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Abstract. Range proofs allow a sender to convince a verifier that com-
mitted integers belong to an interval without revealing anything else. So
far, all known non-interactive range proofs in the standard model rely
on groups endowed with a bilinear map. Moreover, they either require
the group order to be larger than the range of any proven statement or
they suffer from a wasteful rate. Recently (Eurocrypt’21), Couteau et
al. introduced a new approach to efficiently prove range membership by
encoding integers as a modular ratio between small integers. We show
that their technique can be transposed in the standard model under
the Composite Residuosity (DCR) assumption. Interestingly, with this
modification, the size of ranges is not a priori restricted by the common
reference string. It also gives a constant ratio between the size of ranges
and proofs. Moreover, we show that their technique of encoding messages
as bounded rationals provides a secure standard model instantiation of
the Naor-Yung CCA2 encryption paradigm under the DCR assumption.
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1 Introduction

Zero-knowledge proofs [36] make it possible for a prover to convince a verifier
about the truth of a statement while revealing nothing else. Since their intro-
duction, they have been used in countless cryptographic protocols to protect
users’ privacy or to hedge against malicious adversaries. In many situations, it
is desirable to have non-interactive zero-knowledge (NIZK) proofs comprised of
a single message from the prover to the verifier. In the non-interactive setting,
NIZK proofs necessarily rely on a common reference string generated by some
trusted party. While the Fiat-Shamir paradigm [32] allows for non-interactive
proofs without a trusted setup in the random oracle model, it is known to only
provide heuristic arguments in terms of security.

In the standard model, NIZK proofs are known to exist for all NP lan-
guages under well-studied assumptions [7,6,40,56]. For specific languages, how-
ever, much more efficient constructions are often possible, by dispensing with
the need for an expensive Karp reduction.



Efficient NIZK constructions exist in the context of range proofs [11], where a
prover convinces a verifier that a committed value belongs to a specific interval.
Range proofs served as a building block of a number of cryptographic protocols,
including anonymous credentials or e-cash [15], auction protocols [51], e-voting
[38], and many more. Recently, they also served as crucial components of cryp-
tocurrencies [53,12], where transaction amounts are private and only appear in
committed [53] or encrypted [12] form. Range proofs then come into play to
ensure that the committed/encrypted value lives in the correct range instead of
being, e.g., slightly larger than the order of the message space.

A widely used approach [10,49,38] proceeds by committing to integers [35,28],
rather than finite field elements. By withholding the order |M| of the message
space, it forces the prover argue over the integers in order to demonstrate that
a committed integer fits in a range [0, B], where B ∈ Z may be larger than |M|.

Recently, Couteau et al. [24] suggested an elegant technique that surpris-
ingly emulates the properties of integer commitments in the discrete logarithm
setting over public-order groups. The core idea of their construction is to view
each Pedersen commitment [55] C = gm · hr as committing to the rounded ra-
tional bx/ce ∈ Z, where x and c are small-magnitude integers x, c ∈ Z such that
m = x · c−1 mod q, where q is the group order. This approach yields instantia-
tions in class groups and under lattice assumptions. In the discrete-log setting,
it outperforms the BulletProof technique [13] for a wide range of parameters.
It also enables either computational or statistical soundness (whereas integers
commitments only offer computational soundness).

In this paper, we consider their approach in the Composite Residuosity set-
ting [54], where we highlight several advantages when proving range membership
of Paillier-encrypted values.

1.1 Our Contribution

Range Proofs. We provide the first unbounded non-interactive range proof
with constant rate in the standard model. The rate is defined in the standard
way, as the ratio between the length of the witness and the total length of
commitments and proofs. By “unbounded”, we mean that a fixed-size common
reference string makes it possible to commit to arbitrarily large integers.4 In
the standard model, it is also the first non-interactive candidate that does not
rely on pairing-friendly groups. Instead, we can prove security under the stan-
dard Composite Residuosity (DCR) and Learning-with-Errors (LWE) [57] as-
sumptions. While our construction provides statistical soundness (and computa-
tional zero-knowledge), it can be turned into a dual-mode NIZK system – where
soundness/zero-knowledge can be either statistical or computational depending
on the configuration of the CRS – at the cost of sacrificing unboundedness.

In either case, we obtain space-efficient proofs consisting of a constant num-
ber of Damg̊ard-Jurik [29] ciphertexts. Asymptotically, the communication cost

4 It is tempting to believe that Groth-Sahai proofs achieve unboundedness. In the full
version of this paper, we explain why it is not the case.
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is dominated by O(λ3−O(1) + logB) bits, where B is the range size, which is on
par with constructions based on integer commitments [49,38,25] in the random
oracle model. In comparison, standard-model solutions based on Groth-Sahai
proofs [41] cost O(λ · logB) per proof.

Our unbounded range proof makes it possible to prove that a Paillier ci-
phertext decrypts to a modular ratio M = x · c−1 mod Nζ , for some ζ ∈ N
and bounded integers x, c ∈ Z such that bx/ce ∈ Z belongs to a range [0, B].
As a second contribution, we show that this encoding technique can be used to
instantiate the Naor-Yung CCA2-secure encryption paradigm [52].

DCR-based Instantiation of Naor-Yung in the Standard Model. We
give a Σ-protocol proving plaintext equalities between Paillier ciphertexts en-
crypted under distinct moduli, which restores the soundness of a Σ-protocol
used by Fouque and Pointcheval [33]. Recently, Devevey et al. [30, Appendix
E] showed that the Σ-protocol of [33, Section 4.2] does not provide soundness
as a cheating prover can exploit the distinct moduli to prove false statements.
This invalidates the proof5 that the DCR-based threshold cryptosystem of [33]
provides IND-CCA2 security in the random oracle model. Devevey et al. [30] sug-
gested to fix the problem by additionally proving that the plaintext is smaller
than both Paillier moduli. While efficient range proofs (e.g., [38,25,13]) can solve
this problem in the random oracle model, we do not know how to instantiate
them in the standard model via the Fiat-Shamir paradigm. To achieve standard-
model security by exploiting correlation-intractable hash functions as in [19,56],
we show that no range proof is actually necessary if the decryption algorithm is
modified and “undoes” the rational modular encoding of Couteau et al. [24].

We show that the modified decryption algorithm can be combined with the
correlation-intractable hash functions of [19,56] so as to instantiate the scheme
in the standard model. As a result, we obtain a new construction of a non-
interactive threshold CCA2-secure cryptosystem without pairings. Devevey et
al. [30] recently proposed such a construction under the DCR and LWE assump-
tions. Our scheme provides several advantages over their construction. It notably
inherits a property of the Damg̊ard-Jurik system [29], which makes it possible
to encrypt very long messages6 for a fixed size public key comprised of an RSA
modulus N . Variable-length plaintexts can even be encrypted by flexibly choos-
ing an integer ζ > 1, depending on the message length, and working over Z∗Nζ+1 .
In the threshold setting, the key generation phase requires to set a bound on
the maximal value of ζ. However, this constraint disappears in the centralized
(i.e., non-threshold) case, where we can CCA2-encrypt variable-length messages
using a fixed-size public key without using hybrid encryption. To our knowledge,

5 We are not aware of any effective attack. Only the proof of IND-CCA2 security in
the ROM is affected.

6 A common approach to encrypt long messages is to use hybrid encryption. However,
it makes it harder to prove properties about encrypted data in zero-knowledge.
It also destroys the additive homomorphic homomorphic properties that we retain
when we discard ciphertext components that ensure chosen-ciphertext security. The
latter property is useful in the context of voting protocols [5].
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this useful property of the Damg̊ard-Jurik cryptosystem was never preserved in
the chosen-ciphertext setting (at least in the standard model).

We believe that, even in the random oracle model, properly instantiating
Naor-Yung under the DCR assumption is important. For example, it provides a
convenient way to encrypt arbitrarily long messages with a fixed-size public key
while preserving the possibility of efficiently proving properties (e.g., range mem-
bership) about encrypted data, which would be difficult using hybrid encryption.
It also provides a “voting-friendly” encryption scheme – in the terminology of
[5] – in the sense that the keys/ciphertexts of the threshold CCA2-secure sys-
tem can be publicly mapped to the keys/ciphertexts of an embedded additively
homomorphic encryption scheme.

1.2 Technical Overview

Our range proofs depart from all known standard-model candidates [14,58],
which are based on Groth-Sahai proofs [41] and proceed by breaking the commit-
ted integers into bits. To our knowledge, this approach either restricts committed
integers to be smaller than the group order, or they are inherently stuck with a
somewhat wasteful rate O(1/λ) caused by bit-by-bit comparisons (as discussed
in the full version of this paper). In the discrete-log setting, the construction of
Couteau et al. [24] also requires the group order to be sufficiently larger than
the maximal magnitude of committed integers.

To avoid this a priori bound on the range of committed values, we leverage
a property of the Damg̊ard-Jurik cryptosystem in that the CRS only consists of
an RSA modulus N = pq. The prover commits to an integer in a range [0, B]
by having the prover first choose a sufficiently large ζ ≥ 1 such that B < Nζ

exactly as in the Damg̊ard-Jurik encryption scheme. Following the approach of
Kiayias et al. [44], we can obtain a constant rate as the ratio between the size of
the proof and that of witnesses becomes constant (actually, less than 20) for a
large ζ ∈ poly(λ). Unlike our main construction, our dual-mode variant requires
a CRS that fixes an integer ζ ≥ 1 once-and-for-all.

In order to prove security in the standard model, we build on recent progress
on instantiations of the Fiat-Shamir paradigm. Canetti et al. [16] and Peikert and
Shiehian [56] showed that Fiat-Shamir can provide soundness in the standard
model under the Learning-With-Errors (LWE) assumption [57], which yields cor-
relation intractable (CI) hash functions [17] for efficiently searchable relations.

Correlation intractability for a relation R requires the infeasibility of find-
ing x such that (x,Hk(x)) ∈ R given a random hashing key k. It guarantees
soundness by preventing a cheating prover’s first message a from being hashed
into a challenge Chall = Hk(a) admitting a valid response z. Canetti et al. [19]
showed that CI hash functions for efficiently searchable relations suffice when
Fiat-Shamir is applied to trapdoor Σ-protocols. These are Σ-protocols that as-
sume a CRS and where an efficiently computable function BadChallenge can
identify (on input of a trapdoor τΣ , the false statement x and the prover’s first
message a) the only challenge Chall such that an accepting transcript (a,Chall, z)
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exists for some z. Libert et al. [47] (based on earlier observations from [21,50])
showed that the group structure of Paillier allows BadChallenge to identify bad
challenges within an exponentially large challenge space, thus eliminating the
need for parallel repetitions to ensure soundness.

Here, we also achieve soundness without parallel repetitions by exploiting
the group structure of Z∗Nζ+1 . However, our BadChallenge functions additionally
solve integer linear programming instances with a constant number of variables.
They also apply the technique of Fouque, Stern and Wackers [34], which de-
codes Paillier-decrypted values into rational numbers. In our variant of Couteau
et al.’s range proof [24], the prover first sends DCR-based commitments to inte-

gers {xi}3i=0 such that 1 + 4x0(B − x0) =
∑3
i=1 x

2
i over Z (recall that, for any

positive integer y, there exist {xi ∈ Z}3i=1 such that 1 + 4y =
∑3
i=1 x

2
i , as ob-

served in [38]). Our BadChallenge function first computes {x̃i}3i=0 by decrypting
Paillier ciphertexts. Following Fouque et al. [34], it then runs Gauss’ algorithm
to compute pairs (xi, ci) ∈ [−B∗, B∗] × [0, C] such that x̃i = xi · c−1

i mod Nζ

for each i. If no such decomposition exists for a given index i ∈ [0, 3], the corre-
sponding x̃i determines the only bad challenge that can admit a valid response
element zi. We show that this bad challenge is computable by solving an integer
linear programming instance A ·t ≤ b with 3 variables and 8 constraints. By the
definition of the language, we know that the solution t is unique if the statement
is false. Moreover, Lenstra’s algorithm [45] allows computing it in polynomial
time as the number of variables is fixed.

If all decrypted elements {x̃i}3i=0 can be represented as pairs of integers
(xi, ci) ∈ [−B∗, B∗] × [0, C] such that x̃i = xi · c−1

i mod Nζ , our BadChallenge
function determines if such representations exist for a common denominator
c = ci for each i. If not all x̃i have such a representation with xi ∈ [−B∗, B∗],
then we know that no response elements {zi}3i=0 will simultaneously satisfy all
verification equations for the same challenge. In this case, the language definition
implies that at most one challenge can satisfy all these verification equations and
we can identify this bad challenge by solving an integer linear program with 9
variables. In the last case, the prover’s first message commitments decrypt to el-
ements {x̃i ∈ ZNζ}3i=0 that all admit a representation (x′i, c) ∈ [−B∗, B∗]× [0, C]
such that x̃i = x′i · c−1 mod Nζ . In this case, if the statement is false, the unique
bad challenge is determined by the last verification equation and it is computable
by solving a simple modular equation.

Our Paillier-based instantiation of Naor-Yung uses exactly the same Σ-
protocol as in [33, Section 4.2]. We prove that its soundness is restored if we
introduce a post-processing step in the (distributed) decryption mechanism.
Each decryption server computes its partial decryption exactly as in the thresh-
old variant of Damg̊ard-Jurik [29] (as in [33], this is done without interaction
among servers). When partial decryptions are combined together, we first com-
pute a Paillier/Damg̊ard-Jurik plaintext M ∈ ZNζ . Using Gauss’ algorithm
as suggested by Fouque et al. [34], we then decode M as a modular ratio
M = x ·c−1 mod Nζ for small-magnitude x, c ∈ Z before outputting the rounded
rational bx/ce ∈ Z as a plaintext. We show that this modified decryption algo-
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rithm can be safely combined with the Σ-protocol in [33] as it ensures that
both Paillier ciphertexts lead to the same plaintext bx/ce ∈ Z. In the case
ζ = 1, given two Paillier ciphertexts ct1 = (1 + N1)Msg · rN1

1 mod N2
1 and

ct2 = (1 + N2)Msg · rN2
2 mod N2

2 , the protocol of [33] guarantees the existence
of c̄ ∈ [0, C] and m̄ ∈ [−R,R] such that ctc̄1 = (1 + N1)m · wN1

1 mod N2
1 and

ctc̄2 = (1 + N2)m · wN2
2 mod N2

2 , for some w1 ∈ Z∗N1
, w2 ∈ Z∗N2

. While there is
no guarantee that m · c̄−1 mod N1 equals m · c̄−1 mod N2, we know from [34]
that they both decode to the same pair (m, c̄) ∈ [−R,R] × [0, C] as long as
2RC < N when we run Gauss’ algorithm. This ensures plaintext equality when
the decryption algorithm outputs bm/c̄e.

In order to obtain a trapdoor Σ-protocol, our BadChallenge function ap-
peals again to Lenstra’s algorithm and solves an integer linear programming
instance with a constant number of variables/constraints. When it comes to
proving CCA2-security in the standard model, we need to turn the Σ-protocol
into a one-time simulation-sound7 NIZK proof system [59]. For this purpose, we
could use a construction put forth by Devevey et al. [30] but it would unfortu-
nately ruin the length-flexible property of the scheme. If we were to combine it
with our trapdoor Σ-protocol showing plaintext equalities, the public key would
inherently bound the size of the message space. To avoid this problem, we build
a new DCR-based construction that compiles any trapdoor Σ-protocol into a
one-time simulation-sound NIZK argument. Unlike the solution of [30, Section
3], simulation-soundness is achieved by augmenting the CRS with a number of
bits that does not depend on the underlying trapdoor Σ-protocol.

1.3 Related Work

Range proofs were introduced by Brickell et al. [11] and receive continuous at-
tention [22,14,10,49,39,20,25,37] since then. So far, known solutions have been
following two main approaches.

The first approach proceeds by breaking integers into bits or small digits
[11,3,29,14,39,37,13], which allows communicating a logarithmic (in the range
size) number of group elements [14,39,37,13]. This technique is usually imple-
mented using homomorphic commitment schemes over groups of public prime
order, while the optimized versions of [14,39,37] require pairings. Within this
line of work, Bulletproof [13] obtains the best communication complexity via
a clever recursive proof technique and can be realized over standard (i.e., non-
pairing-friendly) discrete-logarithm-hard groups. Unfortunately, it is not known
to be instantiable in the standard model without interaction.

The second approach [10,49,38,25] relies on integer commitments over groups
of hidden order. This approach is often preferred for very large ranges (which
arise in applications like anonymous credentials [15], where range elements may
be comprised of thousands of bits) where it tends to be more efficient. Also, it
does not require the maximal range length to be known ahead of time, when the

7 In short, one-time simulation-soundness means that seeing a simulated proof for a
false statement of its choice does not help the adversary prove a new false statement.

6



commitment key is set up. Using homomorphic integer commitments, any range
[α, β] can be proven by exploiting the homomorphic properties of the commit-
ment scheme and demonstrating that X − α ∈ [0, β − α]. Indeed, working over
the integers allows showing that X−α and β−X are both positive by expressing
them as a sum of squares. The idea to rely on square decompositions over the
integers dates back to [11]. The square decomposition method was improved by
Lipmaa [49] by relying on the Lagrange decomposition of any positive integer
as a sum of four squares. Groth [38] observed any positive integer of the form
4Y + 1, for some Y ∈ Z, can be more efficiently expressed as a sum of three
squares. Further efficiency and security improvements were given in [25]. In this
second approach, the underlying integer commitment scheme builds on [35,28]
and is usually instantiated using RSA groups. Couteau et al. [25] showed that
its security relates to a slight variant of the RSA assumption rather than the
less standard Strong RSA assumption.

Very recently, Couteau et al. [24] managed to reconcile the advantages of
both approaches. Their core technique converts any (homomorphic) commitment
scheme over groups of (public) prime order into a bounded integer commitment
scheme. While the conversion does not completely preserve the homomorphic
property, it allows committing to bounded-range integers by interpreting them
as rounded rationals. It also allows reviving the square decomposition method
so as to prove integer relations holding over public ranges. As a result, their
range proof consists of a public-coin 3-move interactive protocol that only com-
municates a constant number of elements. It can be instantiated using standard
Pedersen commitments [55] in prime-order groups as long as the group order
is large enough to represent the bounded integers. Their technique also applies
under lattice assumptions and in class groups. In the latter instantiation, it also
inherits the unbounded property of solutions based on hidden-order groups.

We note that a generic transformation due to Ciampi et al. [23, Section 4.2]
can be used to turn a slight modification (where the first-message group ele-
ments are not hashed) of Couteau et al.’s discrete-log-based range proof [24]
into a trapdoor Σ-protocol, and thus obtain a non-interactive variant in the
standard model. However, since the transformation of [23] only applies to Σ-
protocols with small challenge space, it has to be repeated O(λ) times in parallel
to achieve negligible soundness error. In contrast, we achieve soundness without
parallel repetitions as in [47]. Moreover, applying [23] to build a non-interactive
variant of [24] would still require to fix the maximal cardinality of ranges ahead
of time. As it turns out, none of the existing range proofs (even in the bounded
case where the CRS depends on log(β−α)) in the standard model features proofs
comprised of a constant number of element of the base ring/group.

The first non-interactive CCA-secure threshold cryptosystems date back to
the work of Shoup and Gennaro [60] who gave DDH-based realizations in the
random oracle model. Fouque and Pointcheval [33] gave a generic construction
and a DDH-based instantiation using the Naor-Yung paradigm. Until the recent
years, all non-interactive solutions in the standard model were pairing-based
[8,48]. Boneh et al. gave a generic technique [9] to transform any IND-CCA
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secure encryption scheme into a non-interactive threshold system using fully ho-
momorphic encryption. Using correlation-intractable hash functions, Devevey et
al. [30] recently obtained constructions under the DCR and LWE assumptions
in the adaptive corruption setting. Back in 1999, Canetti and Goldwasser [18]
showed that chosen-ciphertext security was achievable in the standard model by
allowing decryption servers to interact with one another. Their approach was
subsequently extended to handle adaptive adversaries [43,1].

2 Background

Let S be a finite set. Then, a←↩ U(S) means that a is sampled according to the
uniform distribution over S. |a| is the bit-length of a.

2.1 Hardness Assumptions

We first recall Paillier’s Composite Residuosity assumption and its variant con-
sidered by Damg̊ard and Jurik.

Definition 2.1 ([54,29]). Let integers N = pq and s > 1 for primes p, q.
The s-Decision Composite Residuosity (s-DCR) assumption states that the
distributions {x = wN

s

mod Ns+1 | w ←↩ U(Z?N )} and {x | x←↩ U(Z?Ns+1)} are
computationally indistinguishable.

Lemma 2.2 (Adapted from [29]). Let s = poly(λ). Then s-DCR is equivalent
to 1−DCR, with a security loss ≤ s. (The proof is straightforward.)

2.2 Correlation Intractable Hash Functions

We consider unique-output efficiently searchable relations [16].

Definition 2.3. A relation R ⊆ X × Y is searchable in time T if there exists
a function f : X → Y which is computable in time T and such that, if there
exists y such that (x, y) ∈ R, then f(x) = y.

Let λ ∈ N a security parameter. A hash family with input length n(λ) and
output length m(λ) is a collection H = {hλ : {0, 1}s(λ)×{0, 1}n(λ) → {0, 1}m(λ)}
of keyed functions induced by efficient algorithms (Gen,Hash), where Gen(1λ)
outputs a key k ∈ {0, 1}s(λ) and Hash(k, x) computes hλ(k, x) ∈ {0, 1}m(λ).

Definition 2.4. For a relation ensemble {Rλ ⊆ {0, 1}n(λ)×{0, 1}m(λ)}, a hash
function family H = {hλ : {0, 1}s(λ)×{0, 1}n(λ) → {0, 1}m(λ)} is R-correlation
intractable if, for any probabilistic polynomial time (PPT) adversary A, we
have Pr

[
k ← Gen(1λ)), x← A(k) : (x, hλ(k, x)) ∈ R

]
= negl(λ).

Peikert and Shiehian [56] described a correlation-intractable hash family for
any searchable relation (in the sense of Definition 2.3) defined by functions f of
bounded depth.
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2.3 Trapdoor Σ-protocols

Canetti et al. [19] considered a definition of Σ-protocols that slightly differs from
the usual formulation [26].

Definition 2.5 (Adapted from [19,2]). Let a language L = (Lzk,Lsound) as-
sociated with two NP relations Rzk,Rsound. A 3-move interactive proof system
Π = (Genpar,GenL,P,V) in the common reference string model is a Gap Σ-
protocol for L if it satisfies the following conditions:

– 3-Move Form: P and V both take as input crs = (par, crsL), with par ←
Genpar(1

λ) and crsL ← GenL(par,L), and a statement x and proceed as fol-
lows: (i) P takes in w ∈ Rzk(x), computes (a, st)← P(crs, x, w) and sends a
to the verifier; (ii) V sends back a random challenge Chall from the challenge
space C; (iii) P finally sends a response z = P(crs, x, w,a,Chall, st) to V; (iv)
On input of (a,Chall, z), V outputs 1 or 0.

– Completeness: If (x,w) ∈ Rzk and P honestly computes (a, z) for a chal-
lenge Chall, V(crs, x, (a,Chall, z)) outputs 1 with probability 1− negl(λ).

– Special zero-knowledge: There is a PPT simulator ZKSim that inputs crs,
x ∈ Lzk and a challenge Chall ∈ C. It outputs (a, z) ← ZKSim(crs, x,Chall)
such that (a,Chall, z) is computationally indistinguishable from a real tran-
script with challenge Chall (for w ∈ Rzk(x)).

– Special soundness: For any CRS crs = (par, crsL) obtained as par ←
Genpar(1

λ), crsL ← GenL(par,L), any x 6∈ Lsound, and any first message
a sent by P, there is at most one challenge Chall = f(crs, x,a) for which an
accepting transcript (crs, x,a,Chall, z) exists for some third message z. The
function f is called the “bad challenge function” of Π. That is, if x 6∈ Lsound

and the challenge differs from the bad challenge, the verifier never accepts.

Definition 2.5 is taken from [19] and relaxes the standard special soundness prop-
erty in that extractability is not required. Instead, it considers a bad challenge
function f , which may not be efficiently computable. Canetti et al. [19] define
trapdoor Σ-protocols as Σ-protocols where the bad challenge function is effi-
ciently computable using a trapdoor. Here, we use a definition where the CRS
and the trapdoor may depend on the language.

The common reference string crs = (par, crsL) consists of a fixed part par and
a language-dependent part crsL which is generated as a function of par and a
language parameter L = (Lzk,Lsound).

Definition 2.6 (Adapted from [19]). A Σ-protocol Π = (Genpar,GenL,P,V)
with bad challenge function f for a trapdoor language L = (Lzk,Lsound) is a
trapdoor Σ-protocol if it satisfies the properties of Definition 2.5 and there
exist PPT algorithms (TrapGen,BadChallenge) with the following properties.

• Genpar inputs λ ∈ N and outputs public parameters par← Genpar(1
λ).

• GenL is a randomized algorithm that, on input of public parameters par,
outputs the language-dependent part crsL ← GenL(par,L) of crs = (par, crsL).
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• TrapGen(par,L, τL) takes as input public parameters par and a membership-
testing trapdoor τL for the language Lsound. It outputs a common reference
string crsL and a trapdoor τΣ ∈ {0, 1}`τ , for some `τ (λ).

• BadChallenge(τΣ , crs, x,a) takes in a trapdoor τΣ, a CRS crs = (par, crsL),
an instance x, and a first prover message a. It outputs a challenge Chall.

In addition, the following properties are required.

• CRS indistinguishability: For any par ← Genpar(1
λ), and any trapdoor

τL for the language L, an honestly generated crsL is computationally indis-
tinguishable from a CRS produced by TrapGen(par,L, τL). Namely, for any
aux and any PPT distinguisher A, we have

Advindist-Σ
A (λ) := |Pr[crsL ← GenL(par,L) : A(par, crsL) = 1]

− Pr[(crsL, τΣ)← TrapGen(par,L, τL) : A(par, crsL) = 1]| ≤ negl(λ).

• Correctness: There exists a language-specific trapdoor τL such that, for any
instance x 6∈ Lsound and all pairs (crsL, τΣ) ← TrapGen(par,L, τL), we have
BadChallenge(τΣ , crs, x,a) = f(crs, x,a) .

Note that the TrapGen algorithm does not take a specific statement x as input,
but only a trapdoor τL allowing to recognize elements of Lsound.

2.4 Trapdoor Σ-Protocol Showing Composite Residuosity

We recall a standard Σ-protocol that allows proving that an element of Z∗Nζ+1

is a Nζ-th residue. In [47], it was shown that the latter protocol is a trapdoor
Σ-protocol showing that an element of Z∗N2 is a composite residue.

Namely, let LDCR := {x ∈ Z∗Nζ+1 | ∃w ∈ Z?N : x = wN
ζ

mod Nζ+1}, the
language of Nζ-th residues, for some integer ζ > 1, where N = pq is an RSA
modulus. We assume that the challenge space is {0, . . . , 2λ − 1} and that p, q >
2l(λ), for some polynomial l : N→ N such that l(λ) > λ for any sufficiently large
λ ∈ N. The condition p, q > 2λ will ensure that the difference between any two
challenges be co-prime with N .

In order to obtain a BadChallenge function that identifies bad challenges for
elements x 6∈ LDCR, [47] uses an observation from Lipmaa [50], which shows that
the factorization of N allows computing bad challenges even if gcd(x,N) > 1.

Genpar(1λ): Given the security parameter λ, define par = {λ}.
GenL(par,LDCR): Given public parameters par and the description of a language
LDCR, consisting of an RSA modulus N = pq with primes p and q such that
p, q > 2l(λ), for some polynomial l : N → N such that l(λ) > λ, define the
language-dependent crsL = {N}. The global CRS is crs = ({λ}, crsL).

TrapGen(par,LDCR, τL): Given par, the description of a language LDCR that
specifies an RSA modulus N and a membership-testing trapdoor τL = (p, q)
consisting of the factorization of N = pq, output the language-dependent
crsL = {N} which defines crs = ({λ}, crsL) and the trapdoor τΣ = (p, q).
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P
(
crs, x, w

)
↔ V(crs, x): Given a crs, a statement x = wN

ζ

mod Nζ+1, P (who
has the witness w ∈ Z?N ) and V interact as follows:

1. P chooses a random r ←↩ U(Z∗N ) and sends a = rN
ζ

mod Nζ+1 to V .
2. V sends a random challenge Chall←↩ U({0, . . . , 2λ − 1}) to P .
3. P computes the response z = r · wChall mod N and sends it to V .
4. V checks if a · xChall ≡ zNζ (mod Nζ+1) and returns 0 otherwise.

BadChallenge
(
par, τΣ , crs, x, a

)
: Given τΣ = (p, q), (Damg̊ard-Jurik) decrypt x

and a to obtain αx = DτΣ (x) ∈ ZNζ , αa = DτΣ (a) ∈ ZNζ .
1. If αa = 0, return Chall = 0.
2. If αa 6= 0, let dx = gcd(αx, N

ζ), which lives in the set {piqj | 0 ≤ i <
ζ, 0 ≤ j < ζ} ∪ {piqζ | 0 ≤ i < ζ} ∪ {pζqj | 0 ≤ j < ζ}. Then,

a. If 1 < dx < Nζ , return ⊥ if dx does not divide Nζ − αa.

b. Otherwise, the congruence αa+Chall·αx ≡ 0 (mod Nζ

dx
) has a unique

solution Chall′ = −α−1
x · αa ∈ ZNζ/dx since gcd(αx, N

ζ/dx) = 1. If

Chall′ ∈ ZNζ/dx\{0, . . . , 2λ−1}, return ⊥. Else, return Chall = Chall′.

In [47], it is shown that the above construction is a trapdoor Σ-protocol with
large challenge space. By applying [56], this implies compact NIZK arguments
(i.e., without using parallel repetitions to achieve negligible soundness error) for
the language LDCR assuming that the LWE assumption holds.

Lemma 2.7 ([47]). The above protocol is a trapdoor Σ-protocol for LDCR.

2.5 Encoding and Decoding Bounded Rationals in ZN

In [34], Fouque et al. suggested a technique that allows computing over rational
numbers when they are encrypted using Paillier. The idea is to encode a rational
r/s, for co-prime integers (r, s) ∈ [−R,R]×[0, S], as the modular ratio r·s−1 mod
N . They showed that, as long as, 2RS < N , it is possible to recover (r, s) from
t = r · s−1 mod N using Gauss’ lattice reduction algorithm in dimension 2.

Let an RSA modulus and bounds R,S. Let r, s ∈ Z such that −R ≤ r ≤ R,
0 < s ≤ S, gcd(r, s) = 1 and gcd(s,N) = 1. Let the rational t = r/s ∈ Q

Define the encoding E(t) := t′ = r · s−1 mod N. To decode it and recover
t ∈ Q from t′, consider the lattice

Λ := {(x, y) ∈ Z2 : x = y · t′ mod N} = {(x, y) ∈ Z2 : s · x = y · r mod N}.

A particular basis of Λ is formed by the vectors (N, 0) and (t′, 1). Since s is
invertible over ZN , the vector (r, s) ∈ Z2 also lives in Λ. To recover co-prime
integers (r, s) ∈ Z2 such that t′ = r · s−1 mod N , one can run Gauss’ algorithm
on input of the initial basis ~u = (N, 0), ~v = (t′, 1) to compute a minimal vector
of Λ. A result of Vallée [61] ensures that the number of iterations is at most
3 + log1+

√
2 max(‖~u‖, ‖~v‖) in the worst case.

Fouque et al. proved that the decoding procedure is correct and pointed out
that it carries over when computations take place modulo Nζ for ζ > 1.

Lemma 2.8 ([34, Theorem 1]). If t′ = r · s−1 mod N , −R ≤ r ≤ R, and 0 <
s ≤ S, then Gauss’ algorithm uniquely recovers r and s if 2RS < N .
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2.6 Paillier Decryption of (Rounded) Rationals

We first describe a variant of Paillier’s cryptosysem used by Fouque, Stern and
Wackers [34] to perform homomorphic operations over rational numbers. While
the encryption algorithm is identical to that of Paillier/Damg̊ard-Jurik [54,29],
the message space is restricted to a specific interval and the decryption algorithm
runs Gauss’ lattice reduction algorithm in dimension 2. In fact, we modify the
decryption algorithm of [34] to make sure that it outputs an integer instead of
a rational. In addition, we follow a suggestion of Damg̊ard and Jurik [29] and
assume that the message space is not a priori bounded by the public key. Instead,
it can be flexibly adjusted by the encryption algorithm.

In the following, we let `M ∈ poly(λ) denote the message length, which can be
dynamically determined at encryption time. We also denote by abs : Z→ N the
absolute value function defined as abs(x) = x · (x ≥ 0) + (−x) · (x < 0). Letting
C = 2λ − 1, the encryptor will fix R > 2λ · (M + 1), where M = 2`M − 1 is
the largest possible message, and choose ζ in such a way that 2RC < Nζ . After

having obtained M̃sg ∈ ZNζ from the decryption algorithm of Damg̊ard-Jurik,

the receiver will be able to apply Lemma 2.8 so as to decode M̃sg as the ratio
m · c−1 mod Nζ between bounded rationals −R ≤ m ≤ R and 1 ≤ c ≤ C.

Keygen(1λ) : Given a security parameter, choose an RSA modulus N = pq such
that p, q > 2l(λ), for some polynomial l : N→ N with l(λ) ≥ λ, and an integer
ζ ≥ 1. The public key is pk = N and the secret key is sk = (p, q).

Encrypt
(
pk,Msg

)
: To encrypt Msg ∈ {0, 1}`M , interpret it as a positive integer

in [0,M ], where M = 2`M − 1. Set ζ > 1 as a small integer such that
Nζ ≥ 22λ+1M . Then, choose r ←↩ U(Z∗N ) and compute

(ct, `M ) =
(

(1 +N)Msg · rN
ζ

mod Nζ+1, `M

)
.

Decrypt(sk, (ct, `M )) : Given (ct, `M ) ∈ Z∗Nζ+1 × N and sk = (p, q). Compute

M̃sg ∈ ZNζ by running the Damg̊ard-Jurik decryption algorithm, denoted
Dsk(ct). Then, using Gauss’ algorithm, find the unique (m, c) ∈ Z2 such that

−R ≤ m ≤ R, 1 ≤ c ≤ C and M̃sg = m · c−1 mod Nζ . If no such pair exists,
return ⊥. Otherwise, return Msg = abs(bm/ce), where m/c ∈ Q.

In the decryption algorithm, the absolute value is used to enforce positiveness.
The scheme is identical to [34], except that it outputs a positive integer rather
than a rational. This decoding method will be applied in our instantiation of
Naor-Yung. In our non-interactive range proof of Section 3, we will also use
the scheme as a perfectly binding extractable commitment with an extraction
algorithm Decrypt′ where Msg′ = bm/ce, without absolute values.

3 Constant-Rate Unbounded Non-Interactive Range
Proofs in the Standard Model

This section presents a range proof where a fixed-size common reference string
containing an RSA modulus N = pq allows committing to arbitrarily large
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integers. We note that, after having committed to an integer, the committer
is bound to a specific modulus Nζ+1 and all subsequent proofs related to this
commitment are restricted to ranges smaller than a certain bound. Still, the
CRS and the underlying algebraic structure do not have to be scaled with the
size of the committed integers.

Let positive integers B, C = 2λ − 1, B∗ = 2λBC and ζ ≥ 1 satisfying the

conditions 22λ+3B2C2 < Nζ . Let LB,B∗,Crange = (LBzk,L
B,B∗,C
sound ) be

LBzk :=
{

ct ∈ Z∗Nζ+1 | ∃x ∈ [0, B], w ∈ Z?N : ct = (1 +N)x · wN
ζ

mod Nζ+1
}

LB,B
∗,C

sound :=
{

ct ∈ Z∗Nζ+1 | ∃x ∈ [0, B∗], c ∈ [1, C], w ∈ Z?N :

ct = (1 +N)x·c
−1 mod Nζ · wN

ζ

mod Nζ+1 ∧ bx/ce ∈ [0, B]
}
.

To prove membership, we will have the prover generate auxiliary commitments

{Ci}3i=1 and rely on L̄B,B∗,Crange = (L̄Bzk, L̄
B,B∗,C
sound ) such that

L̄Bzk :=
{

(ct, {Ci}3i=1) ∈ (Z∗Nζ+1)4 | ∃x0, x1, x2, x3 ∈ [0, B],

∃ s0, s1, s2, s3 ∈ Z∗N : 1 + 4(B − x0)x0 = x2
1 + x2

2 + x2
3

∧ (1 +N)B · ct−1 = (1 +N)x0 · sN
ζ

0 mod Nζ+1

∧ Ci = (1 +N)xi · sN
ζ

i mod Nζ+1 ∀i ∈ [3]
}
,

L̄B,B
∗,C

sound :=
{

(ct, {Ci}3i=1) ∈ (Z∗Nζ+1)4 | ∃x0, x1, x2, x3 ∈ [−B∗, B∗],

∃ s0, s1, s2, s3, τ ∈ Z∗N , c ∈ [1, C] :

∧
(
(1 +N)B · ct−1

)c
= (1 +N)x0 · sN

ζ

0 mod Nζ+1

∧ Cci = (1 +N)xi · sN
ζ

i mod Nζ+1 ∀i ∈ [3] (1)

∧ (1 +N)c =

3∏
i=1

Cxii · ct−4x0 · τN
ζ

mod Nζ+1
}
,

In Lemma 3.2, we show that (ct, {Ci}3i=1) ∈ L̄B,B
∗,C

sound implies ct ∈ LB,B
∗,C

sound , which
in turn implies Decrypt′(sk, (ct, |B∗|)) ∈ [0, B], where sk = (p, q) and N = pq.

Genpar(1λ) : Given the security parameter λ, define par = {λ}.
GenL(par,LB,B∗,Crange ) : Given public parameters par as well as a description of a

language pair LB,B∗,Crange , consisting of an RSA modulus N = pq with primes

p, q > 2l(λ), for some polynomial l : N → N such that l(λ) > λ, define the
language-dependent CRS crsL = {N}. The global CRS is crs = ({λ}, crsL).

TrapGen(par,LB,B∗,Crange , τL) : This algorithm is identical to GenL(par,LB,B∗,Crange ),
except that it also outputs the trapdoor τΣ = (p, q).
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P
(
crs, ~x, ~w

)
↔ V(crs, ~x) : On input of a CRS crs, a statement ct ∈ LBzk, the

prover P (who has ~w = (x,w) ∈ [0, B]× Z?N ) and V interact as follows:

1. P computes x1, x2, x3 ∈ [0, B + 1] such that 1 + 4x(B − x) =
∑3
i=1 x

2
i

over Z. Then, P sets C0 = (1 + N)B · ct−1 mod Nζ+1, x0 = B − x and
s0 = w−1 mod N . It randomly picks s1, s2, s3 ←↩ U(Z∗Nζ ) and computes

Ci = (1 +N)xi · sN
ζ

i ∀i ∈ [3].

Next, to show that (ct, {Ci}3i=1) ∈ L̄Bzk, it chooses σ ←↩ U(Z∗N ), ri ←↩
U([0, B∗]) and αi ←↩ U(Z∗Nζ ) for each i ∈ [0, 3], to compute

Ri = (1 +N)ri · αN
ζ

i mod Nζ+1 ∀i ∈ [0, 3]

R = σN
ζ

· C4·r0 ·
3∏
i=1

C−rii mod Nζ+1.

and send (R, {Ri}3i=0, {Ci}3i=1) to V .
2. V sends a random challenge Chall←↩ U({0, . . . , 2λ − 1}) to P .
3. P computes the response

τ = σ ·
(
s4·x0

0 ·
3∏
i=1

sxii
)Chall

mod N

zi = ri + Chall · xi, ti = αi · sChalli mod N ∀i ∈ [0, 3]

and fails if there exists i ∈ [0, 3] such that zi 6∈ [0, B∗]. Otherwise, it
sends (τ, {(zi, ti)}3i=0) to V .

4. V sets C0 = (1+N)B ·ct−1 mod Nζ+1. It accepts iff zi ∈ [0, B∗] for each
i ∈ [0, 3] and the following equations hold:

Ri ≡ (1 +N)zi · tN
ζ

i · C−Challi (mod Nζ+1) ∀i ∈ [0, 3],

R ≡
3∏
i=1

C−zii · ct4·z0 · τN
ζ

· (1 +N)Chall (mod Nζ+1). (2)

BadChallenge
(
par, τΣ , crs,x,a

)
: Given the statement x = ct ∈ ZNζ , the mes-

sage a = (R, {Ri}3i=0, {Ci}3i=1) and the trapdoor τΣ = (p, q), return ⊥ if
Decrypt′τΣ (ct) ∈ [0, B]. Otherwise, do the following.

1. Let C0 = (1 +N)B · ct−1 mod Nζ+1. For each index i ∈ [0, 3], compute
x̃i = DτΣ (Ci) ∈ ZNζ using the Damg̊ard-Jurik decryption algorithm.
Also, compute r = DτΣ (R) ∈ ZNζ and ri = DτΣ (Ri) ∈ ZNζ for each
i ∈ [0, 3]. Then, for each i ∈ [0, 3], run Gauss’ algorithm to compute
xi ∈ [−B∗, B∗] and ci ∈ [0, C] such that x̃i = xi · c−1

i mod Nζ .
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2. If there exists i ∈ [0, 3] such that no pair (xi, ci) ∈ [−B∗, B∗] × [0, C]
satisfies x̃i = xi · c−1

i mod Nζ , let j ∈ [0, 3] the smallest such index.
Compute (zj ,Challj , kj) ∈ Z3 such that

rj = zj − x̃j · Challj + kj ·Nζ

0 ≤ zj ≤ B∗ (3)

0 ≤ Challj ≤ 2λ − 1

0 ≤ kj ≤ 2λ

This can be achieved by replacing the first equality by inequalities

zj − x̃j · Challj + kj ·Nζ ≤ rj , −zj + x̃j · Challj − kj ·Nζ ≤ −rj

and solving an integer linear programming instance with 8 constraints
and 3 variables (zj ,Challj , kj) ∈ Z3 using Lenstra’s algorithm [45]. If a
solution is found (in which case, it is unique), return Chall = Challj .

3. For each i ∈ [0, 3], let (xi, ci) ∈ [−B∗, B∗] × [0, C] such that {x̃i}3i=0

satisfy x̃i = xi · c−1
i mod Nζ . Then, let c , lcm(c0, c1, c2, c3). Check if

c ∈ [0, C] and there exist integers x′0, x
′
1, x
′
2, x
′
3 ∈ [−B∗, B∗] such that

x̃i = x′i · c−1 mod Nζ for each i ∈ [0, 3]. If no such {x′i}3i=0 and c exist,
find the (unique) integer vector (z0, z1, z2, z3,Chall, k0, k1, k2, k3) ∈ Z9

such that 0 ≤ Chall ≤ 2λ − 1 and

∀j ∈ [0, 3] :

 rj = zj − x̃j · Chall + kj ·Nζ

0 ≤ zj ≤ B∗
0 ≤ kj ≤ 2λ

This is done by replacing equalities by pairs of inequalities and solving an
integer linear programming instance with 9 variables and 26 constraints.
If this vector exists, return the corresponding Chall ∈ [0, 2λ − 1].

4. Let c ∈ [0, C] and {x′i ∈ [−B∗, B∗]}3i=0 such that x̃i = x′i · c−1 mod Nζ .

Let dx = gcd(4x̃x̃0 −
∑3
i=1 x̃

2
i + 1, Nζ), where x̃ = B − x̃0 mod Nζ , and

compute

Chall0 , (r +

3∑
i=1

x̃i · ri − 4x̃ · r0) · (4x̃ · x̃0 −
3∑
i=1

x̃2
i + 1)−1 mod

Nζ

dx
.

If Chall0 ∈ {0, . . . , 2λ−1}, return Chall = Chall0. Otherwise, return Chall =⊥.

The BadChallenge function computes the bad challenge (which is unique when
the statement is false) using Lenstra’s algorithm [45] that runs in polynomial
time since the number of variables is fixed. For an instance with t constraints,
each of binary encoding length O(s), the algorithm requires O(st+s2) arithmetic
operations on s-bit numbers.
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Completeness. As long as zi ∈ [0, B∗] for all i ∈ [0, 3] when P computes its
response at step 3, i.e., P does not abort, we have

3∏
i=1

C−zii · ct4·z0 · τN
ζ

· (1 +N)Chall

=

3∏
i=1

C−rii · ct4·r0 ·
( 3∏
i=1

(1 +N)xisN
ζ

i

)−xiChall · ((1 +N)xwN
ζ)4x0Chall

· σN
ζ

·
(
w−4·x0 ·

3∏
i=1

sxii
)Nζ ·Chall · (1 +N)Chall mod Nζ+1

=

3∏
i=1

C−rii · ct4·r0 · (1 +N)−Chall·
∑3
i=1 x

2
i · (1 +N)4·x0·Chall·x

· σN
ζ

· (1 +N)Chall mod Nζ+1

=

3∏
i=1

C−rii · ct4·r0 · σN
ζ

mod Nζ+1 = R

(1 +N)zi · tN
ζ

i ≡ (1 +N)ri+Chall·xi · αN
ζ

i · sChall·N
ζ

i ≡ Ri · CChall
i (mod Nζ+1),

Finally, P only aborts with probability at most 4 · 2−λ.

Special zero-knowledge. We first describe a simulator ZKSimrange
B before

showing that a simulated transcript produced by ZKSimrange
B (crs, ~x,Chall) is com-

putationally indistinguishable from a real transcript generated from a statement-
witness pair (~x, ~w) ∈ Rrange

B when the challenge is Chall.
Given crs = ({λ}, crsL), an element ~x = ct ∈ Z∗Nζ+1 of the language LB,B∗,C

and a challenge Chall ∈ [0, C], ZKSimrange
B (crs, ~x,Chall) proceeds as follows: First,

it sets C0 = (1 +N)B · ct−1 mod Nζ+1 and randomly picks s1, s2, s3 ←↩ U(Z∗Nζ )
in order to compute an encryption Ci = sN

ζ

i mod Nζ+1 of 0 for each i ∈ [3].
Then, the simulator uniformly picks elements of the response z as zi ←↩ [0, B∗],
ti ←↩ Z∗N , for all i ∈ [0, 3], and τ ←↩ Z∗N . Finally, it computes the remaining
components (R, {Ri}3i=0) of the first prover message a in such a way that satisfy
the verification equations (2).

We now prove the computational indistinguishability between the transcripts
generated by ZKSimrange

B and real transcripts, which are faithfully computed
from ~w ∈ Rrange

B (~x). We first observe that a simulated transcript (a,Chall, z)
is computationally indistinguishable from an hybrid transcript where, instead
of encrypting 0 in the computation of {Ci}3i=1, we encrypt {xi}3i=1 such that

1 + 4x(B − x) =
∑3
i=1 x

2
i and x0 = B − x over Z, as in the real protocol.

In this hybrid transcript, however, we still compute (R, {Ri}3i=0) and z as in
the simulation. A simple reduction shows that the probability to distinguish
between simulated transcripts and hybrid transcripts is at most 3 times the
advantage of an adversary against the semantic security of Damg̊ard-Jurik (and
thus the ζ-DCR assumption). Finally, we show that the distributions of hybrid
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and real transcripts for (~x, ~w) ∈ Rrange
B and the challenge Chall are statistically

close (assuming that we use a deterministic algorithm to compute the Lagrange
decomposition of 1 + 4x(B − x) ≥ 0) into the sum of 3 squares). This follows
from standard arguments. By relying on the generalized Paillier isomorphism we
can and split the analysis. Over the “randomness” modulo N , the distributions
are the same because each (ti, αi) are in one-to-one relation for i ∈ [0, 3], as
well as (τ, σ). Since the xi’s are constant, the distributions “over the plaintext”
modulo Nζ are statistically close because the statistical distance between the
zi-variables is negligible.

More precisely, the ciphertexts {Ci}3i=0 have exactly the same distribution in
the hybrid and the real transcripts. Now, let ψ : ZNζ ×Z?N 7→ Z?Nζ+1 denote the
generalized Paillier isomorphism. Let also (ri, αi) := ψ−1(Ri), for all i ∈ [0, 4],
and (r, α) := ψ−1(R) of an hybrid transcript. We thus have, for all i ∈ [0, 3],

ri ≡ zi − Chall · xi (mod Nζ) αi ≡ ti · s−Challi (mod N),

where x0 = B − x mod Nζ and s0 = w−1 mod N , as well as

r ≡ 4z0(B − x0)−
∑
i∈[3]zixi + Chall (mod Nζ),

and α ≡ w4z0 ·
∏
i∈[3] s

−zi
i · τ (mod N). For α and {αi}i∈[0,3], The congruences

in the multiplicative group Z∗N show that, given w and {(zi, si)}i∈[0,3], there
is a one-to-one relation between α and τ , and between αi and ti, for all i ∈
[0, 3]. Then, their distributions are the same as those of the real distributions.
(Note that α in the real distribution is also random due to σ.) We are thus left
with analyzing the distributions over the additive group ZNζ . For all i ∈ [0, 3],
the congruences on the ri ensure that, unless zi ∈ [0, CB] (which occurs with
negligible probability 2−λ), we have 0 ≤ ri = zi − Chall · xi ≤ B∗. That means
that, over the integers, we have to show that the statistical distance between
U([0, B∗]) (which is the distribution of the hybrid zi) and Chall · xi +U([0, B∗])
(which is the distribution of the real z) is negligible. Since xi · Chall ≤ BC ≤
2−λB∗, it is actually bounded by 2−λ. Finally, since 1+4x(B−x) =

∑3
i=1 x

2
i and

x0 = B−x in both transcripts, we can rewrite the hybrid r as r = 4r0(B−x0)−∑
i∈[3] rixi mod Nζ , which, given the xi, is a deterministic function evaluated

on independent statistically-closed distributions.

Lemma 3.1 ([24] ). Let integers n, d ∈ Z, B ≥ 2 and x = bnd e. If there exist

x1, x2, x3 ∈ Q such that 1 + 4 · nd ·
(
B − n

d

)
=
∑3
i=1 x

2
i , then we have x ∈ [0, B].

Lemma 3.2. The above construction is a trapdoor Σ-protocol for L̄B,B∗,C as-
suming that 22λ+3B2C2 < Nζ , for any λ ≥ 1.

Proof. We first prove that (ct, {Ci}3i=1) ∈ L̄B,B∗,C ensures that ct ∈ LB,B∗,C .
Indeed, letting γ = c−1 mod Nζ and k ∈ Z such that γ · c + k ·Nζ = 1, the

first four equations of (1) imply

Ci = (1 +N)xi·γ · (sγi · C
k
i )N

ζ

mod Nζ+1, ∀i ∈ [0, 3]

= (1 +N)xi·(c
−1 mod Nζ) · s̃N

ζ

i mod Nζ+1
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for some s̃i ∈ Z∗N , and thus ct = (1 + N)B−x0·(c−1 mod Nζ) · s̃−N
ζ

0 mod Nζ+1.
Hence, the ciphertexts (ct, {Ci}3i=1) decrypt to x̃ = B − x0 · c−1 mod Nζ and
{x̃i = xi · c−1 mod Nζ}3i=1. Then, decrypting the last equation of (1) implies

c =

3∑
i=1

(xi
c

)
· xi − 4x0 ·

(
B − x0

c

)
mod Nζ .

If we multiply both members of the latter equation by c, we obtain

c2 + 4(Bc− x0)x0 =

3∑
i=1

x2
i mod Nζ . (4)

The latter equality holds over Z if we represent it over [−Nζ/2, Nζ/2]. In-
deed, the absolute value the left-hand-side member is bounded by C2 + 4(BC +
B∗)B∗ = C2 + 4(BC)2(1 + 2λ)2λ ≤ 2λ+3B2C2 < Nζ/2 and the right-hand-side
member is bounded by 3B∗2 = 3 · 22λB2C2 < Nζ/2. If we divide both members
by c2 over the rationals, we obtain

1 + 4
(
B − x0

c

)
· x0

c
=

3∑
i=1

(xi
c

)2

over Q.

By Lemma 3.1, this in turn implies bx0/ce ∈ [0, B] and thus B−bx0/ce ∈ [0, B].

We now prove that BadChallenge output the correct result when the prover
sends commitments {Ci}3i=1 such that (ct, {Ci}3i=1) 6∈ L̄B,B∗,C . For a given first
message a = (R, {Ri}3i=0, {Ci}3i=1) sent by the prover, BadChallenge obtains
r, {ri}3i=0 ∈ ZNζ and {xi}3i=0 ∈ ZNζ at step 1. It only stops at step 2 if there ex-
ists i ∈ [0, 3] such that Ci decrypts to a value x̃i ∈ ZNζ which has no representa-
tion x̃i = xi ·c−1

i mod Nζ with (xi, ci) ∈ [−B∗, B∗]× [0, C]. In this case, only one
pair (Challi, zi) ∈ [0, C]× [0, B∗] can satisfy the first verification equation of (2).
Indeed, if we had distinct such pairs (Challi, zi), (Challi, z

′
i) ∈ [0, C]× [0, B∗] with

Chall′i 6= Challi, we would have C
Challi−Chall′i
i = (1 +N)zi−z

′
i · (ti/t′i)N

ζ

mod Nζ+1

and thus x̃i = (zi− z′i) · (Challi−Chall′i)
−1 mod Nζ . Hence, the unique valid pair

(Challi, zi) ∈ [0, C]×[0, B∗] that can satisfy the first equation (2) can be found by
applying Gauss’ algorithm. Note that BadChallenge might output Chall 6=⊥ when
no bad challenge exists at all.8 However, BadChallenge only needs to find the bad
challenge when it exists. When there is no bad challenge, the Fiat-Shamir hash
function can output arbitrary values without hurting soundness.

If step 3 is reached, each plaintext in {x̃i ∈ Z∗Nζ}
3
i=0 is decoded as a pair

(xi, ci) ∈ [−B∗, B∗] × [0, C] such that x̃i = xi · c−1
i mod Nζ . We then define

c , lcm(c0, c1, c2, c3) and distinguish two cases:

8 This can happen when more than one {x̃i}3i=0 has no valid representation (xi, ci) ∈
[−B∗, B∗] × [0, C], in which case they can possibly determine incompatible bad
challenges.
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(a) c 6∈ [0, C] or c ∈ [0, C] but there exist no integers x′0, x
′
1, x
′
2, x
′
3 ∈ [−B∗, B∗]

such that x̃i = x′i · c−1 mod Nζ for each i ∈ [0, 3].
(b) c ∈ [0, C] and there exist integers x′0, x

′
1, x
′
2, x
′
3 ∈ [−B∗, B∗] such that we

have x̃i = x′i · c−1 mod Nζ for each i ∈ [0, 3].

In case (a), we observe from the first four verification equations (2) that a valid
response (τ, {(zi, ti)}3i=0) can exist for at most one Chall ∈ [0, 2λ − 1]. This
unique challenge value can be determined by solving an integer linear program
and finding (z0, z1, z2, z3,Chall, k0, k1, k2, k3) ∈ Z9 satisfying (4).

We are left with case (b). In order to satisfy the verification equations (2),
the challenge-response pair (Chall, (τ, {(zi, ti)}3i=0)) must satisfy

zi = ri + x̃i · Chall mod Nζ r = −
3∑
i=1

x̃i · zi + 4x̃z0 + Chall mod Nζ .

Letting x̃ = B − x̃0 mod N , the above implies

Chall · (4x̃ · x̃0 −
3∑
i=1

x̃2
i + 1) = r +

3∑
i=1

x̃i · ri − 4x̃ · r0 mod Nζ , (5)

Observe that we cannot have 4x̃ · x̃0−
∑3
i=1 x̃

2
i +1 = 0 mod Nζ as this would

imply 4x̃ · x′0 −
∑3
i=1 x̃i · x′i + c = 0 mod Nζ , which would mean that

(1 +N)c ·
3∏
i=1

C
−x′i
i · ct4x′0 mod Nζ+1

is an Nζ-th residue in Z∗Nζ+1 . Since we are in case (b), this would contradict the

hypothesis (ct, {Ci}3i=1) 6∈ L̄B,B∗,C .

From the inequality 4x̃ · x̃0 −
∑3
i=1 x̃

2
i + 1 6= 0 mod Nζ , we are guaranteed

that dx = gcd(4x̃x̃0 −
∑3
i=1 x̃

2
i + 1, Nζ) < Nζ and (5) then yields

Chall · (4x̃ · x̃0 −
3∑
i=1

x̃2
i + 1) = r +

3∑
i=1

x̃i · ri − 4x̃ · r0 mod
Nζ

dx
. (6)

Since gcd(4x̃ · x̃0 −
∑3
i=1 x̃

2
i + 1, Nζ/dx) = 1, equation (6) has a unique solution

Chall0 ∈ ZNζ/dx . Since Nζ/dx > min(p, q) > 2λ, we have Chall = Chall mod

Nζ/dx for any Chall ∈ {0, 1, . . . , 2λ− 1}, meaning that BadChallenge returns the
correct result by outputting Chall0 whenever Chall0 ∈ {0, . . . , 2λ − 1}. ut

Compiling the Σ-protocol into multi-theorem NIZK. The trapdoor Σ-
protocol immediately implies a single-theorem NIZK construction via the Fiat-
Shamir transform when we apply the CI hash function of [56]. In order to obtain
NIZK proofs in the multi-theorem setting, we could apply the compiler of [46,
Appendix B]. One issue is that the latter proceeds by encrypting the Σ-protocol’s
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first prover message using an equivocable lossy encryption system [4]. Unfortu-
nately, while Paillier can serve as an equivocable lossy encryption scheme (as
observed in [42]), we would lose the unbounded property of the range proof if we
were to use it. The reason is that the CRS should contain a lossy/injective Pail-
lier public key component that should be longer than messages to be encrypted.

Fortunately, multi-theorem NIZK proofs can be achieved (with computa-
tional zero-knowledge and statistical soundness) by adapting the Feige-Lapidot-
Shamir compiler using correlation intractable hash functions. The OR trick of
[31] builds multi-theorem NIZK proofs by showing OR statements of the form
“either the statement is true OR some component of the CRS is in the image
of a pseudorandom generator.” Here, we can instantiate their approach using a
DCR-based PRG. Recall that the DCR assumption immediately implies a length-
doubling PRG that maps a seed s ∈ Z∗N to y = sN mod N2. Here, we can apply
the trapdoor Σ-protocol of [47] (which is recalled in Section 2.4) together with
the OR Σ-protocols of [26] to prove that “either the range statement is true
OR the CRS component y ∈ Z∗N2 is an N -th residue.” In the real construction,
the CRS contains a uniformly random y ∼ U(Z∗N2) so as to obtain statistical
soundness. In the simulation, y is sampled as a composite residue and its N -
th root allows simulating proofs. Using this approach, since the zero-knowledge
property is only computational, we can obtain adaptive soundness by hashing
the statement together with the prover’s first message when the Fiat-Shamir
transform is applied (as observed in [23, Theorem 4]).

In Section 4.2, we will apply a similar instantiation of the FLS paradigm to
obtain one-time simulation-soundness in our DCR-based variant of Naor-Yung.

Dual-Mode Range Proofs/Arguments. If we give up unboundedness, we
can obtain statistically zero-knowledge or even dual-mode range arguments as
follows. The CRS initially chooses ζ > 1 and a modulus N such that commit-
ted integers always live in a range [0, B] for which 23λ+1B < N ζ . The CRS is
augmented with an element g ∈ Z∗Nζ+1 that is chosen as an Nζ-th residue in the
zero-knowledge setting (and uniformly over Z∗Nζ+1 in the soundness setting).

Then, each occurrence of 1 +N is replaced by g in the Σ-protocol. The DCR
assumption immediately implies the indistinguishability of CRS distributions for
the soundness and zero-knowledge settings. Moreover, our simulator ZKSimrange

B

produces statistically indistinguishable transcripts as it computes {Ci}3i=1 as
dual-mode (or lossy) encryption of 0 instead of random elements moduloNζ+1.

Achieving Constant Rate. Let x ∈ [0, B] and Nζ′−1 ≤ B ≤ Nζ′ , for some
integer ζ ′, and where onlyN is fixed by the CRS. We now assess the ratio between
the input size and the proof size assuming that n := |N |. We see the witness
x as a |B|-bit string since the zero-knowledge property requires a commitment
whose message space contains [0, B]. For simplicity we assume that ζ = 2ζ ′ + 1
since our proof system requires 22λ+3B2C2 < Nζ .

Since the commitment ct to x is a ciphertext over Z∗Nζ+1 , we have

|ct|
|B|
≤ (ζ + 1)n

m
≤ (2ζ ′ + 2)n

(ζ ′ − 1)n
= 2 +

4

(ζ ′ − 1)
↓ 2.
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The range proof π for x consists of {Ci}3i=1, {Ri}3i=0, R, each of size (ζ + 1)n,
and of τ, {(zi, ti)}3i=0, where |τ | = n and |(zi, ti)| = (m+ 3λ+ 1) +n ≤ (ζ + 1)n,
for each i = 0 to 3. The total proof size amounts to 12(ζ + 1)n+ n and

|π|
|ct|
≤ 12(ζ + 1)n+ n

(ζ + 1)n
= 12 +

1

2ζ ′ + 2
↓ 12,

leading to a total rate of |π|/|B| ≤ (24(ζ ′+1)+1)/(ζ ′−1) ≤ 73 for ζ ′ > 1, which
goes down to 24 when ζ grows. If the OR trick is used in the multi-theorem case,
it is easy to see that the asymptotic rate remains unchanged as the OR-branch
involving the N -th residue only adds a component of size at most 4n.

4 Instantiating Naor-Yung under the DCR Assumption

In this section, we show that decoding Paillier plaintexts as rounded rationals
provides a secure instantiation of Naor-Yung under the DCR assumption. We
first give a trapdoor Σ-protocol showing plaintext equalities before upgrading it
into a one-time simulation-sound NIZK argument.

4.1 A Trapdoor Σ-Protocol Showing Plaintext Equalities Between
Paillier Ciphertexts for Distinct Moduli

We now give a trapdoor Σ-protocol showing that two ciphertexts decrypt to
the same plaintext in the encryption scheme of Section 2.6. Let N1 = p1q1 and
N2 = p2q2 be RSA moduli. Let C = 2λ − 1 and let also the languages

Leq-dcr
zk :=

{
(ct1, ct2, `M ) ∈ Z∗

Nζ1
× Z∗

Nζ2
× N | ∃m ∈ [0,M ],

w1 ∈ Z?N1
, w2 ∈ Z?N2

: ct1 = (1 +N1)m · wN
ζ
1

1 mod Nζ+1
1

∧ ct2 = (1 +N2)m · wN
ζ
2

2 mod Nζ+1
2

}
,

Leq-dcr
sound :=

{
(ct1, ct2, `M ) ∈ Z∗

Nζ+1
1

× Z∗
Nζ+1

2

× N | ∃m ∈ [−R,R], c̄ ∈ [0, C],

w1 ∈ Z?N1
, w2 ∈ Z?N2

: ctc̄1 = (1 +N1)m · wN
ζ
1

1 mod Nζ+1
1

∧ ctc̄2 = (1 +N2)m · wN
ζ
2

2 mod Nζ+1
2

}
,

where M = 2`M − 1 and ζ ≥ 1 is the smallest integer such that

2RC < 2λ+1R < min(Nζ
1 , N

ζ
2 )

with R > 2λ(C + 1)(M + 1). Note that Leq-dcr
zk ⊂ Leq-dcr

sound since M < R.
We note that, for any pair of ciphertexts ((ct1, `M ), (ct2, `M )) such that

(ct1, ct2, `M ) ∈ Leq-dcr
sound , the decryption algorithms of Section 2.6 for N1 and N2

output the same Msg = abs(bm/c̄e). Indeed, there exist u1, v2, u2, v2 ∈ Z with
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|u1| < N ζ
1 and |u2| < N ζ

2 such that u1 · c̄+ v1 ·Nζ
1 = 1 and u2 · c̄+ v2 ·Nζ

2 = 1,
which implies

ct1 = (1 +N1)u1·m · (wu1
1 · ctv11 )N

ζ
1 mod Nζ+1

1 ,

ct2 = (1 +N2)u2·m · (wu2
2 · ctv22 )N

ζ
2 mod Nζ+1

2 .

Since u1 = c̄−1 mod Nζ
1 and u2 = c̄−1 mod Nζ

2 , the decryption algorithm neces-
sarily outputs Msg = bm/c̄e in both cases.

We assume that the challenge space is {0, . . . , C}, where C = 2λ−1, and that
p, q > 2l(λ), for some polynomial l : N→ N such that l(λ) > λ for any sufficiently

large λ ∈ N. We now give a trapdoor Σ-protocol proving membership of Leq-dcr
sound .

Genpar(1λ) : Given the security parameter λ, define par = {λ}.
GenL(par,Leq-dcr) : Given public parameters par and a language description
Leq-dcr, consisting of RSA moduli N1 = p1q1 and N2 = p2, q2 with primes
p1, q1, p2, q2 > 2l(λ), for some polynomial l : N → N such that l(λ) > λ,
define the language-dependent CRS crsL = {N1, N2}. The global CRS is
crs = ({λ}, crsL).

TrapGen(par,Leq-dcr, τL) : This algorithm is identical to GenL(par,Leq-dcr), ex-
cept that it also outputs the trapdoor τΣ = (p1, q1, p2, q2).

P
(
crs, ~x, ~w

)
↔ V(crs, ~x) : On input of a common reference string crs, a state-

ment ~x = (ct1, ct2, `M ) ∈ Z∗
Nζ+1

1

× Z∗
Nζ+1

2

× N, the prover P (who has

~w = (m,w1, w2) ∈ [0,M ]×Z?N1
×Z?N2

) and the verifier V interact as follows:

1. P chooses a←↩ U([0, R]), r1 ←↩ U(Z∗N1
), r2 ←↩ U(Z∗N2

) and sends

A1 = (1 +N1)a · rN
ζ
1

1 mod Nζ+1
1 , A2 = (1 +N2)a · rN

ζ
2

2 mod Nζ+1
2 .

2. V sends back a random challenge Chall←↩ U({0, . . . , 2λ − 1}).
3. P aborts if a+ Chall ·m 6∈ [0, R]. Otherwise, it sends V the response

z = a+ Chall ·m, z1 = r1 · wChall
1 mod Nζ

1 , z2 = r2 · wChall
2 mod Nζ

2

4. V checks if z ∈ [0, R] and accepts iff the following conditions hold:

A1 · ctChall1 ≡ zN
ζ
1

1 · (1 +N1)z (mod Nζ+1
1 ),

A2 · ctChall2 ≡ zN
ζ
2

2 · (1 +N2)z (mod Nζ+1
2 )

BadChallenge
(
par, τΣ , crs,x,a

)
: Given x = (ct1, ct2, `M ) ∈

(
Z∗
Nζ+1

1

)2 × N, the

message a = (A1, A2) ∈
(
Z∗
Nζ+1

1

)2
and the trapdoor τΣ = (p1, q1, p2, q2),

1. Using sk1 = (p1, q1), decrypt ct1 and A1 using Paillier’s decryption al-
gorithm to obtain m1 ∈ ZNζ1 and a1 ∈ ZNζ1 . Likewise, use sk2 = (p2, q2)

to compute m2 ∈ ZNζ2 and a2 ∈ ZNζ2 by decrypting ct2 and A2.
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2. Find an integer vector (z,Chall, k1, k2) ∈ Z4 satisfying

a1 = z −m1 · Chall + k1 ·Nζ
1

a2 = z −m2 · Chall + k2 ·Nζ
2 ,

0 ≤ Chall ≤ 2λ − 1 (7)

0 ≤ k1 ≤ 2λ

0 ≤ k2 ≤ 2λ

This can be achieved by replacing the equalities by inequality pairs

∀b ∈ {1, 2} :

{
z −mb · Chall + kb ·Nζ

b ≤ ab,
−z +mb · Chall− kb ·Nζ

b ≤ −ab

and running Lenstra’s algorithm [45] to solve an integer linear program-
ming instance with 10 constraints and 4 variables.

If a suitable (z,Chall, k1, k2) ∈ Z4 is found (in which case, Chall is uniquely
determined), output the corresponding Chall. Otherwise, return ⊥.

Again, Lenstra’s algorithm [45] allows computing the unique bad challenge (when
it exists) in polynomial time since the number of variables is fixed.

Lemma 4.1. The construction is a trapdoor Σ-protocol for (Leq-dcr
zk ,Leq-dcr

sound ).

Proof. We first show the completeness and special zero-knowledge properties.

Completeness. Given ~w ∈ Req-dcr
zk (~x), P computes (a, z) for a challenge Chall

such that V(crs, ~x, (a,Chall, z)) = 1 as long as P does not abort at step 3 of the
interactive protocol. Therefore, an honest run of the protocol always leads to a
valid transcript except if a+ Chall ·m 6∈ [0, R] which occurs with probability at
most 2−λ since Chall ·m ≤ CM < 2λ+`M and R > 22λ+`M .

Special zero-knowledge. The simulator ZKSim proceeds in a standard way.
It that inputs crs = ({λ}, crsL), a statement ~x = (ct1, ct2, `M ) ∈ Leq-dcr

zk and a
challenge Chall ∈ {0, . . . , 2λ − 1}. First, the simulator ZKSim(crs, ~x,Chall) picks
z ←↩ U([0, R]) as well as z1 ←↩ U(Z∗N1

) and z2 ←↩ U(Z∗N2
). Then, it computes

A1 = z
Nζ1
1 · (1 +N1)z · ct−Chall1 mod Nζ+1

1 , as well as

A2 = z
Nζ2
2 · (1 +N2)z · ct−Chall2 mod Nζ+1

2 ,

and outputs (a, z), where a = (A1, A2) and z = (z, z1, z2). We turn to showing
that (a,Chall, z) is statistically indistinguishable from a real transcript computed

using the witness ~w = (m,w1, w2) ∈ [0,M ] × Z?N1
× Z?N2

(i.e., ~w ∈ Req-dcr
zk (~x))

and with challenge Chall. For each i ∈ {1, 2}, let ψi : ZNζi × Z?Ni 7→ Z?
Nζ+1
i
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denote the generalized Paillier isomorphism. By applying {ψ−1
i }2i=1 to com-

pute (a1, r1) := ψ−1
1 (A1) and (a2, r2) := ψ−1

2 (A2) for a simulated transcript
((A1, A2),Chall, (z, z1, z2)), we find

a1 ≡ z − Chall ·m (mod Nζ
1 ) r1 ≡ z1 · w−Chall1 (mod N1),

a2 ≡ z − Chall ·m (mod Nζ
2 ) r2 ≡ z2 · w−Chall2 (mod N2).

The congruences on the left ensure that, unless z ∈ [0, CM ] (which occurs with
negligible probability 2−λ), we have 0 ≤ a1 = z−Chall·m = a2 ≤ R. Given Chall,
the distributions of {(zi, ri)}2i=1 over the multiplicative rings are exactly the same
between the real and the simulated transcripts. Finally, we show that, over the
integers, the statistical distance between U([0, R]) (which is the distribution of
the simulated z) and Chall · m + U([0, R]) (in the real z) is negligible. Since
m · Chall ≤MC < 2λ+`M < 2−λR, it is actually bounded by 2−λ.

Special soundness. Let us assume two transcripts ((A1, A2),Chall, (z, z1, z2))
and

(
(A1, A2),Chall′, (z′, z′1, z

′
2)
)

that both satisfy the verification equations with
z, z′ ∈ [0, R] and Chall 6= Chall′ for a given first message (A1, A2) sent by the
prover. We assume w.l.o.g. that 0 ≤ Chall′ < Chall ≤ 2λ − 1. This implies that
c̄ = Chall− Chall′ ∈ [0, 2λ − 1] and z̄ = z − z′ ∈ [−R,R] satisfy the congruences

ctc̄1 ≡ (z1/z
′
1)
Nζ1 (1 +N1)z̄ (mod Nζ+1

1 ) and

ctc̄2 ≡ (z2/z
′
2)
Nζ2 (1 +N2)z̄ (mod Nζ+1

2 ),

which implies (ct1, ct2) ∈ Leq-dcr
sound . This shows that, for any first message (A1, A2)

sent by the prover, only one bad challenge can exist if (ct1, ct2) 6∈ Leq-dcr
sound .

CRS indistinguishability. The distribution of the CRS output by TrapGen is
exactly the same as the distribution of the CRS output by GenL.

BadChallenge correctness. Let a false statement ~x 6∈ Leq-dcr
sound . Special

soundness ensures the existence of at most one bad challenge for any given a.
Lenstra’s algorithm can efficiently determine if the bad challenge exists since it
can solve the integer feasibility problem in polynomial time when the num-
ber of variables is fixed. Moreover, whenever an admissible integer solution
(z,Chall, k1, k2) ∈ Z4 exists (in which case it is unique), it is efficiently com-
putable from the decrypted values (m1,m1, a1, a2). ut

4.2 New Construction of One-Time Simulation-Sound NIZK
Arguments from Trapdoor Σ-Protocols

In this section, we aim at one-time simulation soundness without imposing a
bound on the plaintext space in the centralized version our scheme of Section
4.3. To this end, we cannot use the constructions of [47,30] because they follow
an idea from [27] and encrypt the prover’s first message using a DCR-based lossy
encryption scheme [4]. Unfortunately, the latter’s public key should be larger
than the first prover message in the underlying trapdoor Σ-protocol.

24



We describe a new one-time simulation-sound argument which departs from
[46,47,30] in that it does not proceed by encrypting the first prover message of
the trapdoor Σ-protocol. Instead, it uses an OR proof [26] inspired by the FLS
technique [31]. In order to achieve one-time simulation-soundness, we introduce
a twist and program the CRS (u, v) ∈ (Z∗N2)2 in such a way that uVK · v is a
composite residue for exactly one VK.

- A trapdoor Σ-protocol Π(1) = (Gen(1)
par ,Gen

(1)
L ,P(1),V(1)) for an NP language

L. This protocol should satisfy the properties of Definition 2.6. We assume
that Π(1) has challenge space C = {0, 1}λ, where λ is the security parameter.

In addition, the function BadChallenge(1) should be computable within time
T1 ∈ poly(λ) for any input (τ, crs(1), x, a1).

- A strongly unforgeable one-time signature scheme OTS = (G,S,V) with
verification keys in {0, 1}L, where L ∈ poly(λ).

- An RSA modulus N = pq, for large primes p, q > 2L.

- A trapdoor Σ-protocol Π(0) = (Gen(0)
par ,Gen

(0)
L ,P(0),V(0)) for the language

LDCR := {x ∈ Z∗N2 | ∃w ∈ Z?N : x = wN mod N2} . We assume that the

function BadChallenge(0) is computable within time T0 ∈ poly(λ) for any
input (τ, crs(0), x, a0). This protocol can be instantiated as in Section 2.4

- A correlation intractable hash family H = (Gen,Hash) for the class RCI of
relations that are efficiently searchable within time T .

Genpar(1λ): Run par← Gen(1)
par(1

λ) and output par.
GenL(par,L): Given public parameters par and a language L, the CRS is gen-

erated as follows.

1. Generate a CRS crs
(1)
L ← Gen

(1)
L (par,L) for the trapdoor Σ-protocol Π(1).

2. Choose the description of a one-time signature scheme OTS = (G,S,V)
with verification keys in {0, 1}L, where L ∈ poly(λ).

3. Choose an RSA modulusN = pq, for primes p, q > 2L, where L ∈ poly(λ)
is the verification key length of OTS. Then, choose u0, v0 ←↩ Z∗N and
compute u = uN0 mod N2, v = vN0 mod N2.

4. Generate a CRS crs(0) ← Gen
(0)
L (par,LDCR) for Π(0), where LDCR is asso-

ciated with N = pq.
5. Generate a key k ← Gen(1λ) for a correlation intractable hash function

with output length λ.

Output the language-dependent CRS crsL :=
(
N, u, v, crs(0), crs

(1)
L , k

)
and

the simulation trapdoor τzk := (u0, v0). The global common reference string
consists of crs = (par, crsL,OTS).

P(crs, x, w, lbl) : To prove a statement x ∈ L for a label lbl ∈ {0, 1}∗ using the
witness w, generate a one-time signature key pair (VK,SK)← G(1λ). Then,

1. Compute (a1, st) ← P(1)(crs
(1)
L , x, w). Then, generate a simulated proof

(a0,Chall0, z0) ∈ Z∗N2 × {0, 1}λ × Z∗N that (uVK · v) ∈ LDCR. Namely,
choose random elements z0 ←↩ U(Z∗N ), Chall0 ←↩ U({0, 1}λ) and compute
a0 = zN0 · (uVK · v)−Chall0 mod N2.
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2. Compute Chall = Hash
(
k, (x, a,VK)

)
∈ {0, 1}λ, where a = (a0, a1), and

set Chall1 = Chall⊕ Chall0.
3. Compute z1 = P(1)(crs

(1)
L , x, w, a1,Chall1, st) by executing the prover of

Π(1). Define z = (z0, z1,Chall0,Chall1).
4. Generate sig ← S(SK, (x, a, z, lbl)) and output ~π =

(
VK, (a, z), sig

)
.

V(crs, x, ~π, lbl) : Given a statement x, a label lbl as well as a purported proof
~π =

(
VK, (a, z), sig

)
, return 0 if V(VK, (x, a, z, lbl), sig) = 0. Otherwise,

1. Write z = (z0, z1,Chall0,Chall1) and return 0 if any of these does not
parse properly or if Hash

(
k, (x, a,VK)

)
6= Chall0 ⊕ Chall1.

2. If V(1)(crs
(1)
L , x, a1,Chall1, z1)) = 1 and a0 · (uVK · v)Chall0 = zN0 mod N2,

return 1. Otherwise, return 0.

Theorem 4.2. The above construction is a one-time simulation-sound NIZK
argument if: (i) OTS is a strongly unforgeable one-time signature; (ii) The DCR
assumption holds; (iii) The hash function is correlation-intractable for efficiently
searchable relations. (The proof is given in the full version of this paper.)

4.3 A DCR-Based CCA2-Secure Threshold Cryptosystem from the
Naor-Yung Paradigm

The syntax and the security definitions of threshold PKE schemes are recalled
in the full version of this paper. Using the tools of Section 4.1 and Section 4.2,
we obtain the following variant of the threshold encryption scheme in [33].

We assume that the key generation step chooses a value ζ ′ that determines
a maximal length of encrypted messages (note that this is only necessary in the
threshold setting and not in the centralized version of the scheme). However, the
encryptor can still choose ζ ≤ ζ ′ in a flexible way at encryption time.

For simplicity, we first describe the non-robust version of the scheme, where
decryption servers do not provide a proof that partial decryptions are correctly
generated. However, robustness can be achieved in a modular way as in [30].

Keygen(1λ, 1B , 1t, 1n) : On input of a security parameter λ, a maximal bitlength
B ∈ poly(λ) of encrypted messages, a number of servers n ∈ poly(λ), and a
threshold t ∈ poly(λ), conduct the following steps.

1. Generate two safe prime products N1 = p1q1 and N2 = p2q2 such that
pi, qi > 2l(λ), for some polynomial l : N → N, and primes pi = 2p′i + 1,
qi = 2q′i + 1 for which p′i, q

′
i are also prime for each i ∈ {1, 2}.

2. Choose an integer ζ ′ > 0 such that 2B+2λ+1 < min(Nζ′

1 , N
ζ′

2 ).

3. Choose an integer d such that d = 1 mod Nζ′

1 and d = 0 mod λ(N1).

4. Choose a random polynomial f [X] =
∑t−1
i=0 aiX

i ∈ Z
Nζ
′

1 p′1q
′
1

[X] such

that a0 = d mod Nζ′

1 p
′
1q
′
1.

5. Generate the CRS crsL :=
(
N, u, v, crs(0), crs

(1)
L , k

)
of a simulation-sound

NIZK argument for the language (Leq-dcr
zk ,Leq-dcr

sound ) of Section 4.1, which
is induced by the moduli N1 and N2.
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The public key is pk = (N1, N2, crsL) and the secret key shares {ski}ni=1 are

defined as ski = f(i) mod Nζ′

1 p
′
1q
′
1 for each i ∈ [n].

Encrypt
(
pk,Msg

)
: To encrypt Msg ∈ {0, 1}`M , return ⊥ if `M > B. Otherwise,

interpret Msg as a positive integer in [0,M ], where M = 2`M − 1. Set ζ > 1

as the smallest integer such that min(Nζ
1 , N

ζ
2 ) ≥ 22λ+1M . Then, choose

(r1, r2)←↩ U(Z∗N1
× Z∗N2

) and compute

ct1 = (1 +N1)Msg · rN
ζ
1

1 mod Nζ+1
1 , ct2 = (1 +N2)Msg · rN

ζ
2

2 mod Nζ+1
2 .

Then, using the empty label lbl = ε, generate a simulation-sound NIZK argu-
ment ~π ← P

(
crs, (ct1, ct2, `M ), (Msg, r1, r2), lbl

)
that (ct1, ct2, `M ) ∈ Leq-dcr

zk .
Finally, output ct = (ct1, ct2, `M , ~π).

PartDec
(
ski, ct

)
: Given a ciphertext ct = (ct1, ct2, `M , ~π) and ski ∈ Z

Nζ
′

1 p′1q
′
1

,

the i-th server proceeds as follows.

1. If V(crs, (ct1, ct2, `M ), ~π, lbl) = 0, return ⊥.

2. Compute µi = ct2∆·ski
1 mod Nζ+1

1 , where ∆ = n!, and return (i, µi).

Combine
(
pk,S, {µi}i∈S , ct

)
: Let R = 2λ · (M +1) and C = 2λ−1. If S contains

less than t shares in Z∗
Nζ+1

1

, return ⊥. Otherwise, do the following.

1. Define scaled Lagrange coefficients λS0,i = ∆ ·
∏
i′∈S\{i}

−i
i−i′ ∈ Z for each

i ∈ S and compute µ0 =
∏
i∈S µ

2·λS0,i
i mod Nζ+1

1 , which should be of the

form µ0 = ct
4∆2f(0)
1 = ct4∆2d

1 mod Nζ+1
1 .

2. Compute µ̃ = L(µ0, N
ζ
1 )·4−1·(∆)−2 mod Nζ

1 , where L(·, Nζ
1 ) extracts the

discrete logarithm w.r.t. base (1+N1) of the elements modulo Nζ+1
1 that

are congruent to 1 modulo N1 as in [29]. Then, using Gauss’ algorithm,
find the unique (m, c) ∈ Z2 such that −R ≤ m ≤ R, 0 ≤ c ≤ C and
µ̃ = m · c−1 mod Nζ . If no such pair exists, return ⊥. Otherwise, return
Msg = abs(bm/ce), where the division is computed over Q.

Theorem 4.3. The scheme provides IND-CCA security under static corrup-
tions if: (i) The DCR assumption holds; (ii) ΠOTSS is a one-time simulation-
sound argument. (The proof is given in the full version of this paper.)

Comparisons. Devevey et al. [30, Section 4] gave a non-interactive threshold
CCA2-secure scheme based on DCR and LWE in the standard model. While
they can prove security under adaptive corruptions, our scheme provides several
advantages over [30] although we only prove static security.9 In the robust version
of the scheme, if we do not consider commitments to the secret key shares as
being part of the public key (which is reasonable as the encryptor does not need

9 Adaptive security is non-trivial to achieve when t, n ∈ poly(λ). In many applications
like e-voting, one can expect the number of servers to be small (e.g., logarithmic in
λ), in which case adaptive security can be achieved via complexity leveraging.
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them), the public key size grows with |N | instead of |Nζ |. Also, the scheme of
[30] requires larger secret key shares, which grow super-linearly with the number
of servers. Finally, our scheme allows the sender to adjust the block length by
choosing ζ according to the message length.

The full version of this paper provides more comparisons.
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