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Abstract. This work revisits the security of classical signatures and
ring signatures in a quantum world. For (ordinary) signatures, we focus
on the arguably preferable security notion of blind-unforgeability recently
proposed by Alagic et al. (Eurocrypt’20). We present two short signa-
ture schemes achieving this notion: one is in the quantum random oracle
model, assuming quantum hardness of SIS; and the other is in the plain
model, assuming quantum hardness of LWE with super-polynomial mod-
ulus. Prior to this work, the only known blind-unforgeable schemes are
Lamport’s one-time signature and the Winternitz one-time signature,
and both of them are in the quantum random oracle model.
For ring signatures, the recent work by Chatterjee et al. (Crypto’21) pro-
poses a definition trying to capture adversaries with quantum access to
the signer. However, it is unclear if their definition, when restricted to
the classical world, is as strong as the standard security notion for ring
signatures. They also present a construction that only partially achieves
(even) this seeming weak definition, in the sense that the adversary can
only conduct superposition attacks over the messages, but not the rings.
We propose a new definition that does not suffer from the above issue.
Our definition is an analog to the blind-unforgeability in the ring sig-
nature setting. Moreover, assuming the quantum hardness of LWE, we
construct a compiler converting any blind-unforgeable (ordinary) signa-
tures to a ring signature satisfying our definition.

Keywords: Blind-Unforgeability · Quantum · Ring Signatures

1 Introduction

Recent advances in quantum computing have uncovered several new threats to
the existing body of cryptographic work. As demonstrated several times in the

? Part of this work was done while visiting Max Planck Institute.



literature (e.g., [64, 15, 65, 1]), building quantum-secure primitives requires more
than taking existing constructions and replacing the underlying assumptions
with post-quantum ones. It usually requires new techniques and analysis. More-
over, for specific primitives, even giving a meaningful security notion against
quantum adversaries is a non-trivial task (e.g., [17, 18, 67, 61, 5]). This work
focuses on post-quantum security of digital signature schemes, namely, classical
signatures schemes for which we want to protect against quantum adversaries.

Post-Quantum Unforgeable Signatures. To build post-quantum secure sig-
nature schemes, the first step is to have a notion of unforgeability that protects
against adversaries with quantum power. Probably the most natural attempt
is to take the standard existential unforgeability (EUF) game, but require un-
forgeability against all quantum polynomial-time (QPT) adversaries (instead of
all probabilistic polynomial-time (PPT) adversaries). We emphasize that the com-
munication between the EUF challenger and the QPT adversary is still classical.
Namely, the adversary is not allowed to query the challenger’s circuit in a quan-
tum manner. Herein, we refer to this notion as PQ-EUF. Usually, PQ-EUF can
be achieved by existing constructions in the classical setting via replacing the
underlying hardness assumptions with quantum-hard ones (e.g., hard problems
on lattice or isogeny-based assumptions).

The (Quantum) Random Oracle Model. In the classical setting, the random ora-
cle model (ROM) [11] has been accepted as a useful paradigm to obtain efficient
signature schemes. When considering the above PQ-EUF notion in the ROM,
two choices arise—one can either allow the adversary classical access to the RO
(as in the classical setting)4, or quantum access to the RO. The latter was first
formalized as the quantum random oracle model (QROM) by Boneh et al. [15],
who showed that new techniques are necessary to achieve unforgeability against
QPT adversaries in this model. Then, a large body of literature has since inves-
tigated the PQ-EUF in QROM [6, 62, 48, 33, 52, 32, 42].

One-More Unforgeability vs Bind Unforgeability. Starting from [65], people re-
alize that the definitional approach taken by the above PQ-EUF may not be
sufficient to protect against quantum adversaries. The reason is that quantum
adversaries may try to attack the concerned protocol/primitive by executing it
quantumly, even if the protocol/primitive by design is only meant to be executed
classically. As argued in existing literature (e.g., [31, 36]), such an attack could
possibly occur in a situation where the computer executing the classical protocol
is a quantum machine, and an adversary somehow manages to observe the com-
munication before measurement. Other examples include adversaries managing
to trick a classical device (e.g., a smart card reader) into showing full or partial
quantum behavior by, for example, cooling it down and shielding it from any
external electromagnetic or thermal interference. Moreover, this concern may
also arise in the security reduction (even) w.r.t. classical security games but
against QPT adversaries. For example, some constructions may allow the ad-

4 To avoid confusion, we henceforth denote this model as CROM (“C” for “classical”).
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versary to obtain an indistinguishability obfuscation of, say, a PRF; the QPT
adversary can then implement it as a quantum circuit to conduct superposi-
tion attacks. Recently, this issue has received an increasing amount of attention
[17, 18, 67, 61, 36, 59, 46, 43, 30, 5, 23, 28, 4, 44, 45, 9].

To address the aforementioned security threats to digital signatures, it is
reasonable to give the QPT adversary A quantum access to the signing oracle in
the EUF game. This raises an immediate question—How should the game decide
if A’s final forgery is valid? Recall that in the classical setting (or the PQ-EUF
above), the game records all the signing queries made by A; to decide if A wins,
it needs to make sure that A’s final forgery message-signature pair is different
from the ones A learned from the signing oracle. However, this approach does
not fit into the quantum setting, since it is unclear how to record A’s quantum
queries without irreversibly disturbing them.

Boneh and Zhandry [18] proposed the notion of one-more unforgeability. This
requires that the adversary cannot produce sq+ 1 valid message-signature pairs
with only sq signing queries (an approach previously taken to define blind signa-
tures [57]). When restricted to the classical setting, this definition is equivalent
to the standard unforgeability of ordinary signatures, by a simple application of
the pigeonhole principle. [18] shows how to convert any PQ-EUF signatures to
one-more unforgeable ones using a chameleon hash function [49]; it also proves
that the PQ-EUF signature scheme by Gentry, Peikert, and Vaikuntanathan [38]
(henceforth, GPV) is one-more unforgeable in the QROM, assuming the PRF
in that construction is quantum secure (i.e., being a QPRF [65]).

As argued in [37, 5], one-more unforgeability does not seem to capture all
that we can expect from quantum unforgeability. For example, an adversary may
produce a forgery for a message in a subset A of the message space, while making
queries to the signing oracle supported on a disjoint subset B. Also, an adversary
may make multiple quantum signing queries, but then must consume, say, all of
the answers in order to make a single valid forgery. This forgery might be for a
message that is different from all the messages in all the superpositions of pre-
vious queries. This clearly violates what we intuitively expect for unforgeability,
but the one-more unforgeability definition may never rule this out.

To address these problems, Alagic at el. [5] propose blind-unforgeability (BU).
Roughly, the blind-unforgeability game modifies the (quantum-accessible) sign-
ing oracle by asking it to always return “⊥” for messages in a “blinded” subset
of the message space. The adversary’s forgery is considered valid only if it lies in
the blinded subset. In this way, the adversary is forced to forge a signature for
a message she has not seen a signature before, consistent with our intuition for
unforgeability. [5] shows that blind-unforgeability, when restricted to the classi-
cal setting, is also equivalent to PQ-EUF; Moreover, it does not suffer from the
above problems for one-more unforgeability5.

In terms of constructions, [5] show that Lamport’s one-time signature [50]
is BU in the QROM, assuming the OWF is modeled as a (quantum-accessible)

5 [5] also claimed that blind-unforgeability implies one-more unforgeability. But their
proof was flawed [29]. The relation between these two notions is an open problem.
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random oracle. Later, [54] show that the Winternitz one-time signature [55]
is BU in the QROM, assuming the underlying hash function is modeled as a
(quantum-accessible) random oracle. To the best of our knowledge, they are the
only schemes known to achieve BU. This gives rise to the following question:

Question 1: Is it possible to build (multi-time) signature schemes achiev-
ing blind-unforgeability, either in the QROM or the plain model?

Post-Quantum Secure Ring Signatures. In a ring signature scheme [58, 12],
a user can sign a message with respect to a ring of public keys, with the knowledge
of a signing key corresponding to any public key in the ring. It should satisfy
two properties: (1) Anonymity requires that no user can tell which user in the
ring actually produced a given signature; (2) Unforgeability requires that no
user outside the specified ring can produce valid signatures on behalf of this
ring. In contrast to its notional predecessor, group signatures [27], no central
coordination is required for producing and verfying ring signatures. Due to these
features, ring signatures (and their variants) have found natural applications
related to whistleblowing, authenticating leaked information, and more recently
to cryptocurrencies [60, 56], and thus have received extensive attention (see, e.g.,
[26] and related work therein).

For ring signatures from latticed-based assumptions, there exist several con-
structions in the CROM [3, 51, 60, 10, 63, 34, 13, 53], but only two schemes are
known in the plain model [21, 26]. The authors of [26] also initiate the study of
quantum security for ring signatures. They propose a definition where the QPT
adversary is allowed quantum access to the signing oracle in both the anonymity
and unforgeability game, where the latter is a straightforward adaption of the
aforementioned one-more unforgebility for ordinary signatures. As noted in their
work, this approach suffers from two disadvantages: (1) Their unforgeability def-
inition seems weak in the sense that, when restricted to the classical setting, it
is unclear if their unforgeability is equivalent to the standard one (see Sec. 2.3).
This is in contrast to ordinary signatures, for which one-more unforgeability is
equivalent to the standard existential unforgeability. (2) Their construction only
partially achieves (even) this seemingly weak definition. In more detail, their
security proof only allows the adversary to conduct superposition attacks on
the messages, but not on the rings. As remarked by the authors, this is not a
definitional issue, but rather a limitation of their technique. Indeed, [26] leave
it as an open question to have a construction protecting against superposition
attacks on both the messages and the rings.

The outlined gap begs the following natural question:

Question 2: Can we have a proper unforgeability notion for ring sig-
natures that does not suffer from the above disadvantage? If so, can we
have a construction achieving such a notion?

Our Results. In this work, we resolve the aforementioned questions:

1. We show that the GPV signature, which relies on the quantum hardness of
SIS (QSIS), can be proven BU-secure in the QROM. Since our adversary has
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quantum access to the signing oracle, we also need to replace the PRF in the
original GPV scheme with a QPRF, which is also known from QSIS. As will
be discussed later in Sec. 2.1, our security proof is almost identical to the
proof in [18] for the one-more unforgeability of GPV, except how the desired
contradiction is derived in the last hybrid. Interestingly, our proof for BU
turns out to be simpler than that in [18] (for one-more unforgeability). We
remark that the GPV scheme is short (i.e., the signature size only depends
on the security parameter, but not the message size).

2. We also construct a BU-secure signature in the plain model, assuming quan-
tum hardness of Learning with Errors (QLWE) with super-polynomial modu-
lus. Our construction is inspired by the signature (and adaptive IBE) scheme
by Boyen and Li [20]. This signature scheme is also short.

3. We present a new definition of post-quantum security for ring signatures,
by extending blind-unforgeability from [5]. We show that this definition,
when restricted to the classical setting, is equivalent to the standard security
requirements for ring signatures.

4. We build a ring signature satisfying the above definition. Our construction
is a compiler that converts any BU (ordinary) signature to a ring signature
achieving the definition in Item 3, assuming QLWE.

2 Technical Overview

2.1 BU Signatures in the QROM

We show that the GPV signature scheme from [38] is BU-secure in the QROM.
The GPV signature scheme follows the hash-and-sign paradigm and relies cru-
cially on the notion of preimage sampleable functions (PSFs). As the name in-
dicates, these functions can be efficiently inverted given a secret inverting key
in addition to being efficiently computable. Further, the joint distribution of
image-preimage pairs is statistically close, no matter whether the image or the
preimage is sampled first. PSFs also provide collision resistance, as well as pre-
image min-entropy: given any image, the set of possible preimages has ω(log λ)
bits of min-entropy, meaning that a specific preimage can only be predicted with
negligible chance.

The GPV scheme uses a hash function H modeled as a random oracle. It first
hashes the message m using H to obtain a digest h. The signing key includes the
PSF secret key, and the signature is a preimage of h (the signing randomness is
generated using a quantum secure PRF over the message). To verify a signature,
one simply computes its image under the PSF and compares it with the digest.

Notice that in the proof of (post-quantum) blind-unforgeability, the adver-
sary has quantum access to both H and the signing algorithm. To show blind-
unforgeability, we will move to a hybrid experiment where the H and the signing
algorithm Sign are constructed differently, but their joint distribution is statis-
tically close to that in the real execution. To do so, the hybrid will set the
signature for a message m to a random preimage from the domain of the PSF
(note that this procedure is “de-randomized” using the aforementioned PRF).
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To answer an H-oracle query on m, the hybrid will first compute its signature
(i.e., the PSF preimage corresponding to m), and then return the PSF evalua-
tion on this signature (aka preimage) as the output of H(m). Observe that, in
this hybrid, the (H,Sign) oracles are constructed by first sampling preimages for
the PSF, and then evaluating the PSF in the “forward” direction; in contrast,
in the real game, the (H,Sign) oracles can be interpreted as sampling a image
for PSF first, and then evaluating the PSF in the “reverse” direction using the
inverting key. From the property of PSFs given above, these two approaches in-
duce statistically-close joint distributions of (H,Sign) on each (classical) query.
A lemma from [18] then shows that these are also indistinguishable to adversaries
making polynomially-many quantum queries.

So far, our proof is identical to that of [18], where GPV is shown to be one-
more unforgeable. This final part is where we differ. In the final hybrid, if the
adversary produces a successful forgery for a message in the blind set, only two
possibilities arise. Since the image of the signature under the PSF must equal
the digest, the signature must either (i) provide a second preimage for h to the
one computed by the challenger, creating a collision for the PSF, or (ii) equal
the one the challenger itself computes, compromising preimage min-entropy of
the PSF. This latter claim requires special attention in [18]. A reduction to
the min-entropy condition is not immediate, since it is unclear if the earlier
quantum queries of A already allow A information about the preimages for the
q + 1 forgeries it outputs. To handle this, [18] prove a lemma ([18, Lemma 2.6])
showing q quantum queries will not allow A to predict q + 1 preimages, given
the min-entropy condition. In contrast, this last argument is superfluous in our
case, since the blind unforgeability game automatically prevents any information
for queries in the blindset from reaching the adversary. We can therefore directly
appeal to the min-entropy condition for case (ii) above.

Since our overall construction and proof for the QROM scheme is similar to
that in [18], we provide this construction and the corresponding proof in the full
version [25] due to space constraints.

2.2 BU Signatures in the Plain Model

We make use of the signature template introduced in [20], which in turn relies
on key-homomorphic techniques as used in [22]. We will refer to their homo-
morphic evaluation procedure as Evalbv. The scheme uses the ‘left-right trap-
door’ paradigm. Namely, the verification key contains a matrix A sampled with
a ‘trapdoor’ basis TA, and A0,C0,A1,C1, which can be interpreted as BV
encodings of 0 and 1 respectively, as well as similar encodings {Bi}i∈[|k|] of
the bits of a key k for a bit-PRF (the use of this PRF is the key innovation
in [20]). The corresponding signing key contains TA. To sign, one computes
BV encodings CM1

, . . . ,CMt
of a t-bit message M , then computes Aprf,m =

Evalbv({Bi}i∈[|k|], {Cj}j∈[t],PRF). Two signing matrices FM,b = [A | Ab −
Aprf,m] (∀b ∈ {0, 1}) are then generated (crucially, the adversary cannot tell
these apart because of the PRF). A signature is a short non-zero vector σ ∈ Z2m
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satisfying FM,b · σ = 0 for any one of the FM,b’s. As pointed out, TA allows the
signer to produce a short vector for either FM,b.

To show unforgeability, one constructs a reduction that (i) replaces the left
matrix with an SIS challenge (thus losing TA), and (ii) replaces the other ma-
trices used to generate the right half with their ‘puncturable’ versions (e.g., Ab

now becomes ARb + G, where Rb is an uniform low-norm matrix and G is
the gadget matrix), with the end result being that the matrix Aprf,m becomes
AR′ + G and FM,b now looks like [A | AR + (b − PRFk(M))G] (with R,R′

being suitable low-norm matrices). The crucial point is this: having sacrificed
TA, the reduction cannot sign like a normal signer. However it still retains a
trapdoor for the gadget matrix G, and for exactly one of the FM,b, a term in
G survives in the right half. This suffices to obtain a ‘right trapdoor’, and in
turn, valid signatures for any M . On the other hand, a forging adversary lacks
the PRF key and so it cannot tell apart FM,0 from FM,1. Thus the forgery must
correspond to FM,PRFk(M) with probability around 1/2, and the reduction can
use this solution to obtain a short solution for the challenge A.

However, the blind-unforgeability setting differs in several meaningful ways.
Here we no longer expect a forgery for any possible message, so the additional
machinery to have two signing matrices for every message becomes superfluous.
Indeed, for us the challenge is to disallow signing queries in the blindset (even
if they are made as part of a query superposition) and to prevent forgeries in
the blindset. Accordingly, we interpret the function of the PRF in a different
manner. We simply have the bit-PRF act as the characteristic function for the
blindset. Then we can extend the approach above to the blind-unforgeability
setting very easily: we use a single signing matrix Fm = [A | A′−Aprf,m] (where
A′ ‘encodes 1’). In the reduction, after making changes just as before, we obtain
that Fm =

[
A | AR−

(
1−PRFk(M)

)
G
]
. For messages where the PRF is not 1,

we can answer signing queries using the trapdoor for G; For messages where it
is 1, we cannot, and further we can use a forgery for such a message to break the
underlying SIS challenge. In effect, the reduction enforces the requisite blindset
behavior naturally.

A caveat is that the bit-PRF based approach may not correctly model a
blindset, which is a random ε-weight set of messages. Indeed, we require a slight
modification of a normal bit-PRF to allow us the necessary latitude in approxi-
mating sets of any weight ε ∈ [0, 1]. Moreover, due to the adversary’s quantum
access to the signing oracle, this PRF must be quantum-access secure; and to al-
low the BV homomorphic evaluation, the PRF must have NC1 implementation.
Fortunately, such a biased bit-PRF can be built by slightly modifying the PRF
from [8], assuming QLWE with super-polynomial modulus.

2.3 Post-Quantum Secure Ring Signatures

Defining Post-Quantum Security. To reflect the quantum power of an QPT
adversary A, one needs to give A quantum access to the signing oracle in the
security game. While this is rather straightforward for anonymity, the challenge
here is to find a proper notion for unforgeability (thus, here we only focus on the

7



latter). Let us first recall the classical unforgeability game for a ring signature.
In this game, A learns a ring R from the challenger, and then can make two
types of queries: (1) by a corruption query (corrupt, i), A can corrupt a member
in R to learn its secret key; (2) by a signing query (sign, i,R∗,m), A can create
a ring R∗, specify a member i that is contained in both R and R∗, and ask the
challenger to sign a message m w.r.t. R∗ using the signing keys of member i.
Notice that R∗ may contain (potentially malicious) keys created by A; but as
long as the member i is in both R∗ and R, the challenger is able to sign m w.r.t.
R∗. The challenger also maintains a set C recording all the members in R that
are corrupted by A. To win the game, A needs to output a forgery (R∗,m∗, Σ∗)
such that R∗ ⊆ R \ C, RS.Verify(R∗,m∗, Σ∗) = 1, and that A never made a
signing query of the form (sign, ·,R∗,m∗).

To consider quantum attacks, we first require that corruption queries should
remain classical. In practice, corruption queries maps to the attack where a ring
member is totally taken over by A. Since ring signatures are a de-centralized
primitive, corrupting a specific party should not affect other parties in the sys-
tem. This situation arguably does not change with A’s quantum power. One
could of course consider “corrupting a group of users in superposition”, but the
motivation and practical implications of such corruptions is unclear, and thus
we defer it to future research. In this work, we restrict ourselves to classical ring
member corruptions.

We will allow A to conduct superposition attacks over the ring and message.
That is, a QPT A can send singing queries of the form (sign, i,

∑
ψR,m |R,m〉),

where the identity i is classical for the same reason above. Given the argument
above, one may wonder why we allow superpositions over R in the signing query.
The reason is that unlike for corruption queries, each signing query specifies a
specific member i to run the signing algorithm for. No matter what R is, this
member will only sign using her own signing key (and this is the only signing key
that she knows), and this has nothing to do with other parties in the system6.
Therefore, superposition attacks over R can be validated just as superposition
attacks over m, thus should be allowed.

The next step is to determine the winning condition for QPT adversaries
in the above quantum unforgeability game. The approach taken by [26] is to
extend the one-more unforgeability from [18] to the ring setting. Concretely,
it is required that the adversary cannot produce (sq + 1) valid signatures by
making only sq quantum sign queries. However, there is a caveat. Recall that the
R∗ in A’s forgery should be a subset of uncorrupted ring members (i.e., R\C). A
natural generalization of the “one-more forgery” approach here is to require that,
with sq quantum signing queries, the adversary cannot produce sq + 1 forgery
signatures, where all the rings contained are subsets of R \ C. This requirement
turns out to be so strict that, when restricted to the classical setting, this one-
more unforgeability seems to be weaker than the standard unforgeability for ring
signatures (more details in Sec. 5.1).

6 Indeed, R may even contain “illegitimate” or “non-existent” members faked by A.
Note that we do not require R ⊆ R.
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Our idea is to extend the blind-unforgeability definition to our setting. Specif-
ically, the challenger will create a blind set BRS

ε by including in each ring-message
pair (R,m) with probability ε. It will then blind the signing algorithm such that
it always returns ⊥ for (R,m) ∈ BRS

ε . In contrast to one-more unforgeability, we
will show that this definition, when restricted to the classical setting, is indeed
equivalent to the standard unforgeability notion for ring signatures.

Our Construction. Our starting point is the LWE-based construction by Chat-
terjee et al. [26]. We first recall their construction: the public key consists of a
public key for a public-key encryption scheme PKE and a verification key for a
standard signature scheme Sig, as well as the first round message of a (bespoke)
ZAP argument. To sign a message, one first computes an ordinary signature σ
and then encrypts this along with a hash key hk for a specific (SPB) hash. Two
such encryptions (c1, c2) are produced, along with the second-round message π
of the ZAP proving that one of these encryptions is properly computed using a
public key that is part of the presented ring. The hash key is extraneous to our
concerns here; suffice it to say that it helps encode a ‘hash’ of the ring into the
signature and is a key feature in establishing compactness of their scheme.

To show anonymity, one starts with a signature for i0, then switches the
ciphertexts c1 and c2 in turn to be computed using the public key for i1 while
changing the ZAP accordingly. Semantic security ensures that ciphertexts with
respect to different public keys are indistinguishable, and WI of the ZAP allows
us to switch whichever ciphertext is not being used to prove π, and also to switch
a proof for a ciphertext corresponding to i0 to one corresponding to i1.

Unforgeability in [26] follows from a reduction to the unforgeability of Sig.
Even though their construction uses a custom ZAP that only offers soundness
for (effectively) NP ∩ coNP, they develop techniques in this regard to show that
even with this ZAP, one can ensure that if an adversary produces a forgery with
non-negligible probability, then it also encrypts a valid signature for Sig in one
of c1 or c2 with non-negligible probability. The reduction can extract this using
a corresponding decryption key (which it can obtain during key generation for
the experiment) and use this as a forgery for Sig.

The [26] construction can thus in fact be seen as a compiler from ordinary to
ring signatures assuming LWE. We use their template as a starting point, but
there are significant differences between security notions for standard (classical)
ring signatures, and our (quantum) blind-unforgeability setting. We discuss these
and how to accomodate them next. The very first change that we require here
is to use a blind-unforgeable signature scheme in lieu of Sig, since we reduce
unforgeability to that of Sig.

Next, let us discuss post-quantum anonymity. Here, the adversary can make a
challenge query that contains a superposition over rings and messages. We would
like to use the same approach as above, but of course computational indistigu-
ishability is compromised against superposition queries. Two clear strengthen-
ings are needed compared to the classical scheme: first, we need to use pairwise-
independent hashing to generate signing randomness (to apply quantum oracle
similarity techniques from [18]). Second, we want to ensure statistical similarity

9



of the components c1, c2, π (in order to use an aforementioned lemma from [18]
which says that pointwise statistically close oracles are indistiguishable even with
quantum queries). In particular, PKE needs to be statistically close on different
plaintexts, and the WI guarantee for the ZAP needs to be statistical. Fortu-
nately, we can use lossy encryption for the constraint on ciphertexts, and the
ZAP from [26] is already statistical WI.

Finally we turn to blind-unforgeability. Here, the things that change are that
firstly, we need to switch to injective public keys (instead of lossy ones) to carry
over the reduction from the classical case. Further, we forego using SPB hashing,
because our techniques require that we sign the message along with the ring, i.e.
Sig.Sign(sk,R‖m). Thus we end up compromising compactness and using an
SPB would serve no purpose. The reason that we need to sign the ring too has
to do with how we define the blindset and how the challenger must maintain it
in the course of the unforgeability game; this turns out to be more delicate than
expected (see related discussion in [25, Section 6.5]). With the modifications
above, we can eventually reduce the blind-unforgeability to that of Sig.

3 Preliminaries

Notation. For a set X , let 2X denote the power set of X (i.e., the set of all
subsets of X . Let λ ∈ N denote the security parameter. A non-uniform QPT ad-
versary is defined by {QCλ, ρλ}λ∈N, where {QCλ}λ is a sequence of polynomial-
size non-uniform quantum circuits, and {ρλ}λ is some polynomial-size sequence
of mixed quantum states. For any function F : {0, 1}n → {0, 1}m, “quantum
access” will mean that each oracle call to F grants an invocation of the (n+m)-
qubit unitary gate |x, t〉 7→ |x, t⊕F (x)〉; we stipulate that for any t ∈ {0, 1}∗,
we have t⊕⊥ = ⊥. Symbols

c
≈,

s
≈ and

i.d.
== are used to denote computational,

statistical, and perfect indistinguishability respectively. Computational indistin-
guishability in this work is by default w.r.t. non-uniform QPT adversaries.

Quantum Oracle Indistinguishability. We will need the following lemmata.

Lemma 1 ([66]). Let H be an oracle drawn from a 2q-wise independent distri-
bution. Then, the advantage of any quantum algorithm making at most q queries
to H has in distinguishing H from a truly random function is 0.

Lemma 2 ([18]). Let X and Y be sets, and for each x ∈ X , let Dx and D′x be
distributions on Y such that |Dx−D′x| ≤ ε for some value ε that is independent
of x. Let O : X → Y be a function where, for each x, O(x) is drawn from
Dx, and let O′(x) be a function where, for each x, O′(x) is drawn from D′(x).
Then any quantum algorithm making at most q queries to either O or O′ cannot
distinguish the two, except with probability at most

√
8C0q3ε.

Blind-Unforgeable Signatures. We recall in Def. 1 the definition for blind un-
forgeable signature schemes in [5]. The authors there provide a formal definition
for MACs. We extend it in the natural way to the signature setting.
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Definition 1 (Blind-Unforgeable Signatures). For any security parameter
λ ∈ N, let Mλ denote the message space and Tλ denote the signature space. A
blind-unforgeable signature scheme Sig consists of the following PPT algorithms:

– Gen(1λ) outputs a verification and signing key pair (vk, sk).
– Sign(sk,m; r) takes as input a signing key sk, a message m ∈ Mλ, and

a randomness r (which we avoid specifying unless pertinent). It outputs a
signature σ ∈ Tλ.

– Verify(vk,m, σ) takes as input a verification key vk, a message m ∈Mλ and
a signature σ ∈ Tλ. It outputs a bit signifying accept (1) or reject (0).

These algorithms satisfy the following requirements:

1. Completeness: For any λ ∈ N, any (vk, sk) in the range of Gen(1λ), and
any m ∈Mλ, it holds that Pr

[
Verify

(
vk,m, Sign(sk,m)

)
= 1
]

= 1− negl(λ).
2. Blind-Unforgeability: For any non-uniform QPT adversary A, it holds

w.r.t. Expr. 1 that PQAdvλbu(A) := Pr
[
PQExpλbu(A) = 1

]
≤ negl(λ).

Experiment 1: Blind-Unforgeability Game PQExpλbu(A)

1. A sends a constant 0 ≤ ε ≤ 1 to the challenger;
2. The challenger generates (vk, sk)← Gen(1λ) and provides vk to A.
3. The challenger defines a blindset BSig

ε ⊆Mλ as follows: every m ∈Mλ is put
in BSig

ε independently with probability ε.
4. A is allowed to make poly(λ) quantum queries. For each query, the challenger

samples a (classical) random string r and performs the following mapping:∑
m,t

ψm,t|m, t〉 7→
∑
m,t

ψm,t|m, t⊕BSig
ε Sign(sk,m; r)〉,

where BSig
ε Sign(sk,m; r) =

{
⊥ if m ∈ BSig

ε

Sign(sk,m; r) otherwise
.

5. Finally, A outputs (m∗, σ∗); the challenger checks if: (1) m∗ ∈ BSig
ε ; (2)

Verify(vk,m∗, σ∗) = 1. If so, the experiment outputs 1; otherwise, it outputs
0.

3. Shortness (Optional):The signature scheme is short if the signature size
is at most a polynomial on the security parameter and the logarithm of the
message size.

Remark 1 (One randomness to rule them all7). The signing algorithm in our
definition samples signing randomness once per every query, as opposed to sam-
pling signing randomness for every classical message in the superposition. This
was established as a reasonable definitional choice in [18], where they observed
that one could “de-randomize” the signing procedure by simply using a quan-
tum PRF to generate randomness for each possible message in superposition, and
use this for signing. We stick with this convention when defining post-quantum
security for both ordinary signatures (Def. 1) and ring signatures (Def. 4 and 5).

Remark 2. We let the adversary choose ε. This is equivalent to quantifying over
all values of ε as in the definition in [5].
7 Inspired by J. R. R. Tolkien. Indeed, this is a “ring” signature paper.
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4 Blind-Unforgeable Signatures in the Plain Model

Building Blocks. We assume familiarity with standard lattice-based crypto-
graphic notions and procedures. Here we will recall certain techniques and prop-
erties to be directly used in our plain model construction. For standard lattice-
related concepts (e.g., parameters, hardness, trapdoors), see the full version [25,
Appendix A.1].

We denote the Gram-Schmidt ordered orthogonalization of a matrix A ∈
Zm×m by Ã. For a vector u, we let ||u|| denote its `2 norm. For a matrix
R ∈ Zk×m, we define two matrix norms: ||R|| denotes the `2 norm of the largest
column of R. Correspondingly, ||R||2 denotes the operator norm of R, defined
as ||R||2 = supx∈Rm+1 ||Rx||. For a prime q, a modular matrix A ∈ Zn×mq and
vector u ∈ Znq , we define the m-dimensional (full rank) lattice Λu

q (A) = {e ∈
Zm : Ae = u (mod q)}. In particular, Λ⊥q (A) denotes the lattice Λ0

q (A).

Lattice Sampling Algorithms. Our construction uses the ‘left-right trapdoors’
framework introduced in [2, 19] which uses two sampling algorithms SampleLeft
and SampleRight. The algorithm SampleLeft works as follows:

– Inputs: A full-rank matrix A ∈ Zn×mq and a short basis TA of Λ⊥q (A), along
with a matrix B ∈ Zn×m1

q , a vector u ∈ Znq , and a Gaussian parameter s.
– Output: Let F = [A | B]. SampleLeft outputs a vector d ∈ Zm+m1 in Λu

q (F).

Theorem 1 (SampleLeft Closeness [2, 24]). Let q > 2, m > n and s >

||T̃A|| ·ω(
√

log(m+m1)). Then SampleLeft(A,B,TA,u, s) outputs d ∈ Zm+m1

distributed statistically close to DΛu
q (F),s.

The algorithm SampleRight works as follows:

– Inputs: Matrices A ∈ Zn×kq and R ∈ Zk×mq , a full-rank matrix B ∈ Zn×mq , a

short basis TB of Λ⊥q (B), a vector u ∈ Znq , and a Gaussian parameter s.
– Output: Let F = [A | AR + B]. It outputs a vector d ∈ Zm+m1 in Λu

q (F).

Theorem 2 (SampleRight Closeness [2]). Let q > 2, m > n and s > ||T̃B|| ·
ω(
√

logm). Then SampleRight(A,B,R,TB,u, s) outputs d ∈ Zm+k distributed
statistically close to DΛu

q (F),s.

Random Sampling Related. The following is a simple corollary of [2, Lemma 4]
(see the full version [25, Appendix A.2] for more details).

Corollary 1. Suppose that m > (n + 1) log2 q + ω(log n) and that q > 2 is
a prime. Let R be an m × k matrix chosen uniformly from {−1, 1}m×k mod q
where k = k(n) is polynomial in n. Let A′ ∈ Zn×mq be sampled from a distribution
statistically close to uniform over Zn×mq . Let R be an m × k matrix chosen

uniformly from {−1, 1}m×k mod q where k = k(n) is polynomial in n. Let B
be chosen uniformly in Zn×kq . Then for all vectors w ∈ Zmq , the distributions

(A′,A′R,R>w) and (A′,B,R>w) are statistically close.
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Key-Homomorphic Evaluation. We briefly recall the matrix key-homomorphic
evaluation algorithm, as found in [39, 16, 22] (see the full version [25, Appendix
A.3] for more details). This template evaluates NAND circuits, gate by gate,
in a homomorphic manner. For a NAND gate g(u, v;w) with input wires u, v
and output wire w, we have (inductively) matrices Au = ARu + xuG, and
Av = ARv + xvG where xu and xv are the input bits of u and v, and the
evaluation algorithm computes:

Aw = G−Au·G−1(Av) = G−(ARu+xuG)·G−1(ARv+xvG) = ARg+(1−xuxv)G,

where 1 − xuxv := NAND(xu, xv), and Rg = −Ru ·G−1(Av) − xuRv has low
norm if both Ru and Rv have low norm.

Biased Bit-QPRF. We need a quantum-access secure PRF having a biased single-

bit output. It should also be implementable by NC1 circuits. Let us first present
the definition.

Definition 2 (Biased Bit-QPRFs). A biased bit-QPRF on domain {0, 1}n(λ)
consists of:

– Gen(1λ, ε): takes as input a constant ε ∈ [0, 1], outputs a key kε;
– PRFkε(x): takes as input x ∈ {0, 1}n(λ), outputs a bit b ∈ {0, 1},

such that for any ε ∈ [0, 1] and any QPT A having quantum access to its oracle,∣∣Pr
[
kε ← Gen(1λ, ε) : APRFkε (·) = 1

]
−Pr

[
F

$←− F
(
n(λ), ε

)
: AF (·) = 1

]∣∣ ≤ negl(λ),

where F
(
n(λ), ε

)
is the collection of all functions from {0, 1}n(λ) to {0, 1} that

output 1 with probability ε.

It is known that the NC1 PRF from [8] is quantum-access secure (i.e., a
QPRF) [65]. It can be made biased by standard techniques (e.g., using the stan-
dard QPRF to “de-randomize” a ε-biased coin-tossing circuit). Note that the [8]
PRF relies on the quantum hardness of LWE with super-polynomial modulus.

Our Construction. Our signature scheme uses a biased bit QPRF PRF whose
input space X corresponds to our message spaceM, and the algorithms SampleLeft,
SampleRight given as in Thm. 1 and Thm. 2 respectively, and TrapGen that can
sample matrices in Zn×mq statistically close to uniform, along with a correspond-
ing ‘short’ or ‘trapdoor’ basis for the associated lattice. The construction is as
follows:

Construction 1: Blind-Unforgeable Signatures in the Plain Model

Set message length t(λ) and row size n(λ) as free parameters (polynomial in λ). PRF
key size is set as k(λ), and the depth for CPRF is given by d(λ). We set m = n1+η for
proper running of TrapGen, and sigsizeλ = s

√
2m for the validity of SampleLeft output

(to ensure completeness). Set s = O(4dm3/2)ω(
√

logm) to ensure statistical closeness
of SampleLeft and SampleRight, and correspondingly set β = O(16dm7/2)ω(

√
logm)

and q = O(16dm4)
(
ω(
√

logm)
)2

to have an overall reduction to an appropriately
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hard instance of SIS. For further details about these choices, see the full version [25,
Section 5.3].

Gen(1λ):

1. Sample a matrix A along with a ‘trapdoor’ basis TA for Λ⊥q (A) using TrapGen.
2. Sample a matrix A′, ‘PRF key’ matrices B1, . . . ,Bk, and ‘PRF input’ matrices

C0,C1 uniformly from Zn×mq (k is the PRF key length).
3. Fix the Gaussian width parameter s as given in parameter selection.
4. Fix a Boolean circuit description CPRF of the algorithm PRF(·)(·).
5. Output vk = (A,A′, {Bi}ki=1, {C0,C1},PRF, s,CPRF) and sk = TA.

Sign(sk, vk,M): let (M1, . . . ,Mt) ∈ {0, 1}t be the bit-wise representation of M .

1. Run the [22] evaluation algorithm Evalbv to homomorphically evaluate the circuit
CPRF using the ‘encoded’ PRF key bits {Bi}i∈[k] and message bits {CMj}j∈[t].
This yields Aprf,m := Evalbv(CPRF, {Bi}i∈[k], {CMj}j∈[t]) ∈ Zn×mq .

2. Set Fm := [A | A′ −Aprf,m]; Use SampleLeft to obtain dm ← DΛ⊥q (Fm),s
.

3. Output σ = dm ∈ Z2m
q .

Verify(vk,M, σ):

1. Compute Aprf,m, Fm as before.
2. Check that σ ∈ Z2m

q , σ 6= 0, and ||σ|| ≤ sigsizeλ. If it fails, output 0.
3. If Fm · σ = 0 mod q, output 1, otherwise output 0.

Proof of Security. Completeness follows straightforwardly from the correctness
of SampleLeft (Thm. 1) for DΛ⊥q (F),s. In the following, we prove BU-security.

Theorem 3. Let λ denote the security parameter, and PRF be a biased bit
QPRF as defined in Def. 2 above. If the parameters n,m, q, β, s, d are picked as
discussed above, and the SISq,β,n,m problem is hard for QPT adversaries, then
our signature scheme Sig constructed as above, with the indicated parameters,
satisfies Blind-Unforgeability as in Def. 5.

Proof. Consider a QPT A that is able to produce forgeries w.r.t. Sig in the blind-
unforgeability challenge. Our proof proceeds using a series of hybrid experiments.
In the final hybrid we show a reduction from an adversary producing succesful
forgeries to the hardness of SISq,β,n,m. The hybrids are as follows:

Hybrid H0: This is the blind-unforgeability game (Expr. 1). Namely, for an
adversary-specified ε, the challenger manually samples an ε-weight set Bε over
messages, and does not answer queries in Bε. Signing and verification keys are
chosen just as in the ordinary signing procedure.

Hybrid H1: This hybrid is identical to the previous one, except that we change
the ordinary key generation into the following:

1. Sample A with a ‘trapdoor’ basis TA for Λ⊥q (A) using TrapGen as before.
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2. Sample ‘low-norm’ matrices: R′A, {RBi}ki=1,RC0,RC1
$←− {−1, 1}m×m.

3. Let PRF and CPRF be as before.

4. Sample a PRF key kε ← PRF.Gen(1λ, ε), where kε = s1, . . . , sk (i.e. has
length k).

5. Set A′ = ARA′ + G, where G the gadget matrix G, which has a publicly-
known trapdoor T̃G.

6. Set Cb = ARCb + bG for b ∈ {0, 1}, and sample Bi
$←− Zn×mq for every

i ∈ [k].

7. Fix the Gaussian width parameter s as before.

8. Output vk = (A,A′, {Bi}ki=1, {C0,C1}, s,PRF,CPRF), and sk = (TA, kε).

Note that while this hybrid generates a key kε, it never uses it.

H0
s
≈ H1: The only thing that changes (w.r.t.A) is the distribution of the various

components (A′,C0,C1) of the verification key handed out by the challenger.
However, by Corollary 1 these distributions are all statistically close to the corre-
sponding distributions in H0. Note that the verification key is picked at the start
of the challenge and provided to A, so there is no scope for A to have quantum
access to these component distributions. Thus the outputs in these hybrids are
statistically close.

Hybrid H2: This hybrid is identical to the previous one, except that we change
how the challenger picks the blindset—Instead of manually sampling Bε as a
random ε-weight set, it now sets Bε to be the set of messages M where PRFkε(M)
is 1 (note that the challenger now possesses kε as part of sk, and can compute
PRFkε(·)). Observe that the challenger in this hybrid is now efficient.

H1
c
≈ H2: Note that setup and key generation in H2 is identical to that in H1—In

particular, the adversary learns no information about the key kε. The indistin-
guishability between H1 and H2 then follows immediately from the security of
the biased bit-QPRF (Def. 2).

Hybrid H3: This hybrid is identical to the previous one, except that we change
how the matrices Bi’s (in Step 6) are generated. Namely, we now set

∀i ∈ [k], Bi := ARBi + si ·G.

(Recall that si is the i-th bit of the kε generated in Step 4.)

H2
s
≈ H3: The only things that change between these hybrids are the matrices

{Bi}i∈[k]. Again, using Corollary 1 the distributions for Bi for each i ∈ [k] are
all statistically close to the corresponding distributions in H2, and just as in the
similarity argument between H2 and H3, we can conclude that these hybrids too
have indistinguishable outputs.
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Hybrid H4: Observe that, starting from H1, we have:

Fm = [A | A′ −Aprf,m] =
[
A | A′ − Evalbv(CPRF, {Bi}i∈[k], {CMj}j∈[t])

]
=
[
A | A′ −

(
ARprf,m + PRFkε(M) ·G

)]
=
[
A | A(RA′ −Rprf,m) +

(
1− PRFkε(M)

)
·G
]
.

In this hybrid, we switch to using SampleRight to answer signing queries, instead
of using SampleLeft. That is, we run SampleRight using TG, the publicly available
trapdoor for G. Note this means that now the challenger cannot answer queries
where the ‘right half’ of Fm does not include G, i.e., PRFkε(M) = 1. But due to
the way H2 generate the blindset, such a query is anyway answered with “⊥”.

H3
c
≈ H4: We first show that these two hybrids answer signature queries for

any classical query M in a statistically indistinguishable manner. For any query
M , there are two cases: (1) if PRFkε(M) = 1, the challengers in both H3 and
H4 return ⊥. In this case, these distributions are identical. (2) Else, we have
PRFkε(M) = 0. Since FM is computed identically in both hybrids, and by Thm. 1
and 2 both SampleLeft and SampleRight sample from distributions statistically
close to DΛ⊥q (Fm),s, i.e., they are also statistically close to each other. Thus overall
the distributions of signatures returned in H3 and H4 are statistically close to
each other, say with less than distance ∆(λ) (which is negligible in λ). Now since
A is a quantum machine making at most polynomially (say q(λ)) many quantum
queries. Then, we can use Lem. 2 to conclude that A distinguishes between H3

and H4 with probability at most
√

8C0q3∆, which is negligible.

Hybrid H5: In this hybrid, the challenger no longer samples A using TrapGen.
Instead, it samples A uniformly from Zn×mq .

H4
s
≈ H5: This follows immediately from the property of the lattice trapdoor

algorithm TrapGen.

Reduction to QSIS. We can now describe our reduction R in this hybrid:

1. Asks for and recieves a uniform matrix in Zn×mq as the SISq,β,n,m challenge.

2. Sets A to be this matrix (instead of sampling A by itself).

3. When the adversary returns a forgery (M∗, σ∗), R checks if this is valid, i.e.,
that (i) M∗ ∈ Bε, (ii) σ∗ ∈ Z2m

q , (iii) σ∗ 6= 0, (iv) Fm∗ · σ∗ = 0 mod q and
(v) ||σ|| ≤ sigsizeλ. If any of these checks fail, it aborts.

4. Represent σ∗ as [d>1 | d>2 ]>, with d1,d2 ∈ Zmq . R computes e = d1 + Rd2

where R = RA′ − Rprf,m (we will use this shorthand going forward), and
presents e as its solution to the SIS challenge A.

Now we can prove that e is indeed an SIS solution with non-negligible probability
by an argument very similar as in the final reduction for [20, Theorem 3.1]. Due
to space constraints, we present it in the full version [25, Section 5.4].
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5 Post-Quantum Ring Signatures

5.1 Definitions

Classical Ring Signatures. We start by recalling the classical definition of
ring signatures [12, 7].

Definition 3 (Ring Signature). A ring signature scheme RS is described by
a triple of PPT algorithms (Gen,Sign,Verify) such that:

– Gen(1λ, N): on input a security parameter 1λ and a super-polynomial8 N

(e.g., N = 2log
2 λ) specifying the maximum number of members in a ring,

output a verification and signing key pair (VK,SK).
– Sign(SK,R,m): given a secret key SK, a message m ∈ Mλ, and a list of

verification keys (interpreted as a ring) R = (VK1, · · · ,VK`) as input, and
outputs a signature Σ.

– Verify(R,m,Σ): given a ring R = (VK1, . . . ,VK`), message m ∈ Mλ and a
signature Σ as input, outputs either 0 (rejecting) or 1 (accepting).

These algorithms satisfy the following requirements:

1. Completeness: for all λ ∈ N, ` ≤ N , i∗ ∈ [`], and m ∈ Mλ, it holds
that ∀i ∈ [`] (VKi,SKi) ← Gen(1λ, N) and Σ ← Sign(SKi∗ ,R,m) where
R = (VK1, . . . ,VK`), we have Pr[RS.Verify(R,m,Σ) = 1] = 1, where the prob-
ability is taken over the random coins used by Gen and Sign.

2. Anonymity: For any Q = poly(λ) and any PPT adversary A, it holds w.r.t.

Expr. 2 that Advλ,QAnon(A) :=
∣∣Pr

[
Expλ,QAnon(A) = 1

]
− 1/2

∣∣ ≤ negl(λ).

Experiment 2: Classical Anonymity Expλ,QAnon(A)

1. For each i ∈ [Q], the challenger generates key pairs (VKi,SKi) ←
Gen(1λ, N ; ri). It sends {(VKi, SKi, ri)}i∈[Q] to A;

2. A sends a challenge to the challenger of the form (i0, i1,R,m).a The challenger
checks if VKi0 ∈ R and VKi1 ∈ R. If so, it samples a uniform bit b, computes
Σ ← Sign(SKib ,R,m), and sends Σ to A.

3. A outputs a guess b′. If b′ = b, the experiment outputs 1, otherwise 0.

a We stress that R might contain keys that are not generated by the challenger
in the previous step. In particular, it might contain maliciously generated keys.

3. Unforgeability: for any Q = poly(λ) and any PPT adversary A, it holds

w.r.t. Expr. 3 that Advλ,QUnf(A) := Pr
[
Expλ,QUnf(A) = 1

]
≤ negl(λ).

Experiment 3: Classical Unforgeability Expλ,QUnf(A)

1. For each i ∈ [Q], the challenger generates (VKi,SKi) ← Gen(1λ, N ; ri), and
stores these key pairs along with their corresponding randomness. It then sets
VK = {VK1, . . . ,VKQ} and initializes a set C = ∅.

2. The challenger sends VK to A.

8 The N has to be super-polynomial to support rings of arbitrary polynomial size.
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3. A can make polynomially-many queries of the following two types:
– Corruption query (corrupt, i): The challenger adds VKi to the set C and

returns the randomness ri to A.
– Signing query (sign, i,R,m): The challenger first checks if VKi ∈ R. If so,

it computes Σ ← Sign(SKi,R,m) and returns Σ to A. It also keeps a list
of all such queries made by A.

4. Finally, A outputs a tuple (R∗,m∗, Σ∗). The challenger checks if: (1) R∗ ⊆
VK \ C; (2) A never made a signing query of the form (sign, ·,R∗,m∗); (3)
Verify(R∗,m∗, Σ∗) = 1. If so, the experiment outputs 1; otherwise, 0.

We mention that the unforgeability and anonymity properties defined in
Definition 3 correspond respectively to the notions of unforgeability with insider
corruption and anonymity with respect to full key exposure presented in [12].

Defining Post-Quantum Security. We aim to build a classical ring signature
that is secure against adversaries making superposition queries to the signing
oracle. Formalizing the security requirements in this scenario is non-trivial. An
initial step toward this direction has been taken in [26]. But their definition
has certain restrictions (discussed below). In the following, we develop a new
definition building on ideas from [26].

Post-Quantum Anonymity. Recall that in the classical anonymity game (Expr. 2),
the adversary’s challenge is a quadruple (i0, i1,R,m). To define post-quantum
anonymity, a natural attempt is to allow the adversary to send a superposi-
tion over components of quadruple, and to let the challenger respond using the
following unitary mapping9:∑
i0,i1,R,m,t

ψi0,i1,R,m,t |i0, i1,R,m, t〉 7→
∑

i0,i1,R,m,t

ψi0,i1,R,m,t |i0, i1,R,m, t⊕ Sign(SKib ,m,R; r)〉 .

However, as observed in [26], this will lead to an unsatisfiable definition due to
an attack from [18]. Roughly speaking, the adversary could use classical values
for R, m, and i1, but she puts a uniform superposition of all valid identities in the
register for i0. After the challenger’s signing operation, observe that if b = 0, the
last register will contain signatures in superposition (as i0 is in superposition); if
b = 1, it will contain a classical signature (as i1 is classical). These two cases can
be efficiently distinguished by means of a Fourier transform on the i0’s register
followed by a measurement. Therefore, to obtain an achievable notion, we should
not allow superpositions over (i0, i1).

Now,A only has the choice to put superpositions over R andm. The definition
in [26] further forbids A from putting superpositions over R. But this is only
because they fail to prove security if superposition attacks on R is allowed.
Indeed, they leave open the problem to construct a scheme that protects against
superposition attacks on R. In this work, we solve this problem: our definition
allows superposition attacks on both R and m.

9 Of course, the challenger also needs to check if VKi0 ∈ R and VKi1 ∈ R. But we can
safely ignore this for our current discussion.
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Definition 4 (Post-Quantum Anonymity). Consider a triple of PPT al-
gorithms RS = (Gen,Sign,Verify) that satisfies the same syntax as in Def. 3. RS
achieves post-quantum anonymity if for any Q = poly(λ) and any QPT adver-
sary A, it holds w.r.t. Expr. 4 that

PQAdvλ,QAnon(A) :=
∣∣Pr

[
PQExpλ,QAnon(A) = 1

]
− 1/2

∣∣ ≤ negl(λ).

Experiment 4: Post-Quantum Anonymity PQExpλ,QAnon(A)

1. For each i ∈ [Q], the challenger generates key pairs (VKi, SKi) ←
RS.Gen(1λ, N ; ri). The challenger sends {(VKi, SKi, ri)}i∈[Q] to A;

2. A sends (i0, i1) to the challenger, where both i0 and i1 are in [Q];
3. A’s challenge query is allowed to be a superposition of rings and messages. The

challenger picks a random bit b and a random string r. It signs the message using
SKib and randomness r, while making sure that VKi0 and VKi1 are indeed in the
ring specified by A. Formally, the challenger implements the following mapping:∑

R,m,t

ψR,m,t |R,m, t〉 7→
∑
R,m,t

ψR,m,t |R,m, t⊕f(R,m)〉 ,

where f(R,m) :=

{
RS.Sign(SKib , R,m; r) if VKi0 ,VKi1 ∈ R
⊥ otherwise

.

4. A outputs a guess b′. If b′ = b, the experiment outputs 1, otherwise 0.

Post-Quantum Unforgeability. In the classical unforgeability game (Expr. 3), A
can make both corrupt and sign queries. As discussed in Sec. 2.3, we do not
consider quantum corrupt queries, or superposition attacks over the identity in
A’s sign queries. We also remark that in the unforgeability game, [26] does not
allow superpositions over the ring. Instead of a definitional issue, this is again
only because they are unable to prove the security of their scheme if superposition
attacks on the ring is allowed. In contrast, our construction can be proven secure
against such attacks; thus, this restriction is removed from our definition.

To define quantum unforgeability, [26] adapts one-more unforgeability [18]
to the ring setting: they require that, with sq quantum signing queries, the
adversary cannot produce sq + 1 signatures, where all the rings are subsets of
VK\C. This definition, when restricted to the classical setting, seems to be weaker
than the standard unforgeability in Def. 3.That is, in the classical setting, any
RS satisfying the unforgeability in Def. 3 is also one-more unforgeable; but the
reverse direction is unclear (we provide more discussion in [25, Appendix B]).
Instead, our definition extends the blind-unforgeability for ordinary signatures
(Def. 1) to the ring setting. We present this version in Def. 5. In contrast to the
“one-more” unforgeability, we will show in Lem. 3 that, when restricted to the
classical setting, this blind-unforgeability for ring signatures is indeed equivalent
to the standard existential unforgeability in Def. 3. Its proof is almost identical
to [5, Proposition 2]. Due to space constraints, we put it in [25, Section 6.1.2].

Definition 5 (Post-Quantum Blind-Unforgeability). Consider a triple of
PPT algorithms RS = (Gen,Sign,Verify) that satisfies the same syntax as in
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Def. 3. For any security parameter λ, let Rλ and Mλ denote the ring space
and message space, respectively. RS achieves blind-unforgeability if for any Q =
poly(λ) and any QPT adversary A, it holds w.r.t. Expr. 5 that

PQAdvλ,Qbu (A) := Pr
[
PQExpλ,Qbu (A) = 1

]
≤ negl(λ).

Experiment 5: Post-Quantum Blind-Unforgeability PQExpλ,Qbu (A)

1. A sends a constant 0 ≤ ε ≤ 1 to the challenger;
2. For each i ∈ [Q], the challenger generates (VKi, SKi)← Gen(1λ, N ; ri), and stores

these key pairs along with their corresponding randomness. It then sets VK =
{VK1, . . . ,VKQ} and initializes a set C = ∅; The challenger sends VK to A;

3. The challenger defines a blindset BRS
ε ⊆ 2Rλ ×Mλ: every pair (R,m) ∈ 2Rλ ×Mλ

is put in BRS
ε with probability ε;

4. A can make polynomially-many queries of the following two types:
– Classical corruption query (corrupt, i): The challenger adds VKi to the set
C and returns the randomness ri to A.

– Quantum Signing query (sign, i,
∑
ψR,m,t |R,m, t〉): That is, A is allowed to

query the signing oracle on some classical identity i and superpositions over
rings and messages. The challenger samples a random string r and performs:∑

R,m,t

ψR,m,t |R,m, t〉 7→
∑
R,m,t

ψR,m,t

∣∣∣R,m, t⊕BRS
ε f(R,m)

〉
,

where BRS
ε f(R,m) :=

{
⊥ if (R,m) ∈ BRS

ε

f(R,m) otherwise
, and

f(R,m) :=

{
RS.Sign(SKi,m,R; r) if VKi ∈ R

⊥ otherwise
.

5. Finally, A outputs (R∗,m∗, Σ∗). The challenger checks if: (1) R∗ ⊆ VK \ C; (2)
Verify(R∗,m∗, Σ∗) = 1; (3) (R∗,m∗) ∈ BRS

ε . If so, it outputs 1; otherwise, 0.

Lemma 3. Restricted to (classical) QPT adversaries, a ring signature RS scheme
is blind-unforgeable (Def. 5) if and only if it satisfies the unforgeability require-
ment in Def. 3.

To conclude, we present the complete definition for quantum ring signatures.

Definition 6 (Post-Quantum Secure Ring Signatures). A post-quantum
secure ring signature scheme RS is described by a triple of PPT algorithms
(Gen,Sign,Verify) that share the same syntax as in Def. 3. Moreover, they also
satisfy the completeness requirement in Def. 3, the post-quantum anonymity in
Def. 4, and the post-quantum blind-unforgeability as in Def. 5.

5.2 Building Blocks

Lossy PKEs with Special Properties. We need the following lossy PKE.

Definition 7 (Special Lossy PKE). For any security parameter λ ∈ N, let
Mλ denote the message space. A special lossy public-key encryption scheme LE
consists of the following PPT algorithms:

20



– MSKGen(1λ, Q), on input a number Q ∈ N, outputs
(
{pki}i∈[Q],msk

)
. We

call pki’s the injective public keys, and msk the master secret key.
– MSKExt(msk, pk), on input a master secret key msk and an injective public

key pk, outputs a secret key sk.
– KSamls(1λ) outputs key pkls, which we call lossy public key.
– Valid(pk, sk), on input a public pk and a secret key sk, outputs either 1 (ac-

cepting) or 0 (rejecting).
– RndExt(pk) outputs a r which we call extracted randomness.
– Enc(pk,m), on input a public key pk, and a message m ∈Mλ, outputs ct.
– Dec(sk, ct), on input a secret key sk and a ciphertext ct, outputs m.

These algorithms satisfy the following properties:

1. Completeness. For any λ ∈ N, any (pk, sk) s.t. Valid(pk, sk) = 1, and any
m ∈Mλ, it holds that Pr

[
Dec

(
sk,Enc(pk,m)

)
= m

]
= 1.

2. Lossiness of lossy keys. For any pkls in the range of KSamls(1λ) and any

m0,m1 ∈Mλ, it holds that
{
Enc(pkls,m0)

}
λ∈N

s
≈
{
Enc(pkls,m1)

}
λ∈N.

3. Completeness of Master Secret Keys: for any Q = poly(λ), it holds
that

Pr

[(
{pki}i∈[Q],msk

)
← MSKGen(1λ, Q) :

∀i ∈ [Q],Valid(pki, ski
)

= 1,
where ski := MSKExt

(
msk, pki)

]
≥ 1−negl(λ).

4. IND of MSKGen/KSamls mode: For any Q = poly(λ), the following two
distributions are computationally indistinguishable:

– ∀i ∈ [Q], sample pki ← KSamls(1λ; ri), then output {pki, ri}i∈[Q];

– Sample
(
{pki}i∈[Q],msk

)
← MSKGen(1λ, Q) and output

{
pki,RndExt(pki)

}
i∈[Q]

.

5. Almost-Unique Secret Key: For any Q = poly(λ), it holds that

Pr

[(
{pki}i∈[Q],msk

)
← MSKGen(1λ, Q) :

There exist i ∈ [Q] and sk′i such that
sk′i 6= MSKExt(msk, pki) ∧ Valid(pki, sk

′
i) = 1

]
= negl(λ).

We propose an instantiation of such a lossy PKE using dual mode LWE
commitments [41]. In lossy (statistically hiding) mode, the public key consists
of a uniformly sampled matrix A and a message m is encrypted by computing
AR + mG, where R is a low-norm matrix and G is the gadget matrix. Note
that the random coins used to sample A simply consists of the matrix A itself.
Furthermore, we can switch A to be an LWE-matrix (using some secret vector
s) to make the encryption scheme injective. Such a modification is computation-
ally indistinguishable by an invocation of the LWE assumption. Note that this is
true also in the presence of the output of RndExt(A), since the algorithm simply
returns A. Furthermore, by setting the dimensions appropriately, the secret s is
uniquely determined by A with overwhelming probability. Finally, we note that
we can define a master secret key for all keys in injective mode using a simple
trick: sample a PRF key k and sample the i-th key pair using PRF(k, i) as the
random coins. It is not hard to see that the distribution of public/secret keys
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is computationally indistinguishable by the pseudorandomness of PRF. Further-
more, given k one can extract the i-th secret key simply by recomputing it.

ZAPs for Super-Complement Languages. As mentioned in Sec. 2.3, [26]
uses a ZAP (for NP ∩ coNP) to prove a statement that the (ring) signature
contains a ciphertext of a valid signature w.r.t. the building-block signature
scheme. Let us denote this language as L. In the security proof, they need to
argue that the adversary cannot prove a false statement x∗ /∈ L. However, this
L is not necessarily in coNP; thus, there may not exist a non-witness w̃ for the
fact that x∗ /∈ L. Therefore, it is unclear how to use a ZAP for NP ∩ coNP
here. To address this issue, the authors of [26] propose the notion of super-

complement languages. This notion considers a pair of NP languages (L, L̃) such

that (x ∈ L̃) ⇒ (x /∈ L). Their ZAP achieves soundness such that the cheating
prove cannot prove x ∈ L (except with negligible probability) once there exists

a “non-witness” w̃ s.t. (x, w̃) ∈ RL̃. The L̃ is set to the language the captures
some necessary conditions for any valid forgery. Thus, a winning adversary will
break the soundness of the ZAP, leading to a contradiction.

In the following, we present the original definition of super-complement lan-
guages. But we will only need a special case of it (see Rmk. 3).

Definition 8 (Super-Complement [26]). Let (L, L̃) be two NP languages

where the elements of L̃ are represented as pairs of bit strings. We say L̃ is
a super-complement of L, if L̃ ⊆ ({0, 1}∗ \ L) × {0, 1}∗. I.e., L̃ is a super

complement of L if for any x = (x1, x2), x ∈ L̃⇒ x1 6∈ L.

Notice that, while the complement of L might not be in NP, it must hold
that L̃ ∈ NP. The language L̃ is used to define the soundness property. Namely,
producing a proof for a statement x = (x1, x2) ∈ L̃, should be hard. We also

use the fact that L̃ ∈ NP to mildly strengthen the soundness property. In more
detail, instead of having selective soundness where the statement x ∈ L̃ is fixed
in advance, we now fix a non-witness w̃ and let the statement x be adaptively
chosen by the malicious prover from all statements which have w̃ as a witness
to their membership in L̃.

Remark 3. Our application only needs a special case of the general form given in
Def. 8—we will only focus on L̃ where the x2 part is an empty string. Formally,
we consider the special case where L̃ ⊆ {0, 1}∗ \ L (i.e., x ∈ L̃⇒ x /∈ L).

We now define ZAPs for super-complement languages. We remark that the
original definition (and construction) in [26] captures the general (L, L̃) pairs
defined in Def. 8. Since we only need the special case in Rmk. 3, we will define
the ZAP only for this case.

Definition 9 (ZAPs for Special Super-Complement Languages). Let

L, L̃ ∈ NP be the special super-complement language in Rmk. 3. Let R and R̃
denote the NP relations corresponding to L and L̃ respectively. Let {Cn,`}n,` and

{C̃n,˜̀}n,˜̀ be the NP verification circuits for L and L̃ respectively. Let d̃ = d̃(n, ˜̀)
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be the depth of C̃n,˜̀. A ZAP for (L, L̃) is a tuple of PPT algorithms (V,P,Verify)

having the following interfaces (where 1n, 1λ are implicit inputs to P, Verify):

– V(1λ, 1n, 1
˜̀
, 1D̃): On input a security parameter λ, statement length n for L,

witness length ˜̀ for L̃, and NP verifier circuit depth upper-bound D̃ for L̃,
output a first message ρ.

– P
(
ρ, x, w

)
: On input a string ρ, a statement x ∈ {0, 1}n, and a witness w

such that (x,w) ∈ R, output a proof π.
– Verify

(
ρ, x, π

)
: On input a string ρ, a statement x, and a proof π, output

either 1 (accepting) or 0 (rejecting).

The following requirements are satisfied:

1. Completeness: For every x ∈ L, every ˜̀ ∈ N, every D̃ ≥ d̃(|x|, ˜̀), and
every λ ∈ N, it holds that

Pr
[
ρ← V(1λ, 1|x|, 1

˜̀
, 1D̃);π ← P(ρ, x, w) : Verify

(
ρ, x, π

)
= 1
]

= 1.

2. Public coin: V(1λ, 1n, 1
˜̀
, 1D̃) simply outputs a uniformly random string.

3. Selective non-witness adaptive-statement soundness: For any non-
uniform QPT machine P ∗λ , any n, D̃ ∈ N, and any non-witness w̃ ∈ {0, 1}∗,

Pr

[
ρ← V(1λ, 1n, 1|w̃|, 1D̃);(
x, π∗

)
← P ∗λ (ρ)

:
Verify(ρ, x, π∗) = 1 ∧
D̃ ≥ d̃(|x|, |w̃|) ∧ (x, w̃) ∈ R̃

]
≤ negl(λ).

4. Statistical witness indistinguishability: For every (possibly unbounded)

“cheating” verifier V ∗ = (V ∗1 , V
∗
2 ) and every n, ˜̀, D̃ ∈ N, the probabilities

Pr[V ∗2 (ρ, x, π, ζ) = 1 ∧ (x,w) ∈ R ∧ (x,w′) ∈ R]

in the following two experiments differ only by negl(λ):

– in experiment 1, (ρ, x, w,w′, ζ)← V ∗1 (1λ, 1n, 1
˜̀
, 1D̃), π ← P(ρ, x, w);

– in experiment 2, (ρ, x, w,w′, ζ)← V ∗1 (1λ, 1n, 1
˜̀
, 1D̃), π ← P(ρ, x, w′).

Lemma 4 ([26]). Assuming QLWE, there exist ZAPs as per Def. 9 for any
super-complement language as per Def. 8.

5.3 Construction

Our construction, shown in Constr. 2, relies on the following building blocks: (1)
pair-wise independent functions; a Sig satisfying Def. 1; a LE satisfying Def. 7;
a ZAP satisfying Def. 9.

We remark that the RS.Sign algorithm runs ZAP on a special super-complement
language (L, L̃), whose definition will appear after the construction in Sec. 5.4.

This arrangement is because we find that the language (L, L̃) becomes easier to
understand once the reader has slight familiarity with Constr. 2.
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Construction 2: Post-Quantum Ring Signatures

Let D̃ = D̃(λ,N) be the maximum depth of the NP verifier circuit for language L̃
restricted to statements where the the ring has at most N members, and the security
parameter for Sig and LE is λ. Let n = n(λ, logN) denote the maximum size of the
statements of language L where the ring has at most N members and the security
parameter is λ. Recall that for security parameter λ, secret keys in LE have size˜̀= `sk(λ). We now describe our ring signature construction:

Key Generation Algorithm Gen(1λ, N):

– sample signing/verification key pair: (vk, sk)← Sig.Gen(1λ);
– sample obliviously an injective public key of LE: pk ← LE.KSamls(1λ);

– compute the first message ρ← ZAP.V(1λ, 1n, 1
˜̀
, 1D̃) for ZAP;

– output the verification key VK := (vk, pk, ρ) and signing key SK := (sk, vk, pk, ρ).

Signing Algorithm Sign(SK,R,m):

– parse R = (VK1, . . . ,VK`); and parse SK = (sk, vk, pk, ρ);
– compute σ ← Sig.Sign(sk,R‖m);
– let VK := VKi ∈ R be the verification key corresponding to SK;
– sample two pairwise-independent functions PI1 and PI2, and compute

rc1 = PI1(R‖m), rc2 = PI2(R‖m).

– compute c1 ← LE.Enc(pk, (σ, vk); rc1) and c2 ← LE.Enc(pk, 0|σ|+|vk|; rc2);
– let VK1 = (vk1, pk1, ρ1) denote the lexicographically smallest member of R (as a

string; note that this is necessarily unique);
– fix statement x = (R,m, c1, c2) and witness w = (vk, pk, σ, rc1). We remark that

this statement and witness correspond to a super-complement language (L, L̃)
that will be defined in Sec. 5.4. Looking ahead, x with witness w is a statement
in the L defined in Eq. (1); x constitutes a statement that is not in the L̃ defined
in Eq. (4).

– sample another pairwise-independent function PI3 and compute rπ = PI3(R‖m);
– compute π ← ZAP.P(ρ1, x, w; rπ);
– output Σ = (c1, c2, π).

Verification Algorithm Verify(R,m,Σ):

– identify the lexicographically smallest verification key VK1 in R;
– fix x = (R,m, c1, c2); read ρ1 from VK1;
– compute and output ZAP.Verify(ρ1, x, π).

5.4 The Super-Complement Language Proven by the ZAP

We now define the super-complement language (L, L̃) used in Constr. 2. This

deviates from the (L, L̃) defined in [26, Section 5], to accommodate Constr. 2.
For a statement of the form x1 = (R,m, c) and witness w =

(
VK = (vk, pk, ρ), σ, rc

)
,

define relations R1, R2, and R3 as follows:

(x1, w) ∈ R1 ⇔ VK ∈ R, (x1, w) ∈ R2 ⇔ LE.Enc
(
pk, (σ, vk); rc

)
= c,

(x1, w) ∈ R3 ⇔ Sig.Verify(vk,R‖m,σ) = 1.
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Next, define the relation R′ as R′ := R1 ∩ R2 ∩ R3. Let L′ be the language
corresponding to R′. Define language L as

L :=
{
x = (R,m, c1, c2)

∣∣ (R,m, c1) ∈ L′ ∨ (R,m, c2) ∈ L′
}
. (1)

Now, we define another language L̃ and prove that it is a super-complement
of L in Claim 1. Let x1 = (R,m, c) as above, but let w̃ := msk. Define the
following relations:

(x1, w̃) ∈ R4 ⇔ ∀j ∈ [`] : LE.Valid
(
pkj , LE.MSKExt(msk, pkj)

)
= 1 (2)

(x1, w̃) ∈ R5 ⇔


∃VK ∈ R : VK = (vk, pk, ρ) such that:
LE.Valid

(
pk, LE.MSKExt(msk, pk)

)
= 1 ∧

LE.Dec
(
LE.MSKExt(msk, pk), c

)
= (σ, vk) ∧

Sig.Verify(vk,R‖m,σ) = 1

(3)

where, for each j ∈ [`], VKj = (vkj , pkj , ρj) is the j-th member in R. Let L4 and
L5 be the languages corresponding to R4 and R5, respectively. Define further the
relation R̂ according to R̂ := R4 \R5, and let L̂ be the corresponding language.

Define L̃ as follows:

L̃ :=
{
x = (R,m, c1, c2)

∣∣ (R,m, c1) ∈ L̂ ∧ (R,m, c2) ∈ L̂
}
. (4)

Following a similar proof as for [26, Lemma 5.1], we can show that L̃ is indeed
a super-complement of L. (The full proof is provided in [25, Section 6.3.1].)

Claim 1. If LE satisfies the completeness defined in Item 1, then L̃ as defined
in Eq. (4) is a super-complement of L defined in Eq. (1).

5.5 Proof of Security

The security of Constr. 2 can be established following the idea illustrated in
Sec. 2.3. Due to space constraints, we refer the reader to [25, Section 6.4] for the
formal security proof.
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