
Lifting Standard Model Reductions to
Common Setup Assumptions

Ngoc Khanh Nguyen1, Eftychios Theodorakis2,3, and Bogdan Warinschi2,4

1 IBM Research Europe – Zurich and ETH Zurich
2 DFINITY
3 Dicrypt

4 University of Bristol
nkn@zurich.ibm.com crypto@eftychis.org bogdan.warinschi@gmail.com

Abstract. In this paper we show that standard model black-box reduc-
tions naturally lift to various setup assumptions, such as the random
oracle (ROM) or ideal cipher model. Concretely, we prove that a black-box
reduction from a security notion P to security notion Q in the standard
model can be turned into a non-programmable black-box reduction from
PO to QO in a model with a setup assumption O, where PO and QO are
the natural extensions of P and Q to a model with a setup assumption
O.

Our results rely on a generalization of the recent framework by Hofheinz
and Nguyen (PKC 2019) to support primitives which make use of a
trusted setup. Our framework encompasses standard idealized settings
like the random oracle and the ideal cipher model. At the core of our
main result lie novel properties of negligible functions that can be of
independent interest.

1 Introduction

Security reductions. In this paper we investigate the interplay between
security reductions and setup assumptions. Security reductions [15] are perhaps
the single most powerful idea that underlies modern cryptography. Roughly
speaking, a security reduction is an algorithm which turns an adversary that
breaks some protocol Q into one which breaks some underlying primitive P 5.
If such a reduction exists, it follows that if P is secure, then so is Q, so the
security of a complex system is reduced to that of its underlying components.
Here, and throughout the paper, P and Q are understood as security notions;
that is classes of instantiations together with an experiment which defines their
security. Furthermore, reductions correspond to specific constructions which turn
an instance of P into an instance of Q.

5We do not attempt to make a sharp distinction between primitives and protocols.
We use the terms primitive and protocol loosely and only to emphasize that one employs
the other in its design. P may also stand for cryptographic assumption, e.g. factorization
is hard, just as Q may stand for a more involved primitive, e.g. authenticated encryption.

The landscape of reductions has been carefully mapped via a taxonomy
introduced by Reingold, Trevisan and Vadhan (RTV) [22] and later refined
by Baecher, Brzuska, and Fischlin [1]. In its latest incarnation, the taxonomy
identifies three components relevant to reductions, namely, the construction, the
adversary and the instance used in the construction, and classifies reductions
depending on how they access these components. Of central interest in this
taxonomy are the so-called “black-box” reductions where the reduction only
gets oracle access (i.e. only input/output) to the adversary; further variants
distinguish between how the reduction accesses the construction and the instance
of the primitive used in the construction. Indeed, with only very few exceptions,
the cryptographic practice employs black-box reductions. Not only are these
reductions simpler to design but black-box access to the adversary and the
instance enables a hierarchical modular design, thereby helping tame the inherent
complexity of cryptographic designs.

Setup assumptions. For efficiency reasons, or to circumvent impossibility
results, concrete instantiations of cryptographic constructs often rely on setup as-
sumptions. That is, constructions make use of already set-up trusted components.
Well-known examples of such assumptions include the random beacon model [21],
the random oracle [3], the ideal cipher model [23], the common random string
model [4], and its common reference string variant. Other examples include the
quantum random oracle [5] or access to specific hardware [9,20,14].

Reductions may use setup assumptions in fundamental ways. They may track
the adversary’s queries towards the random oracle and program the output of
random oracles at dynamically identified inputs. They can access a trapdoor
associated to a common random string which allows them to decrypt adversarial
ciphertexts or equivocate commitments.

In this paper we are interested in the interplay between reductions and
security assumptions. Most of the previous work on classifying reductions does
not explicitly surface the use of setup assumptions and, a priori, are set in the
standard (vanilla) model. A notable exception is the work of Fischlin et al. [13]
who extends the black-box separation techniques to get impossibility results for
various constructions even in settings with a (or with variants of the) random
oracle model.

The problem. In this paper we investigate the interaction between reductions
and setup assumptions from a different perspective which we detail below. For
concreteness, in our motivating discussion we use the random oracle as an example
setup assumption under consideration. Nonetheless, our work treats generically
other settings as well.

Assume that we have already designed a black-box reduction from some
protocol Q to a primitive P . The reduction is in the standard model. Then
consider protocol QO which uses in its construction instantiations of the primitive
PO which potentially rely on the random oracle O. Can we conclude something
about the security of QO? Put differently, does a black-box reduction from Q to
P in the standard model lift to a reduction from QO to PO? And what, and how
does one define the extension of PO to the random oracle, in the first place?

2

We contend that the answer is far from obvious. The first obstacle is a
syntactic one. Observe that an adversary against QO makes queries that exercise
the functionality of the protocol yet also queries the random oracle. The reduction
from Q to P “knows” how to deal with the former type of queries but makes no
provisions for the latter type. We consider the natural extension of the standard
model reduction to a non-programming random oracle reduction, where the
reduction simply forwards the queries and answers between the adversary and
the random oracle.

The second obstacle is more substantial. How would one argue that the random
oracle reduction works? Since the existence of the standard model reduction is
the only available handle one would need to relate the event that a random oracle
adversary wins to the event that a standard adversary wins. However, there is
a fundamental difference between the standard model setting and the random
oracle one.

In the standard model the only information available to the adversary about
the internal state of the protocol is whatever can be inferred from their communi-
cation mediated by the security game. In the random oracle model, however, the
adversary and the protocol indirectly share state through their joint access to
the random oracle. With this in mind, it is unclear how to map events from the
joint-state setting to the standard model or, indeed, whether this is even possible.
It is conceivable that the adversary manages to break the protocol because of
the shared state and this is something which the standard model reduction may
not even account for. Looking ahead, we show how to bypass these obstacles and
provide a positive answer to the question we posed above. We detail our results
next.

Our contributions

Formal foundations. Our first contribution is a framework which allows to talk
about “lifting” notions and reductions between notions from the standard model
to a model with setup assumptions. Our starting point is the recent framework of
Hofheinz and Nguyen [16], who in turn build on the work of Reingold, Trevisan,
and Vadhan [22]. In their framework, the notion of a primitive has two key
ingredients: i) a set theoretic notion of an instance (essentially the set of all
instantiations for the primitive), and ii) an explicit notion of a security game –
defined as an interactive (oracle) Turing machine (and an associated advantage
function). We extend this framework in two ways. First, we formalize setup
assumptions as a mathematical object, essentially as family of distributions over
sets of functions. Later in the section, we outline a number of technical challenges
we need to overcome to make this approach rigorous, and make our definitions
precise and general. One can then extend arbitrary security games to include
setup assumptions by providing to the adversary (and the primitive) black-box
access to a function; which is sampled in an eager manner (from a computational
perspective) according to the distribution(s) before the execution begins. Our
abstract approach subsumes many of the widely used setup assumptions including
the random oracle model, the CRS model, and the ideal cipher model.

3

Second, we provide a careful treatment of the notion of primitive instances.
Both [22] and [16] define instances of a primitive as arbitrary sets of Turing
machines. This approach is too abstract for our purposes since it does not give
rise to a meaningful way of lifting the notion of an instantiation from the standard
model to the random oracle model. A more concrete definition is necessary that
allows one to explicitly define correctness and security membership sets for the
primitives. We opt for identifying primitive instances by considering an explicit
correctness game associated to the primitive.

With these extensions in place, we can then rigorously define the extension of
a particular cryptographic notion to a specific setup assumption and the lifting
of a reduction from the standard model to a model with a setup assumption.

Main result. Our main result establishes that fully black-box reductions in the
standard model indeed do lift to setup assumptions. That is, if a standard model
reduction from some protocol Q to some primitive P exists, then the reduction
(or rather its canonical extension) also “works” in the setup assumption. The
proof of this result is along the following lines. Once an individual instance of
the setup assumption is fixed, then the adversary can be viewed as an adversary
in the standard model with the instance of the setup hardwired in its code; the
same observation holds for the primitive. One can therefore establish a relation
between the success of the reduction and the success of the adversary, for each
individual instance of the setup assumption. The crux of the proof is to show
how to “aggregate” the distinct individual bounds on advantage functions to get
a bound on the adversary’s advantage when the setup is sampled according to
its defining distribution.

A related and somewhat simpler case of this problem is to show that instanti-
ating a protocol with a correct instance of the primitive with a setup assumption
yields a correct instance of the protocol (with a setup assumption). We cast both
of these problems as a generic property of (countable) sets of certain type of
families of negligible functions.

Technical challenges. As it soon becomes clear in the paper, we require a
lot of mathematical machinery, and it is instructive to understand the source
of some of the complications we deal with. In particular, there are two related
challenges rooted in an interesting interplay between fully black-box reductions
and random oracles: (i) how to define a generic notion of a setup assumption
and (ii) how to define the adversary’s advantage. Recall that a fully black-box
reduction “works” even if the adversary against the protocol is unbounded. In
particular, the reduction needs to work even for an adversary that with some
small probability does not stop and instead keeps on querying the random oracle
on increasingly larger inputs. How should one then define the advantage of the
adversary? The difficulty here is identifying the underlying sample space of the
experiment since an unbounded adversary will essentially require an unbounded
random tape.

This discussion also sheds some light on our modeling of a setup assumption.
Intuitively, we would like to define a setup assumption simply as a function from
some domain X to some co-domain Y to which the different parties involved in

4

the execution get access. The function would need to be sampled, eagerly, at the
beginning of the execution. This intuitively appealing approach does not work
for the type of infinite execution in the above discussion. For the random oracle
model we would have X = Y = {0, 1}∗ and it’s not clear how to sample from
this space “uniformly at random” as one would expect.

Our solution is to view the setup as a family of sampling algorithms indexed
by a natural number `. For each ` the setup is sampled from finite sets of functions
with (now bounded) domain X` and range Y . Our formalization enforces that
X` ⊆ X`+1 and that sampling is “consistent” across the parameters, that is
the distribution on Y X`+1 extends naturally the distribution on Y X` . For each
parameter ` we define a corresponding execution model where the execution of
the game aborts if either the adversary or the construction queries the setup on a
point outside X`. With these bounds in place, we can rigorously show the sample
space, required by the setup assumption, is well-defined, and the advantage of
the adversary for each individual parameter is well defined and converges. That
is the corresponding sums parameterized over ` converge and thus it makes sense
to define the notions of adversarial advantage and correctness.

Applications. In order to illustrate the practicality of our main result, we
present the following simple example. Consider the Lamport construction of a
one-time (OT) signature scheme out of a one-way function (OWF). Let us call
the generic construction Lamp[·]. The traditional reduction shows that Lamp[f]
is a secure OT signature scheme if f is a OWF: for any OWF instance f , an
adversary against Lamp[f] can be used in a black-box way to break f . Note that
the reduction allows to establish the security of OT signature instances of the
form Lamp[f] only for instantiations of f in the standard model.

Consider now an OWF instance which uses a random oracle (RO), e.g. consider
the construction gO, where g simply forwards its inputs to the random oracle O
and returns the result. We claim that, given the state of the art, it is not possible
to immediately conclude Lamp[gO] is a secure OT signature. Indeed, one cannot
draw any rigorous conclusions from existing results: even brushing under the
carpet that gO is “obviously” a OWF, the key observation is that the scheme
Lamp[gO] is a scheme in the RO model. So, the existing reduction does not apply.
It is here where our main result is useful: it lifts the reduction from the standard
model to the random oracle model and allows us to conclude that the security of
Lamp[f] reduces to that of f , even if f is a construction in the RO.

Obviously, one can re-establish the security of Lamp[gO] directly, in the
random oracle, but that would require a new proof where one would have to redo
the interesting part of the reduction.

To give another example, consider the black-box construction of a NM-CPA
scheme out of a semantically secure scheme by Choi, Soled, Malkin, and Wee
[10]. For brevity we shall call the construction CSMW. Their result shows that
CSMW[Enc] is an NM-CPA scheme for any semantically secure scheme in the
standard model.

Consider now the instantiation of CSMW[BR] where BR is the concrete
semantically secure scheme from the original RO paper by Bellare and Rogaway[2],

5

i.e. for a trapdoor permutation f then Enc(m) = f(r)||H(r) ⊕m. Our results
allow one to conclude that CSMW[BR] is an NM-CPA scheme in the RO model.
Without this contribution, one would have to the best of our knowledge provide a
direct reduction to the security of f 6. Generally, our results expose the concrete
security gap, yet the theorems allow for abstract, and relatively simple, proofs as
shown in section 4.5.

Discussion. Our main result shows how to lift fully black-box reductions set in
the standard model to a model with a setup. In particular, we rely in a reasonably
strong way on the fact that such reductions can deal with unbounded adversaries
– at some point we need to hardwire a potentially large table (representing
the setup) into adversaries and implementations. Consequently, the resulting
constructions may not be efficient anymore. In turn this implies that our result
does not immediately extend to a reduction which is only guaranteed to work for
efficient adversaries e.g. [1, Section 2.6]. That would be extending our result to
BBBa reductions using the terminology of [1]. Restricting our results to such a
setting would, however, allow us to avoid many complications that the unbounded
nature of the random oracle causes, as outlined above.

An intriguing question is whether our results extend to the case where starting
reduction/construction is already in a model with already an idealized setup (as
opposed to the standard model). In particular, answering this question raises
the question of how idealized models interact/compose. We leave both of these
questions to further work.

Related work. The closest work to ours is the work of Hofheinz and Nguyen [16].
They introduce a generic framework for abstractly specifying games (and secu-
rity reductions) and use it to study the relation between single instance and
multi-instance security of primitives. Our work extends their framework with
setup assumptions and explicit correctness games, and we study a different ex-
tension of the reduction. A somewhat related line of work studies “relativizing”
reductions [18,22,1]. This concept borrowed from complexity theory is about
establishing relations of the type: if primitive P can be instantiated (securely)
then primitive Q can also be instantiated (securely). Such a relation “relativizes”
if the statement holds even if the adversaries against P and Q have access to an
arbitrary oracle Π. Although apparently related, the focus and results of that
line of work are quite different.

RTV [22] assumed probabilistic polynomial time oracle machines when intro-
ducing relativizing reductions. In particular, they asserted that for a primitive
with oracle access to exist there must be a PPTOM machine that can compute
it and that no PPTOM machine breaks it (see Definition 2 in the full version
of [22] or definition 5 of [1]). Lifting does not have that restriction, and is as
such a more general and flexible notion. A lifted reduction holds even if the
adversary performs a countable number of queries from an infinite query space.
Furthermore, we do not require an efficient implementation in the idealized model
(see definition 5). The same holds for the security definition – even though as is

6Note that this would incorporate the reduction in CSMW as well as some specific,
potentially smarter way, of answering RO queries of the adversary against CSMW[BR].

6

standard we define here security via a PPT game – one may transfer our result
to non-polynomial time security settings. As such our tooling and approach can
accommodate oracle querying with non-trivial, non-finite, underlying probability
distributions.

Note also the difference is one of intent. In relativizing reductions, the security
of the primitive under question is not impacted by the choice of oracle the
adversary has access to. The reduction must hold for any oracle. This of course
can rule out such reductions due to oracle separation results. In our work we
focus on a particular idealized model and inquire if we can “lift” the security to
this idealized model.

A rich line of research, also originating in the seminal work of Rudich and
Impagliazzo [18] and continuing with the works of Boneh and Venkatesan [6],
Simon [24] and Hsiao and Reyzin [17] has developed a number of black-box
separation techniques. These can be used to show negative results of the type: no
black-box construction of protocol Q out of primitive P exists, or conversely that
no black-box reduction from Q to P exists. Such results are important to rule
out minimal assumption for the existence of Q, or identify the need for non-black
box constructions but do not serve as support for drawing positive results.

2 Preliminaries

2.1 Notation

For two arbitrary sets X and Y we write Y X for the set of all functions from
X to Y . Let N = {0, 1, 2, 3, . . . , } be the set of natural numbers. We use λ ∈ N
to denote the security parameter, which is a natural number; we assume that
it is implicitly provided to all algorithms in the unary representation 1λ, unless
stated otherwise.

We use the shorthand PPT for the Probabilistic Polynomial Time algorithms
– in the (unary) security parameter λ. We describe (y1, . . .)←$A(1λ, x1, . . . ; r) as
an event when A gets (1λ, x1, . . .) as input, uses fresh random coins r and outputs
(y1, . . .). If A is deterministic then we simply write (y1, . . .) ← A(1λ, x1, . . .).
Let us write AB to denote that A has black-box access to algorithm B, meaning
it sees only its input-output behaviour. The notation A(·) means that A expects
a black-box access to some other algorithm. Similarly as in [13], we highlight
that when an algorithm B is given oracle access to AO for a particular oracle
O then B does not get to answer A’s queries to O. Throughout the paper, ⊥
denotes an error symbol.

For a finite set S, we denote its cardinality by |S| and write s←$S meaning
that we choose an element s from S uniformly at random. For readability, we
define [k] = {1, . . . , k} for k ∈ N and [a, b] = {x ∈ R : a ≤ x ≤ b}. Set S is
countable if there exists an injective map φ : S → N.

A function ε : N→ R is negligible if for any c ∈ N, there exists N ∈ N such
that for all λ ≥ N : |ε(λ)| < 1/λc. We write negl(λ) for an unspecified negligible
function in λ. In general, we denote with negl to be a set of all negligible functions.

7

Similarly, we define UBnegl to be the set of functions f : N → R which are
upper-bounded by a negligible function. Concretely, f ∈ UBnegl if and only if
there exists ε(·) ∈ negl such that f(λ) ≤ ε(λ) for all λ ∈ N. We highlight that
functions in UBnegl are not necessarily negligible, e.g. the constant function
f(λ) = −1. By definition of a negligible function we obtain the following lemma.

Lemma 1. Let f : N → R be a function. Then, the following conditions are
equivalent.

1. f ∈ UBnegl,
2. function g(λ) := max{f(λ), 0} is negligible,
3. for all c ∈ N, there exists N ∈ N such that for all λ ≥ N : f(λ) < 1/λc.

2.2 Limits and Suprema

Let A be a (possibly uncountable) set. Then, for a function f : A→ R we define
the supremum supa∈A f(a) to be the smallest real number t (if exists) such that
f(a) ≤ t for all a ∈ A. In this paper, will use the following simple lemmas. For
completeness, we provide the proofs in Appendix A.

Lemma 2. Let A,S be non-empty sets, where S is either finite or countable,
and (fs)s∈S be a sequence of functions fs : A→ R. If for all s ∈ S, supa∈A fs(a)
exists and if sup(as∈A)s∈S

∑
s∈S fs(as) exists then∑

s∈S
sup
a∈A

fs(a) = sup
(as∈A)s∈S

∑
s∈S

fs(as).

Lemma 3. Let A be a non-empty set and (fa)a∈A be a family of non-decreasing
functions fa : N→ R. Then:

lim
k→+∞

sup
a∈A

fa(k) = sup
a∈A

lim
k→+∞

fa(k)

assuming supa∈A limk→+∞ fa(k) and limk→+∞ fa(k) exist for all a ∈ A.

Lemma 4. Let f : N × N → [0, 1] be function such that for all k, ` ∈ N:
f(k, `) ≤ f(k + 1, `) and f(k, `) ≤ f(k, ` + 1). Then, limk→+∞ lim`→+∞ f(k, `)
exists and

lim
k→+∞

lim
`→+∞

f(k, `) = lim
`→+∞

lim
k→+∞

f(k, `) = lim
k→+∞

f(k, k).

Lemma 5. Let S be a non-empty, either finite or countable set and f : N×S →
[0, 1] be a function which satisfies f(k, s) ≤ f(k + 1, s) and∑

s∈S
f(k, s) ∈ [0, 1]

for all k ∈ N, s ∈ S. Then∑
s∈S

lim
k→+∞

f(k, s) = lim
k→+∞

∑
s∈S

f(k, s).

8

2.3 Fully Black-Box Reductions in the Standard Model

We briefly recall the framework on primitives and black-box reductions by
Reingold, Trevisan, and Vadhan [22] (RTV). Using their notation, primitive P is
a pair

〈
FP , RP

〉
where FP is a set of functions f : {0, 1}∗ → {0, 1}∗ and RP is a

relation over pairs (f,M) for f ∈ FP and machine M . One can think of FP as
implementations of a primitive P and RP as security conditions on FP .

Then, there is a fully black-box reduction from a primitive P =
〈
FP , RP

〉
to

Q =
〈
FQ, RQ

〉
if there exist PPT machines G,S such that:

• for every function f ∈ FQ, Gf ∈ FP ,
• for every function f ∈ FQ and every adversary A, (Gf ,A) ∈ RP =⇒

(f, SA) ∈ RQ.

Informally, G and S are called the generic construction and the reduction re-
spectively. As mentioned in [22], this definition of reduction does not apply
to non-uniform or information-theoretic notions of security. They also define
different types of reductions such as semi-black-box or relativizing reductions.

There is a long line of research on formalising (black-box) reductions [1,13,19,16].
In this paper we adapt the recently defined notion of fully black-box reductions
by Hofheinz and Nguyen [16]. The main difference to the RTV framework is that
the security conditions are represented as a security game instead of a set of
relations. Thus, Hofheinz and Nguyen could formally define what is meant by
“breaking one primitive with about the same success as the other primitive” in
terms of probabilities.

Definition 1 ([16]). A primitive P is a tuple
〈
P, FP , RP , σ

〉
where:

• P is a pair of sets (A,B)
• FP is a subset of {f : A→ B},
• R

(·,·)
P is a PPT security algorithm,

• σ : N→ [0, 1] is a security threshold.

We say that f is an implementation of P if f ∈ FP .

Note that usually we define FP via the use of correctness games.
Since we do not consider primitives in the multi-instance setting as in [16],

we already include the setup SP in the security algorithm RP . For readability, in
this paper we also do not restrict the input space for RP to call f , i.e. C = A in
[16, Definition 4].

There are two main differences between this definition and the one proposed
by RTV. Firstly, P = (A,B) is a pair of sets which describe the domain and the
co-domain. This modification enables to characterize implementations which are
defined on more abstract mathematical models (e.g. groups, rings) rather than
on {0, 1}∗. Secondly, RP is now an efficient algorithm which expects black-box
access to both an implementation f and an adversary A. One can think of RP as
a security game, e.g. one-wayness or IND-CPA game. Here, we want to associate
for each pair (f,A) a value in [0, 1] which corresponds to the probability of A
winning the RP game against f . We recall the definition of an advantage from
[16].

9

Definition 2 ([16]). Let P =
〈
P, FP , RP , σ

〉
be a primitive. Take f ∈ FP and

any algorithm A. We define the advantage of A in breaking f as

AdvPf,A(λ) := Pr
[
1←$Rf,AP

]
− σ(λ)

where the probability is defined over random coins in the system 7.
We say that A P−breaks f if AdvPf,A(λ) 6∈ UBnegl, i.e. there is no negligible

function ε : N → R such that AdvPf,A(λ) ≤ ε(λ) for all λ ∈ N. Primitive P is
called secure if there exists an implementation f of P such that there are no PPT
algorithms A that P−break f .

Example 1. We define a primitive corresponding to an IND-CPA secure public-
key encryption scheme as PKE =

〈
PPKE, FPKE, RPKE,

1
2

〉
where PPKE defines the

domain and range for the encryption schemes, RPKE is the IND-CPA game and
FPKE the set that contains encryption schemes, which we could define via a
“encryption scheme correctness” game.

We briefly explain why we want the advantage to be in UBnegl rather than
negl. Note that there are certain types of adversaries, for which their advantage
is not negligible, and yet they do not win the security game in the usual sense.
For instance, consider a decisional game, e.g the IND-CPA game, where the
adversary has to guess the bit, and set the security threshold σ(λ) = 1

2 . Then,
an adversary A, which simply aborts/loops, certainly will not win the IND-CPA
game (the security game cannot detect A looping since it is only given black-box
access). However, its advantage, as defined in Definition 2, will be 0− 1

2 = − 1
2 ,

which is not negligible (but still upper-bounded by a negligible function).
Using the definitions above, Hofheinz and Nguyen formalise fully-black box

reductions as follows.

Definition 3 (Fully Black-Box Reductions). Let P =
〈
P1, FP , RP , σ

〉
and

Q =
〈
P2, FQ, RQ, τ

〉
be primitives. Then, there is a fully black-box reduction

from P to Q if there exist PPT algorithms G(·), S(·) such that:

• for every implementation f of Q, Gf is an implementation of P ,
• for every implementation f of Q and every (unbounded) algorithm A, if A
P -breaks Gf then SA Q-breaks f .

3 Average of Negligible Functions

In this section we establish several technical properties of negligible functions
which will be crucial when proving our main reduction correspondence result. It
is a well known that given a finite set of negligible functions P = {f1, f2, . . . , fn},
the average 1

n

∑n
i=1 fi of these functions is also negligible. We provide a similar

result in the setting when the set P is countable.

7Usually, the security threshold function σ is a constant – either 0 or 1
2
.

10

Informally, suppose we have a function P : N×N→ [−1, 1] such that for any
f : N→ N, function Pf (λ) := P (λ, f(λ)) is negligible in λ. Then, for any discrete
distribution D on N and an infinite sequence of independent random variables
X1, X2, . . . ←$D, the function E(P) : N→ [−1, 1] defined as

E(P)(λ) := E (P (λ,Xλ))

is also negligible. Intuitively, this result says that if a set P 8 consists of only
negligible functions then the “expectation of all functions”, defined as E(P) and
also called informally as the average of P , is also negligible.

Below we state a generalisation of this result. Roughly speaking and using
the language from the previous paragraph, it says the following. Assume there
exists a correspondence between negligible functions from set Q to set P . If the
expectation of Q is negligible then so is the expectation of P . Clearly, by setting
the set Q to only contain the zero functions yields the result described above.

To apply these observations in the context of fully black-box reductions,
we work with functions in UBnegl (see Section 2.1) rather than with negligible
functions.

Theorem 1. Let k ∈ N, S be a (possibly uncountable) set and (Dλ)λ∈N be a
sequence of discrete probability distributions Dλ : Sλ → [0, 1] over countable sets
Sλ ⊆ S. Take arbitrary functions P,Q1, . . . , Qk : N× S → [−1, 1]. Suppose that
for every function f : N→ S, the following holds:

∀i ∈ [k], Qi(λ, f(λ)) ∈ UBnegl =⇒ P (λ, f(λ)) ∈ UBnegl.

Then, for Xλ←$Dλ we have

∀i ∈ [k],E (Qi(λ,Xλ)) ∈ UBnegl =⇒ E (P (λ,Xλ)) ∈ UBnegl.

Proof. Suppose that each E (Qi(λ,Xλ)) is upper-bounded by a negligible function.
Then, for each i ∈ [k], we can find an infinite sequence of positive integers J(i, 1) <
J(i, 2) < . . . such that for every d ∈ N and any λ ≥ J(i, d), E (Qi(λ,Xλ)) < 1/λd.
Fix d ∈ N and define

jd = max{2k + 1,max
i∈[k]

J(i, d+ 1)}.

We claim that for every λ ≥ jd, there exists a ∈ Sλ which satisfies:

∀i ∈ [k], Qi(λ, a) < 1/λd.

First, we fix arbitrary i ∈ [k] and λ ≥ jd. Let

Mi = {a : a ∈ Sλ ∧Qi(λ, a) < 1/λd}.

We know that E (Qi(λ,Xλ)) < 1/λd+1. Therefore,

Pr[Xλ ∈ Sλ\Mi]

λd
≤
∑
a∈Sλ\Mi

Pr[Xλ = a]

λd
≤
∑
a∈Sλ

Pr[Xλ = a] ·Qi(λ, a) <
1

λd+1
.

8Formally, we mean the set of functions {P (λ, f(λ)) : f ∈ {g : N → N}}.

11

In particular, Pr[Xλ ∈ Sλ\Mi] ≤ 1/λ. Then, by the union bound we have:

Pr[∃i,Xλ ∈ Sλ\Mi] ≤ k/λ ≤ 2k/jd < 1.

Hence, Pr[∀i,Xλ ∈ Mi] > 0 so there exists a ∈ Sλ such that for every i ∈
[k], Qi(λ, a) < 1/λd. For λ ≥ jd, let a(λ) be the smallest such value.

Next, we prove the following lemma.

Lemma 6. Let c ∈ N. Then, there exists a positive integer d ≥ c, such that there
are only finitely many pairs (λ, a) which satisfy the following conditions:

a ∈ Sλ ∧ ∀i, Qi(λ, a) < 1/λd ∧ P (λ, a) ≥ 1/λc. (1)

Proof. We prove it by contradiction. Suppose there exists a positive integer c,
such that for every d ≥ c, there are infinitely many pairs (λ, a) which satisfy (1).
We construct a function f : N → S such that for i ∈ [k], Qi(λ, f(λ)) ∈ UBnegl
but P (λ, f(λ)) 6∈ UBnegl. Then, we get a contradiction.

Fix d ≥ c. Let us introduce the following notation. First, L(`, d) is the
smallest λ ≥ ` such that there exists an integer a so that (λ, a) satisfies (1).
Additionally, denote R(`, d) to be the smallest a such that (L(`, d), a) satisfies
(1). Then, by definition (L(`, d), R(`, d)) satisfy (1). Finally, set I(c) = jc and
I(d+ 1) = max{jd+1, L(I(d), d) + 1}.

We define the function f as follows. For λ < I(c), set f(λ) = x where x is an
arbitrary fixed element in Sλ. Then, for I(d) ≤ λ < I(d+ 1), where d ≥ c, define:

f(λ) =

{
R(I(d), d) if λ = L(I(d), d)

a(λ) otherwise.

Recall that a(λ) is the smallest value a such that i ∈ [k], Qi(λ, a) < 1/λd.
We now prove that for each i, Qi(λ, f(λ)) is upper-bounded by a negligible

function. Let i ∈ [k]. By construction, for any d ∈ N and I(d) ≤ λ < I(d + 1),
we have Qi(λ, f(λ)) < 1/λd. Indeed, if λ = L(I(d), d) then (λ, f(λ)) satisfies
(1). On the other hand, if λ 6= L(I(d), d) then since λ ≥ I(d) ≥ jd we have
Qi(λ, f(λ)) = Qi(λ, a(λ)) < 1/λd.

As a result, for all λ ≥ I(d) we have Qi(λ, f(λ)) < 1/λd. The reason is that
for λ ≥ I(d) there is some α ≥ d so that I(α) ≤ λ < I(α+ 1). By the observation
above, we have Qi(λ, f(λ)) < 1/λα ≤ 1/λd. Consequently, Qi(λ, f(λ)) is upper-
bounded by a negligible function.

On the other hand, for all d ∈ N, we have P (λ, f(λ)) ≥ 1/λc where λ =
L(I(d), d). This means that there are infinitely many positive integers λ such
that P (λ, f(λ)) ≥ 1/λc. Hence, P (λ, f(λ)) 6∈ UBnegl by Lemma 1.

Finally, we prove that E (P (λ,Xλ)) is upper-bounded by a negligible function.
Let c ∈ N and c′ = c+ k + 1. From Lemma 6 we know that there exists d ≥ c′
such that there are finitely many pairs (λ, a) satisfying (1). Therefore, there is
an integer N , such that for all pairs (λ, a), where λ ≥ N , one of the conditions in
(1) does not hold. Now, let m = max{2, j2d−1, N}. We claim that for all λ ≥ m,
E (P (λ,Xλ)) < 1/λc. This would imply that E (P (λ,Xλ)) ∈ UBnegl.

12

Take any λ ≥ m. Let us compute a lower-bound on Pr[Xλ ∈ H : Xλ←$Dλ]
where

H = {a ∈ Sλ : ∀i ∈ [k], Qi(λ, a) < 1/λd}.

We proceed similarly as before. Let i ∈ [k]. Then, we have E (Qi(λ,Xλ)) < 1/λ2d

since m ≥ j2d−1. Denote Hi = {a ∈ Sλ : Qi(λ, a) < 1/λd}. Thus,

Pr[Xλ ∈ Sλ\Hi]

λd
≤
∑
a∈Sλ\Hi Pr[Xλ = a]

λd
≤
∑
a∈Sλ

Pr[Xλ = a] ·Qi(λ, a) <
1

λ2d
.

Therefore, Pr[Xλ ∈ Sλ\Hi] < 1/λd. Hence, by the union bound we get:

Pr[∃i ∈ [k], Xλ ∈ Sλ\Hi] ≤ k/λd

and thus Pr[Xλ ∈ H] ≥ 1− k/λd.
Note that each pair (λ, a), where a ∈ H, satisfies the first two conditions in (1).

Since λ ≥ m ≥ N , we get that P (λ, a) < 1/λc
′
. Therefore, we can upper-bound

E (P (λ,Xλ)) as follows:

E (P (λ,Xλ)) ≤
∑
a∈Sλ

Pr[Xλ = a] · P (λ, a)

≤
∑
a∈H

Pr[Xλ = a] · P (λ, a) +
∑
a6∈H

Pr[Xλ = a] · P (λ, a)

<
∑
a∈H

Pr[Xλ = a] · 1

λc′
+
∑
a6∈H

Pr[Xλ = a]

<
Pr[Xλ ∈ H]

λc′
+ Pr[Xλ ∈ S\H]

< 1/λc
′
+ k/λd

< (k + 1)/λc+k+1 < 1/λc.

(2)

Thus, E (P (λ,Xλ)) ∈ UBnegl.

4 Setup Assumptions

In this section we formalize, generically, the notion of a setup assumption. Such
assumptions are ubiquitous in modern cryptography and include, for instance,
popular settings such as the Ideal Cipher model [23], the Common Random
String (CRS) [4], the Random Oracle model (ROM) [3]. They allow one to bypass
impossibility results or simply yield more efficient schemes.

Before we present our definition, we motivate some of the choices we make.
Naively, we could simply attempt to construct a Turing machine that samples a
function X → Y according to some arbitrary distribution, which would encode
the expected behaviour of the oracle. The astute reader is soon to notice that
several questions arise. How do we pick the domain of the oracle? For example,

13

in the random oracle model the query domain is {0, 1}∗ which is infinite. What
is then our sample space?

We cannot sample eagerly such a function. While one implementation might
simply query a small number of polynomial length values in the security parameter
λ, we must recall that reductions should also work for unbounded adversaries.
Indeed, an unbounded adversary might query the oracle infinitely many times,
which raises a conundrum.

4.1 Formal Model for Setup Assumptions

Our formalization is heavily influenced by having to solve the Random Oracle
case outlined above. We proceed as follows. We model the use of a random oracle
(viewed as an infinite random tape) via a sequence of finite setups. Each setup
being parameterized by some parameter ` ∈ N – think about this parameter as
a restriction on the size of the valid inputs to the random oracle. As ` tends to
infinity, the setup becomes a better approximation of a random oracle.

For this approach to be meaningful we require a few additional ingredients.
We define X` to be the first ` elements of X. Clearly X` ⊆ X`+1 and X` is an
increasingly better approximation of X, as ` grows. Thus, we seek that when
` goes to infinity, X` comes close to X. Here we enforce a total order on X.
Since we only consider countable sets X, we model this total order by fixing an
arbitrary injection φ between X and N; the total order on X is then induced by
transporting on X the total order on N.

We may now define a setup assumption as a tuple (X,Y, φ,M) where X and
Y are the domain and range for all possible setup instances. The setup generator
M takes as input the usual security parameter λ and a parameter ` as above.
For each λ and `, the setup generator defines some distribution on the set of
functions with domain X` and range Y .

More importantly, we demand that the distributions defined byM are consis-
tent across the choices of `. That is, a function sampled from Y X`+1 according to
M`+1,λ, when restricted to X` has the same distribution as a function sampled
from M`,λ. The intuition behind this restriction is that the functions output by
the setup should ”behave” the same on all entries on which they are defined,
independent of the size of the domain specified by `.

This requirement is important since, for instance, we do not wish that altering
the size of the query space to X`+1 affects the behavior of participants that only
queries the setup with entries from X`. As it will become clear a bit later in
the paper (Definition 5), this property is necessary to meaningfully define the
adversary advantage when ` goes to infinity.

The following definition formalizes the discussion above.

Definition 4 (Setup Assumptions). Define setup assumption as a tuple
M = (X,Y, φ,M) where X,Y are non-empty countable sets, φ is an injective
map from X to N and M(·,·) is a probabilistic algorithm with the following
properties. Namely, given a “length” parameter ` ∈ N and a security parameter

14

λ ∈ N, it outputs a function O : X` → Y according to some distribution over
Y X` , where

X` := {x ∈ X : φ(x) < `}.

Note that this distribution is still discrete. We further call the setup assumption
consistent, if for all ` ∈ N and a1, . . . , a|X`| ∈ Y we have:

Pr

|X`|∧
i=1

f(x`,i) = ai : f ←$M`,λ

 = Pr

|X`|∧
i=1

g(x`,i) = ai : g←$M`+1,λ

where X` = {x`,1, . . . , x`,|X`|}.

Henceforth, we shall simply refer to consistent sampling setup assumptions
simply as setup assumption. When working with primitives in the standard
model, we will abuse the notation and write M = ∅.

4.2 Defining Primitives with Setup Assumptions

We build on our notion of a setup assumption defined in the previous section to
formalize models for primitives with setup assumptions.

Before we proceed, we introduce the following notation. Suppose the sampler
M(·,·) of M samples a function O : X → Y where X and Y are countable and

let φ : X → N be a fixed injective map. Then, for an algorithm A(·) and function

t : N→ N, we denote A(·)
t to be the algorithm which behaves identically as A(·)

but if a query x ∈ X is made to the setup assumption, where φ(x) > t(λ), then
it automatically aborts. Recall φ is our total ordering function. We call t the
threshold function. When t is constant, i.e. t(λ) = ` for all λ, then we slightly

abuse notation and simply write A(·)
` .

We now present the notion of a primitive equipped with a setup assumption.
The definition below, refines Definition 1 in two different ways. It introduces as
part of the execution model the setup generator and it introduces an explicit
correctness notion for the primitive as an additional separate algorithm.

Definition 5. Primitive P with a setup assumption M is a tuple
〈
P,M,CP , RP , σ

〉
where:

• P is a pair of sets (A,B),
• M = (X,Y, φ,M) is the setup assumption defining the oracle O,

• C
(·,·)
P is a correctness algorithm,

• R
(·,·)
P is a PPT security algorithm (related to λ),

• σ : N→ [0, 1] is a security threshold.

We say that f (·) : A → B is an implementation of P if for all (unbounded)
adversaries A(·):

lim
k→+∞

lim
`→+∞

Pr
[
1← C

fk
O,AO`

P

]
15

is negligible, where probability is over random coins in the environment and
especially O←$Mmax{k,`},λ.

For an implementation f (·) and any algorithm A(·), we define the advantage
of A(·) in breaking f (·) as

AdvPf,A(λ) := lim
k→+∞

lim
`→+∞

Pr
[
1←$R

fOk ,A
O
`

P

]
− σ(λ)

where the probability is defined over O←$M(max{k, `}, λ) and the random coins
in the system.

We say that A P−breaks f (·) if AdvPO←M,f,A(λ) 6∈ UBnegl. Furthermore, f (·)

is called a secure implementation of P if there are no PPT algorithms A(·) that
P−break f (·).

A few remarks are in order. First, we argue that the notion of correctness and
the adversary advantage are well-defined, in that the limits are guaranteed to exist.
This property is established by the following lemma. Its proof (in Appendix A)
crucially relies on the consistency property of the setup assumption. Broadly
speaking, the property guarantees that the behavior of an adversary (in terms
of winning the security game) is monotonic with respect to `. That is, if an
adversary wins the game when its query space is X` (with some probability),
then the adversary will win (with at least the same probability) the instance
of the game where the query space is X`+1. This property then gives rise to a
monotonically non-decreasing sequence upper-bounded by 1, which implies that
the desired limit exists.

Lemma 7. Let f (·), A(·) and R(·,·) be any function, unbounded adversary and
PPT machine respectively. Then, for M = (X,Y, φ,M), the following limit
exists:

lim
k→+∞

lim
`→+∞

F (k, `),

where
F (k, `) := Pr

[
1←$Rfk

O,AO`
]

and the probability is over O←$Mmax{k,`},λ and the random coins in the envi-
ronment.

The proof of the lemma is presented in Appendix A.5.
Second, the limits in the definition of a correct implementation can be swapped

or merged into a single parameter, as hinted at in the introduction, by Lemma
4. Nonetheless, we prefer to keep the present formulation since it is particularly
helpful for proving our main theorem (Theorem 3).

Finally, our definition no longer describes implementations of a primitive as
functions from some abstract implementation set. Instead, we identify correct
implementations as those for which no efficient adversary can win a correctness
game CP

9. The reason for this departure is that we need to formalize what is the

9One side effect of this change is that Definition 5 does not cover a number of
potential oddities which can be represented using previous frameworks [16,22], e.g. a

16

extension of a notion P to a setup assumption. Indeed, above we have essentially
shown how to define a game with an abstract setup assumption. Lifting a notion
from the standard model to some particular setup comes down to simply replacing
the setup assumption M (which is ∅ for the standard model), appropriately.

4.3 Fully Black-Box Non-Programmable Reductions

We now introduce a notion of a fully black-box non-programmable reduction
between primitives with setup assumptions.

Definition 6. Let P and Q be primitives with the setup assumption M . We say
that there is a fully black-box non-programmable reduction from P to Q in M

(written as P
M
↪−→ Q) if there exist PPT algorithms G(·), S(·) such that:

• for every implementation f (·) of Q, Gf
(·)

is an implementation of P ,
• for every implementation f (·) of Q and every (unbounded) algorithm A(·), if

A(·) P -breaks Gf
(·)

then SA
(·)
Q-breaks f (·).

In the literature, S has access to an external oracle O instead of A. We call
this reduction non-programmable since we let A have access to O via S, meaning
that if the adversary wants to query O, it sends the value to S, S passes it to O
and returns to A what it got from O. Apart from that, S does not query O at
all. From the perspective of A, this is clearly equivalent to A having access to O,
as illustrated in the definition above. There is another type of reduction called
programmable [13], where S can simulate an oracle on its own. However, we omit
the details in this paper.

4.4 Setup Assumption Extensions

In order to describe our main result, we need to define what it means to “naturally
extend“ the primitive to a setup assumption M . Hence, we define a notion of a
M−extension of a primitive.

Definition 7. Let P =
〈
P1,∅, CP , RP , σ

〉
be a primitive in the standard model

and M be a setup assumption. Then, a M−extension P (M) of P is the tuple
P (M) = 〈P1,M,CP , RP , σ

〉
.

We can now formalize our main result. Namely, if there exists a fully black-
box reduction from P to Q in the standard model, then there also exists a fully
black-box reduction from P (M) to Q(M), where M is any setup assumption.

Theorem 2 (Ideal Model Correspondence). Let P and Q be primitives in
the standard model and M be any ideal model. Then, assuming a fully black-box
reduction in the standard model implies a fully black-box reduction in the ideal
model.

P ↪→ Q =⇒ P (M)
M
↪−→ Q(M).

We provide the proof in Section 5.

primitive where the set of valid instances is defined as some undecidable set of Turing
machines. However, these cases are irrelevant for our purpose.

17

Remark. Let (G,S) be a reduction from P to Q. Intuitively, (G,S) should
also be a correct reduction from P (M) to Q(M). However, in the M model,
the adversary as well as the implementation have access to some ”shared state”
which is the external oracle. This, however, is not the case in the standard model.
Indeed, this additional advice might help an adversary break P (M) but not
Q(M). In Theorem 2 we show that if (G,S) is a fully black-box reduction, then it
can be extended to a setup assumption representing some ideal model. However,
the open question remains whether the same property holds when (G,S) is not
fully black-box anymore.

A P − breaks Gf Sf,A Q− breaks f

BO P − breaks Gf
O SfO,BO Q− breaks fO

R

R

Diagram 1: We prove a correspondence for fully black-box reductions in the
standard model to ideal models.

4.5 Common Instantiations of Setup Assumptions

In this section we present common ideal models in the framework we introduced.
We also prove they satisfy the consistent sampling property.

The Random Oracle Model. This model [3] is one of the cornerstones of
modern cryptography. A random oracle represents ideal hash functions. When
a party queries with a bitstring {0, 1}∗, the random oracle, given a security
parameter λ, samples an element from {0, 1}λ uniformly at random.

Formally, we define a random oracle setup assumption MROM as the tuple

MROM =
(
{0, 1}∗, {0, 1}∗, φ,MROM

`,λ

)
Note we can well-order all bit-strings, for instance as follows: 0, 1, 00, 01, ·.

Here, φ simply outputs the index of the ordering above. Now define Y to be a set
of arbitrary bit-strings with cardinality equal to some polynomial of λ. That is
Yλ = {0, 1}`out(λ), for some length function `out – see [8]. Then MROM

`,λ samples

from Y X`λ which has cardinality 2`out(λ)`. Thus the sampler MROM
`,λ iterates over

all ` inputs at setup, and for each one picks independently uniformly at random
with probability 1

2`out(λ)
an element from Y .

Proposition 1. The above construction MROM is a consistent setup assumption.

Proof. We can easily see that on each instantiation of the setup the sampler picks
each element independently at random. Thus, the sampler does not depend on
elements ordered after i to pick the value of i.

18

The Ideal Cipher Model. In the Ideal Cipher Model [23] the participants
may access an ideal cipher enc : {0, 1}k × {0, 1}n → {0, 1}n, s.t. enc are random
permutations {0, 1}n → {0, 1}n that have been independently and uniformly
drawn (with replacement for each key). Recall that the Ideal Cipher model is
equivalent to the Random Oracle model [11] (original [12]).

We can define the setup assumption for an (k, n)-ideal cipher similarly to
ROM above.

MIC =
(
{0, 1}∗ × {0, 1}∗, {0, 1}∗, φ : {0, 1}∗ × {0, 1}∗ → N,MIC

`,λ

)
.

For simplicity we just set k above equal to λ. Note that here we use the normal
ordering as described prior of the bitstrings to the naturals φ. We order strings
similarly. This implies a 2n period on the domain set: each of the 2λ keys is
paired with 2n input values. In particular, note that the sampler MIC

`,λ has to
pick a permutation enc(key) : {0, 1}n → {0, 1}n independently for each key. Note
that n might depend on the security parameter λ.

Proposition 2. The above setup assumption MIC satisfies the consistent sam-
pling property.

Proof. Assume the normal ordering as discussed above. First for each new key (of
the 2k) we sample a new random permutation. Thus, we need only to show that
while sampling a permutation for 0 ≤ ` < 2n the consistent sampling property
holds. We can generalize for each of the keyed permutations. Without loss of
generality, if ` < 2n − 1, observe that the sampling process of the `’th query
element of X`+1 does not depend on the `+ 1 value (it depends only on some of
the elements of X`−1 (if ` > 0) – as we sample without replacement.

The Common Reference String model (CRS) In the Common Reference
String model, a generalization of the Common Random String [4] the oracle
provides access to a common value that is sampled from some arbitrary desired
distribution specific to the protocol. Namely, following the definition of [7] on
setup the oracle samples d←$Dλ and sends it to the querying party. For each
subsequent query the oracle responds with d.

Formally, for a CRS model with distribution Dλ over a countable set D, we
define the following setup assumption MCRS

MCRS =
(
{0}, D, φ : {0} → N,MCRS

`,λ

)
We simply define φ(0) = 0 and define the sampler MCRS

`,λ to sample d from Dλ
and return O : 0 7→ d.

Proposition 3. The above setup assumption MCRS satisfies the consistent sam-
pling property.

Proof. It follows immediately from the observation that the sampling process is
independent of the parameter `.

19

5 Proof of Theorem 2

We prove our main claim via Theorems 3 and 4. Namely, we show that if (G,S)
is a fully black-box reduction from primitives P to Q in the standard model
then (i) G is a generic construction in the setup assumption M and (ii) for
every implementation f (·) of Q(M) and every (unbounded) algorithm A(·), if

A(·) P (M)-breaks Gf
(·)

then SA
(·)
Q(M)-breaks f (·).

5.1 Generic Construction Theorem

We first prove a vital lemma about satisfying correctness with functions with
access to a bounded oracle random tape.

Lemma 8. Let P be a primitive in the setup assumption M = (X,Y, φ,M), f (·)

be a function and OA be the set of all unbounded adversaries with oracle access.
Then, f (·) is an implementation of P if and only if CorrP (f) is negligible, where:

CorrP (f)(λ) = sup
A∈OA

lim
k→+∞

lim
`→+∞

Pr
[
1←$C

fOk (λ),AO` (λ)
P

]
and O←$Mmax{k,`},λ.

Proof. Clearly, if CorrP (f)(λ) is negligible then for any adversary A we have

lim
k→+∞

lim
`→+∞

Pr
[
1←$C

fOk (λ),AO` (λ)
P

]
≤ CorrP (f)(λ).

Thus, f (·) is an implementation of P .
Now, suppose that f (·) is an implementation of P . Note that by definition of

supremum, we can find a sequence of adversaries A1,A2, . . . indexed by λ such
that for all λ:

CorrP (f)(λ) ≤ lim
k→+∞

lim
`→+∞

Pr

[
1←$C

fOk (λ),AOλ,`(λ)
P

]
+

1

2λ
.

Hence, let us pick an adversary A which given λ runs Aλ. Since f (·) is an

implementation of P , we know that limk→+∞ lim`→+∞ Pr
[
1←$C

fOk (λ),AO` (λ)
P

]
is negligible and therefore so is CorrP (f)(λ).

For convenience, we continue using OA to denote the set of all unbounded
adversaries with oracle access henceforth.

Theorem 3. Let (G,S) be a fully black-box reduction from P to Q in the stan-
dard model and M = (X,Y, φ,M) be a setup assumption. Then, for every

implementation f (·) of Q(M), Gf
(·)

is an implementation of P (M).

Proof. Let us first fix λ ∈ N and f (·) be an implementation of Q(M). We first
prove that there exists a function t : N→ N such that ft is also an implementation

of Q(M) and if Gf
(·)
t is an implementation of P (M) then so is Gf

(·)
.

20

Lemma 9. For any function f (·), there exists t : N → N which satisfies the
following properties:

– f (·) is an implementation of Q(M) if and only if f
(·)
t is an implementation

of Q(M).

– Gf
(·)

is an implementation of P (M) if and only if Gf
(·)
t is an implementation

of P (M).

Proof. We prove the statement by construction. Let f (·) be any function and
λ ∈ N. Then, by Lemma 3 we have

CorrQ(M)(f)(λ) = sup
A∈OA

lim
k→+∞

lim
`→+∞

Pr
[
1←$C

fOk (λ),AO` (λ)
P

]
= lim
k→+∞

sup
A∈OA

lim
`→+∞

Pr
[
1←$C

fOk (λ),AO` (λ)
P

]
= lim
k→+∞

ck

(3)

where
ck = sup

A∈OA
lim

`→+∞
Pr
[
1←$C

fOk (λ),AO` (λ)
P

]
.

Therefore, there exists an integer N1 such that for all n ≥ N1

|cn − CorrQ(M)(f)(λ)| < 1

2λ
.

Note that

cn = sup
A∈OA

lim
`→+∞

Pr
[
1←$C

fOn (λ),AO` (λ)
P

]
= lim
k→+∞

sup
A∈OA

lim
`→+∞

Pr

[
1←$C

fOmin{n,k}(λ),A
O
` (λ)

P

]
= sup
A∈OA

lim
k→+∞

lim
`→+∞

Pr

[
1←$C

fOmin{n,k}(λ),A
O
` (λ)

P

]
= CorrQ(M)(fn)(λ).

(4)

Similarly, one can find N2 ∈ N such that for all n ≥ N2:

|CorrP (M)

(
Gfn

)
(λ)− CorrP (M)

(
Gf
)

(λ)| < 1

2λ
.

Let us set t(λ) := max{N1, N2}. Then, the statement holds by construction and
Lemma 8.

Next, we select t as in the lemma above and define the “relevant tape” as a
sequence of sets T1, T2, . . . defined as:

Tλ = Xt(λ) = {x ∈ X : φλ(x) < t(λ)}.

For simplicity, we index Tλ as follows Tλ = {xλ,1, . . . , xλ,|Tλ|}. Define:

Sλ = Y |Tλ| and S =
⋃
λ∈N

Sλ.

21

Then, we set the distribution Dλ : Sλ → [0, 1] as

Dλ(y1, . . . , y|Tλ|) := Pr [∀i ∈ [|Tλ|],O(xλ,i) = yi : O←$M (t(λ), λ)] .

Since Tλ is finite, the distribution is discrete. Moreover, by consistency of setup
assumptions we get that for all ` ≥ t(λ):

Dλ(y1, . . . , y|Tλ|) = Pr [∀i ∈ [|Tλ|],O(xλ,i) = yi : O←$M (`, λ)] .

Now, we define

Q(λ, ~y) =

supA∈OA lim`→+∞ Pr

[
1←$C

fOt (λ),AO` (λ)
Q

∣∣∣∣∣∀i,O(xλ,i) = yi

]
if ~y ∈ Sλ

0 otherwise

and similarly

P (λ, ~y) =

supA∈OA lim`→+∞ Pr

[
1←$C

Gf
O
t (λ),AO` (λ)

P

∣∣∣∣∣∀i,O(xλ,i) = yi

]
if ~y ∈ Sλ

0 otherwise

.

Here, the probabilities are defined over O←$Mmax{`,t(λ)},λ and the random
coins in the system. One argues similarly as in Lemma 7 that functions P and Q
are well-defined.

We claim that for any g : N→ S, we have

Q(λ, g(λ)) ∈ UBnegl =⇒ P (λ, g(λ)) ∈ UBnegl.

Indeed, suppose that Q(λ, g(λ)) ∈ UBnegl. By construction, we have 0 ≤
Q(λ, g(λ)) ≤ 1 for all λ ∈ N and thus this function is negligible.

We define the function fgt with hardwired oracle queries g as follows. Given a

security parameter λ, it behaves identically as in f
(·)
t but when f “queries an

oracle” on input xλ,i ∈ Tλ, it gets yi where g(λ) = (y1, . . . , y|Tλ|) ∈ Sλ. On the
other hand, for λ so that g(λ) 6∈ Sλ, we set fgt to simply abort.

By construction, CorrQ(fgt) = Q(λ, g(λ)) is negligible and therefore, fgt is an
implementation of Q. Since G is a generic construction in the standard model,
we have that Gf

g
t is an implementation of P , i.e. CorrQ(Gf

g
t) is negligible. As a

consequence, P (λ, g(λ)) is negligible and in particular P (λ, g(λ)) ∈ UBnegl.
We are now ready to apply Theorem 1 for k = 1. Note that for Zλ←$Dλ we

have

E(Q(λ,Zλ))

=
∑
~y∈Sλ

Q(λ, ~y) · Pr[Zλ = ~y]

=
∑
~y∈Sλ

sup
A∈OA

lim
`→+∞

Pr

[
1←$C

fOt (λ),AO` (λ)
Q

∣∣∣∣∣∀i,O(xλ,i) = yi

]
· Pr[Zλ = ~y]

(5)

22

which, by Lemma 2, is equal to

sup
(A~y)∈OA|Sλ|

∑
~y∈Sλ

lim
`→+∞

Pr

[
1←$C

fOt (λ),AO~y,`(λ)
Q

∣∣∣∣∣∀i,O(xλ,i) = yi

]
· Pr[Zλ = ~y].

We claim that

E(Q(λ, Zλ)) = sup
A∈OA

lim
`→+∞

Pr
[
1←$C

fOt (λ),AO` (λ)
Q

]
.

First, take any unbounded adversary A ∈ OA. Then, by Lemma 5:

lim
`→+∞

Pr
[
1←$C

fOt (λ),AO` (λ)
Q

]
(6)

= lim
`→+∞

∑
~y∈Sλ

Pr

[
1←$C

fOt (λ),AO` (λ)
Q

∣∣∣∣∣∀i,O(xλ,i) = yi

]
· Pr[Zλ = ~y] (7)

=
∑
~y∈Sλ

lim
`→+∞

Pr

[
1←$C

fOt (λ),AO` (λ)
Q

∣∣∣∣∣∀i,O(xλ,i) = yi

]
· Pr[Zλ = ~y] (8)

≤
∑
~y∈Sλ

sup
A∈OA

lim
`→+∞

Pr

[
1←$C

fOt (λ),AO` (λ)
Q

∣∣∣∣∣∀i,O(xλ,i) = yi

]
· Pr[Zλ = ~y]

(9)

≤ E(Q(λ, Zλ)). (10)

Then, by definition of supremum we have

E(Q(λ, Zλ)) ≥ sup
A∈OA

lim
`→+∞

Pr
[
1←$C

fOt (λ),AO` (λ)
Q

]
.

On the other hand, let us select any sequence of adversaries (A~y)~y∈Sλ . We
construct an adversary A which first calls the external oracle O on all inputs in
Tλ and given ~y = (y1, . . . , y|Tλ|), where O(xλ,i) = yi, it runs A~y. Then, we have

∑
~y∈Sλ

lim
`→+∞

Pr

[
1←$C

fOt (λ),AO~y,`(λ)
Q

∣∣∣∣∣∀i,O(xλ,i) = yi

]
· Pr[Zλ = ~y] (11)

= lim
`→+∞

∑
~y∈Sλ

Pr

[
1←$C

fOt (λ),AO~y,`(λ)
Q

∣∣∣∣∣∀i,O(xλ,i) = yi

]
· Pr[Zλ = ~y]

(12)

= lim
`→+∞

Pr
[
1←$C

fOt (λ),AO` (λ)
Q

]
. (13)

Consequently, E(Q(λ, Zλ)) ≤ supA∈OA lim`→+∞ Pr
[
1←$C

fOt (λ),AO(λ)
Q

]
and

the claim holds. In particular,

E(Q(λ, Zλ)) = CorrQ(M)(ft)(λ) ∈ UBnegl.

23

Thus, by Theorem 1, E(P (λ, Zλ)) ∈ UBnegl. Note that E(P (λ, Zλ)) ∈ [0, 1] for all
λ, and consequently this function is also negligible. By arguing similarly as before,
we get that E(P (λ, Zλ)) = CorrQ(M)(G

ft)(λ) and thus, Gf is an implementation
of P (M) by Lemmas 8 and 9.

5.2 Reduction Theorem

Theorem 4. Let (G,S) be a fully black-box reduction from P to Q in the standard
model and M be an external oracle. Then, for every implementation f (·) of Q(M)

and every adversary A(·), if A(·) P (M)-breaks Gf
(·)

then SA
(·)
Q(M)-breaks f (·).

Proof. We prove the statement by contrapositive. First, we will need an extension
of Lemma 9.

Lemma 10. For any implementation f (·) of Q(M) and adversary A(·), there
exists t : N→ N such that for all λ ∈ N:

– f
(·)
t is an implementation of Q(M).

– |AdvP(M)

Gf ,A(λ)− Adv
P(M)

Gft ,At(λ)| < 1
2λ
.

– |AdvQ(M)

f,SA
(λ)− Adv

Q(M)

ft,SAt
(λ)| < 1

2λ
.

Proof. We prove the statement by construction. Let f (·) and A(·) be any imple-
mentation of Q(M) and adversary respectively, and λ ∈ N. First, the proof of
Lemma 9 says that there exists N0 ∈ N such that for all n ≥ N0:

|CorrQ(M) (fn) (λ)− CorrQ(M) (f) (λ)| < 1

2λ
.

On the other hand, by definition of the advantage and Lemma 4

Adv
Q(M)

f,SA
(λ) = lim

k→+∞
Pr

[
1←$R

fOk ,S
AOk

Q

]
− σQ(λ)

= lim
k→+∞

ck
(14)

where σQ(λ) is the security threshold for Q and

ck = Pr

[
1←$R

fOk ,S
AOk

Q

]
− σQ(λ) = Adv

Q(M)

fk,S
Ak (λ)

for k ∈ N. This means there exists N1 ∈ N such that for all n ≥ N1:

|cn − Adv
Q(M)

f,SA
(λ)| < 1/2λ.

One can similarly compute such N2 for Gf . Let us set t(λ) = max{N0, N1, N2}.
Then, the statement holds by construction.

24

Fix an implementation f (·) ofQ(M) and adversaryA(·) such that Adv
Q(M)

f,SA
(λ) ∈

UBnegl is bounded by a negligible function. Let us select t as in the lemma above.

Then, f
(·)
t is an implementation of Q(M) and Adv

Q(M)

ft,SAt
(λ) ∈ UBnegl as well.

Define the “relevant tape” as a sequence of sets T1, T2, . . . as:

Tλ = Xt(λ) = {x ∈ Xλ : φλ(x) ≤ t(λ)}.

For simplicity, we write Tλ = {xλ,1, . . . , xλ,|Tλ|}. Denote

Sλ = Y |Tλ|λ and S =
⋃
λ∈N

Sλ.

Then, we define the distribution Dλ : Sλ → [0, 1] as

Dλ(y1, . . . , y|Tλ|) := Pr[∀i ∈ [|Tλ|],O(xλ,i) = yi : O←$Mt(λ),λ].

Since |Tλ| is finite, the distribution is discrete. As before, consistency of a setup
assumption implies that for all ` ≥ t(λ):

Dλ(y1, . . . , y|Tλ|) = Pr[∀i ∈ [|Tλ|],O(xλ,i) = yi : O←$M`,λ].

Next, we introduce the following functions:

Q1(λ, ~y) =

Pr

[
1←$R

fOt ,S
AOt

Q

∣∣∣∣∣∀i ∈ [|Tλ|],O(xλ,i) = yi

]
− σQ(λ) if ~y ∈ Sλ

0 otherwise

,

Q2(λ, ~y) =

supB∈OA lim`→+∞ Pr

[
1←$C

fOt (λ),BO` (λ)
Q

∣∣∣∣∣∀i,O(xλ,i) = yi

]
if ~y ∈ Sλ

0 otherwise

and similarly

P (λ, ~y) =

Pr

[
1←$R

Gf
O
t ,AOt

P

∣∣∣∣∣∀i ∈ [|Tλ|],O(xλ,i) = yi

]
− σP (λ) if ~y ∈ Sλ

0 otherwise

.

Clearly, for any λ ∈ N and ~y ∈ S we have

−1 ≤ Q1(λ, ~y), Q2(λ, ~y), P (λ, ~y) ≤ 1.

Let g : N→ S. In order to apply Theorem 1 we need to prove that

Qi(λ, g(λ)) ∈ UBnegl for i = 1, 2 =⇒ P (λ, g(λ)) ∈ UBnegl.

Similarly as before, we define the function fgt with hardwired oracle queries g
in the following way. Given a security parameter λ, it behaves identically as

25

in f
(·)
t but when f “queries an oracle” on input xλ,i ∈ Tλ, it gets yi where

g(λ) = (y1, . . . , y|Tλ|) ∈ Sλ. However, for λ so that g(λ) 6∈ Sλ, we set fgt to simply
abort. Similarly, we define Agt . It is easy to see that

Q1(λ, g(λ)) = Adv
Q(M)

fgt ,S
Agt

(λ).

Suppose Qi(λ, g(λ)) ∈ UBnegl for i = 1, 2. This implies that (i) Adv
Q(M)

fgt ,S
Agt

(λ)

is upper-bounded by a negligible function and (ii) fgt is an implementation of Q
in the standard model because

Q2(λ, g(λ)) = CorrQ(M)(f
g
t)(λ) ∈ UBnegl

and CorrQ(M)(f
g
t)(λ) ∈ [0, 1] for all λ. Since (G,S) is a fully black-box reduction

from P to Q in the standard model, we have that Adv
Q(M)

Gf
g
t ,Agt

(λ) is upper-bounded

by a negligible function as well – this is indeed equal to P (λ, g(λ)).
We can now apply Theorem 1 for k = 2 with functions defined above. We

observe that by the Law of Total Probability, E(Q1(λ, Zλ)) is equal to

∑
~y∈Sλ

(
Pr

[
1←$R

fOt ,S
AOt

Q

∣∣∣∣∣∀i ∈ [|Tλ|],O(xλ,i) = yi

]
− σQ(λ)

)
· Pr[Zλ = ~y].

Hence, we get

E(Q1(λ, Zλ)) = Pr

[
1←$R

fOt ,S
AOt

Q

]
− σQ(λ) = Adv

Q(M)

ft,SAt
(λ).

Since Adv
Q(M)

ft,SAt
(λ) is upper-bounded by a negligible function, then so is

E(Q1(λ, Zλ)). Similarly as in the proof of Theorem 3, one argues that

E(Q2(λ, Zλ)) = CorrQ(M)(ft)(λ).

Since f
(·)
t is an implementation of Q(M), this function is negligible. Hence, by The-

orem 1, we have E(P (λ, Zλ)) ∈ UBnegl which directly implies that Adv
P(M)

Gft ,At(λ)

is upper-bounded by a negligible function. Finally, Adv
P(M)

Gf ,A(λ) ∈ UBnegl by
Lemma 10 and thus the statement holds.

Acknowledgments: We would like to thank all the anonymous reviewers for
their helpful suggestions which may also guide future work. Work was conducted
while Eftychios Theodorakis was at DFINITY U.S. Research. Ngoc Khanh Nguyen
was supported by the EU H2020 ERC Project 101002845 PLAZA.

References

1. Paul Baecher, Christina Brzuska, and Marc Fischlin. Notions of black-box reductions,
revisited. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I,
volume 8269 of LNCS, pages 296–315. Springer, Heidelberg, December 2013.

26

2. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM
Press, November 1993.

3. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution.
In Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 232–249.
Springer, Heidelberg, August 1994.

4. Manuel Blum, Paul Feldman, and Silvio Micali. Proving security against chosen
cyphertext attacks. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS,
pages 256–268. Springer, Heidelberg, August 1990.

5. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,
and Mark Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and
Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 41–69.
Springer, Heidelberg, December 2011.

6. Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent
to factoring. In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS,
pages 59–71. Springer, Heidelberg, May / June 1998.

7. Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Heidelberg,
August 2001.

8. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. Cryptology ePrint Archive, Report 1998/011, 1998. http://eprint.iacr.
org/1998/011.

9. David Chaum and Torben P. Pedersen. Wallet databases with observers. In
Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer,
Heidelberg, August 1993.

10. Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Black-box
construction of a non-malleable encryption scheme from any semantically secure
one. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 427–444.
Springer, Heidelberg, March 2008.

11. Jean-Sébastien Coron, Thomas Holenstein, Robin Künzler, Jacques Patarin, Yannick
Seurin, and Stefano Tessaro. How to build an ideal cipher: The indifferentiability
of the Feistel construction. Journal of Cryptology, 29(1):61–114, January 2016.

12. Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The random ora-
cle model and the ideal cipher model are equivalent. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 1–20. Springer, Heidelberg, August
2008.

13. Marc Fischlin, Anja Lehmann, Thomas Ristenpart, Thomas Shrimpton, Mar-
tijn Stam, and Stefano Tessaro. Random oracles with(out) programmability. In
Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 303–320.
Springer, Heidelberg, December 2010.

14. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs.
In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 39–56.
Springer, Heidelberg, August 2008.

15. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984.

16. Dennis Hofheinz and Ngoc Khanh Nguyen. On tightly secure primitives in the
multi-instance setting. LNCS, pages 581–611. Springer, Heidelberg, 2019.

17. Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do
secure hash functions need secret coins? In Matthew Franklin, editor, CRYPTO 2004,
volume 3152 of LNCS, pages 92–105. Springer, Heidelberg, August 2004.

27

http://eprint.iacr.org/1998/011
http://eprint.iacr.org/1998/011

18. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In Proceedings of the twenty-first annual ACM symposium
on Theory of computing, pages 44–61, 1989.

19. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In 21st ACM STOC, pages 44–61. ACM Press, May 1989.

20. Jonathan Katz. Universally composable multi-party computation using tamper-
proof hardware. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS,
pages 115–128. Springer, Heidelberg, May 2007.

21. Michael O Rabin. Transaction protection by beacons. Journal of Computer and
System Sciences, 27(2):256–267, 1983.

22. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between
cryptographic primitives. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS,
pages 1–20. Springer, Heidelberg, February 2004.

23. Claude E. Shannon. Communication theory of secrecy systems. Bell Systems
Technical Journal, 28(4):656–715, 1949.

24. Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions? In Kaisa Nyberg, editor, EUROCRYPT’98,
volume 1403 of LNCS, pages 334–345. Springer, Heidelberg, May / June 1998.

A Supporting Proofs

A.1 Proof of Lemma 2

Firstly, we observe that for all (as)s∈S ∈ A|S| we have:∑
s∈S

fs(as) ≤
∑
s∈S

sup
a∈A

fs(a)

and by definition of supremum we have

sup
(as)s∈S∈A|S|

∑
s∈S

fs(as) ≤
∑
s∈S

sup
a∈A

fs(a).

Now, suppose there exists ε > 0 such that∑
s∈S

sup
a∈A

fs(a) = sup
(as)s∈S∈A|S|

∑
s∈S

fs(as) + ε.

Let φ : S → N be an injective map. Then, by definition of supremum, for each
s ∈ S we can find an element as ∈ A such that:

sup
a∈A

fs(a) < fs(as) + εφ(s)

where εi is defined as εi = (ε/2) · (1/2)i for i ∈ N. Hence, we get:∑
s∈S

sup
a∈A

fs(a) <
∑
s∈S

fs(as) +
∑
s∈S

εφ(s)

< sup
(as)s∈S∈A|S|

∑
s∈S

fs(as) +
∑
i∈N

εi

< sup
(as)s∈S∈A|S|

∑
s∈S

fs(as) + ε

(15)

which leads to a contradiction.

28

A.2 Proof of Lemma 3

Let ε > 0. Then, there exists α ∈ A such that

sup
a∈A

lim
k→+∞

fa(k) ≤ lim
k→+∞

fα(k) + ε/2.

Next, there exists N ∈ N so that for all n ≥ N :

| lim
k→+∞

fα(k)− fα(n)| < ε/2.

Since fα is non-decreasing, we get

0 ≤ lim
k→+∞

fα(k)− fα(n) < ε/2.

Therefore:

sup
a∈A

lim
k→+∞

fa(k)− ε/2 ≤ lim
k→+∞

fα(k) < fα(n) + ε/2 ≤ sup
a∈A

fa(n) + ε/2.

On the other hand, for any n, supa∈A limk→+∞ fa(k) ≥ supa∈A fa(n) since fa is
non-decreasing for all a ∈ A. Hence, for n ≥ N we have:

0 ≤ sup
a∈A

lim
k→+∞

fa(k)− sup
a∈A

fa(n) < ε/2 + ε/2 = ε

and consequently, limk→+∞ supa∈A fa(k) = supa∈A limk→+∞ fa(k).

A.3 Proof of Lemma 4

Denote ak = lim`→+∞ f(k, `) and b` = limk→+∞ f(k, `). The monotonocity
property and the fact that f(k, `) ≤ 1 for all k, ` ∈ N implies that sequences
(ak), (b`) are well-defined and they are non-decreasing. Moreover, ak, b` ≤ 1 for all
k, `. Thus, a = limk→+∞ ak and b = lim`→+∞ b` do exist. Then, for all k, ` ∈ N
we have f(k, `) ≤ ak ≤ a and hence

b` = lim
k→+∞

f(k, `) ≤ a

for all `. In particular, b = lim`→+∞ b` ≤ a. One similarly proves that a ≤ b.
Lastly, we need to show that c = a where c := limk→+∞ f(k, k). It is easy

to see that for k ∈ N we have f(k, k) ≤ ak and thus c = limk→+∞ f(k, k) ≤
limk→+∞ ak = a. On the other hand, for every k and ` we have f(k, `) ≤ c. Thus,
ak = lim`→+∞ f(k, `) ≤ c for all k and consequently, a ≤ c. Hence, a = b = c.

A.4 Proof of Lemma 5

The statement is easy to prove when S is finite. Hence, suppose there is a
bijective map φ : N → S and define a function g : N × N → [0, 1] as g(k, `) =∑`
i=0 f(k, φ(i)). Note that for all k, ` we have g(k, `) ≤ g(k + 1, `) and g(k, `) ≤

29

g(k, ` + 1). Then, by Lemma 4 and the fact that the limit of a finite sum is a
sum of limits, we have:

lim
k→+∞

∑
s∈S

f(k, s) = lim
k→+∞

lim
`→+∞

g(k, `)

= lim
`→+∞

lim
k→+∞

g(k, `)

= lim
`→+∞

lim
k→+∞

∑̀
i=0

f(k, φ(i))

= lim
`→+∞

∑̀
i=0

lim
k→+∞

f(k, φ(i))

=
∑
s∈S

lim
k→+∞

f(k, s).

(16)

A.5 Proof of Lemma 7

Clearly, F (k, `) ∈ [0, 1]. We just need to show that for all k, ` ∈ N we have
F (k, `) ≤ F (k, ` + 1) and F (k, `) ≤ F (k + 1, `). Then, the statement follows
directly from Lemma 4.

Let us fix k, ` ∈ N. Let us define B`+1 which behaves exactly as A`+1 but
when it queries x ∈ S such that φ(x) = `+ 1, it also aborts. Hence, we have

Pr
[
1←$Rfk

O,BO`+1

]
≤ Pr

[
1←$Rfk

O,AO`+1

]
= F (k, `+ 1).

Now, by the consistency property of the setup assumption, the view of
B`+1 given an oracle O←$Mmax{k,`+1},λ is exactly the same as A` given
O←$Mmax{k,`},λ. Therefore

F (k, `) = Pr
[
1←$Rfk

O,AO`
]

= Pr
[
1←$Rfk

O,BO`+1

]
.

Similarly, one proves F (k, `) ≤ F (k + 1, `).

30

	Lifting Standard Model Reductions to Common Setup Assumptions

