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Abstract. We introduce new protocols for private set intersection (PSI),
building upon recent constructions of pseudorandom correlation genera-
tors, such as vector-OLE and ring-OLE. Our new constructions improve
over the state of the art on several aspects, and perform especially well
in the setting where the parties have databases with small entries. We
obtain three main contributions:

1. We introduce a new semi-honest PSI protocol that combines subfield
vector-OLE with hash-based PSI. Our protocol is the first PSI protocol
to achieve communication complexity independent of the computational
security parameter κ, and has communication lower than all previous
known protocols for input sizes ` below 70 bits.

2. We enhance the security of our protocol to the malicious setting, us-
ing two different approaches. In particular, we show that applying the
dual execution technique yields a malicious PSI whose communication
remains independent of κ, and improves over all known PSI protocols
for small values of `.

3. As most previous protocols, our above protocols are in the random
oracle model. We introduce a third protocol which relies on subfield
ring-OLE to achieve maliciously secure PSI in the standard model, under
the ring-LPN assumption. Our protocol enjoys extremely low communi-
cation, reasonable computation, and standard model security. Further-
more, it is batchable: the message of a client can be reused to compute
the intersection of their set with that of multiple servers, yielding further
reduction in the overall amortized communication.

1 Introduction

Private Set Intersection (PSI) is a cryptographic primitive that allows parties
to jointly compute the set of all common elements between their datasets, with-
out leaking any value outside of the intersection. It is a special case of secure
multi-party computation (MPC). PSI enjoys a wide array of real-life applica-
tions; it is perhaps the most actively researched concrete functionality in se-
cure computation, and has been the target of a tremendous number of works,
see [10, 13, 18–24, 26–28] and references therein for a sample. As a consequence
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of this intense research effort, modern PSI protocols now achieve impressive effi-
ciency features, communicating only a few hundred bits per database items, and
processing millions of items in seconds.

Improving PSI with pseudorandom correlation generators. Pseudoran-
dom correlation generators (PCG) have been introduced in the works of [3,5,8]
and have been the subject of a long and fruitful line of work [3–8,11,30,32,34]. At
a high level, a PCG allows two parties to securely stretch long pseudorandom cor-
related strings from short, correlated seeds. Securely sharing correlated random
strings is a crucial component in most modern secure computation protocols,
which operate in the preprocessing model; PCG allows to realize this functional-
ity with almost no communication. Among their many applications, PCGs allow
to construct silent oblivious transfer extension protocols [4], which can realize
(pseudorandom) OT extension with minimal (logarithmic) communication.

Since the top-performing PSI protocols rely on efficient OT extension, using
PCG-based techniques to improve their efficiency is a natural idea. And indeed,
this was done recently for OKVS-based PSI in [27], leading to the most efficient
PSI protocol known to date (OKVS stands for oblivious key-value store [13]; the
use of OKVS is the leading paradigm for the design of PSI protocols). To give
a single datapoint, computing the intersection between two databases of size
n = 220 with the protocol of [27] communicates as little as 426n bits in total. In
addition, some of the tools used in [27] have been significantly improved since:
replacing their OKVS (which is the PaXoS OKVS of [21]) by the more recent
3H-GCT OKVS of [13], and replacing their PCG (which is the one from [32]) by
the recent PCG of [11], the cost goes down to an impressive 247n bits of total
communication. In comparison, even the insecure approach of exchanging the
hashes of all items in the databases already requires 160n bits of communication.
OKVS-based PSI protocols are now firmly established as the leading paradigm
in the field, and the use of PCGs to reduce their communication overhead even
more seems to further widen the gap with the other paradigms.

1.1 Our Contributions

We thoroughly investigate how the use pseudorandom correlation generators can
reduce communication in PSI protocols. We obtain several contributions:

– A new family of semi-honest hash-based PSI protocols. Our protocols can
be instantiated using several hashing techniques, and achieve very low com-
munication, especially for databases whose entries have a small bitlength.

– New maliciously secure hash-based PSI protocols. Here, interestingly, we
revive the dual execution technique, which had been used previously to de-
sign malicious PSI protocols in [26], but was considered outdated. We show
that, combined with our new approach, it leads to very competitive pro-
tocols, which achieve lower communication than all known alternatives for
databases with small entries.

– Eventually, we design a new maliciously secure polynomial-based PSI pro-
tocol. Our protocol enjoys several powerful features: competitive communi-
cation, security in the standard model under the ring-LPN assumption (in
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contrast, other maliciously secure PSI use the ROM), and the possibility
for a client to publish a single encoding of its database, and later retrieve
the intersection of its database with that of multiple servers independently,
with a single server-to-client message, plus minimal (database-independent)
additional communication.

Below, we elaborate on each of our contributions.

Low communication PSI for databases with small entries. Modern PSI
protocols have communication O(κ · n), where n is the database size, and κ
is a computational security parameter. More precisely, the receiver-to-sender
communication is O(κṅ), while the sender-to-receiver communication is O(λ ·n),
where λ is a statistical security parameter (typically, κ = 128 and λ = 40).
We introduce a new protocol, that combines hashing techniques (e.g. Cuckoo
hashing or its variants, as initially used in [18]) with a new PCG-based oblivious
pseudorandom function (OPRF). In contrast to all previous works, our work
avoid the O(κ·n) overhead: it reduces the receiver-to-sender communication to be
roughly ` ·n (where ` is the bitsize of the database items), leading to a significant
reduction in the overall communication. To our knowledge, our protocol is the
first to achieve communication independent of κ (up to low order terms). To
give a datapoint, for n = 220, with 64-bit entries, our protocol communicates
210n bits, and with 32-bit entries, it communicates only 148n bits. For the same
parameters, the leading OKVS-based PSI of [27] communicates 197n bits, even
after improving it with all relevant optimization (such as using the 3H-GCT
OKVS of [13], and the recent PCG of [11]). We provide further datapoints and
comparisons to the state of the art on Table 1, when instantiating our protocols
with various hashing methods.

Fast maliciously-secure PSI for small entries. We then turn our attention
to maliciously secure PSI. We provide two alternative protocols which achieve
malicious security; both use standard paradigms for upgrading PSI to malicious
security. The first protocol combines our new PCG-based OPRF with simple
hashing, and applies the standard paradigm used in most previous OKVS-based
PSI to achieve malicious security (e.g. [27]). This requires to increase the sender-
to-receiver message length, from O(λ · n) to O(κ · n) (λ is a statistical security
parameter, κ is a computational security parameter; typically, λ = 40 and κ =
128) to allow for extraction of the sender input. Along the way, we also notice
a small mistake in the parameter choices of [27]: they devise a new ROM-based
extraction strategy in the malicious setting, and prove that a Q-query adversary
will make extraction fail with probability boundedQ·n/2κ (this is the probability
that one of the Q queries of the malicious receiver collides with an element of the
sender set). This implies that, to target 128 bits of computational security, one
must set κ = 128 + log n. However, the numbers reported in [27] correspond to
choosing κ = 128 at the 128-bit security level. We took this minor inconsistency
into account in our tables.

More interestingly, our second protocol applies dual execution [26] to our
PCG-based protocol with simple hashing. We observe that, in our context, this
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Table 1. Comparison of the communication cost of several PSI protocols in
the semi-honest setting and in the malicious setting, for various choices of the
database size n (we assume that both parties have a database of the same size).
` denote the bit-length of the inputs in the database; we set the computational
security parameter κ to 128 and the statistical security parameter λ to 40 (for
usual applications) or 30 (which can be suitable for lower risk applications). For
all protocols, we take into account the optimization of [31] which reduces the
costs of sending n elements of bitlength λ+2 · logn to n ·(λ+logn). GCH stands
for Generalized Cuckoo hashing (here, with 2 hash functions and 3 items per
bin), 2CH for 2-choice hashing, and SH for simple hashing (N is the number of
bins).

n = 214 n = 216 n = 220 n = 224

Semi-honest setting

KKRT16 [18] 930n 936n 948n 960n

PRTY19 [20] low* 491n 493n 493n 494n

PRTY19 [20] fast* 560n 571n 579n 587n
CM20 [10] 668n 662n 674n 676n
PRTY20 [21] 1244n 1192n 1248n 1278n
RS21 [27] 2024n 898n 406n 374n

RS21 [27] enhanced** 280n 260n 263n 275n

Ours (` = 64, GCH) 246n 220n 210n 209n
Ours (` = 48, GCH) 215n 189n 179n 178n
Ours (` = 32, GCH) 184n 158n 148n 147n

Ours (` = 64, 2CH) 214n 190n 183n 185n
Ours (` = 48, 2CH) 193n 169n 162n 164n
Ours (` = 32, 2CH) 171n 148n 141n 142n

Ours (` = 64, SH, N = n/10) 332n 302n 284n 276n
Ours (` = 48, SH, N = n/10) 261n 230n 209n 198n
Ours (` = 32, SH, N = n/10) 191n 158n 133n 120n

Ours (` = 64, SH, N = 1) *** 154n 131n 125n 128n

Ours (` = 48, SH, N = 1) *** 138n 115n 109n 112n

Ours (` = 32, SH, N = 1) *** 122n 99n 93n 96n

Malicious setting

RS21 [27] enhanced** 343n 320n 315n 318n

Ours (` = 48, SH, N = n/10) 430n 393n 356n 332n
Ours (` = 40, SH, N = n/10) 359n 321n 281n 253n
Ours (` = 32, SH, N = n/10) 289n 249n 205n 175n

* PRTY19 has two variants, SpOT-low (lowest communication, higher compu-
tation) and SpOT-fast (higher communication, better computation). Both
use expensive polynomial interpolation and require significantly more com-
putation compared to all other protocols in this table.

** Using the 3H-GCT OKVS of [13] instead of PaXoS, and the VOLE of [11]
instead of the one from [32]. Setting κRS21 to κ + logn to achieve κ bits of
security.

*** Using N = 1 requires an expensive degree-n polynomial interpolation.
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allows to achieve malicious security without having to increase the length of
the sender-to-receiver message, at the cost of increasing the receiver-to-sender
communication by a factor 2. Since our approach makes this communication as
low as O(` · n), this turns out to be an excellent tradeoff whenever the database
entries are not too large. Therefore, our results show that the landscape of ma-
liciously secure PSI is more subtle than previously thought: for large entries,
the standard approach still dominates, but for smaller entries (e.g. ` ≤ 40), the
dual execution technique leads to better performances. This revives the dual
execution technique, which was previously considered obsolete compared to the
modern alternatives.

Efficient PSI in the standard model. Eventually, our last contribution is a
new “polynomial-based” PSI protocol that does not rely on the random oracle
model, following the high level structure of previous works [14, 15, 17]. To this
end, we introduce the notion of PCG for the subfield ring-OLE correlation, and
show how a simple variant of the recent PCG for ring-OLE of [7] leads to efficient
instantiations of this primitive. Then, we describe a new PSI protocol built on
top of this PCG, which enjoys a number of very interesting features.

Security features. Our PSI protocol is in the standard model: unlike our first pro-
tocol, it does not require the random oracle model, or any tailor-made correlation-
robustness assumptions. We rely solely on the (relatively well-established) ring-
LPN assumption over polynomial rings with irreducible polynomials. To our
knowledge, our protocol is the first standard model protocol which offers com-
petitive performances compared to protocols using the random oracle heuristic
or tailored assumptions. Furthermore, our PSI protocol enjoys full malicious se-
curity (for both parties) almost for free. This stems from the use of PCGs, which
allows to confine the “price” of achieving malicious security to the distributed
seed generation only, which has logarithmic communication and computation (in
the set size n).

We note that, though malicious security comes for free communication- and
computation-wise, the tweaks used to guarantee malicious security in our pro-
tocol are not straightforward. In fact, achieving malicious security efficiently in
polynomial-based PSI protocols is known to be complex and error prone. For ex-
ample, previous works [14] used a superficially similar approach and claimed ma-
licious security, but their protocol was found to be insecure in a recent preprint,
which described powerful concrete attacks on this proposal [1]. Leveraging the
specific structure of our protocol, we manage to get around these nontrivial sub-
tleties with careful structural checks, for a minimal cost (independent of the
database size).

Efficiency features. Our PSI protocol enjoys a very low communication, consid-
erably lower than all previous PSI protocols in the standard model which we
are aware of (excluding iO- or FHE-based protocol, which can have very low
communication but poor concrete efficiency). In fact, communication-wise, our
PSI protocol is even on par with the best ROM-based PSI protocols of previous
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works. Concretely, for sets of size n with `-bit entries, our protocol communi-
cates (2` + 3λ + 3 log n) · n + o(n) bits. To give a single datapoint, for ` = 32
and n = 220, we estimate the total communication to be 278n bits. This is on
par with the best maliciously secure protocol [27], which communicates 279n
bits in the same setting, with comparable computation (it also uses polynomial
interpolation), but without standard model security.
On Table 1.1, we compare our protocol to the current fastest maliciously secure
PSI protocols [21,27,29]. As the table shows, the communication of our protocol
is almost on par with that of the best protocol (the protocol of [27], enhanced
with the latest VOLE protocol) for small-ish input size, and large enough set
sizes. Yet, our protocol is in the standard model under the ring-LPN assumption,
while [27] is only proven secure in the ROM.

Table 2. Comparison of the communication cost of several PSI protocols in the malicious
model, for various choices of the database size n (we assume that both parties have a
database of the same size) and statistical security parameter λ = 40, using the encoding
technique of [31]. ` denote the bit-length of the inputs in the database; we set the compu-
tational security parameter κ to 128. For fairness of comparison, since our standard model
PSI uses interpolation, we compare it to RS21 with an interpolation-based OKVS (which
has better communication), and we compare our other PSIs with RS21 instantiated with
(computationally) efficient OKVS.

Protocol
Communication Hardness

Assumption
Standard
Modeln = 216 n = 218 n = 220 n = 222 n = 224

Our Standard PSI Ring-LPN 3

` = 64 724n 423n 342n 324n 323n + OT
` = 48 692n 391n 310n 292n 291n

` = 32 660n 359n 278n 260n 259n

RS21 [27] enhanced* 318n 286n 279n 279n 280n LPN + OT 7

Our Direct PSI

LPN + OT

7

` = 64 421n 385n 374n 369n 365n

` = 48 348n 311n 298n 292n 286n

` = 32 277n 237n 223n 215n 208n

Our Dual PSI
` = 64 609n 535n 511n 499n 489n

` = 48 465n 388n 361n 345n 333n

` = 32 321n 240n 210n 192n 176n

PRTY20 [21] 1766n OT 7

RT21 [29] 512n DH 7

RS21 [27] enhanced** 320n 315n 315n 317n 318n LPN + OT 7

* Using interpolation instead of PaXoS, and the VOLE of [11] instead of the one
from [32]. Sets κRS21 to κ+ logn to achieve κ bits of security.

** Using the new OKVS of [13] instead of PaXoS, and the VOLE of [11] instead of the
one from [32]. Sets κRS21 to κ+ logn to achieve κ bits of security.
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Batch non-interactive PSI. On top of these security and efficiency features, the
structure of our protocol allows to obtain a powerful interaction pattern: it leads
to a batch non-interactive PSI, where after a short interaction with each server,
a client C with set X can broadcast a single encoding of its database, and receive
afterwards at anytime a single message from each server Si with set Xi (plus,
in the malicious setting, a small database-size-independent 2-round structural
check), from which they can decode X ∩ Xi. To achieve this feature, we build
upon the fact that the PCG for subfield ring-OLE correlations is programmable,
which means that we can enforce that a target party will receive the same pseu-
dorandom string across executions with many different parties. Concretely, we
achieve the following form of batch non-interactive PSI between a client C with
database X and multiple servers Si with datasets Xi (all of size n):

1. In a preprocessing phase, C interacts with each of the servers, using O(log n)
communication and computation in each interaction, in a small constant
number of rounds.

2. Then, C performs a single Õ(n) cost local computation, and broadcasts a
single 2`n-size encoding EX of X.

3. Each server Si can, at any time, send a single message Mi = m(Xi, EX), of
length 3(λ+ log n)n, using Õ(n) computation.

4. Eventually, given X and Mi, the client C can run a Õ(n) cost decoding
procedure and recover X ∩Xi, without further interaction.

When the number of servers becomes large, our batch PSI protocol leads to
strong savings for the client compared to executing a PSI protocol individually
with each server. Furthermore, in this setting, the amortized communication
(per PSI instance) is reduced to (2`/NS + 3λ + log n) · n + o(n), where NS
denotes the number of servers. Even for relatively small number of servers, the
amortized communication quickly outperforms that of even the best ROM-based
maliciously secure PSI protocols. For example, for n = 224 and ` = 32, the
amortized communication per secure set intersection approaches 195n bits with
our protocol, versus 280n for [27].

1.2 Concurrent work

In a concurrent and independent work, recently accepted at CCS’22, Rindal
and Raghuraman [25] introduced a new PSI protocol, using an approach similar
to ours: the authors also leveraged subfield-VOLE to achieve communication
independent of the computational security parameter κ. Our results have been
obtained independently of theirs, around the same time period. Although their
main result bears similarities to our first two contributions, we highlight some
important distinctions between our work and theirs:

– The work of [25] uses an OKVS-based construction, and achieves a receiver-
to-sender communication of (λ+2 log n) ·n. In contrast, we use a hash-based
protocol, and achieve an (` − log n) · n receiver-to-sender communication.
Therefore, we get smaller communication overall in the setting where the
databases have small entries, but a slightly larger computation.
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– For malicious security, the work of [25] only considers the standard paradigm
of previous works (e.g. [27]), hence having a O(κ ·n) receiver-to-sender (and
overall) communication. In contrast, we give two protocols, including one
based on dual execution which achieves communication independent of κ
(and smaller concrete communication for databases with small entries).

– Eventually, our last contribution, a “batchable” ring-OLE-based malicious
PSI in the standard model with low communication, is unique to our work.

1.3 Structure of the Paper

We provide preliminaries in Section 2, and a detailed technical overview of our
contributions in Section 3. Section 4 covers our ROM-based semi-honest and ma-
licious protocols. Due to space limitation, our second malicious protocol, based
on dual execution, is presented in the full version [9]. Section 5 covers our stan-
dard model PSI. Note that the additional preliminaries and all the missing proofs
appear in full version [9].

2 Preliminaries

Notation. Throughout the paper we use the following notations: we let κ, λ
denote the computational and statistical security parameters, respectively. We
write [1,m] to denote a set {1, 2, . . . ,m}. For a vector x we define by xi its
i-th coordinate. Given distribution ensembles {Xn}, {Yn}, we write Xn ≈ Yn to
denote that Xn is computationally indistinguishable to Yn.
We typically write Fq to denote a field with and arbitrary subfield Fp, where p
is a prime power and q = pt. We use Rp = Fp[X]/F(X) for the ring over the field
Fp where F (x) is some polynomial, and also denote Rq = Fpt [X]/F(X). Note that
all operations in our paper are field/ring operations not modular arithmetic.

PSI functionality. A private set intersection (PSI) protocol allows two par-
ties to compute the intersection of their input sets while concealing all other
information. We typically denote by n the input set sizes. For completeness, the
ideal functionalities for PSI (in the semi-honest and in the malicious settings)
are given in Appendix of the full version [9].

Pseudorandom correlation generators (PCG). Pseudorandom correlations
generators have been introduced in a recent line of work [3–5]. A PCG allows to
compress long correlations into short, correlated seeds that can later be locally
expanded into pseudorandom instances of the target correlation. Slightly more
formally, a PCG for a target correlation C (which samples pairs of long correlated
strings (y0, y1)) is a pair (Gen,Expand) of algorithms such that Gen(1λ) outputs
a pair of short, correlated keys (k0, k1) and Expand(σ, kσ) outputs a long string
ỹσ. Correctness states that (ỹ0, ỹ1) are indistinguishable from a random sample
from C, while security states that given k1−σ, ỹσ looks like a random sample
from C conditioned on satisfying the target correlation with Expand(1−σ, k1−σ),
for σ = 0, 1.
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A PCG does not in itself provide a protocol to efficiently generate long pseu-
dorandom correlations. To get the latter, one must combine a PCG with a dis-
tributed key generation protocol, which allows two parties to obliviously run
Gen(1λ) such that each party gets one of the keys. Fortunately, for most PCGs
of interest (and in particular, for all PCGs we use in this work), there exists very
efficient low-communication distributed setup protocols [4,7]. Combining a PCG
with a distributed setup protocols allows to securely instantiate (with low com-
munication) functionalities that distribute instances of the target correlation.
In this work, we will directly rely in a black-box way on such functionalities,
and use known protocols to instantiate them. We now expand on the two main
functionalities we use in this work.

PARAMETERS:

– 2 parties, a sender and receiver, an integer n, the size of the output vector.
– A finite field Fq where q = pr, p is a power of prime, r an integer.

FUNCTIONALITY:

– Depending on the parties:
• If the sender is corrupted then wait for A to send 2 vectors u ∈ Fnp ,v ∈

Fnq ; samples ∆←r Fq and computes w := ∆ · u+ v.
• If the receiver is corrupted then wait for A to send w ∈ Fnq , ∆ ∈ Fq;

samples u←r Fnp and computes v := w −∆ · u.
• Otherwise, samples u ∈ Fnp ,v ∈ Fnq ,∆ ←r Fq and computes w :=
∆ · u+ v.

– The functionality sends u ∈ Fnp , v ∈ Fnq to sender and ∆ ∈ Fq , w :=
∆ · u+ v to receiver.

Fig. 1. Ideal functionality (n, p, q)−Fsvole of subfield vector-OLE

Subfield Vector-OLE. We described the subfield vector-OLE correlation in the
technical overview of [9]. We represent on Figure 1 the ideal functionality that
distributes a subfield VOLE correlation. In our concrete instantiations, we will
instantiate this functionality using the efficient protocol of [4]. The latter pro-
vides a general template which can be instantiated under various flavors of the
LPN assumption, and provides a conservative choice under LPN for quasi-cyclic
choice. A variant of LPN that leads to a considerably more efficient protocol,
when plugged in the template of [4], was recently put forth in the work [11] (we
note that our communications estimate are oblivious to the underlying variant:
only the computational costs depends on the LPN flavor).

Subfield Ring-OLE. Recently, a new PCG construction was described in [7]
for the ring-OLE correlation. The ring-OLE correlation over a ring Rq is the
following correlation: {((x0, z0), (x1, z1)) | x0, x1, z0 ←r Rq, z1 ← x0.x1 − z0}.
In this work, we rely on a slight variant of the ring-OLE correlation, where x0 is
instead sampled from a subringRp ofRq. We represent the corresponding variant
of the ideal functionality in the full version [9]. We note that the protocol of [7]
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to instantiate the ring-OLE functionality can be adapted to handle the subfield
ring-OLE functionality in a straightforward way.

3 Technical Overview

Our starting point is the classical KKRT protocol [18], which combines Cuckoo
hashing with a batch related-key oblivious pseudorandom function (BaRK-OPRF).
We assume some familiarity with the KKRT protocol in this technical overview.
For completeness, we provide a high level overview of KKRT, the notion of
BaRK-OPRF (batch related-key oblivious pseudorandom function), and its com-
munication costs in Appendix of full version [9]. Our construction will also rely
on a functionality that distributes subfield vector-OLE correlation (the sVOLE
functionality): Alice gets (u,v), and Bob gets (∆,w = ∆u+v). Such correlation
can be distributed with very low communication using pseudorandom correlation
generators.

3.1 A New sVOLE-Based PSI for Databases with Small Entries

Subfield-VOLE leads to a simple and natural construction of BaRK-OPRF. Let
` be the bitlength of Alice’s inputs, and let x = (x1, · · · , xn) be the inputs of
Alice, viewed as elements of F2` . We assume for simplicity that ` divides κ,
the computational security parameter. Alice and Bob use an sVOLE protocol
(e.g. [11]) over the field F2κ , with subfield F2` ; let (u,v) be the output of Alice,
and (∆,w) be the output of Bob. Recall that w = ∆·u+v. Alice sends z = x−u
to Bob, who defines the BaRK-OPRF keys to be∆ and (K1, · · · ,Kn) = ∆·z+w.
The BaRK-OPRF is defined as follows: F∆,Ki(y) = H(i,Ki−∆·y) (all operations
are over F2κ). Eventually, Alice outputs (H(i, vi))i≤n. Observe that

H(i, vi) = H(i, wi −∆ui) = H(i,Ki −∆(zi + ui))

= H(i,Ki −∆ · xi) = F∆,Ki(xi)

The use of sVOLE, rather than OT extension as in the original KKRT BaRK-
OPRF, has two main advantages: first, the bitwise AND is now replaced by a
field multiplication. In particular, this means that we do not need anymore to
use error-correcting codes, and that y · ∆ retains the entire entropy of ∆. In
other words, it suffices for ∆ to be κ-bit long to achieve κ bits of security for the
construction (in contrast, KKRT had to use around 5κ bits). Second, and most
importantly, the use of subfield VOLE allows us to completely decorrelate the
size of u from that of ∆, something which can fundamentally not be achieved
with the INKP OT extension. Concretely, this means that u only needs to mask
the input vector x of Alice. If x ∈ Fn2` , then so do u and z: the communication
now depends solely on the input size.

In total, our BaRK-OPRF communicates `·n bits, plus the cost of distributing
the seeds for the sVOLE generator. Using the protocol of [4] to distribute the
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seeds3, the cost is logarithmic in n, hence its effect on the overall communication
vanishes for large enough n.
Combining the new OPRF with permutation-based hashing. Plugging
our new BaRK-OPRF into KKRT, and using the same parameters for Cuckoo
hashing, leads to a protocol with total communication (1.3·`+3·(λ+2 log n))n+
o(n) bits (where the o(n) terms capture the costs of distributing the PCG seeds).
Concretely, for n = 220 and ` = 32 (resp. 64), this already brings the cost down,
from 1008n bits to 282n bits (resp. 324n bits). However, this can be further
improved using the well-established notion of permutation-based hashing [22].
Concretely, in permutation-based hashing, an item x is written as xL||xR, where
xL is log(1.3n)-bit long. The item x is inserted by mapping xR to the bin xL ⊕
f(xR), where f is a k-wise independent hash function, for some large enough
k. This guarantees that no collision occurs, because if two items x, x′ end up
mapping the same value to the same bin, this means that xR = x′R and xL ⊕
f(xR) = x′L ⊕ f ′(x′R), hence x = x′. When multiple hash functions are used, as
in Cuckoo hashing, the index of the hash function must be appended to xR.

Interestingly, our use of sVOLE is crucial to enabling a permutation-hashing-
based optimization: the latter only provides savings when the communication
involves a O(` · n) component (which neither KKRT nor any modern OKVS-
based PSI has). In our protocol, however, it further reduces the communication
to (1.3 ·(`− log(1.3n)+1)+3 ·(λ+2 log n))n+o(n) bits, which gives 275n bits for
n = 220 and 32-bit items, or 317n bits for 64-bit items. In itself, this is a really
small communication improvement. However, it has an important consequence:
it implies that the Alice-to-Bob communication is now completely dominated
by the Bob-to-Alice communication. Concretely, this means that we can easily
afford to use a much higher number of bins (which is 1.3n currently) if it can
allow us to reduce the number of hash functions (which is 3). This brings us to
our last optimization.
Packing multiple items per bin with generalized Cuckoo hashing. In
this last optimization, our goal is to reduce the number of hash functions used
in the Cuckoo hashing protocol, from 3 to 2, by increasing the number of bins
to compensate. Unfortunately, this does not work directly with standard cuckoo
hashing even while using a reasonably small stash since the cost of handling
the stash is high, and nullifies all communication benefits of using two hash
functions in the first place. Instead, we use a different approach: we add one
degree of freedom to the Cuckoo hashing parameters, by allowing bins to contain
multiple items. This generalization of Cuckoo hashing is not new: it has been
studied in details in several works [12, 33], because it comes with a much nicer
cache-friendliness than standard Cuckoo hashing.

In (d, k)-Cuckoo hashing, n items are mapped to (1 + ε) · n bins using k
hash functions, and each bin is allowed to contain up to d items. Allowing more
items per bins significantly improves the efficiency; for example, (3, 2)-Cuckoo
hashing is known to perform strictly better than standard (1, 3)-Cuckoo hashing
3 This protocol uses a length-t reverse VOLE protocol as a blackbox, which we instan-
tiate with the construction of [2].
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in terms of occupancy (i.e., the total number of slots N = d · (1 + ε) · n which
must be used to guarantee a o(1) failure probability). Based on existing analysis
of this variant [33], it seems reasonable to expect that (3, 2)-Cuckoo hashing
already achieves a strictly smaller failure probability compared to (1, 3)-Cuckoo
hashing, with a smaller number of bins.

We relied on extensive computer simulations on small values of n (from 256
to 2048) to select parameters, and extrapolated from these results parameters
for larger values of n. More precisely, we ran 107 experiments with (3, 2)-Cuckoo
hashing for n ∈ {28, 29, 210} (we also experimented with 211, but with a smaller
number of experiments) with c · n bins for various values of c. Even for a value
as low as c = 0.65 and values of n as low as 29, our experiments never reported
any insertion failure, indicating that the empirical failure probability should
already be way below 2−20. Since the theoretical failure probability is known to
scale as O(1/nδ) for some constant δ with reasonably small constant factors, we
extrapolate that for large enough values of n, e.g. n ≥ 218, the failure probability
should be well below 2−40.

Alternative hashing variants. Alternatively, when allowing multiple items
per bins, we can consider other hashing variants. Two natural choices are two-
choice hashing [20], where each bin can have up two d items and each item is
placed in the least-full of two bins, and simple hashing, where a single hash
function is used to map the items to bins (standard results show that, when
hashing n items to O(n) bins this way, the maximum load with be of the order
of log n/ log logn with high probability). As we will see, these choices of hashing
lead to various communication versus computation tradeoffs in our protocols,
and the optimal choice also depends on the database size.

A membership BaRK-OPRF. There remains a non-trivial task: to use some
of the above hashing variants, we need a protocol to handle hashing with up
to d items per bins. Intuitively, denoting xi = (x

(1)
i , · · · , x(d)i ) the d entries of

the bin i, we want to construct a new kind of membership OPRF (similar in
spirit to the notion of multi-point OPRF in the literature), where Bob obtains
F∆,Ki(y) and Alice obtains the set F∆,Ki(xi) = {F∆,Ki(x

(j)
i )}j≤d. This implies

that F∆,Ki(y) ∈ F∆,Ki(xi) if and only if y is equal to any entry of xi, and
F∆,Ki(y) looks pseudorandom to Alice otherwise.

Going back to the BaRK-OPRF, recall that for a bin i where Alice placed
xi and Bob placed yi, Alice computes H(i, vi) and Bob computes H(i,Ki −
∆yi) = H(i,∆ · (xi − yi) + vi). Here, we view the xi − yi term as Pxi(yi), where
Pxi = X−xi is a degree-1 polynomial with root xi. This view suggests a natural
generalization of this approach, where the Pxi polynomials are replaced by higher
degree polynomials. Define Pxi

to be the polynomial
∏d
j=1(X − x

(j)
i ), and let

(cj,i)0≤j≤d−1 denote its coefficients: Pxi
(X) = Xd +

∑d−1
j=0 cj,i · Xj . Our new

membership BaRK-OPRF is a direct generalization of the BaRK-OPRF from
Section 3.1, which we sketch below.

Our construction. Let m be the bitlength of Alice’s inputs inside the bins,
and let (x1, · · · ,xN) be the inputs of Alice in each of the N bins, where the
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inputs in each bin are viewed as length-d vectors of elements of F2m . We assume
for simplicity that m divides κ, the computational security parameter. Alice and
Bob use d sVOLE protocol (e.g. [11]) over the field F2κ , with subfield F2m , with
the same value ∆.4 Let (uj,vj)j≤d be the outputs of Alice, and (∆, (wj)j≤d) be
the output of Bob. Recall that wj = ∆ · uj + vj.

For each xi, let (c0,i, · · · , cd−1,i) be the coefficients of the polynomial Pxi

(omitting the coefficient of Xd, which is always 1). Let cj denote the vector
(cj,i)i≤N for j = 0 to d−1. Alice sends zj = cj−uj for j = 0 to d−1 to Bob, who
defines the membership BaRK-OPRF keys to be ∆ and Ki = (kj,i)0≤j≤d−1 =
(∆ · zj,i +wj,i)0≤j≤d−1 for i = 1 to N . Define the following degree-d polynomial
P∆,Ki over Fq: P∆,Ki(X) = ∆ · Xd +

∑d−1
j=0 kj,i · Xj . The OPRF is defined as

follows: F∆,Ki(y) = H(i, P∆,Ki(y)) (all operations are over F2κ). Eventually, for
each bin i, Alice sets her d tuple of outputs to be F∆,Ki(xi) = {H(i,

∑d−1
j=0 vj,i ·

(x
(k)
i )j}k≤d. Observe that, since kj,i = ∆zj,i + wj,i = ∆cj,i + vj,i for all i, j,

we have H(i, P∆,Ki(y)) = H
(
i,∆ ·

(
yd +

∑d−1
j=0 cj,iy

j
)
+
∑d−1
j=0 vj,iy

j
)
, which is

equal toH
(
i,∆ · Pxi

(y) +
∑d−1
j=0 vj,iy

j
)
. Therefore, if there exists k ∈ {1, · · · , d}

such that y = x
(k)
i , we have Pxi

(y) = 0, and H(i, P∆,Ki(y)) = H(i,
∑d−1
j=0 vj,i ·

(x
(k)
i )j) ∈ F∆,Ki(xi). On the other hand, whenever Pxi

(y) 6= 0, then the∆·Pxi
(y)

term in the hash makes the output pseudorandom from the viewpoint of Alice,
under the correlation robustness of the hash function.
Tying up loose ends. Using the new construction from the previous Section,
together with (3, 2)-Cuckoo hashing, leads to a total communication of (0.65 ·
3(`− log(0.65n)+ 1)+ 2 · (λ+2 log n))n+ o(n) bits, where the o(n) corresponds
to the cost of setting up the PCG seeds. For n = 220 and 32 bits items, this gives
148n bits of communication. We mention a few remaining details. First, in the
construction of membership BaRK-OPRF, Alice and Bob need to invoke d = 3
length-N sVOLE. In fact, it suffices to invoke a single length-3N sVOLE, and to
cut the output in three equal length parts, to obtain the necessary correlation.
This means that the concrete cost of distributing the sVOLE seeds remains that
of generating a single sVOLE (e.g. ≈ 0.7n bits for n = 220).

Second, in the above, we overlooked an important subtlety: a bin can possibly
contain less than d items. In KKRT, this was handled by adding dummy items
to empty bins. We use instead a more efficient approach with a negligible extra
cost called a variant of our OPRF (details in section 4).

3.2 Malicious Security

We then turn our attention to maliciously secure PSI. Here, it is well known
that Cuckoo hashing and two-choice hashing are not usable. Consequently, we
focus on simple hashing as our choice of the underlying hash technique. Using
maliciously secure subfield-VOLE, which can be implemented very efficiently [4,
4 Note that all known sVOLE protocols allow Bob to choose the value of ∆, hence Bob
can enforce the use of the same ∆ across all instances.
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11], we enhance our membership BaRK-OPRF to the malicious setting, with
a minimal overhead. Then, we apply two standard methods to achieve security
against malicious adversaries in our PSI protocol:

First method: direct approach. The first method increases the PRF output length
to κ. Using the analysis of [27], this suffices to allow for extracting the input of
a malicious sender. However, this makes the communication depend linearly on
κ, which severely harms communication complexity.

Second method: dual execution. To recover a κ-independent communication com-
plexity, we then turn our attention to the dual execution technique [26]. Here,
the idea is simple: the parties will invoke the malicious BaRK-OPRF twice, ex-
changing their roles. Then, the sender sends, for each entry x of his database,
a value of the form PRFA(x) ⊕ PRFB(x), where PRFA(x) is obtained by the
sender when invoking the BaRK-OPRF functionality as sender, and PRFB(x)
is the PRF output obtained when invoking the functionality as receiver. Here,
it becomes possible to extract the input set of each party simply from its call
as receiver to the BaRK-OPRF functionality, which does not require to increase
the output length of the OPRF. The price to pay is that the protocol now uses
two calls to the BaRK-OPRF. Concretely, the total communication becomes
(2 · N · d(` − log(N)) + (λ + log n))n + o(n), where N is the number of bins,
d the maximum load of a bin, and ` the input size (e.g. for n = 220, one can
choose N = n/10 and d = 47, see [26, Figure 5]). For small database entries,
this outperforms all known malicious PSI protocols.

3.3 An Efficient PSI in the Standard Model

In our last construction, we use a different functionality: we rely on the subfield
ring-OLE functionality (given on Appendix of full version [9]), that generates a
subfield ring-OLE correlation over the ringsRp = Fp[X]/F(X),Rq = Fpt [X]/F(X),
and F (X) is some polynomial of degree 2n + 1 (more generally, when the two
parties have sets of different size n and m, F will be of degree n + m + 1).
At a high level, the functionality Fsole distributes to Alice (a, sA) ∈ Rp × Rq

and (b, sB) ∈ (Rq)
2 to Bob such that ab = sA + sB . Our protocol makes a

single black-box call to this functionality. Consider two parties, a sender Alice
and a receiver Bob, where Alice has a set A = {x1, x2, . . . , xn} ∈ Fnp and Bob
has a set B = {y1, y2, . . . , yn} ∈ Fnp . Define pA :=

∏n
i=1(X − xi) ∈ Rp and

pB :=
∏n
i=1(X − yi) ∈ Rp. Let I := A ∩ B denote the target output. The

protocol computes the common roots of pA and pB , i.e., gcd(pA, pB).
By revealing appropriate linear combination of their shares and their input

polynomials, Alice and Bob will “derandomize” this correlation, allowing Alice
to learn the polynomial u = pAb0+pBb

′
0, where b0, b′0 are two uniformly random

degree-n polynomials known by Bob (this also requires revealing the high-order
coefficients of b, to reduce the degree-2n random polynomial b to a degree-n
random polynomial b0). Using some standard lemmas about polynomials, the
polynomial u can be factored as gcd (pA, pB) · pR, where with high probability,
pR has no common root with pA. This allows Alice to compute the intersection
I = A ∩B as I = {xi ∈ A : u(xi) = 0}. Concretely:
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– Alice computes and sends tA = a− pA to Bob.
– Bob sets s′B ← sB− tAb. Then, Bob decomposes b as b = b0+ b1 ·Xn (where
b0, b1 are degree-n polynomials), sets s′B ← sB − tAb, and picks a random
degree-n polynomial b′0 over Rq. He sends b1 and tB ← s′B + pBb

′
0 to Alice.

– (Output) Alice sets u← tB − pAb1 ·Xn + sA; note that u = pAb0 + pBb
′
0.

Alice outputs the set I = {x ∈ A | u(x) = 0}.
We prove that this construction achieves “augmented semi-honest security”,

a strengthening of honest-but-curious corruption where the adversary is allowed
to change the corrupted parties’ inputs. Furthermore, we securely realize the
functionality Fsole using the PCG-based protocol of [7], which is secure under
the ring-LPN assumption. Instantiating the subfield ring OLE this way allows to
import a powerful feature of the PCG of [7], which is its programmability : when
generating a ring-OLE correlation, the receiver can ensure that her output a
remains identical across multiple instances of the protocol with different parties.
Using this programmability feature, we show that our protocol can be batched :
a single O(` ·n)-size client message encoding her database A can be reused with
N different servers with databases Bi, allowing her to learn A∩Bi using a single
message from each server afterwards.

Achieving malicious security. We then turn our attention to security against
malicious adversaries. Our upgrade introduces only a minimal communication
overhead to the protocol, independent of the set sizes n. At a high level, the
main issues that can occur in the malicious setting is when Alice sets pA = 0,
or when Bob sets pBb′0 = 0. Indeed, since Alice gets u = pAb0 + pBb

′
0, if pA = 0,

she can learn Bob’s entire input set pB . On the other hand, if pBb′0 = 0, Bob
forces the output to be A.

We handle both issues separately. The second issue is intuitively simpler to
handle, since when Bob carries out this attack, Alice will notice that her output
is exactly her set A. This suggests a simple way around: if Alice notice at the
end of the protocol that the output is equal to A, she aborts the protocol. Of
course, a honest Bob could have an input B with A ⊆ B, in which case this
modification would harm correctness. But there is a simple way around: prior to
the protocol, Alice and Bob can just agree on a reserved dummy item d (we will
pick d = 1 in the protocol, but this choice is arbitrary), which is guaranteed to
be in neither databases. If database entries are elements of a field Fp′ , this can
simply be done by choosing any slightly larger field Fp of size |Fp| ≥ |Fp′ | + 1,
reserving one element of Fp to encode d, and mapping the elements of Fp′ to the
remaining elements. Then, Alice and Bob execute the protocol on inputs A∪{1}
and B, which guarantees that B does not contain A.

For the first issue, Bob must check before sending tB = s′B + pBb
′
0 that Alice

did not set pA to be 0 when computing tA = a−pA. Intuitively, this will be done
by letting Bob check that pA(x) 6= 0, for an appropriate input x. This, however,
must be done with some care, since learning pA(x) could leak information to a
corrupted Bob. We handle this issue by reserving a second element of Fp (hence
we now need |Fp| ≥ |Fp′ | + 2), which we assume w.l.o.g. to be 0, which should
again be in neither set. Then, Alice will define the encoding of her set to be
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the degree-n polynomial pA such that pA(map(a)) = 0 for every a ∈ A, and
pA(0) = 1. Then, we let Bob first send b1, without sending tB . Afterwards, Bob
computes s′B ← sB− tAb and Alice computes s′A ← sA−pAb1 ·Xn. Observe that
if both parties behave honestly, s′a+ s′b = ab− tAb− pAb1 ·Xn = ab−ab+ pAb−
pAb1 · Xn = pAb0. To enforce pA 6= 0, we will check that the above equation
holds for some nonzero pA. Crucially, since both pA and b0 have degree at most
n, no reduction modulo F(X) occurs in the right hand side of the equation. This
implies that we can simply check that the equation holds for the reserved input
x = 0 (since a honest pA is guaranteed to satisfy pA(0) = 1 6= 0). To check this,
we let Alice send s′A(0) to Bob, who checks that s′A(0) = b0(0) − s′B(0); if the
check fails, Bob aborts the protocol.

4 PSI from Subfield-VOLE

4.1 A new membership batched OPRF

Our BaRK-OPRF allows the sender to hold a set of keys (ki)i≤N such that
each key is assigned with a tuple of d input elements of the receiver and then
the receiver learns a PRF output on each element in this tuple corresponding
with the same key. More formally, denoting xi = (x

(1)
i , · · · , x(d)i ) consisting of

d entries, the sender gets F (i, y) and the receiver obtains a set {F (i, x(j)i )}j≤d
such that F (i, y) ∈ {F (i, x(j)i )}j≤d if and only if y is equal to any entry of xi,
and F (i, y) looks pseudorandom to the receiver otherwise.

PARAMETERS:

Fp is a finite field. There are 2 parties, a sender and a receiver with input set
X = {x1,x2, . . . ,xN} ⊆ Fp where xi = (x

(1)
i , · · · , x(d)i ).

FUNCTIONALITY:
– Wait for input (sender, id) from the sender and (receiver, id,X) from the

receiver. The functionality samples a PRF F then ∀x ∈ xi outputs F (i, x)
to the receiver for i ∈ [1, N ].

– When the sender inputs any (i, y) ∈ [1, N ]×Fp, functionality gives F (i, y)
to the sender.

Fig. 2. Ideal functionality Foprf

Main construction. Assume that the receiver inputs the set of n = Nd ele-
ments: X = {x1,x2, . . . ,xN} ⊆ Fp where xi = (x

(1)
i , · · · , x(d)i ) . First, the sender

and the receiver invoke the Fsvole protocol of dimension n, with their roles re-
versed, to get a random sVOLE correlation. Specifically, the receiver learns a
pair of vectors (u,v) where u ∈ Fnp , v ∈ Fnq , the sender gets ∆ ∈ Fq and
w := ∆ · u + v. Denoting u = (u1,u2, . . . ,uN) where (uj,i)1≤j≤d are d entries
of vector ui. This notation is the same for v,w. Consider xi and its associated
polynomial as Pxi

(X) =
∏d
j=1(X−x

(j)
i ) = Xd+

∑d
j=1 cj,i ·Xj−1 where cj,i ∈ Fp

for i ∈ [1, N ], j ∈ [1, d].
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Now, the receiver defines ci := (cj,i)j≤d, c := (c1, c2, . . . , cN), and then
∀i ∈ [1, N ] sends to the sender zi := ci − ui ∈ Fdp. Above, the ui are masks for
the coefficients ci of (the polynomial associated) xi. Indeed, ui are distributed
uniformly at random in the subfield Fp, then the vector zi is a uniformly random
over Fnp from the viewpoint of the sender. The two parties will run a coin flipping
protocol to get a random value t ← Fq. For i ∈ [1, N ], the receiver defines the
PRF output on each input x ∈ xi as F (i, x) = H

(
i|t|x ,

∑d
j=1 vj,i · xj−1

)
.

On the other hand, after receiving the vectors zi, for i ∈ [1, N ], the sender de-
fines the vector ki := wi+∆ ·zi. As a consequence, for any input (i, y) ∈ [1, N ]×
Fp, its PRF output is computed as: F (i, y) = H

(
i|t|y , ∆ · yd +

∑d
j=1 kj,i · yj−1

)
.

Correctness and Security. To see why PRF output is defined as above. Ob-
serve that ki := wi +∆ · zi = vi +∆ · ci. Then, we have

∆ · yd +
d∑
j=1

kj,i · yj−1 = ∆ · yd +
d∑
j=1

(vj,i +∆ · cj,i) · yj−1

= ∆ · (yd +
d∑
j=1

cj,i · yj−1) +
d∑
j=1

vj,i · yj−1 = ∆ · Pxi
(y) +

d∑
j=1

vj,i · yj−1

so if y ∈ xi then Pxi
(y) = 0 which leads to F (i, y) ∈ {F (i, x(j)i )}j≤d.

Theorem 1. The protocol Πoprf (Figure 3) instantiated with random oracles
H,H′, securely realizes the ideal functionality of Foprf (Figure 2) against a ma-
licious setting in the Fsvole hybrid model.

Note that the output v of H is chosen depending on the concrete structure of
PSI and the target setting (semi-honest or malicious). This parameter is detailed
in the section 4.2 for a semi-honest setting and the section 4.3 for a malicious
setting.

4.2 A new semi-honest PSI from mOPRF
A variant of BaRK-OPRF. We now propose a variant of our BaRK-OPRF
to deal with the case when the size of each tuple input is not necessarily equal to
d. This means that the receiver now can divide the input set to N tuples xi and
each tuple has less than or equal to d items. Meanwhile, the sender is not allowed
to learn about how many exactly items are in each tuple. This functionality can
be obtained from our BaRK-OPRF plus a small extra cost, i.e, a subfield VOLE
of length N over the subfield F2.

The idea is as follows. The receiver’s input set X = {x1,x2, . . . ,xN} ⊆ Fp
where xi = (x

(1)
i , · · · , x(ji)i ), ji ≤ d. The polynomial associated to {xi}i≤N

will be expressed as a polynomial of degree d: Pxi
(X) =

∏ji
j=1(X − x

(j)
i ) =∑d+1

j=1 cj,i ·Xj−1 where cj,i ∈ Fp.
As a result, the set of the coefficients of Pxi

(X) = (c1,i, c2,i, . . . , cd+1,i}.
We remark that, compared to the associated polynomial in our original BaRK-
OPRF which has a constant coefficient of degree d of 1, in our variant version
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PARAMETERS:

– Given Fp ⊆ Fq where Fq ≈ O(2κ), H : {0, 1}∗ × Fq → {0, 1}v and H′ :
Fq → Fq are random oracles.

– The sender has no input and the receiver inputs a set X =
{x1,x2, . . . ,xN} ⊆ Fp where xi = (x

(1)
i , · · · , x(d)i ) and n = Nd.

PROTOCOL:

1. The sender and the receiver invoke to the Fsvole of dimension n in the Fq
over the Fp with the inverse role. The receiver gets two random vectors
u ∈ Fnp ,v ∈ Fnq and the sender receives ∆ ∈ Fq, w := ∆u + v ∈ Fnq .
Denoting u = (u1,u2, . . . ,uN) where ui = (cj,i)1≤j≤d. This denotation is
the same for v,w.

2. The receiver samples tr ← Fq and sends hr := H′(tr) to the sender.
3. The sender samples ts ← Fq and sends hs := H′(ts) to the receiver.
4. The receiver determines the associated polynomial for each xi as

Pxi(X) =

d∏
j=1

(X − x(j)i ) = Xd +

d∑
j=1

cj,i ·Xj−1

where cj,i ∈ Fp for i ∈ [1, N ], j ∈ [1, d].
5. Denoting ci := (cj,i)1≤j≤d; c := (c1, c2, . . . , cN), the receiver computes

zi := ci − ui ∈ Fdp, and then sends zi and tr to the sender.
6. The sender aborts if H′(tr) 6= hr.
7. The sender sends ts to the receiver, the receiver aborts if H′(ts) 6= hs and

both parties define t = ts ⊕ tr.
8. The receiver outputs the PRF values on the input x ∈ xi for i ∈ [1, N ] as

F (i, x) = H

(
i|t|x ,

d∑
j=1

vj,i · xj−1

)

9. For i ∈ [1, N ], the sender defines ki = wi + ∆zi. For any input (i, y) ∈
[1, N ]× Fp, the sender computes the PRF output by below formula

F (i, y) = H

(
i|t|y , ∆ · yd +

d∑
j=1

kj,i · yj−1

)

Fig. 3. Our batch BaRK-OPRF Πoprf based on subVOLE

this coefficient will equal 0 or 1 since the degree of Pxi
(X) is less than or equal

to d. So, it requires (d+1) masks for this polynomial instead of d, but the mask
for the coefficient of degree d only needs to be in F2. For each tuple, we require
an additional value ui ∈ F2, so in total we need an additional subfield VOLE of
length N over the subfield F2.

More formally, the sender and receiver invoke a subfield VOLE of length
n over the subfield Fp as before (all the notations in figure 3 are reused),
and additionally invoke another subfield VOLE instance over the subfield F2 of
length N with an inverse role, while the receiver gets u′ ∈ FN2 , and v′ ∈ FNq the
sender holds ∆ ∈ Fq (∆ is the same for each time invoking subfield VOLE) and
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w′ := ∆ · u′ + v′. The receiver sends to the sender vectors zi as before, and an
extra vector z′ defined as z′i := cd+1,i − u′i for i ∈ [1, N ]. The receiver outputs
on input x ∈ xi are computed as F (i, x) = H(i|t|x , v′i · xd +

∑d
j=1 vj,i · xj−1).

On the other hand, the sender defines their PRF values on input (i, y) where
i ∈ [1, N ], y ∈ Fp as F (i, y) = H(i|t|y , (w′i +∆z′i) · yd +

∑d
j=1 kj,i · yj−1).

Main construction of a new PSI. The sender and the receiver have two
input sets X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. Assume that all of
these elements have the bit-length `. Intuitively, our BaRK-OPRF is constructed
from subVOLE to handle the case when having multiple items per bin. Then this
specialized BaRK-OPRF can combine with some hashing techniques to form an
efficient PSI protocol. In the next part 4.2, we discuss these types of hashing.
Our PSI protocol is described in Figure 4; it builds upon the protocol of [18]
using GCH and BaRK-OPRF. For simplicity, we describe our protocol directly
with generalized Cuckoo hashing; adapting the protocol to other variants is
immediate. We elaborate on our protocol below. In our protocol, the receiver
first uses (d, k)-Cuckoo hashing to map his input set Y to a table with N bins,
note that the bit-length of the values stored in a bin is ` − logN insted of `.
Depending on the size of n, we use one of two approaches to handle the bins which
are not full (the threshold was chosen empirically to optimize communication).
– If n ≥ 220, the variant of our BaRK-OPRF (using an additional subfield

VOLE over F2) is used; for such sizes, the concrete cost of implementing the
additional sVOLE vanishes.

– Otherwise, when n < 220, the receiver adds dummy items to bins such that
each bin contains exactly d items. To avoid collisions between the dummy
items and the elements in the same bin of the sender, we pad an extra bit
to all items in the following way: i|x|b where i is the index of hash function
corresponding with the stored value x while b = 1 if x is a dummy item
added and b = 0 otherwise.

In both case, the sender computes k · n PRF evaluations and sends (shuffled)
to the receiver, who compares them with his OPRF outputs, and outputs the
intersection set. To reduce the computational cost in this step, the sender can
send separately each set Hi (i ∈ [1, k]) which contains the PRF outputs of each
x ∈ X with the related bin hi(x). Then for each element, the receiver only needs
to search for one set (among k sets Hi) of n items instead of k · n.
Alternative hashing methods. There are two hashing schemes that can be
fit into our PSI structure.

2-choice hashing [20] is a variant of Cuckoo hashing where one item x is
assigned to one of two bins h1(x) or h2(x). However, there is no restriction on
the number of items per bin and an item is put in a bin which already has
fewer items. [20] proposes both theoretical references and heuristic parameters
for 2-choice hashing, which require only a small number of dummy items. Let
us assume we have n items and 2 hash functions; using 2-choice hashing allows
to map n items to N bins in time O(n log n) where each bin contains at most
L = dn/Ne+ 1 items with a probability 1−O(1/N)L−1.

Simple hashing uses one hash function h to map an item x to bin h(x). For
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PARAMETERS:

– The sender and the receiver have respectively input sets X = {x1, x2, . . . , xn} and
Y = {y1, y2, . . . , yn}, all elements of bit-length `.

– A (d, k)-generalized Cuckoo hashing (GCH) scheme mapping n items to N bins by
k hash functions h1, h2, . . . , hk : {0, 1}∗ → [N ] where Nd > n and d = O(1) (see
Section 4.2).

PROTOCOL:

1. The receiver uses (d, k)-Cuckoo hashing with k hash functions to map the elements
in Y to the table B consisting of N bins, where each bin i has ji ≤ d items.
Denote yj,i is an element in Y assigned to position j of bin i and its stored value
in table B is y′j,i.

2. Depending on the size of n, there are two alternatives:
(a) n ≥ 220, the sender and receiver invoke our variant of Πoprf where the receiver

uses the input set YB = {y1,y2, . . . ,yN} defined as follows:
– yi = {r1,i, r2,i, . . . , rji,i}.
– rj,i = t ‖ y′j,i where t is index of a hash function such that ht(yj,i) = i.

(b) n < 220, the sender and receiver directly invoke the Πoprf where the receiver
uses the input set YB = {y1,y2, . . . ,yN} defined as follows:
– yi = {r1,i, r2,i, . . . , rd,i}.
• For j ≤ ji: rj,i = t ‖ y′j,i ‖ 1 where t is index of hash function such

that ht(yj,i) = i.
• Otherwise, rj,i = t ‖ dummy value ‖ 0 where t←r [1, k].

3. The receiver obtains n instances OPRF:

Y ′ = {PRF(i , ri,j) | i ∈ [1, N ] , j ≤ ji}

4. The sender uses the k hash functions to map the n element in X to the N bins.
Let xt denote the value stored at bin ht(x) when mapping x for t ∈ [1, k].

5. The sender computes the sets of k · n PRF outputs:
(a) For n ≥ 220: Ht = {PRF(ht(x) , t ‖ xt) | x ∈ X} for t ∈ [1, k].
(b) For n < 220: Ht = {PRF(ht(x) , t ‖ xt ‖ 1) | x ∈ X} for t ∈ [1, k].
Then the sender randomly permutes and sends each set to the receiver.

6. The receiver finds the intersection:
– if y ∈ Y is mapped to the position j of bin i by function ht then check whether

PRF(i, ri,j) ∈ Ht (ri,j is defined depending on n).
– Outputs the intersection set.

Fig. 4. Our new semi-honest PSI protocol from BaRK-OPRF

security, the number of items per bin can leak some information then it requires
padding each bin with dummy items until having an equal number of items per
bin. With very high probability, for N = O(n log n) bins, the maximum possible
items per bin is O(log n). The percentage of the occupation of dummy items is
higher than others. However, simple hashing avoids ambiguities about where an
item can be placed, a property which is crucial in the malicious setting.

Parameters. In this section, we discuss concrete parameters used in our new
PSI semi-honest protocol. We use κ = 128 and λ = 40. The protocol contains
several parameters:
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The length of OPRF output. The output domain of PRF would be {0, 1}v where
v = λ + 2 log2(n) guarantees a 2−λ bound on the collision probability of PRF
outputs among the two size-n sets. Furthermore, communicating the hashes can
be reduced to communicating only ≈ λ + log n bits per hash, using a heuristic
technique of [31] that directly leads to an optimization of our PSI protocol.

The size of Fp and Fq in BaRK-OPRF. After using permutation-based hashing,
each element is mapped to a bin with a stored value in this bin, the bit-length
reduces from ` to ` − logN . The input set of BaRK-OPRF in PSI protocol
constructs from stored values concatenating with some extra bits. Then the
bit-length of an input element of BaRK-OPRF is computed as ` − logN + 1 if
n ≥ 220 or `−logN+2 otherwise, i.e, the size of q = 2`−logN+1 or q = 2`−logN+2

respectively.

Generalized Cuckoo hashing. We use a (d, k)-general cuckoo hashing scheme
without stash. The parameters are chosen such that the failure probability is
2−λ. When d = 1, k = 3 these parameters are identical with KKRT except for
the number of bins increases slightly to N = 1.3n which is a trade-off to obtain
no stash. Even with the higher number of bins, our PSI protocol significantly
outperforms KKRT.
To minimize the overall communication, we set k = 2 to reduce the cost of
sending k · n PRF outputs. We used a Python script to simulate randomly
assigning n values to N = c · n bins using (d, 2)-Cuckoo hashing, for several
values of d and c, and for n = 29, 210, 211, 212. For a value of c as low as 0.65,
we never observed any insertion failure over 107 trials for each values of n (for
n = 212, we could only do 106 trials), when using d = 3 items per bins. For d = 2,
the failure probability became noticeable already for c ≈ 1. Based on known
theoretical analysis of (d, k)-Cuckoo hashing, the failure probability is known to
scale inverse polynomially with n. Therefore, we expect that for reasonably large
values of n (e.g. n ≥ 218), our parameters should guarantee a failure probability
significantly below 2−40.

2-choice hashing. Following the analysis of [20], we set the number N of bins to
n/3, and the maximum load d = L+1 to 4. This guarantees a failure probability
which we empirically estimate to be 1/NL−1, which is below 2−40 for all values
of n above 214.

Simple hashing. Eventually, for simple hashing, we set arbitrarily the number of
bins N to n/10, and derive the corresponding value of d from Figure 5 in [26]. We
note that the parameters for simple hashing are much less heuristic that the other
two, in that concrete bound can actually be achieved which are relatively close
to the heuristic (computer-estimated) bounds. For example, [20] experimentally
observes that for a 2−40 failure probability, setting d = 47 suffices when using
N = n/10 bins. Using a standard Chernoff bound, it is in fact straightforward
to prove formally that d = 49 already suffices to reach this failure probability,
which is very close to the experimental bound. In contrast, experimental bounds
in more complex hashing variants are typically much more distant from provable
bounds. The choice of N = n/10 is entirely arbitrary: any smaller N leads to
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better communication, but requires using higher values of d, leading to worse
computation (due to the need to perform N polynomial interpolations with
degree-d polynomial). This allows for a smooth tradeoff between communication
and computation, where better computational power can be used to further
reduce the communication. At the extreme end of the spectrum, using N = 1 and
d = n requires one expensive degree-n polynomial interpolation, but can achieve
extremely low communications, e.g. 93n bits of communication for ` = 32 and
n = 220.

Efficiency. We compare the communication of our protocols, using three hash-
ing methods, on Table 1. Regarding computation, we provide a breakdown of the
computation costs of our protocols in the Appendix of full version [9]. Briefly,
though, compared to the protocol of [27], and when using a standard choice of
parameters for our protocol (e.g. n = 220, and using generalized Cuckoo hash-
ing with d = 3 and N = 0.65n), our protocol requires essentially a length-1.9n
VOLE (with a small subfield), 0.65n degree-3 polynomial interpolations (roughly
3n multiplications over a small field), and computing n hashes. In contrast, the
enhanced version of [27] (using the OKVS of [13] and the VOLE of [11]) will
require solving a linear system to set up an OKVS (this requires on the order
of (1.3 log n + λ)3 multiplications over F2128 , plus O(λn) operations), comput-
ing a length-1.3n VOLE (over F2128), and computing 2n hashes. The cost of
the VOLE dominates that of performing n hashes, so for sufficiently large set
sizes (n � 220), the protocol of [27] should become roughly 30% more efficient
than our protocol computation-wise. For smaller sets (e.g. n ≈ 216), the cost
of setting up the OKVS becomes more significant, requiring around 20n field
multiplications over F2128 , hence the computational efficiency of our protocol
becomes roughly on par with that of [27]. Of course, real runtimes can vary due
to e.g. cache misses, so these estimations should only be viewed as a first order
approximation indicating that the computational efficiency of our protocols is
close to that of [27] (but likely slightly larger).
In terms of computation, the main computational overhead comes from per-
forming N polynomial interpolations of only degree-d polynomials. Based on our
analysis, to achieve 2−λ = 2−40 probability of insertion failure, the following
parameters can be chosen:
– N = 0.65n and d = 3 for generalized Cuckoo hashing (GCH),
– N = 0.33n and d = 4 for two-choice hashing,
– N = n/10 and d ≈ 46 for simple hashing.

As the above illustrates, the cost of performing N polynomial interpolations
will be very small for GCH, two-choice hashing, but becomes higher for simple
hashing (though performing n/10 degree-46 interpolations remains reasonably
fast).

4.3 A malicious PSI from mOPRF

In this section, we propose a maliciously secure PSI protocol based on our BaRK-
OPRF (section 4.1) and simple hashing combining a permutation-based hash
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function. The PSI protocol is shown in figure 5 and its security against a cor-
rupted adversary is proven in theorem 2. The estimated overhead communi-
cation cost of this PSI is Nd(` − logN) + (κ + log n)n + o(n). Observe that
the PSI protocol in section 4.2 is insecure against malicious settings since the
general hashing scheme does not allow the simulation in ideal world. To han-
dle this we use simple hashing schemes with only one permutation-based hash
function. This protocol is constructed from the natural approach used recently
in [10,20,21,27], i.e, Alice (a sender) and Bob (a receiver) invoke the Foprf then
Bob gets the PRF values on his input and Alice enables to compute the PRF on
any input so Alice computes on her input after that she sends these PRF values
to Bob; Bob compares and outputs the intersection.

PARAMETERS:

– Alice (sender) and Bob (receiver) have respectively input set X =
{x1, x2, . . . , xn} ∈ Fp and Y = {y1, y2, . . . , yn} ∈ Fp, all elements of bit-length
`.

– A random hash functions h : {0, 1}∗ → [N ].
– A Permutation-based hashing Perh,X maps a set X to table BX consisting of N

bins such that each bin has d slots where Nd > |X|, and d = O(1). Denote
Per(x) := (i, x′) where x′ is the stored value of x in bin i which defined by h and
x then Per−1(i, x′) = x.

PROTOCOL:

1. Bob uses Per to map Y to BY , for each empty slot in each bin BY [i], put here a
dummy item of length `− logN .

2. Alice sends (sender, id) and Bob sends (receiver, id,BY) to Foprf then
– Bob receives the Y ′ = {F (i, y′) | y′ ∈ BY [i]}i≤N .

3. For each x ∈ X, Alice queries x to Foprf with corresponding input (i, x′) such that
Per(x) = (i, x′), then Alice gets F (i, x′). Alice sends to Bob

U = {F (i, x′) | x ∈ X ∧ Per(x) = (i, x′)}

4. Now for each y ∈ Y , Per(y) = (i, y′), if F (i, y′) ∈ U then Bob outputs y as an
element in the intersection.

Fig. 5. Our malicious PSI protocol based on Foprf

Intuitively, in a malicious setting, when the sender is corrupted, the simu-
lation needs to extract the sender’s input set X from the queries to Foprf and
the set U . Denote F (y) := F (i, y′) where Per(y) = (i, y′) and the set of all ele-
ments queried to Foprf is X ′ where n′ = |X ′|. The extraction procedure is that
X = {x ∈ Fp | x ∈ X ′ ∧ F (x) ∈ U}. Observe that if there exist two distinct
elements x1, x2 ∈ X ′ such that F (x1) = F (x2) ∈ U then more than one ele-
ment is extracted to X. The probability of existing collision is 2−v+2 logn′

then
one approach to avoid collision is choosing v = 2κ. However, when v = 2κ, the
overhead communication cost significantly increases.
Therefore, another approach is that Sim only extracts elements x ∈ X ′ if its
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PRF is distinct and appears in U , i.e, x ∈ X ′ such that F (x) ∈ U and @x′ ∈ X ′
where F (x) = F (x′). [27] proposed this simulation and claimed that if the
output domain of PRF v = κ then this simulation is correct and can not be
distinguishable from the real protocol. We point out the proof of [27] has a gap
and show that the output of PRF should be κ+ log n.

Indeed, if there exist some x1, x2 ∈ X ′ such that F (x1) = F (x2) then Sim
only needs to extract x1, x2 when one of them is in Y . Let assume x1 ∈ Y , the
probability of F (x2) = F (y) for some y ∈ Y is 2−v+log (nY ) since Y is first fixed
before the function F is sampled. [27] shows nY = O(κ) then the security can
hold if v = κ. However, this should be v = κ + log nY since nY = O(poly(κ))
instead of O(κ). In particular, PSI protocols in [27] are targeted on large input
set because of the usage of vector OLE.

Theorem 2. The PSI protocol on Figure 5 securely realizes the ideal function-
ality Fpsi over the field Fp for set size n and malicious set size nX = n, nY = Nd
with statistical security against malicious adversaries in Foprf hybrid model.

In general, the malicious PSI (figure 5) has a communication cost that depends
on the security parameter κ and is dominated by κn. We now present a new
PSI protocol that is secure in malicious setting via a dual execution while its
communication cost only depends on the statistic parameter λ and the set size n.
The idea of using a dual execution has been used in [26] but when combining this
with our BaRK-OPRF it achieves efficient results, i.e, the total communication
cost is only 2Nd(`− logN) + n(λ + log n) + o(n). The detailed construction of
dual PSI is shown in the Appendix of full version [9].

5 A standard PSI from subfield-ring OLE
In this section, we describe a new PSI protocol, which builds upon a (simple vari-
ant of) a pseudorandom correlation generator for the ring-OLE correlation [7].
Our protocol enjoys a number of important features: it is in the standard model,
achieves malicious security at essentially no cost, has low communication (com-
petitive even with the best maliciously secure PSI protocols in the random oracle
model), and reasonable computation (albeit superlinear in n). Our protocol can
also be generalized to a powerful notion of batch non-interactive PSI, where (after
a small logarithmic-cost preprocessing step with each server) a client can broad-
cast a single encoding of his database, and then obtain the intersection with any
of the server databases at any time after receiving a single message from this
server. We believe that this functionality itself is of independent interest.

5.1 Semi-Honest Batch Non-Interactive PSI from Subfield
Ring-OLE

We describe a new PSI scheme in the semi-honest model. Our protocol enjoys
two interesting features: (1) it is in the standard model, and (2) it is a batch
non-interactive protocol, a useful communication pattern which we describe af-
terwards. The full construction is represented on Figure 5.1.
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Theorem 3. The PSI protocol on Figure 5.1 securely realizes the ideal func-
tionality Fpsi over the field Fp with set size n and malicious set size n′ = nX =
nY = 2n, with statistical security against augmented semi-honest adversaries in
the Fsole hybrid model.

Above, “augmented semi-honest security” refers to a strengthening of honest-
but-curious corruption where the adversary is allowed to change the corrupted
parties’ inputs. This is a standard strengthening of semi-honest security, which
has been argued to better capture real-world security [16]. It will also facilitate
upgrading security to the malicious setting later on.

Batch non-interactivity. To securely realize the functionality Fsole, we rely
on the PCG-based protocol of [7] (using a straightforward adaptation to the
subfield setting), which is secure under the ring-LPN assumption. Interestingly,
instantiating the subfield ring OLE this way allows to import a powerful feature
of the PCG of [7], which is its programmability : when generating a ring-OLE
correlation, the receiver can ensure that her output a remains identical across
multiple instances of the protocol with different parties.

This feature enables the following communication structure: after a short
(logarithmic-communication) interaction with N servers, a client, playing the
role of Alice with input set A, can broadcast a single compact encoding of her
dataset to all the servers (with input sets B1 · · ·BN ). Afterwards, each server Bi
can at any time send a single message mi to Alice, from which she can recover
A∩Bi without further interaction. To our knowledge, this batch non-interactive
communication pattern was never achieved by any prior proposal; we believe
that it can make our protocol appealing in realistic scenarios.

More concretely, after a logarithmic-communication preprocessing phase where
Alice sets up PCG seeds with each of servers, Alice broadcasts the value tA =
a − pA to everyone, which communicates 2n log p ≈ 2`n bits. This message
can be seen as a compact public encoding of her dataset (it is only twice as
large as Alice’s set). Afterwards, each server can complete the protocol of Fig-
ure 5.1 by sending a single message (b1, tB) to the receiver, of length 3n log q ≈
3(λ+2 log n)n, from which the receiver can locally recover X∩Xi. Furthermore,
using the encoding technique of [31], the λ + 2 log n term can be reduced to
λ+ log n (the improvement is based on the observation that for an appropriate
ordering, n random elements of a set of size 2λ+2 logn are on average at distance
2λ+logn for each other, hence the cost of transmitting them can be reduced to
essentially λ + log n per element by sending the distance between consecutive
elements instead).

Efficiency. The communication cost of protocol (Figure 5.1) is n · (2 log p +
3 log q) + o(n) bits of communication. Here, the size of the subfield Fp depends
only on the bitsize ` of the items in the sets A and B, hence we can set log p =
`. As we will see in the analysis, log q must be set to log q ≈ λ + 2 log n to
guarantee λ bits of statistical security. This leads to a total communication of
n · (2`+3λ+6 log n)+ o(n) bits, which is reduced to n · (2`+3λ+3 log n)+ o(n)
with the encoding of [31]. The o(n) term above captures the cost of distributing
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the PCG seeds of the subfield ring-OLE (we discuss the concrete value of o(n)
later on, for our maliciously secure version of the protocol).

Regarding computation, the computational cost scales as O(n log2 n) due to
the fast polynomial interpolations, or as O(n log n) when using cyclotomic rings.
We provide a concrete analysis of the computational cost of the maliciously
secure version of our protocol in Section 5.2.

PARAMETERS:

– Two rings Rp = Fp[X]/F(X) ⊆ Rq = Fpt [X]/F(X), where F (X) has degree
2n+ 1.

– The sender (Alice) and receiver (Bob) have respective input sets A =
{a1, a2, . . . , an} ⊂ Fp and B = {b1, b2, . . . , bn} ⊂ Fp.

– A subfield ring-OLE in the ring Rq over the subring Rp.

PROTOCOL:

1. (Setting up the correlation) Alice and Bob encode their sets to pA =∏n
i=1(X−ai), pB =

∏n
i=1(X−bi) respectively, and invoke Fsole to generate

a subfield ring-OLE correlation over Rp,Rq: Alice receives (a, sA) ∈ Rp×
Rq and Bob receives (b, sB) ∈ R2

q such that sA + sB = ab.
2. (Broadcasting the client set encoding) Alice computes and sends

tA = a− pA to Bob.
3. (Server-to-client message) Bob sets s′B ← sB − tAb. Then, Bob de-

composes b as b = b0 + b1 · Xn (where b0, b1 are degree-n polynomials),
sets s′B ← sB − tAb, and picks a random degree-n polynomial b′0 over Rq.
He sends b1 and tB ← s′B + pBb

′
0 to Alice.

4. (Output) Alice sets u← tB−pAb1 ·Xn+sA; note that u = pAb0+pBb
′
0.

Alice outputs the set I = {x ∈ A | u(x) = 0}.

Fig. 6. Augmented semi-honest PSI protocol based on ring-OLE

5.2 Maliciously Secure PSI in the Standard Model

In this section, we upgrade the security of our protocol to the malicious setting.
Our upgrade introduces only a minimal communication overhead to the protocol,
independent of the set sizes n. The full protocol is represented on Figure 5.2.

Theorem 4. The PSI protocol on Figure 5.2 securely realizes the ideal func-
tionality Fpsi over the field Fp with set size n and malicious set size n′ = nX =
nY = 2n, with statistical security against malicious adversaries in the Fsole-
hybrid model.

Efficiency. Our malicious protocol has minimal communication overhead over
our augmented semi-honest protocol. The main overhead stems from starting
from a slightly larger field in which two elements can be “reserved elements”. If
p′ is a prime power and ` ≈ log p′, the price to pay is therefore increasing ` to log p
where p is the smallest prime power above p′+2. While an exact expression would
be rather tedious, for any reasonable input size this cost should be negligible (the
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PARAMETERS:

– A field Fp′ and two rings Rp = Fp[X]/F(X) ⊆ Rq = Fpt [X]/F(X), where
F (X) has degree 2n + 1 and |Fp′ | ≤ |Fp| − 2. map is an efficient (and
efficiently invertible) injective mapping, with map(Fp′) ⊆ Fp \ {0, 1}.

– The sender (Alice) and receiver (Bob) have respective input sets A =
{a1, a2, . . . , an} ⊂ Fp′ and B = {b1, b2, . . . , bn} ⊂ Fp′ .

– A subfield ring-OLE in the ring Rq over the subring Rp.

PROTOCOL:

1. (Setting up the correlation) Alice and Bob encode their sets to pA =
c · (X−1) ·

∏n
i=1(X−map(ai)) with c = −(

∏n
i=1(−map(ai)))

−1 (note that
this guarantees pA(0) = 1 and pA(1) = 0) and pB =

∏n
i=1(X − map(bi))

respectively. Alice and Bob invoke Fsole to generate a subfield ring-OLE
correlation over Rp,Rq: Alice receives (a, sA) ∈ Rp×Rq and Bob receives
(b, sB) ∈ R2

q such that sA + sB = ab.
2. (Broadcasting the client set encoding) Alice computes and sends

tA = a− pA to Bob.
3. (Server-to-client message) Bob sets s′B ← sB − tAb. Then, Bob de-

composes b as b = b0 + b1 · Xn (where b0, b1 are degree-n polynomials),
and sets s′B ← sB − tAb. He sends b1 to Alice.

4. (Checking pA) Alice computes s′A ← sA − pAb1 · Xn. Alice sends y ←
s′A(0) to Bob. If y 6= b0(0)− s′B(0), Bob aborts. Else, Bob picks a random
degree-n polynomial b′0 over Rq and sends tB ← s′B + pBb

′
0 to Alice.

5. (Output) Alice sets u← tB−pAb1 ·Xn+sA; note that u = pAb0+pBb
′
0.

If u(1) = 0, Alice aborts; otherwise, Alice computes the set I = {x ∈
A | u(map(x)) = 0} and outputs I.

Fig. 7. Maliciously secure PSI protocol in the Fsole-hybrid model

simplest strategy is to pick p′ = 2` and p = 2`+1, in which case ` is increased by
one bit, but much better encoding methods exist). Therefore, the communication
remains n · (2`+3λ+6 log n)+o(n) bits, or n · (2`+3λ+3 log n)+o(n) with the
encoding of [31]. We provide a more concrete analysis of the o(n) term (setting
up the ring-OLE) in the malicious setting in the Appendix of full version [9].

Computation cost. Note that our standard model protocol shares with our other
protocols the feature of having a communication independent of κ. Our protocol
requires more computation compared to the best ROM-based protocols, due to
its use of polynomial interpolation. However, it still allows for very fast PSI
computation (we estimate a few seconds to compute the intersection between
databases of size 220, on one core of a standard laptop). Concretely, the protocol
requires only

– a single degree-n polynomial interpolation, one FFT over a polynomial ring
with degree-2n polynomials, and 3 multiplications of degree-n polynomials
for the receiver, and

– a single degree-n polynomial interpolation, one FFT as above, 2 multiplica-
tions of degree-n polynomials, and a single n-multipoint polynomial evalua-
tion for the sender.
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Furthermore, both polynomial interpolations only have to be performed over a
field F, of size |F| ≈ 2` where ` is the bit size of the set items (e.g. 32 or 64 bits),
and the multipoint evaluation is over a field of size λ+ 2 log n bits. This stands
in stark contrasts with previous state of the art protocols [20] that relied on
polynomial interpolation (on top of using the ROM), where the interpolations
and multipoint evaluations had to be performed over a very large field F of size
|F| ≈ 2400. By using a cyclotomic ring, the FFTs and polynomial multiplications
are much faster than the interpolations. On Table 1.1, we compare our protocol
to the current fastest maliciously secure PSI protocols [21,27,29].
On the attacks of [1]. We note that constructing maliciously secure PSI pro-
tocols using an algebraic approach, along the lines of our protocol, is known
to be non-trivial and error prone. Indeed, previous works [14] used a similar
approach based on polynomial manipulation, OLEs, and the lemmas about the
polynomial (appear in the Appendix of full version [9]), to build a malicious PSI
protocol. However, their protocol was found to be insecure in a recent preprint,
which described powerful concrete attacks on this proposal [1]. Intuitively, the
key technical difficulties revolve in both cases around how to handle null poly-
nomials (pA = 0 or pB = 0). In our specific context, it turns out that our direct
use of ring-OLE enables relatively elegant and simple (in hindsight) strategies
to enforce nonzero polynomials. Our modification has almost no impact on the
communication or the computation of our protocol, essentially giving us mali-
cious security for free (though we note that we still require an additional round of
communication). It is not, however, completely clear how to adapt our strategy
to the setting of OLE-based algebraic PSI in [14]. We believe that this provides
further support for the intuition that ring-OLE is the right primitive to build PSI
protocols using this algebraic approach (beyond its direct advantage in terms of
communication efficiency).
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