
Logarithmic-Size (Linkable) Threshold
Ring Signatures in the Plain Model

Abida Haque1, Stephan Krenn2,
Daniel Slamanig2, and Christoph Striecks2

1 North Carolina State University, Raleigh, USA
ahaque3@ncsu.edu

2 AIT Austrian Institute of Technology, Vienna, Austria
firstname.lastname@ait.ac.at

Abstract. A 1-out-of-N ring signature scheme, introduced by Rivest,
Shamir, and Tauman-Kalai (ASIACRYPT ’01), allows a signer to sign
a message as part of a set of size N (the so-called “ring”) which are
anonymous to any verifier, including other members of the ring. Thresh-
old ring (or “thring”) signatures generalize ring signatures to t-out-of-N
parties, with t ≥ 1, who anonymously sign messages and show that they
are distinct signers (Bresson et al., CRYPTO’02).
Until recently, there was no construction of ring signatures that both
(i) had logarithmic signature size in N , and (ii) was secure in the plain
model. The work of Backes et al. (EUROCRYPT’19) resolved both these
issues. However, threshold ring signatures have their own particular prob-
lem: with a threshold t ≥ 1, signers must often reveal their identities to
the other signers as part of the signing process. This is an issue in situa-
tions where a ring member has something controversial to sign; he may
feel uncomfortable requesting that other members join the threshold, as
this reveals his identity.
Building on the Backes et al. template, in this work we present the first
construction of a thring signature that is logarithmic-sized in N , in the
plain model, and does not require signers to interact with each other to
produce the thring signature.
We also present a linkable counterpart to our construction, which sup-
ports a fine-grained control of linkability. Moreover, our thring signatures
can easily be adapted to achieve the recent notions of claimability and
repudiability (Park and Sealfon, CRYPTO’19).

1 Introduction

Ring signatures, first introduced by Rivest, Shamir, and Tauman-Kalai [30],
allow a member of a set (known as the ring) to anonymously sign on behalf
of the ring. A verifier can check that a signature comes from one of the ring
members, but cannot learn who the actual signer is, a property known as (signer)
anonymity. Bresson, Stern, and Szydlo [6] generalized ring signatures to t-out-of-
N ring signatures (aka threshold ring signatures or thring signatures), in which
t ≥ 1 distinct members of an ad-hoc set participate to produce a signature.

In a (th)ring signature, the ring should be set-up free, i.e., members can
join at will by publishing a public key. Anyone can then sign with respect to a
ring assembled from available public keys. Despite this open setting, many ring
signature schemes need a trusted setup and rely on heuristic assumptions (e.g,.
the random oracle). However, the most desirable setting for an ad-hoc primitive
like ring signatures is the plain model. In the plain model, security is based on
standard and falsifiable hardness assumptions and no trusted setup is allowed.
Also, most ring signature schemes are linear in the size of the ring, which is
an issue when ring sizes are large. Recently, Backes et al. (BDH+ for short) [3]
presented an elegant construction of the first logarithmic-sized ring signatures
in the plain model.

While the issues of model and signature size appear in ring signatures (see
the full version for a discussion on related previous work), thring signatures with
t > 1 have another issue. In a thring signature, t-out-of-N signers compute a
signature with the property that any verifier can check that t distinct parties
signed the message without revealing exactly which t members signed. While the
t signers are anonymous to anyone outside their set, these signers may need to
interact to create the signature. Thus, signers are not necessarily anonymous to
each other. Importantly, concatenating t instances of 1-out-of-N ring signatures
does not guarantee distinct signers – the same signer may have signed t times in
a row.

Two works avoid interaction among the signers but have other drawbacks.
First, Okamoto et al. [27] designed a linear-sized scheme in the random oracle
model. Here, ring members can create a 1-out-of-N ring signature themselves,
while also showing that they are a new signer. Thus, a list of 1-out-of-N ring
signatures forms a threshold ring signature. However, their solution requires a
fully trusted party who issues short-term keys to all signers. This is a strong
assumption for such an ad-hoc distributed primitive. Second, Liu, Wei, and
Wong [23] introduced linkable ring signatures, which allow a verifier to pub-
licly check whether two signatures were produced by the same signer. This could
be extended to produce threshold ring signatures. With a list of 1-out-of-N link-
able ring signatures on a message, the signature verification algorithm checks
pairwise that no two signatures in the list are linked to the same ring member
without learning the identity of the signers. This approach is generic, but only
yields a one-time thring signature scheme.

1.1 Our Contribution

In this work we construct thring signatures which are: (i) logarithmic-sized in
the number of ring members; (ii) in the plain model from standard assumptions;
(iii) and non-interactive, where specifically signers need not know each other.

In more detail:

– We present and prove the first construction of thring signatures where the
signature size is logarithmic in the number of ring members and in the plain
model. Our construction is instantiable from falsifiable standard assumptions

2

without the need for the random oracle heuristic or trusted setup assump-
tions. Our construction is inspired by the recent results by BDH+ [3] but
requires novel ideas and techniques.

– We create a thring signature scheme in a setting where there is no interaction
among the mutually anonymous signers. Signers need not know the other
signers that participate in a threshold signing, meaning our scheme achieves
strong inter-signer anonymity. Every signer locally computes a signature
and the thring signature is just the collection of the individual signatures.
Additionally, our thring signature scheme allows each signer to select their
own threshold. We will discuss our solution in Section 1.2.

We also adapt the current model of linkability of ring signatures and make this
model more flexible and fine-grained by using the concept of a scope to support
scoped linkability. We describe scoped linkability in more detail in Section 5. We
discuss a potential post-quantum instantiation and future directions in Section 6.

1.2 Overview of Our Techniques

To give context to our approach and techniques, we describe the approach used
by BDH+ [3], which is inspired by the construction of linear-size ring signatures
in the plain model due to Bender, Katz, and Morselli [5].

Outline of BDH+ approach. In BDH+, the ring is P = (V K1, . . . , V KN).
To join the ring, a user s ∈ [N] generates key pairs (vksσ, sk

s
σ) and (pks, sks) of a

signature scheme and a public-key encryption (PKE) scheme, respectively, and
sets the verification and signing key to V Ks := (vksσ, pk

s) and SK := (sksσ, sk
s).

To produce a signature for a message m with respect to R, a signer s computes
a signature σ on m using sksσ and encrypts σ under pks resulting in a ciphertext
ct. The signer samples a random ciphertext ct′ (representing another user i of
the ring) and generates two hashing keys hk and hk′ of a somewhere perfectly
binding (SPB) hashing scheme [28] that are perfectly binding at position s and i
respectively. It computes the hash of the ring R under both hk and hk′, obtaining
hash values h and h′. SPB hashing allows the signer to collapse a ring R of N
verification keys into a ring of just two keys and membership witnesses are
of size O(log(N)). Finally, signer s computes a perfectly sound NIWI proof π
using an OR-statement which proves that either (hk, h) binds to a key V Ks

and that ct encrypts a signature of m for V Ks or (hk′, h′) binds to a key V Ki

and that ct′ encrypts a signature of m for V Ki. A signature has the form Σ =
(ct, ct′, hk, hk′, π) and verification is straightforward.

For a non-interactive threshold variant, one needs to guarantee that a specific
signer cannot contribute more than one signature to a thring signature, but at
the same time keep other signatures from the same signer unlinkable. As BDH+

encrypt the conventional signatures (which would identify the actual signer) for
anonymity, one signer can sign repeatedly on the same message. While BDH+

do have a linkable version, but as soon as a signer issues two signatures, even on
different messages, they can be linked together, which contradicts the anonymity
of thring signatures.

3

Outline of our approach. To achieve inter-signer anonymous thring signa-
tures, we follow the BDH+ template, but our approach requires novel ideas.
First, instead of using a signature scheme, we use a verifiable random function
(VRF) [25], inspired by the recent work by Park and Sealfon [29].3 A VRF is a
function which outputs a pseudorandom value v and a proof p so that given the
input m, the values (v, p) and the corresponding verification key vk everyone can
check correctness of the evaluation. However, an output v is still pseudorandom
if the proof p is not known. Because the VRF yields a deterministic value v, us-
ing v in the signature ensures distinctness of the signers. Meanwhile, we encrypt
the proof p. Our approach now enables non-interactive thring signatures, where
the signatures are a collection of single 1-out-of-N ring signatures. A verifier can
inspect the VRF values for inequality to determine if the signers are distinct. We
need an assumption called key collision resistance on the VRF, which requires
that if the VRF is evaluated under different (honestly generated) verification
keys and the same message, the evaluations will not collide. This is a reasonable
assumption. Indeed, VRF candidates such as the Dodis-Yampolskiy VRF [13]
satisfy this assumption (where key-collision can be seen to be unconditional).

Suppose the only change we make to BDH+ is replacing a ciphertext with
a VRF evaluation v and encrypted proof, and the other one with a random
value ṽ in the VRF range with an encryption of a random value. Intuitively,
anonymity holds as the values v and ṽ are (pseudo)random and do not leak
the signer’s identity. Meanwhile, unforgeability is based on the unpredictability
of the VRF. However, we cannot use the same proof technique as BDH+. In
BDH+, the proof of anonymity goes by hybrid game and indistinguishably hops
between two OR-clauses to switch from an encrypted signature from user s to
an encryption signature from user i. If we use this strategy in our hybrids, we
end up at a point where the VRF evaluations of users s and i are at the same
time present as values v and ṽ in one signature. Unfortunately, this immediately
gives a distinguisher as the adversary can query signatures for the same message
and ring both s and i and in the real game one “evaluation” in each signature
will be a random string, but here it finds a pair that contains two values from
queried signatures at the same time. Such an event is negligible in the real game.

Thus, our second change to change the NIWI to include a third OR clause.
This third clause allows us in the anonymity proof to simulate the first two
clauses of the OR language and switch the witnesses in the hybrids of the
anonymity proof.

Being in the plain model precludes us from using a common reference string
(CRS), which would allow us to embed a simulation trapdoor for the anonymity
proof. To avoid a CRS, we use the following trick. Each signer s adds an extra se-
cret key sksF into her overall secret key and encrypts it, i.e., E ← Enc(pks, sksF; r),
and the ciphertext is added to the public key V Ks. Our third clause in the OR

3We note that in a concurrent and independent work in [21], Lin and Wang propose
a modification of BDH+ that use VRFs instead of signatures to achieve repudiability.
We note that their ideas do not extend to thring signatures and thus their approach
cannot be directly compared to our work.

4

language now proves that for two non-revealed users s and i (i.e., s and i from
the first two OR-clauses) in the ring, it holds that F(sksF) = skiF, where F is a
one-way function (OWF)4 , i.e., the clause shows that one of the two keys is the
image of the other key under F. For honestly generated keys this relation will
never be satisfied. However, in the simulation we can now set up user-keys in a
way that they satisfy this relationship (without requiring a CRS). We can then
use the witness for this clause of the OR proof to switch out the VRF witnesses
to random.

Our approach to linkable thring signatures. With scoped linkability, one
may control linking in a fine-grained way. An arbitrary string (the scope) used
for signing allows one to link multiple signatures issued with respect to the
same scope. While using the compiler by Liu et al. [23] on the linkable version
of the BDH+ scheme yields linkable thring signatures, it is not clear how to
extend this to scoped linkability. One would need to fix the scopes beforehand
and make the public keys linear in the number of used scopes. Thus, it would
not be possible to support a potential unbounded number of scopes. Besides,
the “tagging trick” in BDH+ makes their linkable version rather involved.5 Our
linkable thring signatures support an unbounded number of scopes and are a
simple modular extension of our basic thring signatures.

We get scoped linkability by adding another VRF key pair to the user’s keys
and use the evaluation of the VRF on the scope for linking purposes (and fixing
the scope in the scheme yields the conventional notion of linkability). We extend
the language of the NIWI used for the OR proof to account for this additional
VRF.

We use a variant of the folklore technique of extending the language of the
proof system to obtain simulation-sound NIZKs [31, 19], but use VRFs instead of
PRFs or signatures. The additional VRF “signs” a verification key of a strongly
unforgeable one-time signature scheme and the corresponding one-time signing
key signs the respective partial signature. The signature and the verification key
are attached to the respective 1-out-of-N ring signature.

Claimability and repudiability. Recently, Park and Sealfon in [29] introduced
the notions of (un-)repudiability and (un-)claimability for ring signatures and
are the first to formalize such definitions. Our constructions satisfy both notions
of repudiability and claimability. Details are discussed in the full version.

Flexibility. Okamoto et al. [27] introduced the notion of flexibility. Flexibility
means ring members can sign a message themselves and add themselves to a
previously computed ring signature if they wish to sign on the same message
and ring. However, in [27] the new signers must cooperate with a trusted dealer
to achieve this. The way we construct our threshold ring signatures also allows

4The restriction is that the domain and range of F is the same.
5The evaluation of their JointVerify algorithm which they need to prove with their

NIWI, when unrolled gives 480 clauses, where each clause is a conjunction of 5 verifi-
cation statements of a commitment scheme.

5

us to achieve flexibility in that new signers can add themselves to an already-
created threshold ring signature at any time and thus the threshold t can be
extended dynamically (see the full version for a discussion).

Applications. We briefly describe some potential applications for non-interactive
thring signatures with inter-signer anonymity and scoped linkability. One inter-
esting practical application for thring signatures is to share cryptocurrency wal-
lets that require no setup and that allow users to have a single key (even if they
have multiple wallets) as discussed in [26].

Secondly, linkable ring signatures are a solution to e-voting [32]. Our scheme
features scoped linkability, so signers can use the same verification key to vote for
candidates in different offices. For example, votes cast under the scope ‘mayor’
are linkable, so that nobody can double vote for mayor. Meanwhile, votes cast
for different scopes remain unlinkable, such as between scopes ‘governor’ and
‘mayor’. As a result, thrings with scoped linkability might be a valuable tool for
e-voting.

Finally, one can consider an extension of the whistleblower example from
Rivest et al. [30] to the “parliament’s problem”. Suppose that a member of
a national parliament (an MP) would like to submit a controversial bill for
a law. The bill is controversial enough that the MP could lose his standing
among his own party. However, if enough other members agree to the bill, it will
be submitted for an official law. The MP cannot use a ring signature because
another MP, wishing to attach their name, can neither add themselves nor submit
a new ring signature while still showing that they are a distinct member. It would
not be easy for this MP to discover other interested parties. Otherwise, a thring
signature with interaction would do. The solution, then, is for the first MP to
publish their bill using a thring signature with strong inter-signer anonymity.
Now, he need not interact with other members, and any other MP can add
themselves by contributing to the thring signature.

Due to lack of space, we defer a discussion of related work to the full version.

2 Preliminaries

We denote the main security parameter by λ. We write [N] = {1, . . . , N}, and
~a = (a1, . . . , aN). t denotes disjoint union and 4 denotes symmetric difference.
We denote algorithms by, e.g., A, and write out ← A(in) to denote that out is
assigned the output of the probabilistic algorithm A with input in; Sometimes
we make the used random coins r explicit and write out← A(in; r). A function
negl : N→ R is negligible if ∀k ∈ N ∃n0 ∈ N ∀n > n0 : negl(n) ≤ n−k.

For the formal definition properties of the primitives discussed below, we re-
fer the reader to the full version.

Non-Interactive Witness-Indistinguishable Proof Systems. Feige and
Shamir [15] first introduced witness-indistinguishable proof systems. We recap
the basic notions of non-interactive witness-indistinguishable proofs (NIWIs).

Let R ⊆ X × Y be an effective relation, i.e., X , Y, R are all efficiently
computable. For (x,w) ∈ R, x is a statement, and w is the witness. The language

6

LR is defined as all statements that have a valid witness inR, i.e., LR := {x | ∃w :
(x,w) ∈ R}.

Definition 1 (Non-interactive Proof System). Let R be an effective rela-
tion and LR be the language accepted by R. A non-interactive proof system for
LR is a pair of algorithms (Prove,Vfy) where:

– π ← Prove(1λ, x,w). On input a statement x and a witness w, outputs a
proof π or ⊥.

– b← Vfy(x, π). Given a statement x and a proof π, outputs a bit b.

NIWIs must satisfy the following three properties. First, perfect completeness
guarantees that correct statements can always be successfully proven. Second,
perfect soundness ensures that it is impossible to generate valid proofs for false
statements. Finally, witness indistinguishability says that, given two valid wit-
nesses for a statement, no efficient adversary can decide which witness was used
to compute a proof.

Following BDH+ [3], we only consider NIWIs with bounded proof-size. That
is, if we require that for any valid proof π generated by Prove(1λ, x,w), it holds
that |π| ≤ |Cx|poly(λ) for a fixed polynomial poly(·), where Cx is the verification
circuit for the statement x, i.e., (x,w) ∈ R iff Cx(w) = 1.

Verifiable Random Functions. A verifiable random function (VRF) is a
pseudo-random function that enables the owner of the secret key to compute
a non-interactively verifiable proof for the correctness of its output [25].

Definition 2 (Verifiable Random Function (VRF)). A verifiable random
function is 4-tuple (Gen,Eval,Prove,Vfy) where:

– (vk, sk) ← Gen(1λ). On input the security parameter λ in unary, this PPT
algorithm outputs a public verification key vk and corresponding secret key
sk.

– v ← Eval(sk, x). On input the secret key sk and an input value x ∈ {0, 1}a(λ),
this deterministic algorithm outputs a value v ∈ {0, 1}b(λ).

– p← Prove(sk, x). On input the secret key sk and an input value x, this PPT
algorithm outputs a proof p.

– b← Vfy(vk, x, v, p). On input a verification key vk, an input value x, a value
v, and a proof p, this deterministic algorithm outputs a single bit b.

Here, a(λ) and b(λ) are polynomially bounded and efficiently computable func-
tions in λ.

VRFs must satisfy the following six properties. First, complete provability
guarantees that, if an output v and a proof p have been honestly computed on
consistent inputs, then p will verify for v. Second, unique provability ensures that
for all inputs x, a valid proof can only be computed for a unique output value
v. Third, residual pseudorandomness says that no efficient adversary that sees
arbitrarily many VRF evaluations can distinguish outputs on fresh inputs from
uniform. Fourth, residual unpredictability requires that no efficient adversary

7

that sees arbitrarily many VRF evaluations can compute a correct input and
output pair; this is implied by residual pseudorandomness. Fifth, key privacy
requires that no efficient adversary, only having access to an output but not the
corresponding proof, can decide for which public key the output was computed.
Finally, we introduce the notion of key collision resistance which guarantees that
Eval, on input the same message but two different secret keys, will never return
the same output value. We note that all required properties are for instance sat-
isfied by the Dodis-Yampolskiy VRF [13]. Other instantiations in the standard
model have been proposed by Lysyanskaya [24] and Hofheinz and Jager [20].

Somewhere Perfectly Binding Hashing. Somewhere statistically binding
hashes were first introduced by Hubáček and Wichs [28]. Intuitively, such schemes
allow one to efficiently commit to a vector (or database). Furthermore, one can
generate short openings for individual positions of the vector.

Originally, it was only required that such schemes be statistically binding
at a single position [28]. BDH+ [3] strengthened this to perfectly binding. Fur-
thermore, they introduced private openings to require a secret hashing key to
compute a valid opening.

As shown in [28, 3] SPB hashes with private local openings in the standard
model can be efficiently obtained from any 2-message private information re-
trieval scheme with fully efficient verifier and perfect correctness. Also, we refer
to [3] for DCR and DDH based instantiations of SPB based on [28].

Definition 3 (Somewhere Perfectly Binding (SPB) Hash). A somewhere
perfectly binding hash with private local opening is a tuple of algorithms (Gen,
Hash, Open, Vfy) where:

– (hk, shk) ← Gen(1λ, n, i). On input the security parameter λ in unary, a
maximum database size n, and an index i, this PPT algorithm outputs public
hashing key hk and corresponding secret hashing key shk.

– h ← Hash(hk, db). On input a hashing key hk and a database db of size n,
this deterministic algorithm outputs a hash value h.

– τ ← Open(hk, shk, db, j). On input a public and private hashing key hk and
shk, a database db, and index j, this algorithm outputs witness τ .

– b ← Vfy(hk, h, j, x, τ). On input a hash key hk, a hash value h, an index j,
a value x and witness τ , this algorithm outputs a single bit b.

SPBs must satisfy the following three properties. First, correctness guar-
antees that for honestly generated keys, hashes, and openings, verification will
allows succeed. Second, somewhere perfectly binding ensures that if for a specific
index i and value x verification succeeds, all valid openings on this position must
open to x. Finally, index hiding says that no efficient adversary can infer the
index i from the public hashing key.

Definition 4 (Public Key Encryption). A public key encryption scheme is a
triple (Gen,Enc,Dec) of algorithms over a message space M(λ), ciphertext space
C(λ), and randomness space Rnd(λ):

8

– (pk, sk) ← Gen(1λ). On input the security parameter λ in unary, this PPT
algorithm computes a public key pk and a corresponding secret key sk.

– ct ← Enc(pk,m). On input a public key pk and a message m ∈ M(λ), this
PPT algorithm outputs a ciphertext ct.

– m ← Dec(sk, ct). On input a secret key sk and a ciphertext ct, this deter-
ministic algorithm outputs a message m.

We require PKE schemes to satisfy the following three properties. First,
perfect correctness guarantees that for honestly generated keys and ciphertexts,
decryption will always yield the original plaintext. Second, IND-CPA security
ensures that knowing only the public key, it is computationally infeasible to
decide which message is contained in a ciphertext. Finally, key privacy says that
no efficient adversary, not knowing the secret keys, can decide for which public
key a ciphertext has been computed.

Definition 5 (Strong One-Time Signature Scheme). A strong one-time
signature scheme is a triple (Gen,Sign,Vfy) of algorithms over a message space
M(λ):

– (vk, sk) ← Gen(1λ). On input the security parameter λ in unary, this PPT
algorithm computes a verification key vk and a corresponding signing key sk.

– ς ← Sign(sk,m). On input a signing key sk and a message m ∈ M(λ), this
PPT algorithm outputs a signature ς.

– b ← Vfy(vk,m, ς). On input a verification key vk, a message m and a sig-
nature ς, this deterministic algorithm outputs a single bit b.

sOTS schemes must satisfy these two properties: First, correctness guarantees
that for honestly generated keys and signatures, verification will always succeed.
Second, strong unforgeability ensures that no efficient adversary that can obtain
one signature for a given key can produce another valid signature on any message.

Definition 6 (One-Way Function). A one-way function F is defined such
that:

– y ← F(1λ, x). On input the security parameter λ in unary and an input value
x ∈ {0, 1}λ, this deterministic algorithm computes an output y ∈ {0, 1}λ.

OWFs must satisfy the following two properties. First, it must be efficiently
computable, meaning that there is a polynomial-time algorithm to evaluate the
function. Second, it must be hard to invert, so that given only an output value
y, it is computationally infeasible to find a preimage x∗ mapping to this output.
Note that there can be multiple x∗ for which F(x∗) = y, but it is hard to find
any such x∗. One additional requirement that we put on our OWFs is that the
range must be a subset of the domain6.

We define a concept of a few fixed points function. We have not seen this
particular property in the literature, however a one-way function F is naturally

6A one-way permutation where the domain and range are equal can be used here.

9

a few fixed points function. If not, given x ← {0, 1}λ, it would be likely that
F(x) = x and an adversary could find a pre-image. This property helps clarity
in the unforgeability proof.

Definition 7 (Few fixed points). A function F is a few fixed points function
if F : {0, 1}∗ → {0, 1}∗ if Pr[x← {0, 1}λ, F (x) = x] ≤ negl(λ).

We also introduce a lemma that helps in the unforgeability proof. We provide
a lemma that shows that the probability of finding random values that happen
to be pre-images in a polynomially-sized list is negligible.

Lemma 1. If F : {0, 1}∗ → {0, 1}∗ is a one-way function, then the probability
that the process: s = 1, . . . , N xs ← {0, 1}λ generates a pair (xi, xj) such that
F(xi) = xj is negligible in λ (where N is at most poly(λ)).

Proof. Given a list x1, . . . , xN , where each xs ← {0, 1}λ (with replacement) we
want to find the probability that there exists i, j ∈ [N] such that F (xi) = xj .

Because F is a function, for each value xi, there is one image: F (xi) = y. Thus,
given two values (xi, xj), which are chosen uniformly at random, the probability
that xj = y is 1

2λ
.

There are N(N − 1) pairs where i 6= j.

Pr[xi, xj ← D,F (xi) = xj] ≤ negl′(λ).

Where if xi = xj , from the few fixed points property we know it’s less than
negl(λ) and if xi 6= xj it is 1

2λ
, which is still a negligible function in λ.

Then we look at the case where i = j. There are N such pairs and by
definition of few fixed points:

Pr[xi ← {0, 1}λ, F (xi) = xj] ≤ negl(λ).

Adding together, he overall probability of success is T (λ) = N
negl′(λ) + N(N−1)

2λ
.

Because N is polynomial in λ, it is much smaller than 2λ. So we conclude that
T (λ) is negligible in λ as well.

3 Framework and Security Definitions

3.1 Syntax

We extend the basic ring signature notation of Bender et al. [5] to a thring
signature. The notation is summarized in Table 1. Assuming an ordering of all
public keys (e.g., lexicographic), we denote the sequence of all public keys as P
as a ring. A subring is a subsequence R ⊆ P . Regardless of which members are
part of the subring, we always enumerate the subring as R = (V K1, . . . , V KN).
A set of signers is S ⊆ [N], where R[S] = {V Ks}s∈S . In a thring signature
scheme, a set of signers S ⊆ [N] signs a message msg ∈ M with respect to a
subring R. The secret keys of signers are denoted as T .

10

Symbol Meaning

ts Individual threshold of signer s§

~t = (ti1 , . . . , t
i|S|)

tV Verification threshold
N Number of members of the ring. Indexed by s.

P Ordered list of public keys P = (V K1, . . . , V KN).
R Subring R ⊆ P .
S Set of signers where S ⊆ [N].
T Secret keys to signers in S, T = {sks}s∈S .
NS Non-signers where NS ⊆ [N]
M Message space.
λ Security parameter.

§ By convention, indices used to distinguish between signers are written as superscripts.

Table 1. Notation used in the algorithms.

Each signer s ∈ S chooses the minimum number of total signers ts they
require for a valid signature, and the verifier can choose a threshold as well.
The sequence of all individual signer thresholds is denoted as ~t. We denote the
verification threshold by tV , e.g., tV ≤ |{s : ts ≤ tV }| for ts ∈ ~t. The different
thresholds are there to make the scheme as general as possible. This allows for
different levels of signatures in different contexts (e.g., a signer may not want
her signature to be used if there’s not enough support, a verifier might be a
potential signer who wants to see that there’s enough support before adding her
own signature to the set).

For generality, our syntax also considers system parameters pp generated by
a Setup algorithm (which in our security definitions is always assumed to be
honestly executed) allowing one to also model schemes requiring trusted setup
in our framework. However, we stress that our instantiations given in Sec. 4 and
Sec. 5 do not require such a Setup and are in the plain model.

Definition 8 (Threshold Ring Signature Scheme). A threshold ring signa-
ture (thring) scheme is a 4-tuple of algorithms (Setup,KGen,Sign,Vfy). A subset
of signers S from ring P signs the message msg ∈ M with respect to a subring
R and thresholds ~t.

– pp ← Setup(1λ). On input the security parameter λ in unary, this PPT
algorithm generates public parameters pp. The public parameters are implicit
input to all other algorithms and will be omitted when clear from context.

– (V K, SK) ← KGen(pp). On input the public parameters pp, this PPT algo-
rithm generates a public verification key V K and a corresponding secret key
SK for a signer.

– σ ← Sign(msg, T,R,~t). On input a message msg, a set of secret keys T , a
subring R, and a vector of individual thresholds ~t, this potentially interactive
PPT procedure outputs a signature σ on msg.

– b← Vfy(msg, R, σ, t). On input a message msg, a subring R, a signature σ,
and a verification threshold t, this deterministic algorithm outputs a bit b.

11

3.2 Security Definitions

In this section, we define the security properties for a thring signature scheme:
correctness, unforgeability with respect to insider corruption, and inter-signer
anonymity with respect to adversarial keys. Our paper is the first feasibility
result for non-interactive thrings entirely in the plain model. Because of these
requirements, it does not seem easy to achieve the strongest notions of unforge-
ability and anonymity (as shown in [5]). Namely, we avoid malicious users to
satisfy unforgeability and we have anonymity for honest users only.

We first describe a set of oracles. In our security definitions, the adversary
may access these oracles in arbitrary interleaf during the corresponding experi-
ments. All oracles have access to the following initially empty sequences or sets:
P, Pcorr,Lsigners, and Q. The first sequence P is the ring, and Pcorr ⊆ P is the
subset of corrupted (or malicious) members in the ring. The sequence Lsigners is
the triple of the signer, the public key, and the private key. The set Q is the set
of signing queries.

– OKGen(s). On input a signer s, this oracle first checks whether there exists
(s, ·, ·) ∈ L and returns ⊥ if so. Otherwise, it generates a fresh key pair
(V Ks, SKs) ← KGen(pp), adds (s, V Ks, SKs) to Lsigners, V K

s to P , and
returns V Ks to the adversary.

– OSign(msg, S,R,~t). On input a message msg, a list of signers S, a subring R,
and a vector of individual thresholds ~t, this oracle first checks whether R ⊆ P
and returns ⊥ if this is not the case. The oracle then decomposes S to S =
ScorrtShon, where Scorr denotes corrupted users (i.e., corrupted or registered
byA) and Shon denotes honest users. The oracle then engages in an execution
of Sign(msg, T,R,~t). The oracle mimics the behavior of honest parties using
the secret keys corresponding to Shon, and the adversary participates using
Scorr. For all honest signers s, the oracle adds (msg, R, s, ts) to Q.

– OCorr(s). On input a signer s, if there exists (s, V Ks, sks) ∈ Lsigners, the
oracle returns SKs to the adversary. The oracle adds V Ks to Pcorr.

– OReg(s, V Ks). On input a signer s and a public key V Ks, the oracle checks
if there exists (s, ·, ·) ∈ Lsigners and returns ⊥ if so. Otherwise, it adds V Ks

to Pcorr and (s, V Ks, ·) to Lsigners.

Correctness. Correctness guarantees that a signature generated by sufficiently
many honest users will always pass the verification algorithm. In our definition,
the verification algorithm will check whether the individual thresholds are less
than or equal to the verification threshold. This supports the concept of flexibility
(see the full version).

Definition 9 (Correctness). A thring signature scheme is correct if there
exists a negligible function negl(λ) such that for every msg ∈ M, any subring
and ring such that R ⊆ P (with |P | being polynomially bounded in λ), any set
of signers S ⊆ R, any vector of individual thresholds ~t = (t1, . . . , tN), and any

12

Experiment SigForgeA(λ)

pp← Setup(1λ)

(msg∗, σ∗, R∗, t∗)← AOKGen,OCorr,OSign(pp)
return 1 if:

Vfy(msg∗, σ∗, R∗, t∗) = 1 and
R∗ ⊆ P and
|U ∪ (R∗ ∩ Pcorr)| < t∗

where U = {V Ks|∃(msg∗, R∗, s, ts) ∈ Q :
ts ≤ t∗}

return 0

Fig. 1. Unforgeability

Experiment AnonymityA(λ)

pp← Setup(1λ)

(st,msg∗, R∗, S∗0 , S
∗
1 ,~t)← AOKGen,OCorr,OSign,OReg(pp)

b← {0, 1}
T ∗ = {SKs} for s ∈ S∗b

If any s ∈ Pcorr A will cooperate to create σb:

σb ← OSign(msg∗, T ∗, R∗,~t)
b′ ← AOKGen,OCorr,OSign,OReg(st, σb)

where OCorr and OSign ignore queries on S∗04S∗1 on (msg∗, R∗)
return a random bit if:
|S∗0 | 6= |S∗1 |, or
S∗0 ∪ S∗1 6⊆ R∗, or
(S∗0 ∩ Pcorr) 6= (S∗1 ∩ Pcorr), or
(msg∗, R∗) has been signed before

return (b = b′)

Fig. 2. Inter-signer anonymity

verification threshold t such that t ≤ |{i : ti ≤ t}|, it holds that:

Pr

pp← Setup(1λ)
{(V Ks, SKs)← KGen(pp)}s∈[|P |]
T = {SKs}s∈[|P |]
σ ← Sign(msg, T,R,~t)

:
R[S] ⊆ P =⇒
Vfy(msg, R, σ, t) = 0

 = negl(λ)

The scheme is called perfectly correct iff negl(λ) = 0.

Unforgeability. Intuitively, unforgeability guarantees that an adversary who has
corrupted up to t − 1 signers will not be able to generate a valid signature for
threshold t. More precisely, the adversary can adaptively corrupt an arbitrary
number of signers and engage in the signing protocol on arbitrary messages with
honest users with respect to any thresholds and subrings. The adversary finally
outputs a valid message, signature, subring, and threshold msg∗, σ∗, R∗, and t∗.
The adversary wins if (1) he did not request OSign for too many honest parties
on msg∗ and R∗ for thresholds less than t∗, and (2) he corrupted fewer than t∗

members in R.
Note, we can tolerate corrupted but not malicious parties in our scheme.

This is since we get inter-signer anonymity by having unique signatures. While
this requirement is weaker, it is not unusual among the ring signature definitions
(many schemes do not consider malicious parties). The experiment is described
in Fig. 1.

Definition 10 (Unforgeability wrt Insider Corruption). A thring signa-
ture scheme satisfies unforgeability wrt insider corruption if for all PPT adver-
saries A there is a negligible function negl(λ) such that Pr[SigForgeA(λ) = 1] ≤
negl(λ).

Anonymity. Anonymity says that it is infeasible to infer from a valid signature
which honest users contributed to the signature generation, or in general to link

13

a signer across different signatures. We protect honest signers’ identities even
from other signers (inter-signer anonymity). We can tolerate malicious keys,
even in the challenge sets, so long as both sets have the same malicious parties.

In the anonymity game, the adversary has access to all the oracles. He then
requests a signature on the sets S∗0 or S∗1 . He may continue to make OSign and
OCorr requests, but the oracle will not respond to queries in the set difference
between S∗0 and S∗1 . The experiment is in Fig. 2.

In our scheme, users signing the same message msg with respect to the same
subring R but potentially different thresholds are linkable among these signa-
tures. We ensure the threshold by preventing signers from signing the same
(msg, R) twice. Thus, in the challenge phase we require new message-ring pairs.

Moreover, a signer who has already signed with respect to a message/ring
cannot sign again because the signature needs to be completely distinct for new
users, which is not possible due to the deterministic part. Thus, if the adversary
requests a signature from a specific user in the training phase, he could pinpoint
from whom that signature originated. Thus, in the challenge phase we require
either that the signature is different from previous signatures or that it verifies
for a different message-ring pair.

In some ring signature schemes, an adversary A cannot identify which user
a signature came from even with knowledge of their secret key. However, in our
scheme, the signature is an output of the VRF, and A can learn which signer
signed a message if he knows all the keys. Thus, we do not achieve this more
robust definition.

We also note that the anonymity security definition does not hide the set
sizes, but this is usually the case with threshold ring signatures. Unlike in other
threshold ring signatures (where after the signature is created, it is not possible
to remove signers), here the signature can be modified for a lower threshold by
removing signatures from the total concatenation.

Due to how we use the VRF in our construction, we cannot achieve the
strongest notion of anonymity from Bender et al. [5] (i.e., anonymity against
attribution attacks/full key exposure), where the adversary sees all the random
coins for generating all the honest keys. However, we do achieve anonymity with
respect to adversarially chosen keys [5], which still allows an adversary to join the
ring with maliciously generated keys and corrupt users. Although an adversary
can de-anonymize corrupt or malicious users, our definition allows us to protect
honest users’ identities.

Definition 11 (Anonymity wrt adversarial Keys). A threshold ring signa-
ture scheme satisfies inter-signer anonymity with respect to adversarial keys if
for every PPT adversary A there exists a negligible function negl(λ) such that

∣∣∣∣Pr[AnonymityA(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ) .

14

4 Our Construction of Threshold Ring Signatures

In this section, we provide an overview of our construction. The formal descrip-
tion of our threshold ring signature scheme TRS is in Fig. 3.
Signing. Suppose that t members of a ring R = (V K1, . . . , V KN) wish to sign
a message msg. We identify a signer index s ∈ [N]. Then each signer s locally
evaluates the VRF using her private key on the inputs msg||R and ts||msg||R.
The latter is needed because we allow each signer to choose its own threshold.
The signer then encrypts the proofs of these VRF evaluations in ct and ct′. Next,
it samples two SPB hashing keys hks and hki for i ∈ [N] where i 6= s, binding at
positions s and i respectively. Next, it calculates hi = HashSPB(hki, R) and hs =
HashSPB(hks, R). Then (hks, hs) and (hki, hi) are commitments to V Ks and
V Ki respectively. Finally, the signer computes a NIWI proof (discussed below).
Signer s then outputs its signature σs as a tuple containing the VRF evaluations,
the ciphertexts, hashing keys, the NIWI proof, and its individual threshold. A
threshold signature is now a plain concatenation of individual signatures, i.e.,
σ = (σ1, . . . , σt).
Verification. To verify a signature for a target threshold t, the verifier on σ =
(σ1, . . . , σt) checks each σi for each 1 ≤ i ≤ t. It checks to see if the VRF value
is different than all previously verified signatures. Then the verifier will check if
the NIWI verifies and whether the threshold is less than or equal to his threshold
t. The verifier will keep track of how many valid signatures it sees in a list LV .
At the end, if LV contains at least t signatures, the verifier will accept.

NIWI. The signer needs to show that one of the following claims is true:

(i) The computations are correct for signer s, i.e., hks is binding at position
s and commits to R, V Ks and the corresponding secret key was used to
evaluate the VRF on msg||R and ts||msg||R resulting in v and v′, and the
corresponding proofs have been encrypted as ct and ct′ under pks† . This is
the branch for which an honest signer has all necessary keys; OR

(ii) the same computations have been performed correctly for signer i; OR
(iii) the secret keys skF of signer s and i satisfy F(sksF) = skiF, that hks and

hki have been computed for positions s and i, and that the skF are those
corresponding to the public keys of s and i. As discussed in Sec. 1.2 this is
needed in the anonymity proof (as publishing the VRF evaluations in the
plain does no longer work with the technique of [3]) but will never be satisfied
for honest keys.

More formally, we denote this language as: L′ := LR|VK∨LR|VK′ ∨LF , where
R|V K indicates the following relationR for a specific key V Ks = (vks, pks† , pk

s
‡ , Es).

Statements and witnesses have the form:

R|V K : x = (msg, R, ts, v, v′, ct, ct′, hks, hs)

w = (V Ks, s, p, p′, rct, rct′ , τ)

RF : x = (R, hs, hi, hks, hki)

w = (s, i, V Ks, V Ki, τs, τ i, sksF, sk
i
F, rEs , rEi)

15

The relations are then defined as follows:
(x,w) ∈ R|VK if and only if:

VfySPB(hks, hs, s, V Ks, τ) = 1 ∧
EncPKE(pks† , p; rct) = ct ∧
EncPKE(pks† , p

′; rct′) = ct′ ∧
VfyV RF (vks,msg||R, v, p) = 1 ∧
VfyV RF (vks, ts||msg||R, v′, p′) = 1

(x,w) ∈ RF if and only if:

F(sksF) = skiF ∧
EncPKE(pks‡ , sk

s
F; rEs) = Es ∧

EncPKE(pki‡, sk
i
F; rEi) = Ei ∧

VfySPB(hks, hs, s, V Ks, τs) = 1 ∧
VfySPB(hki, hi, i, V Ki, τ i) = 1

Note that an honest signer does not use (pk‡, sk‡) for the NIWI proof. As
mentioned above, our final language L′ is the OR of two LR|VK and LF . State-
ments and witnesses for L′ are of the form:

x =

(
msg R v v′ ct ct′

t hs hi hks hki

)
w =

V Ks V Ki s i τs τ i

p p′ sksF skiF
rct rct′ rEs rEi

As our instantiation does not rely on any trusted setup, there is no need for

Setup to generate joint parameters. The verifier must know a description of the
ring to check the signature. The input of the VRF includes the description of the
ring. Thus, it seems that the ring signature must always be linear in the size of
the ring. However, if the verifier knows the ring beforehand, the signature need
not include the ring description. Alternatively, we can change the domain of the
VRF to compute on the hash of the ring instead (this was also noted by Park
and Sealfon [29]). For simplicity, we include the ring as input everywhere in our
scheme.

4.1 Security of Our Construction

In this section, we provide the formal proofs of each property correctness, un-
forgeability, and anonymity for the construction TRS.

Theorem 1 (Correctness). If the underlying NIWI, VRF, PKE, and SPB
schemes are correct, and the VRF is key collision free, TRS is correct.

Proof. By construction, all individual signatures are valid. Also, we require that
σi.v 6= σj .v for all i 6= j, which follows directly as otherwise we would have that
EvalV RF (ski,msg||R) = EvalV RF (skj ,msg||R) contradicting to the assumed key
collision freeness. ut

Theorem 2 (Unforgeability). If F is a one-way function, VRF has residual
unpredictability and unique provability, NIWI has perfect soundness, SPB is
somewhere perfectly binding and PKE is perfectly correct, then TRS is unforge-
able.

To prove unforgeability, we need to show that a forger F who knows up to
t − 1 secret keys cannot forge a signature that verifies for t signers. At a high
level, because F needs to provide a valid NIWI proof in the signature, and the
NIWI is perfectly sound, the claimed statement must indeed be true. We do

16

Key Generation Gen(1λ):

(vk, sk)← GenV RF (1λ);

(pk†, sk†)← GenPKE(1λ);

(pk‡, sk‡)← GenPKE(1λ);

skF ← {0, 1}λ;
rE ← RndPKE ;
E ← EncPKE(pk‡, skF; rE);
V K := (vk, pk†, pk‡, E);
SK := (sk, sk†, sk‡, rE , V K);
return (V K, SK).

Verification Vfy(msg, R, σ, tV):

// Parse each signature in the list;

σ = ((v, v′, ct, ct′, hks, hki, π, ti))ti=1;

Sort list by ti;
for i ∈ [t]

h′ := HashSPB(hks, R);

h′′ := HashSPB(hki, R);

x := (msg, R, v, v′, ct, ct′, h′, h′′, hks, hki);
b′ ← VfyNIWI(x, π);

if b′ = 1 ∧ σi.v 6= σk.v ∀k ∈ [i− 1]

LV .append(ti);
endfor
if ∃i ≥ tV : LV [i] ≤ i return 1;
return 0.

Threshold Signing Sign(msg, T,R,~t):

// Note T = {SKs}
// Every signer s signs by themselves

// Look at algorithm per each signer s.

v ← EvalV RF (sks,msg||R);
p← ProveV RF (sks,msg||R);
v′ ← EvalV RF (sks, ts||msg||R);
p′ ← ProveV RF (sks, ts||msg||R);
rct, rct′ ← RndPKE ;
ct← EncPKE(pks† , p; rct);
ct′ ← EncPKE(pks† , p

′; rct′);

(hks, shks)← GenSPB(1λ, N, s);
hs ← HashSPB(hks, R);
τs ← OpenSPB(hks, shks, R, s);
// Pick other ring member i 6= s

i ∈ [N] \ s;
rEs , rEi ← RndPKE ;
(hki, shki)← GenSPB(1λ, N, i);
hi := HashSPB(hki, R);
τ i ← OpenSPB(hki, shki, R, i);
// Call on the NIWI for language L′

π ← ProveNIWI(x,w)
σs := (v, v′, ct, ct′, hks, hki, π, ts);
// Every signer s broadcasts the signature

broadcast σs;
// Final threshold ring signature under set T

return σ = {σj}tj=1.

Fig. 3. Our threshold ring signature scheme. For notation refer to Table 1.

not give F access to the OReg oracle so it is not possible for it to produce keys
which satisfy RF. F can, however, corrupt honest users. One possible winning
strategy is for F to find a pair skiF, sk

j
F such that F(skiF) = skjF. Because F is

one-way, such a pair will exist with only negligible probability in the set of users
(by Lemma 1).

Then for the other strategy, as F needs to hold a witness to either R|V K (or
R|V K′) due to the somewhere perfect binding property of the SPB, the forgery
must have used the identity of a signer who is a member of the ring. Due to
the perfect correctness of the PKE scheme, ct (or ct′) contains a valid proof for
the respective VRF. Due to the unique provability of the VRF we know that
an uncorrupted signer must have generated such a value. Finally, we can reduce
unforgeability to the residual unpredictability of the VRF.

Proof. We prove unforgeability via hybrid arguments and a reduction to residual
unforgeability.

H0 to H1: H0 is the unforgeability experiment SigForge from Figure 1. InH1, the

17

challenger will pick one index i∗ ahead of time. We abort on an OCorr request
of i∗. When the adversary provides a forgery, he must have used honest keys
(created via OKGen queries) in his chosen ring. Since i∗ was picked at random,
i∗ is in the forgery’s ring with probability at least 1

qKG
with qKG the number

of users generated by OKGen. Suppose there is an adversary F who forges in
H0 with some probability. Then F can forge in H1 with the same probability
(except with a loss of 1

qKG
).

H1 to H2: All keys skF generated via OKGen are chosen in a way that for none
of the pairs (skjF, sk

k
F) it holds that either skjF = F(skkF) or skkF = F(skjF).

Such a pair existed in H1 with only negligible probability (Lemma 1), thus
the probability of distinguishing between H1 and H2 is negligible as well. As the
skiF are chosen uniformly at random in the original game, here OKGen need only
re-sample at random if a collision is found.

Now RF can never be satisfied among all the honest keys. In H2, the forgery
σ∗ = {(v, v′, ct, ct′, hks, hki, π, ti)}ti=1 needs to use a witness for R|V K or R|V K′ .
Due to symmetry of these both cases let us w.l.o.g. assume that F uses a witness
for R|V K . Now by the perfect soundness of the NIWI we know that

(msg, R, t, v, v′, ct, ct′, hki0 , hi0) ∈ L|V K .

As the SPB is somewhere perfectly binding, we have that hi0 = Hash(hki0 , R)
and VfySPB(hki0 , hi0 , i0, V K

s0 , τ i0) = 1 implies that R[i0] = V Ki0 . If we have
i0 = i∗, due to the perfect correctness of PKE we have that (pki

∗

† , sk
i∗
†) are cor-

rect for all messages. Then for p := Dec(ski∗† , ct) and p′ := Dec(ski∗† , ct
′) the VRF

verifications VfyV RF (vki
∗
,msg∗||R∗, v, p) = 1 and VfyV RF (vki

∗
, t∗||msg∗||R∗, v′,

p′) = 1. Finally, due to the unique provability of the VRF we know that the
values (v, p) and (v′, p′) are the unique pairs under vki

∗
corresponding to inputs

msg∗||R∗ and t∗||msg∗||R∗.
Reduction to residual unpredictability.

We present a reduction A to the residual unpredictability of the VRF, which
uses F (as in H2) as a subroutine.

– A from challenger CV RF receives vk which we embed into V Ki∗ .
– On each request from F : OKGen, OCorr, OSign are as in H2. But for each

VRF evaluation at i∗ A queries COEval(sk,·)
V RF . Remember that if F requests

OCorr on either i∗ then Abort.
– From a valid forgery σ∗ of F , we obtain p and p′ for inputs msg∗||R∗ and
t∗||msg∗||R∗.

– Output one of (msg∗||R∗, v) and (t∗||msg∗||R∗, v′) as forgery to CV RF .

If F made a valid forgery, then with probability 1
qKG

he picked the index i∗.
Because the relationship for F does not hold, the NIWI has perfect soudness,
the SPB is somewhere perfectly binding, and the PKE is perfectly correct, F
can make a valid forgery by violating the residual unpredictability of the VRF.
Consequently, we can just forward all VRF evaluations for this key in calls
to the OSign oracle to the challenger of the VRF and given that the winning

18

condition for the forgery output by the thrings forger are valid, we need to have a
fresh evaluation of the VRF, which allows A to break residual unpredictability.
As A can break residual unpredictability with at most negligible probability,
we see that F can win in H2 with at most negligible probability as well. By
hybrid argument, we see that F cannot win in H0 either except with negligible
probability.

ut

Theorem 3 (Anonymity). If SPB is index hiding, PKE has key-privacy and
CPA-security, NIWI is computationally witness-indistinguishable, and VRF has
residual pseudorandomness and key-privacy then TRS is anonymous.

Recall the anonymity experiment in Figure 2. In the training phase, the
adversary Aanon queries on OKGen, OSign, OCorr, and OReg. Then in the chal-
lenge phase, Aanon submits a message msg, a subring R, and two signing sets
S0, S1 ⊂ R. The challenger picks one of the signing sets Sb and computes a
signature σ. On σ, Aanon guesses which of S0, S1 signed the message.

For us, a t-out-of-N thring signature is a collection of t ring signatures, and
signatures are independent of each other. Thus, it suffices to show anonymity for
a single signer and one can use a hybrid argument to show anonymity for larger
thresholds. The probability of distinguishing between two sets of signatures is
negligible if distinguishing between two signatures is negligible. Then for the
challenge phase, Aanon will produce two indices s0, s1, message msg, and ring R.

Over a sequence of hybrids, we transform the signature element by element
from one under s0 to a signature under s1. By showing that each hybrid is
computationally indistinguishable from its predecessor, we see that signatures
under s0 and s1 are indistinguishable to Aanon.

We make changes over the hybrids and justify them in the proofs by using the
following properties: (i) Changes to hk: the SPB is index-hiding. (ii) Changes
to ct: the PKE has key-privacy and CPA-security. (iii) Changes to the witness
used for π: the NIWI is computationally witness-indistinguishable. (iv) Changes
to the value v: the VRF has residual pseudorandomness.

Proof. Consider the following hybrids:

H0 to H1: H0 is the anonymity experiment in Figure 2 with challenge bit b = 0.
The challenger knows ahead of time qKG, the number of queries Aanon will make
to OKGen and picks two indices i0, i1 ← [qKG] (i0 6= i1). If on either i0, i1, Aanon
requests OCorr (or chooses these for OReg) then Abort. Finally, we require that
Aanon picks indices i0, i1 equal to the two indices the challenger picked ahead of
time. Because i0, i1 were picked randomly, with 1

qKG
probability these will be the

right two indices. An adversary playing in H1 wins with the same probability as
in H0, except for a multiplicative loss of 1

(qKG)2 .

H1 to H2: In this step, the challenger always chooses i1 as the ‘other index’
when computing the final challenge signature. As i1 was uniformly random, this
is indistinguishable.

H2 to H3: In this step, for OKGen on i0, i1 make sure the secret keys ski0F and

19

ski1F are such that F(ski0F) = ski1F holds. This change affects only ski0F and ski1F ,
which are hidden in Ei0 and Ei1 and are never revealed.

H3 to H4: Calculate (v1, p1)← (EvalV RF (ski1 ,msg||R),ProveV RF (ski1 ,msg||R))
and (v′1, p′1)← (EvalV RF (ski1 , t||msg||R),ProveV RF (ski1 , t||msg||R)),

and τ i1 = OpenSPB(hki1 , shki1 , R, i1). Then change the witness w:

H3 w0 = (V K i0 , V K i1 , i0, i1, τ
i0 , τ ′ , p , p′ , ski0F , sk

′
F , rct, rct′ , rE0

, rE1
)

H4 ŵ0 = (V K i0 , V K i1 , i0, i1, τ
i0 , τ i1 , p1 , p′1 , ski0F , sk

i1
F , rct, rct′ , rE0

, rE1
)

Note that this only makes changes in the witness of the NIWI. The values in
the signature are only changed in subsequent games. Since the NIWI is wit-
ness indistinguishable, these changes are indistinguishable to any adversary. We
construct AWI which uses Aanon.

1. AWI activates Aanon. He chooses i0, i1.
2. For each query, he answers as the challenger would.
3. On a challenge (s0, s1,msg, R), if s0 = i0 and s1 = i1, he calculates w0, ŵ0

as above and sends to the challenger. He gets back π∗.
4. AWI forwards π∗ as part of the signature to Aanon.
5. AWI outputs the same as Aanon.

In H3, the witness is w0, and in H4, it is ŵ0. Then if Aanon wins H3 and H4

with different probabilities, then AWI can win the witness-indistinguishability
game with the same probability. Thus, H3 and H4 are indistinguishable.

H4 to H5: ct := EncPKE(pki0† , p; rct)→ ct1 := EncPKE(pki1† , p; rct)

To show that this change is indistinguishable, we construct an adversary to
PKE key privacy APKEKP .

1. APKEKP receives two public keys pk0, pk1 from his challenger.
2. APKEKP activates Aanon. He picks i0, i1. APKEKP answers every query as the

challenger would have done, except for KGen at i0 and i1, where he gives
pki0 = pk0 and pki1 = pk1.

3. Finally, Aanon will request a signature on msg, R.
4. APKEKP computes using ski0 , p ← ProveNIWI(sk

i0 ,msg||R). He sends p to
his challenger.

5. The challenger will pick b ← {0, 1}. If b = 0, returns ct∗ = ct and if b = 1,
returns ct∗ = ct1.

6. APKEKP uses ct∗ for the signature he gives Aanon.
7. Output the same as Aanon.

If the challenger picks pk0, this is the anonymity game as in H4, but if he
picks pk1 then this is the game as in H5. Thus, if Aanon wins H4 and H5 with
different probabilities, then this is the advantage of APKEKP winning the PKE key
privacy experiment.

H5 to H6: ct
′ := EncPKE(pki0† , p

′; rct′)→ ct′1 := EncPKE(pki1† , p
′; rct′)

The argument is identical to the transition from H4 to H5 with a reduction
to PKE key privacy. The only difference is that p′ ← ProveV RF (ski0 , t||msg||R)
and thus we omit details.

20

H6 to H7: ct
1 := EncPKE(pki1† , p ; rct) → ĉt1 := EncPKE(pki1† , p

1 ; rct), where

p1 ← ProveV RF (ski1 ,msg||R).

We construct ACPA which uses Aanon as a subroutine to break CPA security.

1. ACPA receives pk. ACPA picks i0, i1, activates Aanon.
2. For each query by Aanon, ACPA answers as a challenger would, except for

OKGen at i0, where he gives pki0† = pk.
3. When Aanon queries on (s0, s1,msg, R) then ACPA calculates both p ←

EvalV RF (ski0 ,msg||R) and p1 ← EvalV RF (ski1 ,msg||R). He gives p, p1 to
his challenger.

4. Challenger flips b← {0, 1}. If b = 0 he encrypts p, if b = 1 he encrypts p1.
He returns ct∗ to ACPA.

5. ACPA uses ct∗ for the signature he gives to Aanon.
6. ACPA outputs the same as Aanon.

If the challenger picks p, we are in H6, if p1 then H7. Thus, ACPA wins the
CPA-security experiment with the same advantage as the difference of Aanon
winning in H6 versus winning in H7.

H7 to H8: ct
′1 := EncPKE(pki1† , p

′ ; rct) → ĉt′1 := EncPKE(pki1† , p
′1 ; rct),

where p′1 ← ProveV RF (ski1 , t||msg||R). The argument is identical to the transi-
tion from H6 to H7 and thus we omit details.

H8 to H9: σ = (v , v′, ĉt1, ĉt′1, hki0 , hki1 , π, t)→
σ = (v1 , v′, ĉt1, ĉt′1, hki0 , hki1 , π, t)

where v1 ← EvalV RF (ski1 ,msg||P).

We show that the change between H8 and H9 is indistinguishable using the
following reduction to the VRF key privacy.

1. AV RFKP gets a vk0, vk1 from his challenger.
2. AV RFKP picks i0, i1 and activates Aanon.
3. AV RFKP answers every query from Aanon. At index i0 he sets the VRF vki0 =

vk0 and at i1 he sets vki1 = vk1.
4. On an OSign query for msgi, Ri, at i0: AV RFKP asks the challenger to return

v ← EvalV RF (skb,msgi||Ri)
5. When Aanon makes his challenge, (s0, s1,msg, R), then AV RFKP submits

msg||R to the challenger as his challenge and gets back v∗. He uses this
in the signature σ = (v∗, ct, hk, h, π).

If b = 0, then the AV RFKP uses vki0 to answer queries. If b = 1, then AV RFKP

uses vki1 . By the VRF’s key privacy property, AV RFKP cannot distinguish between
a v from vki0 and vki1 . Thus, H8 and H9 are indistinguishable.

H9 to H10: σ = (v1, v′ , ĉt1, ĉt′1, hki0 , hki1 , π, t)→ (v1, v′1 , ĉt1, ĉt′1, hki0 , hki1 , π, t).
The challenger replaces v1 by v′1 ← EvalPRF (ski1 , t||msg||P). The argument is
as in H8 to H9.

H10 to H11: (hk, shk)← GenSPB(1λ, N, i0)→ hk1, shk1 ← GenSPB(1λ, N, i1).

Because of the SPB’s index-hiding property we can next change the index for
which hk is generated from i0 to i1. We construct AIH as an adversary against
SPB index hiding which uses Aanon as a subroutine.

21

1. AIH picks (N, i0, i1, ∅) (where N is the maximum ring size).
2. AIH activates Aanon as a subroutine. On each query AIH answers as the

challenger would.
3. Eventually, Aanon requests a signature on i0, i1.
4. AIH produces the signature as described in H10, except for he gives

(N, i0, i1) to the challenger. He uses (hk, shk) from the challenger to cre-
ate the signature for Aanon.

5. AIH outputs same as Aanon.

If Aanon wins with non-negligibly different probabilities inH10 andH11, then
AIH could win the index hiding experiment. We see then that H10 and H11 must
be indistinguishable.

H11 to H12: Using τ1 ← OpenSPB(hk1, shk1, R, i1), select ski0F , sk
i1
F randomly

when requested for OKGen and change the witness:

H11 ŵ0 = (V K i0 , V K i1 , i0, i1 , τ
i0 , τ i1 , p1, p′1, ski0F , ski1F , rct1 , rct′1 , , rE0

, rE1
)

H12 w1 = (V K i1 , V K i0 , i1, i0 , τ
i1 , τ i0 , p1, p′1, ski1F , ski0F , rct1 , rct′1 , rE0

, rE1
)

and use to compute π1 ← ProveNIWI(x,w
1). This change is indistinguishable

because NIWI has witness indistinguishability.

In H12, the challenger is returning a signature for i1. Because each hybrid is
computationally indistinguishable from its predecessor, we see that signatures
under s0 and s1 are indistinguishable to Aanon. ut

5 (Scoped) Linkable Thring Signatures

We extend the techniques in TRS to create a linkable threshold ring signature
scheme LTRS. Linkability [23] means that given two thring signatures for any two
messages, one can verify whether (at least one of) the same signers contributed to
both signatures. The verification is done via a Link algorithm that takes as input
two thring signatures and outputs a bit indicating whether the two signatures
are linked.

The security framework and construction presented in the following support
scoped linkability, where two signatures link if they have been produced by re-
lated sets of signers for the same scope (e.g., context information)7. Scoped link-
ability is more fine-grained than linkability: two signatures are linkable if they
have been produced w.r.t the same scope, but across different scopes signatures
cannot be linked. Scope can be an arbitrary string. Using a scope string fixed in
the scheme yields the conventional notion of linking. Like BDH+ [3] recently did
for ring signatures, we present the first construction of a linkable thring signature
scheme in the plain model by building upon our thring signature scheme.

7We note that this concept is not new and has previously been used within anony-
mous credential systems (cf. [9]), direct anonymous attestation [7] and also in context
of traceable ring signatures [16].

22

The standard security requirements for (scope-)linkable threshold ring signa-
tures are correctness, unforgeability, scoped linkability, linkable anonymity, and
non-frameability. Scoped linkability requires that even maliciously generated sig-
natures need to link. With linkable anonymity, while it is possible to see that
two signatures come from the same signer, it is not possible to determine which
signer it is. Finally, non-frameability requires that an adversary, even after seeing
many messages and signatures, cannot generate fresh signatures which will link
to signatures that have been generated by honest parties.

Syntax. A linkable threshold ring signature scheme is a 5-tuple of algorithms
(Setup,KGen,Sign,Vfy, Link) and an extension of threshold ring signatures, where
Sign and Vfy take an extra input sc (the scope). Thus, we do not detail the first
four interfaces here. Finally, Link is defined as follows:

– b← Link(σ1, σ2). On input two valid threshold ring signatures for the same
scope, this deterministic algorithm outputs a single bit b.

5.1 Properties and Definitions

We now formally define the above mentioned properties.
Scoped Linkability. Intuitively, scoped linkability guarantees that signatures from
non-disjoint sets of signers for the same scope will link. This is captured by giving
the adversary access to honestly generated keys for a ring of size q (for any q)
and have the adversary output q + 1 valid signatures for the same scope. The
adversary wins if none of them link to each other. The definition of linkability is
reminiscent of unforgeability (Def. 10): the adversary with only knowledge of q
keys cannot create q+1 signatures. We have a similar limitation with linkability
as we had with unforgeability: our construction has us exclude malicious keys
due to our use of RF . Thus, we miss the situation where the adversary forges
signatures using malicious keys, which could be trivially made to link. As before,
this is inherent in our scheme due to the use of the VRF and the OWF which
allows us to be in the plain model.

We note that the proposed signatures will be linkable for different scopes if
the same message/ring is signed.

Definition 12 (Scoped Linkability). A linkable threshold ring signature scheme
satisfies scoped linkability if for every PPT adversary A and every q polynomi-
ally bounded in λ, there exists a negligible function negl(λ) such that

Pr[ScopedLinkabilityA(λ, q) = 1] ≤ negl(λ) .

Non-Frameability. Non-frameability guarantees that no adversary can generate
fresh signatures which will link to signatures that have been generated by honest
parties. The adversary has access to OCorr and OSign and can receive arbitrarily
many signatures, and finally outputs a strong forgery, i.e., a fresh signature to a
new message and subring. The adversary then learns all secret keys and wins if it
can generate another signature which links to the former one, if no corrupted user
was in the subring for both signatures (as this would allow for trivial attacks).

23

Experiment ScopedLinkabilityA(λ, q)

pp← Setup(1λ)
(vks, sks)← KGen(pp) for s ∈ [q]
({(msgi, Ri, σi, ti)}i∈[q+1], sc)←

A({(vks, sks)}s∈[q])
return 1 if:

Vfy(msgi, Ri, σi, ti, sc) = 1 for i ∈ [q + 1]
Ri ⊆ {vk1, . . . , vks} for i ∈ [q + 1]
∀i 6= j ∈ [q + 1] : Link(σi, σj) = 0

return 0

Fig. 4. Scoped Linkability

Experiment FrameabilityA(λ, q)

pp← Setup(1λ)
(vks, sks)← KGen(pp) for s ∈ [q]

(st,msg∗, R∗, σ∗, t∗, sc)← AOCorr,OSign({vks}s∈[q])
where σ∗ = (σ∗1 , . . . , σ

∗
n∗)

(msg†, R†, σ†, t†)← A(st, {sks}s∈[q])
where σ† = (σ†1, . . . , σ

†
n†

)

return 1 if:
Vfy(msg∗, R∗, σ∗, t∗, sc) = 1

Vfy(msg†, R†, σ†, t†, sc) = 1

R∗ ∪R† ⊆ P
|R∗ ∩ Pcorr| < t∗

∃i such that σ∗i was not obtained for
(msg∗, R∗) from OSign

R∗ ∩R† ∩ Pcorr = ∅
Link(σ∗, σ†) = 1

return 0

Fig. 5. Non-frameability

Definition 13 (Non-Frameability). A linkable threshold ring signature scheme
satisfies non-frameability if for every PPT adversary A and every q polynomially
bounded in λ, there exists a negligible function negl(λ) such that

Pr[FrameabilityA(λ, q) = 1] ≤ negl(λ) .

In our definition, we only consider signature schemes where the threshold
signature consists of a list of individual signatures (as is also the case in the
construction). This is because the same message can be signed for the same sub-
ring and scope, but by two disjoint sets of signers. Because of non-interactivity
and inter-signer anonymity, the individual contributions of the signature cannot
depend on the set of signers, and thus an adversary could create a fresh overall
signature by combining parts from both signatures. The adversary could then to
trivially win the frameability experiment, if the winning condition only excluded
that the overall challenge signature σ∗ has not been generated by OSign, while
not having a real-world impact. To overcome this problem, we either must drop
inter-signer anonymity or require an interactive process.
Linkable Anonymity. For linkable anonymity, it is not possible to decide from
which signer in the ring the signatures came from, only what signatures are
linked together. We capture this concept formally in the experiment in Figure 6.

The adversary picks two signing sets S0, S1 such that |S0| = |S1. We can
assume that S0∩S1 = ∅ without loss of generality. By ordering members of each
set, we have a correspondence from user ik and jk in S0, S1 respectively. We say
a key V Ks

0 ∈ S0 is matched with a key V Ks
1 ∈ S1.

Then in one case, all signature queries with signer ik are signed with ik.
Otherwise, all signature queries of ik are signed with jk (and vice versa). Then
A can use Link for any signature gotten from the challenger. If A requested two
signatures for ik then these two signatures will always link.

Depending on the bit b the challenger generates, the requested signatures on
the sets S0, S1 have this form: If b = 0 then the signers are the ones A asks for.

24

If b = 1 then each signature on ik ∈ S0 is replaced with jk ∈ S1 (and vice versa).
In the end, A must decide whether the signatures were signed according to what
he requested, or whether they were all flipped.

We note a weakness in our scheme: neither S0 nor S1 can have a corrupted
member in the set. That is, if user ik is corrupted, then it will be easy for A
to learn whether ik’s key was used to create a signature. Therefore, we have
OCorr ignores any calls to users in S0 ∪ S1. This is a rather weak definition in
the context of ring signatures, but seems unavoidable when using a deterministic
function such as VRFs.

Experiment LinkableAnonymityA(λ, q)

pp← Setup(1λ)
(vks, sks)← KGen(pp) for s ∈ [q]
b← {0, 1}
(S0, S1, st)← A({vks}s∈[q])

let S0 = {vki1 , . . . , vkim} and S1 = {vkj1 , . . . , vkjm}
(S∗0 , S

∗
1 ,msg∗, R∗,~t∗, sc∗, st)← AOSign,OSign′,OCorr(st)

where OCorr ignores any calls to users in S0 ∪ S1

where OSign′ engages in a signing protocol with A on the given inputs
mimicking all uncorrupted users

where OSign ignores calls where ∃m with vkim ∈ S or vkjm ∈ S but {vkim , vkjm} 6⊆ S, and
otherwise computes S′ by replacing all signers from S0 with S1 and vice versa, i.e.,
with S′ = S \ ({vkim}im∈S ∪ {vkjm}jm∈S) ∪ ({vkjm}im∈S ∪ {vkim}jm∈S)
and then engages in signing protocols with A for sets S and S′ (b = 0) or S′ and S (b = 1).

σ∗ ← Sign(msg∗, T ∗b , R
∗,~t∗, sc∗)

where T ∗b = {SKs} for s ∈ S if b = 0 and s ∈ S′ if b = 1.
b′ ← A(st, σ∗)
return a random bit if:

(msg∗, R∗) was queried before, or
(sc∗, S′j) has been queried before for some j ∈ {0, 1}, or
S0 ∩ S1 6= ∅

return b = b′

Fig. 6. Linkable Anonymity.

Definition 14 (Linkable Anonymity). A linkable threshold ring signature
scheme satisfies scope-exclusive linkable anonymity if for every PPT adver-
sary A and every q polynomially bounded in λ, there exists a negligible function
negl(λ) such that∣∣∣∣Pr[LinkableAnonymityA(λ, q) = 1]− 1

2

∣∣∣∣ ≤ negl(λ) .

5.2 Our Construction

Our threshold ring signature TRS is modular in the sense that we need only to
add a few elements to TRS to turn it into a linkable thring signature scheme

25

Key Generation Gen(1λ):

(vk, sk)← GenV RF (1λ);

(vkL, skL)← GenV RF (1λ) ;

(vkmal, skmal)← GenV RF (1λ) ;

(pk†, sk†)← GenPKE(1λ);

(pk‡, sk‡)← GenPKE(1λ);

skF ← {0, 1}λ;
rE ← RndPKE ;
E ← EncPKE(pk‡, skF; rE);

V K := (vk, vkL, vkmal , pk†, pk‡, E);

SK := (sk, skL, skmal , sk†, sk‡, rE , V K);

return (V K, SK).

Verification Vfy(msg, R, σ, tV , sc):

// Parse signature;

σ = (ρ, ς, vksOTS)tj=1;

ρ = (v, v′, vL, vmal , ct, ct
′, ctL, ctmal,

hks, hki, π, tj , scj);

Sort list by ti;
for j ∈ [t]
h′ := HashSPB(hks, R);

h′′ := HashSPB(hki, R);

x := (msg, R, v, v′, ct, ct′, ctL,

ctmal , h
′, h′′, hks, hki, sc);

b← VfyNIWI(x, π);

b← b ∧ VfysOTS(vksOTS , ρ, ς);

if b = 1 ∧ σj .v 6= σk.v ∀k ∈ [j − 1]

LV .append(tj);
endfor
if ∃i ≥ tV : LV [i] ≤ i return 1;
return 0

Link Link(σ1, σ2) :

Let ti := |σi|, i ∈ {1, 2}

for (j, k) ∈ [t1]× [t2]

if σj1.vL = σk2 .vL return 1

endfor

return 0

Threshold Signing Sign(msg, T,R,~t, sc):

// Every signer s ∈ S, |S| ≥ t
v ← EvalV RF (sks,msg||R);
p← ProveV RF (sks,msg||R);
v′ ← EvalV RF (sks, ts||msg||R);
p′ ← ProveV RF (sks, ts||msg||R);

vL ← EvalV RF (sksL, sc);

pL ← ProveV RF (sksL, sc);

(vksOTS , sksOTS)← GensOTS(1λ);

vmal ← EvalV RF (sksmal, vksOTS);

pmal ← ProveV RF (sksmal, vksOTS);

rct, rct′ , rL, rmal ← RndPKE ;

ct← EncPKE(pks† , p; rct);
ct′ ← EncPKE(pks† , p

′; rct′);

ctL ← EncPKE(pks† , pL; rL);

ctmal ← EncPKE(pks† , pmal; rmal);

(hks, shks)← GenSPB(1λ, N, s);
hs ← HashSPB(hks, R);
τs ← OpenSPB(hks, shks, R, s);
// Pick other ring member i 6= s

i← [N] \ s;
rE0 , rE1 ← RndPKE
(hki, shki1)← GenSPB(1λ, N, i);
hi := HashSPB(hki, R);
τ i ← OpenSPB(hki1 , shki1 , R, i);
// Call on the NIWI for language L′L

π ← ProveNIWI(x,w)
ρ := (v, v′, vL, vmal , ct, ct

′, ctL, ctmal ,

hks, hki, π, ts, sc);

ς ← SignsOTS(sksOTS , ρ);

σs := (ρ, ς, vksOTS);

// Every signer s broadcasts the signature

broadcast σs;
// Final threshold ring signature

return σ = {σi}ti=1.

Fig. 7. Linkable threshold ring signature scheme LTRS (changes to TRS highlighted).

26

including the concept of a scope. The full LTRS construction is presented in
Figure 7.

Besides TRS keys, we include two VRF keys (vkL, skL) (for linking) and
(vkmal, skmal) (for achieving non-malleability). For signing, a signer additionally
evaluates the first VRF on the scope sc to get (vL, pL) and encrypts pL into
ctL. The evaluation on scope is necessary to allow for scoped linkability. Then,
it creates a key-pair (vksOTS , sksOTS) for a strong one-time signature (sOTS)
scheme. The signer evaluates another VRF using skmal on vksOTS (i.e., “signs”
the verification key) and encrypts pmal into ctmal. The purpose of the second
VRF is for non-malleability, i.e., sksOTS is used to sign the partial signature
and the final signature also includes the sOTS signature. As before, the signer
evaluates a NIWI:

NIWI. The NIWI consists of the OR of three different languages:

L′L := (LR|VK ∧ LRLink) ∨ (LR|VK′ ∧ LRLink′) ∨ LRF
The relation RF is identical to the one in TRS and R|V K is a straightfor-
ward adaption of the one in TRS. We added a new language for the relation-
ship RLink, which allows a signer to maintain anonymity and non-frameability:
RLink(x,w) ⇐⇒

ctL = EncPKE(pk†, pL; rL) ∧ ctmal = EncPKE(pk†, pmal; rmal) ∧
VfyV RF (vkL, sc, vL, pL) = 1 ∧ VfyV RF (vkL, vkots, vmal, pmal) = 1

Statements x and witnesses w for L′L are of the form:

x =

msg R v vmal vL
hs hi hks hki vkots
ct ctmal sc ctL ςots

 w =

V Ks V Ks1 s s1 τs τ i

p pmal pL ski0F ski1F
rct rct′ rE0 rE1 rL rmal

5.3 Security of Our Construction

In the following we state the security claims for our (scope) linkable thring
signature scheme LTRS. The proofs are along the same lines as those for TRS
and therefore omitted; proof sketches can be found inthe full version.

Theorem 4. If F is a OWF, VRF has residual unpredictability and unique prov-
ability, NIWI has perfect soundness, SPB is somewhere perfectly binding and
PKE is perfectly correct, SPB is index hiding then LTRS is unforgeable.

Theorem 5. If F is a one-way function, the NIWI has perfect soundness, PKE
is perfectly correct, SPB is somewhere perfectly binding, VRF has residual un-
predictability and key collision resistance, and sOTS is strongly unforgeable then
LTRS is non-frameable.

Theorem 6. If the NIWI is computationally witness-indistinguishable, PKE
has key-privacy and CPA-security, and VRF has key privacy and residual pseu-
dorandomness, then LTRS has linkable anonymity.

27

Theorem 7. If the NIWI has perfect soundness, SPB is somewhere perfectly
binding, the VRF has unique provability, and PKE is perfectly correct, then
LTRS is linkable.

6 Instantiations and Future Directions

Our construction is generic but we have made some choices for convenience, i.e.,
the use of PKE instead of commitments as key-privacy is a natural well studied
notion for PKEs. Thus, for a concrete instantiation there may be a number of
choices and possible optimizations, which are outside the scope of this paper.
Also, for asymptotics, the general algebraic circuit for the NIWI will have a poly-
nomial expansion in the size of its input. The input is logarithmic in the number
of users of the ring, and therefore the overall size of the proof is polylogarithmic
in the size of the input. This is a natural limitation when relying on general
building blocks, an issue that is also present in BDH+ [3]. We discuss later how
this could be circumvented.

Towards Post-Quantum Instantiations. If the instantiations of underlying
primitives are post-quantum secure, then our thring signature scheme is also
post-quantum secure. Post-quantum VRFs that rely on LWE [17] exist8 and so
do key-private PKE schemes (e.g., based on LWE [22]). Many PKE schemes have
key privacy, as this property immediately holds if the ciphertexts are pseudo-
random. SPBs can be constructed from somewhere statistically binding hashing
(SSBs). BDH+ show in Appendix A.2 of [2] how to turn two-to-one SSBs into
SPBs. There are SSBs that rely only on the existence of a lossy/injective func-
tions. One natural lossy/injective function is one built from the LWE problem [1].
The other building blocks we require are a post-quantum strong one-time signa-
ture scheme and OWFs. One example for the former is the Winternitz scheme [8]
and for latter there are multiple candidates (e.g, from assumptions such as LWE
or SIS or based on symmetric primitives as in Picnic [10] and related signature
schemes).

The last concern is whether one can construct NIWIs that are post-quantum
secure. While NIWIs in the post-quantum setting are not known, as discussed
in a recent work by Chatterjee et al. [11] and based on an observation in [5], the
NIWI in the BDH+ approach (and also ours) can be replaced with a two-message
public coin argument systems (ZAPs [14]). This can be done by extending veri-
fication keys with the first message of the ZAP (cf. [11]). While ZAPs are known
under the LWE assumption [4, 18], one requires to rely on subexponential hard-
ness. To achieve standard polynomial hardness, it though might be possible to
adapt the recent approach in [11], which uses the BDH+ approach along with a
novel ZAPs for a limited class of languages to achieve compact ring signatures
in the plain model from LWE.

Potential Trade-offs. The most challenging part of our approach is proving

8Though key privacy and key collision resistance seem natural in this approach, a
formal treatment is missing.

28

that a verification key belongs to the ring of verification keys. Like BDH+ [3],
our thring signature is asymptotically logarithmic but due to the insistence of
being in the plain model, there are technical sticking points that guide our choice
of building blocks. In particular, when we want to use NIWIs we require perfect
soundness and thus like BDH+ [3] rely on SPBs. Clearly, if we move to knowl-
edge sound NIZKs and thus allow a trusted setup (CRS), then we can move to
computationally sound versions and in particular accumulators, e.g., Merkle-tree
accumulators with log-sized membership witnesses or even ones with constant
size. For the latter ones, the accumulators rely on a trusted setup. Using ac-
cumulators was already shown to be useful to get compact ring signatures [12]
and in concurrent and independent work also more compact thring signatures
[26]. However, the latter requires accepting trusted setup and the random oracle
heuristic. We expect that our core idea could also be combined with these prim-
itives when accepting these additional assumptions. Another direction to reduce
the signature size would be replace the NIWI with a zk-SNARG or zk-SNARK.
However, this would again require a trusted setup or the random oracle heuristic
and additionally non-falsifiable assumptions in the latter case.

Acknowledgments. We thank anonymous reviewers for their comments. This
work was in part funded by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 830929 (CyberSec4Europe)
and by the Austrian Science Fund (FWF) and netidee SCIENCE under grant
agreement P31621-N38 (PROFET).

References

1. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited -
new reduction, properties and applications. In: CRYPTO 2013, Part I

2. Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signa-
tures: Logarithmic-size, no setup — from standard assumptions. Cryptology ePrint
Archive, Report 2019/196

3. Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures:
Logarithmic-size, no setup - from standard assumptions. In: EUROCRYPT 2019,
Part III

4. Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Statistical
ZAP arguments. In: EUROCRYPT 2020, Part III

5. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. Journal of Cryptology 22(1), 114–138

6. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to
ad-hoc groups. In: CRYPTO 2002

7. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM
CCS 2004

8. Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security
of the Winternitz one-time signature scheme. In: AFRICACRYPT 11

9. Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pedersen,
M.Ø.: Formal treatment of privacy-enhancing credential systems. In: SAC 2015

29

10. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: ACM CCS 2017

11. Chatterjee, R., Garg, S., Hajiabadi, M., Khurana, D., Liang, X., Malavolta, G.,
Pandey, O., Shiehian, S.: Compact ring signatures from learning with errors. LNCS

12. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc
groups. In: EUROCRYPT 2004

13. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: PKC 2005

14. Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS
15. Feige, U., Shamir, A.: Witness Indistinguishable and Witness Hiding Protocols. In:

STOC
16. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: PKC 2007
17. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to con-

structing and proving verifiable random functions. In: TCC 2017, Part II
18. Goyal, V., Jain, A., Jin, Z., Malavolta, G.: Statistical zaps and new oblivious

transfer protocols. In: EUROCRYPT 2020, Part III
19. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant

size group signatures. In: ASIACRYPT 2006
20. Hofheinz, D., Jager, T.: Verifiable random functions from standard assumptions.

In: TCC 2016-A, Part I
21. Lin, H., Wang, M.: Repudiable ring signature: Stronger security and logarithmic-

size. Cryptology ePrint Archive, Report 2019/1269
22. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption.

In: CT-RSA 2011
23. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-

ture for ad hoc groups (extended abstract). In: ACISP 04
24. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-

DDH separation. In: CRYPTO 2002
25. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS
26. Munch-Hansen, A., Orlandi, C., Yakoubov, S.: Stronger notions and a more efficient

construction of threshold ring signatures. Cryptology ePrint Archive 2020/678
27. Okamoto, T., Tso, R., Yamaguchi, M., Okamoto, E.: A k-out-of-n ring signature

with flexible participation for signers. Cryptology ePrint Archive, Report 2018/728
28. Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere

statistically binding hashing and positional accumulators. In: ASIACRYPT 2015,
Part I

29. Park, S., Sealfon, A.: It wasn’t me! - Repudiability and claimability of ring signa-
tures. In: CRYPTO 2019, Part III

30. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: ASIACRYPT 2001
31. Sahai, A.: Simulation-sound non-interactive zero knowledge. Tech. rep., IBM RE-

SEARCH REPORT RZ 3076
32. Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and

attestation. In: ICISP

30

	Logarithmic-Size (Linkable) Threshold Ring Signatures in the Plain Model

