.: Geppetto: Versatile verifiable computation. In: 2015 IEEE
Symposium on Security and Privacy. pp. 253–270. IEEE Computer Society Press

27. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: CRYPTO’94. LNCS, vol. 839, pp.
174–187. Springer, Heidelberg

28. Damgård, I., Ganesh, C., Khoshakhlagh, H., Orlandi, C., Siniscalchi, L.: Balancing
privacy and accountability in blockchain identity management. In: CT-RSA 2021.
LNCS, vol. 12704, pp. 552–576. Springer, Heidelberg

29. Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Parno, B.: Cinderella: Turning
shabby X.509 certificates into elegant anonymous credentials with the magic of
verifiable computation. In: 2016 IEEE Symposium on Security and Privacy. pp.
235–254. IEEE Computer Society Press

30. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: CRYPTO’86. LNCS, vol. 263, pp. 186–194. Springer,
Heidelberg

31. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 33–62. Springer, Heidelberg

32. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953

33. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–
645. Springer, Heidelberg

34. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster zero-knowledge for Boolean
circuits. In: USENIX Security 2016. pp. 1069–1083. USENIX Association

35. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC. pp. 291–304. ACM Press

36. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg

37. Groth, J.: On the size of pairing-based non-interactive arguments. In: EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg

29

38. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable
and universal common reference strings with applications to zk-SNARKs. In:
CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728. Springer, Heidelberg

39. Guillou, L.C., Quisquater, J.J.: A practical zero-knowledge protocol fitted to
security microprocessor minimizing both trasmission and memory. In: EURO-
CRYPT’88. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg

40. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short pcps. In:
Twenty-Second Annual IEEE Conference on Computational Complexity (CCC’07).
pp. 278–291. IEEE

41. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: ACM CCS 2013. pp. 955–966.
ACM Press

42. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomi-
als and their applications. In: ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194.
Springer, Heidelberg

43. Kosba, A., Zhao, Z., Miller, A., Qian, Y., Chan, H., Papamanthou, C., Pass, R.,
shelat, a., Shi, E.: How to use SNARKs in universally composable protocols. Cryp-
tology ePrint Archive, Report 2015/1093

44. Lee, J., Choi, J., Kim, J., Oh, H.: Saver: Snark-friendly, additively-homomorphic,
and verifiable encryption and decryption with rerandomization. Cryptology ePrint
Archive, Report 2019/1270

45. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer,
Heidelberg

46. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In: ASIACRYPT 2013, Part I. LNCS,
vol. 8269, pp. 41–60. Springer, Heidelberg

47. Lipmaa, H.: Prover-efficient commit-and-prove zero-knowledge SNARKs. In:
AFRICACRYPT 16. LNCS, vol. 9646, pp. 185–206. Springer, Heidelberg

48. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings.
In: ACM CCS 2019. pp. 2111–2128. ACM Press

49. Maxwell, G.: Confidential transactions. URL: https://people. xiph. org/greg/con-
fidential values. txt

50. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252.
IEEE Computer Society Press

51. Schnorr, C.P.: Efficient identification and signatures for smart cards. In:
CRYPTO’89. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg

52. Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup.
In: CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 704–737. Springer, Heidelberg

53. Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zk-
SNARKs without trusted setup. In: 2018 IEEE Symposium on Security and Pri-
vacy. pp. 926–943. IEEE Computer Society Press

54. Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: A distributed zero
knowledge proof system. In: USENIX Security 2018. pp. 675–692. USENIX Asso-
ciation

30

	Introduction
	Applications
	Our Contributions
	Technical Overview
	Related Work

	Preliminaries
	Algebraic Holographic Proofs
	Polynomial Commitment

	AHP-to-CP-SNARK compiler
	Additional Preliminaries for Compiler
	Additional properties for AHP
	Our compiler

	Compressed -protocol for Equality
	AmComEq: Amortization of commitment equality proofs
	CompAmComEq: Recursive compression

	Instantiation with PLONK
	PLONK AHP
	CP-PLONK

	Instantiation with Marlin
	Marlin AHP
	CP-Marlin

