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Abstract. Single Secret Leader Election (SSLE) protocols allow a set
of users to elect a leader among them so that the identity of the winner
remains secret until she decides to reveal herself. This notion was formal-
ized and implemented in a recent result by Boneh, et al. (ACM Advances
on Financial Technology 2020) and finds important applications in the
area of Proof of Stake blockchains.
In this paper we put forward new SSLE solutions that advance the state
of the art both from a theoretical and a practical front. On the theoretical
side we propose a new definition of SSLE in the universal composabil-
ity framework. We believe this to be the right way to model security
in highly concurrent contexts such as those of many blockchain related
applications. Next, we propose a UC-realization of SSLE from public key
encryption with keyword search (PEKS) and based on the ability of dis-
tributing the PEKS key generation and encryption algorithms. Finally,
we give a concrete PEKS scheme with efficient distributed algorithms for
key generation and encryption and that allows us to efficiently instantiate
our abstract SSLE construction.
Our resulting SSLE protocol is very efficient, does not require partici-
pants to store any state information besides their secret keys and guar-
antees so called on-chain efficiency: the information to verify an election
in the new block should be of size at most logarithmic in the number of
participants. To the best of our knowledge, this is the first efficient SSLE
scheme achieving this property.

1 Introduction

Leader Election protocols are of fundamental importance to realize consensus
in distributed systems. The rise of blockchain and its numerous applications
brought renewed interest on this topic and motivated the need to consider con-
sensus protocols that also provide some secrecy guarantees. This is the case, for
example, of leader elections in the context of Proof of Stake blockchains (e.g.,
[AMM18, GHM+17, KKKZ19, GOT19]) where one may wish to randomly se-
lect a secret leader, i.e., a leader that remains hidden until she reveals herself.
In these contexts, leader-secrecy allows to protect against several attacks that
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would otherwise compromise the liveness of the blockchain. Indeed, if a malicious
party could know the identity of a future leader, he could try to deny the leader’s
access to the network (using a denial of service attack, for instance) before the
latter publishes her block, and this would affect, at least temporarily, the liveness
and finality of the system. Bribery attacks could also be carried out with ease
in order to influence the set of transactions that are going to be published.

Many existing solutions address this issue by secretly selecting a few potential
leaders in expectation (e.g. [BGM16, BPS16]). This means that, for every given
round, on expectation a single block leader is elected. Unfortunately, however,
this also means that even many (or zero) leaders may be elected in any round.

This state of affairs led to the quest for an election protocol that secretly pro-
duces a single leader [Lab19], i.e., where exactly one single candidate is able to
prove that she won the election. In principle this problem could be solved using
general multiparty computation. What make such an approach problematic are
however the efficiency requirements desired in a blockchain context. In particu-
lar, beyond being computationally efficient, the protocol should guarantee low
communication complexity (i.e. the total number of exchanged messages should
scale with O(N) or better, where N is the number of miners/users), and more
importantly it should be on-chain efficient: the amount of bits to store on chain,
per new block, should be small (ideally logarithmic in N).

The question of finding such an election protocol was formally addressed in
a recent work of Boneh et al. [BEHG20] who put forward the notion of Single
Secret Leader Election (SSLE, from now on). Informally, an SSLE scheme is
a distributed protocol that secretly elects a leader and satisfies uniqueness (at
most one leader is elected), fairness (all participants have the same probability
of becoming the leader) and unpredictability (if the adversary does not win the
election, she should not be able to guess the leader better than at random).
Boneh et al. [BEHG20] also proposed three constructions meeting this notion
that are based on different approaches and that achieve different efficiency (and
security) tradeoffs (cf. Table 1 for a summary).

Their first SSLE scheme relies on indistinguishability obfuscation (iO) [GGH+13]
and its main advantage is to achieve the lowest communication complexity and
on-chain efficiency; indeed every election involves a single constant-size message
from the winner. At the same time, given the status of iO realizations, this SSLE
protocol is of very limited (if any) practical interest.

The second construction in [BEHG20] builds on Threshold Fully homomor-
phic Encryption (TFHE) [BGG+18] and is asymptotically less efficient than the
iO-based one: every election needs O(t) communication (where t is a bound on
the number of malicious users tolerated by the system) to partially decrypt a
publicly computable ciphertext; after this round of communication, the winner
can prove her victory. A nice aspect of the TFHE-based solution is that it actu-
ally requires only a leveled scheme for circuits that for, say, N = 216 participants,
can be of depth as little as 10. However, other aspects of this solution make it far
from practical. First, it is not on-chain efficient: to make the election verifiable,
O(t) bits of information must be stored in the new block (unless one applies
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a transformation through a general-purpose SNARK proof that t valid partial
decryptions exist). Second, it requires large O(N logN) secret key shares, and
no concrete distributed setup (for the TFHE scheme) is explicitly provided in
[BGG+18]. So to the best of our knowledge one would have to rely on general
multiparty computation techniques to achieve it.

The third SSLE construction in [BEHG20] is based on shuffling and the
decisional Diffie-Hellman assumption. Asymptotically, it performs worse than
the other two solutions: every new election requires to communicate and store
in the new block a freshly shuffled list of N Diffie-Hellman pairs5 (along with
a NIZK of shuffle). Notice that this makes the solution inherently not on-chain
efficient. The authors also describe a lightweight variant whose communication
costs are O(

√
N), but the tradeoff here is a scheme with significantly lower

security guarantees, as the secret leader is selected in a public subset of only√
N users.

We note also that both the iO and TFHE-based SSLE protocols need a
trusted setup. The latter must be realized with a distributed protocol and should
be in principle refreshed when new users join the system. On the other hand, the
shuffle-based solution is essentially setup-free and thus can handle more easily
users that join and leave the system dynamically.

Beyond efficiency considerations, another fundamental limitation of the con-
structions above is that they are proved secure with respect to a (stand-alone)
game-based definition which makes their actual security in concurrent settings
unclear. This is problematic in practice as it is hardly the case that distributed
consensus protocols are executed stand-alone.

Given this state of affairs, the main question that motivates our work is:
is it possible to build an SSLE protocol that is on-chain efficient and achieves
good practical performances while also realizing strong composability guarantees?

1.1 Our contribution

In this paper we propose a new SSLE solution that answers the above question
in the affirmative. Our first contribution is the proposal of a new definition of
SSLE in the universal composability model [Can01] (see Section 3). We believe
this to be the right notion to model security in the highly distributed, often
concurrent, blockchain-like applications where electing a leader is required. Our
new definition implies the game-based definition of Boneh et al. [BEHG20], but
the converse is not true.

As a second contribution, we propose a UC-secure construction of SSLE. In
particular, we give a generic protocol based on public key encryption with key-
word search (PEKS) [BDOP04], and then propose an efficient instantiation of it
based on pairings under the SXDH assumption. The latter is our main technical
contribution: it is a protocol that achieves the same (asymptotic) communica-
tion complexity as the TFHE-based solution from [BEHG20] while achieving, in

5 Precisely, when the winner no longer wants to participate in future elections, there
is no need to shuffle for the next election; we ignore this special case in our analysis.
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SSLE Security Election efficiency

model Rounds Comm. On-chain

iO Game-based 0 O(1) O(1)
TFHE Game-based 1 O(t) O(t)
Shuffle-N Game-based 1 O(N) O(N)

Shuffle-
√
N Game-based 1 O(

√
N) O(

√
N)

Ours UC 1 + 1 O(t) O(κ logN)

Table 1. Comparison between the SSLE solutions from [BEHG20] and the SSLE of
this work. ‘On-chain’ refers to the amount of information to be stored on chain in the
new block after every election. Shuffle-

√
N achieves a weak unpredictability notion.

Everywhere, in O(·) we include the fixed security parameter λ. κ is a statistical security
parameter that gives meaningful security for κ = logN .

addition, on-chain efficiency and much better practical performance. We refer
to Table 1 for a comparison between ours and the previous solutions and to
the next section for an overview of our protocol. We note that, although our
protocol requires a total of 2 rounds of communication to prepare an election,
the first round can actually be executed in a preprocessing phase and shared to
prepare many elections, thus making the online rounds effectively 1, as in the
other solutions. Moreover, the protocol does not require parties to keep any state
across rounds of communication, besides their secret keys.

An overview of our SSLE protocol. Let us describe our protocol and its
efficiency in slightly more detail. PEKS is a notion of functional encryption
[BSW11, O’N10] in which given a ciphertext c encrypting a keyword w and
secret key sk associated to another keyword w′, the decryption allows one to
learn if w = w′ and nothing more. Our SSLE protocol is based on the following
simple idea. For every election a small subset of users generates a ciphertext c
that encrypts a random keyword j ∈ {0, . . . , N − 1}. At registration time, each
user is given a secret key ski associated to an integer i, and can claim victory by
giving a NIZK proof that she can decrypt the election’s ciphertext.

More specifically, our protocol consists of two phases: (1) a setup (done rarely)
in which the users run an MPC protocol to generate the public key of the PEKS
and distribute its secret keys, (2) an election’s procedure in which a randomly
sampled committee of κ players generates a commitment to the election’s ci-
phertext in a distributed way. The commitment is then opened in a distributed
way. Whoever knows a secret key that decrypts the ciphertext is the leader.

We formalize this approach in a generic SSLE protocol that we prove UC-
secure assuming ideal functionalities for the setup and encryption algorithms
of any PEKS (see Section 4). Our main technical contribution, however is to
design an efficient instantiation of this blueprint, by showing an “MPC-friendly”
PEKS and by proposing very efficient (distributed) protocols for the setup and
election phases. To devise such a PEKS we build on (a modified variant of)
the functional encryption for orthogonality (OFE) scheme recently proposed by
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Wee [Wee17]. Furthermore we extend this functionality to test keywords equality
mod N albeit the message space is over a large field Fq. We refer to this new
primitive as modular PEKS.

Informally, the committed ciphertexts created in the election procedure are
(plain) El Gamal encryptions of Wee’s ciphertexts. An immediate advantage of
this approach is that it allows for a very efficient setup procedure: it merely
consists in a threshold key generation for El Gamal followed by the key genera-
tion for the functional encryption scheme. When relying on a publicly available
random beacon, we show that the latter can be realized efficiently in two rounds
of communication, one of which only used to perform complaints.

More interestingly, however, our proposed scheme allows to complete step
(2) efficiently both in terms of computation and communication. Indeed, our
protocol manages to distributively create valid (committed) ciphertexts c (en-
crypting messages uniformly distributed in a given range) in one single round of
communication! Moreover, this round of communication can be used to generate,
in parallel, as many committed ciphertexts as one wishes, one for every future
election. This way, the communication needed to perform an election effectively
consists of only one round of communication in which O(t) parties send their
partial opening of the election’s ciphertext.

We note that the naïve approach of posting all these O(t) partial openings
in the blockchain would destroy our claimed on-chain efficiency guarantees. In-
terestingly, we can do better than this. Parties can exchange the O(t) partial
openings off-chain and store on-chain only much shorter aggregate values that
still enable anyone to verify the correctness of the election. Recall that opening
our committed ciphertexts consists in, distributively, decrypting corresponding
El Gamal ciphertexts. Simplifying things a bit, in our case this is achieved by
letting players exchange partial decryption shares (K1,i,K2,i) together with cor-
responding NIZKs. These shares are then (locally) multiplied together to get
values (K1,K2) that can be used to retrieve the encrypted ciphertext c. Who-
ever is able to decrypt c correctly can then claim victory. Concretely, in our
protocol, a user can claim victory by posting on the blockchain only (K1,K2),
together with a proof that she can correctly decrypt c. Surprisingly, we show that
a potentially expensive aggregated NIZK proving correctness of (K1,K2) is not
needed for our protocol to be secure, as we prove that coming up with different
(K ′

1,K
′
2) which open the ElGamal commitment to another c′ ̸= c that an ad-

versary is able to decrypt, implies being able to break the underlying functional
encryption scheme.

Concrete efficiency and comparison to previous solutions. To confirm
the concrete performances of our protocol we measure them for N = 214 users,
as suggested in [Lab19]. Our results show that the communication costs of an
election are 34.0 KB to generate the committed election’s ciphertext, 1.57 MB for
the partial decryptions, and 256 B to claim victory. Importantly, out of all this
information, only 34.3 KB per election have to be stored on-chain for verifiability.
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The major cost in our protocol is that of setup, which for 214 users would
amount to 252 MB. This setup, however, is supposed to be performed rarely6.
Indeed, in our protocol we can add new users to the system without running a
full setup: they engage in a registration procedure that allows them to receive
their secret keys, without altering the key material of other users. This can be
done with only 73 KB of communication per registration. If we compare to the
shuffle-N solution of Boneh et al. [BEHG20], our protocol can easily amortize
the expensive setup and results in less communication. In the shuffle-N solution,
the issue is that every time a new user is added (which always includes the
winner of the previous election if he still wants to run) a new shuffle has to
be communicated and posted on-chain: this is about 1 MB per shuffle for 214

users. Concretely, if we assume 50 new users join before every election,7 after 100
elections the shuffle-N scheme generates 6.2 GB to be communicated and stored
on-chain, whereas our protocol involves 1.8 GB of off-chain communication and
only 5.9 MB of on-chain storage.

Our election protocol more in detail. At the heart of our protocol there is
a very efficient method to generate committed ciphertexts of the form discussed
above. Here we informally highlight the main ideas underlying this construc-
tion. Recall that we build our PEKS from a tailored variant of the functional
encryption for orthogonality (OFE) scheme recently proposed by Wee [Wee17].
In OFE a ciphertext is associated to a vector x, a secret key corresponds to a
vector y and decryption allows one to learn if y⊤x = 0. The basic idea of our
(modular) PEKS from OFE is inspired to a transformation from [KSW08] with
a novel tweak.

In what follows, to keep the presentation intuitive, we present a simplified ver-
sion of our methods that, in particular, supports vectors of dimension 2 (rather
than 3 as in our actual scheme) and only allows to test equality of keywords
(rather than equality mod N).

During setup, each party Pi receives a public and secret key mpk, ski of the
OFE scheme, where ski is associated to the vector (1, i). If there were a magic
way to directly produce an encryption c of (m,−1) such that m is uniform over
[N ] (and no user gains any extra information on m), then, using FE.Dec, each
party could test if m = i by simply checking whether (m,−1)⊤(1, i) = 0. Clearly
the only user able to do this could then claim victory. Unfortunately, since no
such wizardry is currently known, we go for the next best option: we develop
a very fast, one round protocol to jointly produce a commitment of such a c8.
The commitment is just a (standard) El Gamal encryption of c that can be
(distributively) opened in one round of communication.

6 As in the TFHE solution, our protocol in practice requires periodic setup to refresh
the secrets shared when many new users join (see Sec. 6 for a discussion on this).

7 This number is justified by [Lab19], where O(log2 N) new users are expected.
8 We stress here that no efficient single round solution to directly produce c seems

possible because of rushing attacks.
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In this informal presentation, we explain how to generate the (committed)
ciphertext, in the simpler case where m is allowed to lie in the slightly larger
interval [κN ]. Our underlying ciphertexts have the following shape9

c0 = [sa]1 , c1 =
[
mσ + sa⊤w1

]
1
, c2 =

[
−σ + sa⊤w2

]
1
.

where [a]1 ,
[
a⊤w1

]
1
,
[
a⊤w2

]
1

are public key elements and s, σ are random val-
ues.10 Using the random beacon, we begin by generating a (small) election com-
mittee Q ⊆ [N ] of size κ and two (random) group elements G,H that can be
interpreted as an ElGamal encryption of [σ]1 in the following way

G = gθ, H = hθ [σ]1

where (g, h) is the El Gamal public key and θ, σ are random and unknown
to participants. Using this public information, each player Pi ∈ Q can create
(committed) encryptions of mi by simply choosing random ri, ρi, si, and mi ∈
[N ] and broadcasting [sia]1 together with

Gmi · gri = gθmi+ri Hmi · hri ·
[
sia

⊤w1

]
1
= hθmi+ri

[
miσ + sia

⊤w1

]
1

G−1 · gρi = gρi−θ H−1 · hρi ·
[
sia

⊤w2

]
1
= hρi−θ

[
−σ + sia

⊤w2

]
1

All these (committed) ciphertexts share the same randomness σ and can thus
be multiplied together to produce the final (committed) ciphertext of the vector
(m =

∑
i∈Q mi,−1). Note that the message m lies in the larger interval [κN ] but

m mod N is uniform over [N ] as long as so is at least one of the mi’s. Finally,
as mentioned earlier, our actual realization (cf. Section 2.5) works around this
issue by managing to test equalities modulo N .

1.2 Other related work

Recently, the importance of SSLE solutions was confirmed by a study by Azouvi
and Cappelletti [AC21]. Their analysis shows substantial security gains (when
compared to probabilistic election schemes) both when considering the private
attack (the worst attack on longest-chain protocols [DKT+20]) and grinding at-
tacks. The problem of extending proof of stake systems to consider privacy was
considered, among others, in [GOT19] and in [KKKZ19]. Leader election pro-
tocols were also considered by Algorand [GHM+17] and Fantomette [AMM18].
There the idea is to first identify few potential leaders (via a VRF) that then re-
veal themselves in order and choose the winner via some simple tie break method
(e.g. lowest VRF output wins). The approach is efficient but has the drawback
that the elected leader does not know she was elected until everybody else pub-
lished their value. Moreover, implicitly requires all nodes to be able to see the
winner’s output: users not getting this information might incorrectly think that
another leader was elected (causing the chain to fork). We stress that this cannot
happen in our setting.
9 For clarity note that group operations are denoted multiplicatively, and that we

make use of the bracket notation, cf. Section 2.1.
10 In Wee’s scheme σ = sa⊤u, with

[
a⊤u

]
1

being an extra element of the public key.
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1.3 Organization

In the next section we start by introducing notation, computational assumptions
and cryptographic primitives used by our schemes. There we also recall the game-
based definition of SSLE from [BEHG20]. Next, in section 3 we give our definition
of SSLE in the universal composability framework. Section 5 includes our main
contribution, that is our efficient SSLE protocol from the SXDH assumption (the
generic SSLE construction from PEKS is given in section 4). Finally, in section
6 we discuss the efficiency of our protocol in a realistic scenario and compare it
with the SSLE based on shuffles by Boneh et al. [BEHG20].

2 Preliminaries

2.1 Notation

λ ∈ N denotes the security parameter. A function ε(λ) is said negligible in λ if
it vanishes faster than the inverse of any polynomial in λ. [n] = {0, . . . , n − 1}.
Bold font (a,u,w, . . .) denotes vectors with entries in a given field or a group.
x←$ S means that x is sampled uniformly and with fresh randomness from S.
N is the number of players and t the threshold parameter.

We denote with G(λ) a bilinear group generator, that is an algorithm which
returns the description of a bilinear group bg = (q,G1,G2,GT , e, g1, g2), where
G1, G2 and GT are groups of the same prime order q > 2λ, g1 ∈ G1 and g2 ∈ G2

are two generators, and e : G1 × G2 → GT is an efficiently computable, non-
degenerate, bilinear map. We use gT = e(g1, g2) as a canonical generator of
GT . When G1 = G2, the groups are called symmetric; otherwise they are called
asymmetric. In our work we use Type-III asymmetric bilinear groups [GPS08]
where no efficiently computable isomorphism between G1 and G2 is known.

Fq is the finite field of prime cardinality q. Given a vector a = (ai)
n
i=1 ∈ Fn

q

and a group element g we denote [a]g = (ga1 , . . . , gan). When the base is g1, g2 or
gT we replace the above notation with [a]1, [a]2 and [a]T respectively. Operations
with vectors in Gn are entry-wise, i.e., for g,h ∈ Gn, g · h = (gi · hi)

n
i=1, ga =

(gai )
n
i=1. Pairings are the only exception where e(g,h) = e(g1, h1) · . . . · e(gn, hn)

for g ∈ Gn
1 and h ∈ Gn

2 . Similarly ga = ga1
1 · . . . · gan

n .

2.2 SXDH assumption

Our efficient construction relies on the SXDH assumption in bilinear groups,
which informally states that the classical DDH assumption holds in both G1

and G2. More formally,

Definition 1 (SXDH assumption). Let G be a bilinear group generator. We
say that the SXDH assumption holds for G if for every PPT adversary A, and
every s ∈ {1, 2} there exists a negligible function ε such that:

|Pr [A(bg, [a]s, [b]s, [c]s) = 1]− Pr [A(bg, [a]s, [b]s, [ab]s) = 1]| ≤ ε(λ)

where the probabilities are over the random choice of a, b, c ←$ Fq and bg =
(q,G1,G2,GT , g1, g2)←$ G(1λ).
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When the above assumption is considered in only one group Gs, for either s = 1
or s = 2, we refer to it as DDH in Gs. We call DDH0 a game in which A received
the first distribution and DDH1 a game in which he receives the second one.

In the paper we also use an extension of DDH for vectors of n elements, called
DDHn, which says it is hard to distinguish ([a1]s , . . . , [an]s , [b]s , [c1]s , . . . , [cn]s),
denoted as DDH0

n, from ([a1]s , . . . , [an]s , [b]s , [a1b]s , . . . , [anb]s) denoted as DDH1
n,

for random ai, b, ci ∈ Fq. We note that DDHn can be reduced to DDH in the
same group [NR97].

2.3 Functional Encryption

We recall the definition of Functional Encryption [BSW11, O’N10].

Definition 2. A functionality F is a family of functions F = {f : X → Y},
where X is the plaintext space and Y is the output space.

Definition 3. A functional encryption scheme for a functionality F is a
tuple (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec) of PPTalgorithms such that

– FE.Setup(1λ) $→ (mpk,msk) generates the secret and public master keys.
– FE.Enc(m,mpk; r)→ c returns a ciphertext. Randomness r may be omitted.
– FE.KeyGen(f,msk) $→ skf returns a key associated to the function f ∈ F.
– FE.Dec(c, f,mpk, skf )→ x a bit string.

The scheme is correct if for any m ∈ X and f ∈ F, sampled mpk,msk ←$

FE.Setup(1λ), c ←$ FE.Enc(m,mpk), skf ←$ FE.KeyGen(f,msk), then up to
negligible probability FE.Dec(c, f,mpk, skf ) = f(m).

We recall the notion of selectively secure FE, which suffices for our goals.

Definition 4. A functional encryption scheme achieves selective security if
for any PPT algorithm A there exists a negligible function ε such that

AdvASSFE(1
λ) =

∣∣∣∣Pr [ExpASSFE(1λ) = 1
]
− 1

2

∣∣∣∣ ≤ ε(λ).

2.4 Functional Encryption for Modular Keyword Search

Recall that the keyword search functionality [BDOP04, ABC+05] is defined as
Fks = {fy : X → {0, 1}}, where each function fy ∈ Fks labelled by y ∈ X is
such that fy(x) returns 1 if x = y and 0 otherwise. Our realization works with a
generalisation of the above where equality are checked modulo a given integer.
Formally we consider the modular keyword search functionality Fκ

mks = {fy :
Fq×Fq → {0, 1}} parametrized by a positive integer κ of polynomial size, where
each function fy labelled by y ∈ Fq are such that fy(x, n) returns 1 if x = y+ δn
for some δ ∈ [κ], and 0 otherwise. Observe that when y ∈ [n] and x ∈ [κn], then
fy(x, n) = 1 if and only if x = y mod n.
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Selective Security Game ExpASSFE(1
λ):

1 : m0,m1 ←$ A
2 : Sample b←$ {0, 1}, mpk,msk←$ FE.Setup(1λ), c←$ FE.Enc(mb,mpk)

3 : Send A ← mpk, c

4 : When A queries f ∈ F, if f(m0) ̸= f(m1) then A ←⊥. Otherwise:
5 : Compute skf ←$ FE.KeyGen(f,msk) and send A ← skf

6 : When A → b′: Return b == b′

Fig. 1. Selective security game for a FE scheme with functionality F

2.5 Our Realization of FE for Modular Keyword Search

We realize our FE scheme for the keyword search functionality Fκ
mks through a

more powerful scheme for the so-called orthogonality functionality [KSW08]. In
the latter we have the message space X = Fn

q and each function fy, defined by
a vector y ∈ Fn

q , is such that fy(x) returns 1 when y⊤x = 0 and 0 otherwise.
A general construction of FE for Fks from an OFE scheme already appears

in previous work [KSW08]. In this paper, we tweak that template in order to
support the Fκ

mks described earlier (see Fig. 2). The idea is that m = γ + δn
if and only if (m,−1,−n)⊤(1, γ, δ) for some δ ∈ [κ]. Therefore, using an OFE
scheme with dimension 3, a ciphertext for m and n is an encryption of the
vector xm,n = (m,−1,−n), while a key for γ is a collection of keys for the
vectors yγ,δ = (1, γ, δ), with δ ∈ [κ]. This way, decryption can be realized by
testing if one of the keys successfully decrypts.

MKS.Setup(1λ):

(mpk′,msk′)←$ FE.Setup(1λ, 3)

Return mpk′,msk′

MKS.Enc(m,n,mpk):

xm,n ← (m,−1,−n)
Return c←$ FE.Enc(xm,n,mpk)

MKS.KeyGen(γ,msk):

For δ ∈ [κ]:

skγ,δ ←$ FE.KeyGen((1, y, δ),msk)

Return skγ ← (skγ,0, . . . , sk,γ,κ−1)

MKS.Dec(c, y,mpk, sky):

Set yγ,δ ← (1, γ, δ) for all δ ∈ [κ]

If ∃δ ∈ [κ] : FE.Dec(c,yγ,δ,mpk, skγ,δ) = 1

Return 1. Else Return 0

Fig. 2. Our FE for Fκ
mks from and orthogonality functional encryption scheme

Note however that the resulting construction is secure under the weaker no-
tion in which the adversary, who initially queries an encryption of (m0, n0) and
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FE.Setup(1λ, n):

Sample a,w1, . . . ,wn ←$ F2
q

mpk←
(
[a]1 ,

[
a⊤w1

]
1
, . . . ,

[
a⊤wn

]
1

)
msk← (wi)

n
i=1 and return (mpk,msk)

FE.KeyGen(y,msk):

r ←$ Fq \ {0}
Return sky ←

[∑n
i=1 ryiwi

]
2
, [r]2

FE.Dec(c,y,mpk, sky):

Parse c = (c0, ci)
n
i=1 with c0 ∈ G2

1

Parse sky = (d0, d1) with d0 ∈ G2
2

Return e(c0,d0)
?
= e(cy11 · · · cynn , d1) ̸= 1

FE.Enc(x,mpk):

σ, s←$ Fq \ {0}
ci ←

[
σxi + sa⊤wi

]
1

Return c←
(
[sa]1 , c1, . . . , cn

)
.

Fig. 3. Our simplified version of [Wee17] FE scheme for orthogonality

(m1, n1), can only ask secret keys for keywords γ such that γ ̸= m0 + δn0 and
γ ̸= m1+δn1 for all δ ∈ [κ]. This restriction (often referred to as weak attribute-
hiding) is sufficient in our application as we want to hide the winner’s index m
mod n only from those users that haven’t won i.e. from those holding keys for
γ ̸= m mod n.

Concretely, we instantiate the construction in Fig.2, with a modified variant
of the pairing-based FE for orthogonality proposed by Wee in [Wee17]. Our
modified scheme is detailed in Figure 3. In the full version we prove the following
theorem.

Proposition 1. The scheme in Fig. 3 is selective secure under the SXDH as-
sumption

2.6 Non Interactive Zero-Knowledge

A non-interactive zero-knowledge (NIZK) proof system for a relation R is a
tuple of PPT algorithms (NIZK.G,NIZK.P,NIZK.V) where: NIZK.G generates
a common reference string crs; NIZK.P(crs, x, w), given (x,w) ∈ R, outputs a
proof π; NIZK.V(crs, x, π), given statement x and proof π outputs 0 (reject) or 1
(accept). We say that a NIZK for R is correct if for every crs←$ NIZK.G(1λ) and
all (x,w) ∈ R, NIZK.V (crs, x,NIZK.P(crs, x, w)) = 1 holds with probability 1.
In our protocols we require the NIZKs to satisfy the notions of weak simulation
extractability [Sah99] and zero-knowledge [FLS90].

About the first property, it only guarantees the extractability of proofs pro-
duced by the adversary that are not equal to proofs previously observed. For
this reason we make them “unique” by adding implicitly a session ID to the
statement. Concretely this means that in the Fiat Shamir transform, the hash
function evaluations need to be salted with a unique session ID. Note that we
won’t detail how to handle these sid (and neither we do this for ideal function-
alities invocations).
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We now define three relations about group elements. The first one checks
whether two vectors g,h ∈ Gn

1 are proportional, i.e., there exists x ∈ Fq s.t.
gx = h. The second one generalizes the previous to linear maps. The third one
asks for solutions to the linear system Ax = b where A, b are given in the
exponent and the last component xn lies in a prescribed range. Formally

RDDH = {((g,h), x) : g,h ∈ Gn, gx = h}
RLin =

{
(([A]1 , [B]1), X) : A ∈ Fk,m

q , B ∈ Fk,n
q , X ∈ Fm,n

q , AX = B
}

RLR = {(([A]1 , [b]1 , R),x) : A ∈ Fm,n
q , b ∈ Fm

q , x ∈ Fn
q , Ax = b, xn ∈ [R]}

We also useREnc andRDec which relates to a given functional encryption scheme.
The first one, given a ciphertext, requires knowledge of the message and ran-
domness used to generate it. The second one instead, given a tuple (mpk, c, f, x)
asks for a correct secret key skf that decrypts c to x. Below we also introduce a
language Lkey to formally capture the notion of correct secret key.

Lkey = {(mpk, f, sk) : ∀m, r; c = FE.Enc(m,mpk; r) ⇒ FE.Dec(c, f,mpk, sk) = f(m)}
RDec = {((mpk, c, f, x), sk) : (mpk, f, sk) ∈ Lkey, FE.Dec(c, f,mpk, sk) = x}
REnc = {((c,mpk), (m, r)) : c = FE.Enc(m,mpk; r)}.

Notice that, by abusing notation, standard asymmetric encryption, being a spe-
cial case of FE, is also captured by this definition.

To construct our protocols, we assume the existence of a NIZK argument
for each of these relations. We note that all of them can be proved through
a sigma protocol, and that Fiat-Shamir based NIZKs from sigma protocols
are weakly-simulation-extractable [FKMV12] based on a special property called
quasi-unique responses. For the relations RDDH and RLin, we can use generalised
Schnorr protocols provided in [Mau15]. For RLR we propose a variant of the
folklore solution based on binary decomposition11, in the full version. Still in the
full version a sigma protocol for RDec appears in the appendix.

2.7 UC model and Ideal Functionalities

The celebrated UC model, introduced in the seminal work of Ran Canetti [Can01],
is a framework that allows to prove security properties of a protocol that are
preserved under composition. This is done by comparing the protocol to an ideal
functionality F defined to capture the intended properties. A protocol securely
realises F if it is indistinguishable from F ◦ S for a given PPT simulator S.
The distinguisher Z, also called the environment, is granted the power to choose
all parties’ input, learn their output and corrupt any number of parties learn-
ing their internal state and influencing their behavior. The challenge for S is
11 In this case the most efficient choice to date may be an adaptation of Bulletproofs

[BBB+18]; however, to the best of our knowledge, this is only known to be simulation-
extractable in the AGM [GOP+21]. We leave the exploration of this optimization
for future work.
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therefore to reproduce all the messages sent by uncorrupted parties in a con-
sistent way with their input/output, even though S cannot access it. To make
this possible in non trivial cases, functionalities are often designed to leak some
information to S and allow the simulator to influence the result in some way.

In Figure 4 we define two functionalities required in our construction: Fzk

and F D
CT which respectively models a zero-knowledge proof of knowledge and a

random beacon. The first one was introduced in [CF01], with the minor difference
that in our case all the parties receive the output messages, deviation justified
under the assumption of an authenticated broadcast channel. FCT instead was
introduced in [CD20] and realised assuming honest majority under standard
assumptions. We remark that our use of the random oracle for the NIZK proofs is
justified assuming a global random oracle in the GUC model [CJS14, CDG+18].
Finally, about our communication model, we assume an authenticated broadcast
channel with known bounded delay [KMTZ13], which implies that messages sent
in broadcast are eventually delivered with potentially different order. Although
this introduce some degree of synchronicity, this is in line with previous work
[BEHG20].

The ZK Functionality FR
zk :

Upon receiving (prove, sid, x, w) from Pi, with sid being used by Pi for the
first time: if (x,w) ∈ R, broadcast (proof, sid, i, x).

The Coin Tossing Functionality F D
CT:

Parametrized by a distribution D. Upon receiving (toss, sid) from all the honest
parties, sample x←$ D and broadcast (tossed, sid, x)

Fig. 4. Description of the functionalities Fzk and FCT

3 Universally Composable SSLE

The notion of single secret leader election was introduced in [BEHG20] as a tuple
of protocols (SSLE.Setup, SSLE.Reg, SSLE.Elect, SSLE.Claim, SSLE.Vrf) aimed at
electing a unique leader among a set of participants who can stay hidden until
she decide to reveal herself. Security of this primitive was captured through
three game-based properties, namely uniqueness, fairness and unpredictability.
However, the underlying security experiments fail to capture scenarios where
multiple executions of the given procedures may occur concurrently. Moreover,
as in most game-based notions, security is not guaranteed to hold when the
primitive is used in a more complex protocol.

For this reason, we propose a definition of SSLE in the universal composabil-
ity model. To this end, we define a functionality FSSLE that performs elections
and reveals the winners in an ideal way. A UC-secure SSLE scheme is then any
protocol that securely realizes FSSLE.

13



At a high-level, FSSLE consists of the following commands. By using (register)
a user can register to an election. When all the honest users call (elect, eid), a
new election with identifier eid is performed, that is, the ideal functionality sam-
ples a winner index j uniformly at random from the set of registered users. By
using the (elect, eid) command, every honest user is informed by the ideal func-
tionality on whether she is the winner of the election eid. Using (reveal, eid), an
honest winning user instructs the ideal functionality to announce the election’s
outcome to everyone. Finally, the (fake_rejected, eid, j) command is reserved to
the adversary and makes FSSLE announce to everyone that Pj is not the winner.
This models a scenario in which an adversary who won an election deviates from
the protocol to claim victory in spite of being the winning leader. The formal
definition FSSLE is detailed in Figure 5.

The SSLE functionality FSSLE:
Initialise E,R← ∅, n← 0 and let M ⊆ [N ] be the set of corrupted parties. Upon
receiving:

– (register) from Pi: add R ← R ∪ {(i, n)}, broadcast (registered, i) and set
n← n+ 1.

– (elect, eid) from all honest parties: if R ̸= ∅ and eid was not requested before,
sample (j, γ) ←$ R and send (outcome, eid, 1) to Pj and (outcome, eid, 0) to
Pi for (i, ·) ∈ R, i ̸= j. Store E ← E ∪ {(eid, j)}.

– (reveal, eid) from Pi: if (eid, i) ∈ E broadcast (result, eid, i). Otherwise broad-
cast (rejected, eid, i).

– (fake_rejected, eid, j) from Z: if Pj is corrupted broadcast (rejected, eid, j).

Fig. 5. SSLE functionality executed among P1, . . . , PN and environment Z

In order to capture constructions that are secure against adversaries capable
of corrupting only a fraction of the participants, we distinguish two thresholds
parameters: t ∈ [N ], which bounds corruptions among all users P1, . . . , PN (even
those who are not registered), and ϑ : N→ N, which upper bounds corruptions
among the set of currently registered users depending on their number. Even
though this notation is non-standard, it allows us to formalise standard assump-
tions such as the existence of an honest majority among currently active users,
which is employed in several blockchain protocols. More formally, we give the
following definitions.

Definition 5. Let t ∈ [N ] and ϑ : N → N. A protocol Π is said to statically
(t, ϑ)-threshold realise FSSLE if there exists a simulator S such that Π is indis-
tinguishable from FSSLE ◦ S for all PPT environments Z that statically corrupt
a set M of parties with |M | < t and such that at each step, calling R the set of
registered users, |R ∩M | < ϑ(|R|).
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Definition 6. A (t, ϑ)-threshold statically secure UC-SSLE is a protocol
Π that (t, ϑ)-securely realise FSSLE. If t = N and ϑ = 1N then Π is called a
statically secure UC-SSLE.

To further motivate our UC-secure notion of SSLE we compare it to the
game-based one. First, with the following proposition, we show that the UC
notion implies the game-based one. For the sake of generality we informally say
that a property is (t, ϑ)-threshold satisfied if it holds against an adversary that
corrupts at most t users and up to ϑ(|R|) of them belong to the set R of those
currently registered at each step. For a more formal treatment see the full version
of this paper, where also a proof of the following appears.

Proposition 2. If Π is a (t, ϑ)-threshold statically secure UC-SSLE protocol,
then its derived SSLE scheme described in Figure 6 satisfies (t, ϑ)-threshold
uniqueness, (t, ϑ)-threshold fairness and (t, ϑ)-threshold unpredictability.

SSLE.Setup:

Pi sets (pp, spi, eid)← (⊥,⊥, 0)

SSLE.Regpp(i):

Pi sends (register, i) to Π

Others wait (registered, i)← Π

SSLE.Electpp:

All players send (elect, eid) to Π and update eid← eid+ 1

When Pi receives (outcome, eid, ·)← Π: return eid

SSLE.Claimpp(c, spi, i):

Send (reveal, c) to Π.

Return π ←⊥

SSLE.Vrfpp(c, π, i):

When (result, c, i)← Π return 1

When (rejected, c, i)← Π return 0

Fig. 6. The derived SSLE scheme from a UC-SSLE protocol Π

Second, we argue that our UC notion is strictly stronger than the game-
based one. For this, we simply observe that taking one of the protocols from
[BEHG20] (e.g., the one based on TFHE or the one based on Shuffling) they
cannot be UC-secure if the zero-knowledge proofs they employ are not UC-
secure.12 In [BEHG20], these protocols are proven secure without making any UC
assumption on these zero-knowledge proofs; so they constitute a counterexample
of protocols that are secure in the game-based sense but would not be secure
according to our UC notion.

12 Here, as the candidate protocol we are assuming the one where each sub proto-
col is used to implement the corresponding command, i.e., SSLE.Reg for register,
SSLE.Elect for elect, etc.
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3.1 A parametrised definition

Definition 6 provides a higher level of security with respect to the game-based
definition in [BEHG20], but at the same time requires more structure from the
underlying protocol and therefore may imply higher costs. In order to leverage
security and efficiency we present here a “tunable” functionality Fκ,η

SSLE which al-
lows the adversary to control, with probability smaller than 2−κ, a given election
and which may not elect any user with probability smaller than 2−η.

The Parametrised SSLE functionality Fκ,η
SSLE:

Initialise E,R← ∅, n← 0 and let M ⊆ [N ] be the set of corrupted parties. Upon
receiving:

– (register) from Pi: add R ← R ∪ {(i, n)}, broadcast (registered, i) and set
n← n+ 1.

– (elect, eid) from honest parties: if eid was not requested before leak to Z
(electing, eid). Upon receiving (prob, eid, p1, p2) with p1 ≤ 2−κ, p2 ≤ 2−η:

With probability p1 leak (corrupted, eid) and wait for the adversary to reply
with (infl, eid, j). Else, with probability p2 set j ←⊥. If the previous actions
are not performed, sample (j, · )←$ R.

Send (outcome, eid, 1) to Pj and (outcome, eid, 0) to Pi for (i, · ) ∈ R, i ̸= j.
Add E ← E ∪ {(eid, j)}.

– (reveal, eid) from Pi: if (eid, i) ∈ E broadcast (result, eid, i). Otherwise broad-
cast (rejected, eid, i).

– (fake_rejected, eid, j) from Z: if Pj is corrupted broadcast (rejected, eid, j).

Fig. 7. Parametrised SSLE executed among P1, . . . , PN and environment Z

Setting κ = η = Θ(λ) we get back a functionality equivalent to FSSLE.
However for smaller κ, η, we can now capture schemes achieving weaker (but
still meaningful!) fairness and unpredictability notions. These might be accept-
able/sufficient in practical scenarios, especially if they lead to significant effi-
ciency gains. In the full version we show that applying the construction in Figure
6 to a protocol realizing Fκ,η

SSLE yields an SSLE scheme with (2−κ +2−η)-fairness
and ξ(κ)-unpredictability with

ξ(κ) = sup
n∈N

(
n

n− ϑ(n)

)
· 1

2κ
· 2η

2η − 1
.

For fairness, the 2−κ + 2−η bound simply means that for κ, η = logN an adver-
sary controlling T parties, wins the election with probability (T +2)/N . This is
the same winning probability of an adversary that runs a perfectly fair election
but corrupts two single extra players.
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4 UC-secure SSLE from FE for Modular Keyword Search

We now present a generic construction of a UC-SSLE protocol based on modular
keyword search FE. This, besides being of interest on its own, serves as a warm-
up for our efficient construction of Section 5. More specifically, assuming for the
sake of abstraction the existence of a protocol Π which securely distributes keys
and, on request, produces ciphertexts encrypting random messages in a given
set, we UC-realise Fκ,η

SSLE.
Our construction roughly works as follows: Initially the public key mpk is

distributed among the N users. To perform the n-th registration for Pi, parties
run Π to give skn to Pi. When an election is requested, users generate with Π
a challenge ciphertext c that encrypts a message m,n, with m ∈ [κn] such that
m mod n ∼ U([n]), and check whether they won or lost by decrypting. Whoever
can decrypt c to 1 is the leader and can claim victory by broadcasting a NIZK
argument of this.

Unfortunately, even if this solution can already be proven secure in the game-
based definition, it is not UC-secure yet. The reason is technical: if at a given
round a ciphertext c encrypting (m,n) with m = γ + δn is returned, γ being
associated to an honest user13, the adversary could re-register malicious users
until he gets skm and then test that MKS.Dec(c,m,mpk, skm) = 1. This makes
the protocol hard to simulate as the ciphertext produced needs to always contain
the winner’s index – which the simulator may not know in advance14.

To prevent this issue we introduce a set S of forbidden keys: each time a
user wins with key skγ , the indices γ + δn for δ ∈ [κ] are added to S and, each
time a new user joins, n is set to be the next integer not lying in S. However
this introduce a probability |[n] ∩ S| · n−1 to produce a ciphertext no one can
decrypt, meaning that nobody is elected. A way to keep it smaller than 2−η is
to perform a new setup every time the above probability exceeds this bound.

To proceed we formally define a functionality FSnC, Fig. 5, which shapes
the behaviour and security of Π, and a protocol {P (i)

MKS−SSLE : i ∈ [N ]} in
the FSnC-hybrid model realising Fκ,η

SSLE. A proof of security appears in the full
version.

Theorem 1 The protocol {P (i)
MKS−SSLE : i ∈ [N ]} in Figure 9 securely realises

Fκ,η
SSLE in the FSnC-hybrid model for the class of PPT environments Z that stati-

cally corrupts up to N players for any positive κ, η.

5 An Efficient UC-secure SSLE from SXDH

In this section we present our main contribution, an SSLE protocol that works
over bilinear groups which we prove UC-secure under the SXDH assumption.

13 i.e. such that an honest user Pi posses the key skγ
14 When Fκ,η

SSLE elects an honest user, the simulator learn its identity only after this
party is instructed by the environment to claim victory through a reveal command.
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The Setup and Challenge Functionality FSnC:

Generate crs ←$ NIZK.GDec(1
λ), mpk,msk ←$ KS.Setup(1λ). Set S ← ∅ and

n← 0. Upon receiving:

– (setup) from Pi: send (input, crs,mpk) to Pi.

– (ch_request, eid) from all honest parties: If eid was not requested before,
sample m ←$ [κn] and compute c ←$ KS.Enc((m,n),mpk). Broadcast
(challenge, eid, c). If m /∈ S, divide m = γ + δn with γ ∈ [n] and add
S ← S ∪ {γ + δ′n : δ′ ∈ [κ]}.

– (keygen) from Pi: When honest users agree, n← n+ 1 until n /∈ S, set skn ←
MKS.KeyGen(n,msk) send (key, skn) to Pi and broadcast (key_request, i, n).

Fig. 8. Setup and Challenge functionality executed among P1, . . . , PN

5.1 Intuition

At a high level we instantiate the generic protocol provided in the previous
section with the modular KS scheme obtained applying the transformation in
Fig. 2 to our OFE in Fig. 3. The main challenge here is to efficiently generate
ciphertexts in a distributed way. To address this, the basic idea is to select
a random committee Q ⊆ [N ], have each member Pj secretly sample a value
mj ∈ [n], where n is the number of users currently registered, and jointly generate
an encryption of m =

∑
j∈Q mj .

A downside is that now m ∈ [|Q| · n]. For this reason we set κ ≥ |Q|, where κ
parametrises the set of functions Fκ

mks supported by our modular KS scheme. In
this way, as in the generic construction, decryption allows the holder of a secret
key skγ to learn only whether m = γ mod n or not. Also, if at least one mj is
uniform over [n], so is m mod n, implying that the election is fair. Finally, since
|Q| = κ is a small parameter, the decryption procedure in our scheme (Fig. 2)
remains efficient.

The next step is to show in more detail how the committee can accomplish
its task. The ciphertext we want to produce is the encryption of (m,−1,−n)
under our OFE scheme in Fig. 3 and has the following form

c0 = [sa]1 , c1 =
[
σm+ sa⊤w1

]
1
, c2 =

[
−σ + sa⊤w2

]
1
, c3 =

[
−nσ + sa⊤w3

]
1

with s, σ ∼ U(Fq) and [a]1 ,
[
a⊤wℓ

]
1

being the public key. While c0, c2, c3 would
be easy to generate in a distributed way, as they linearly depend on s, σ, in c1
we need to compute a product σ ·m. Standard MPC techniques could solve this
issue within a few rounds, however we opt for a solution that requires each user
to only speak once.

First, we sample two group elements G,H through the random beacon and
interpret them as the ElGamal encryption, with respect to a previously generated
public key g, h, of [σ]1. Next each player Pi for i ∈ Q samples mi ∈ [n], si ∈ [n],
and, using the linearity of ElGamal, computes and randomise an encryption of

c1,i =
[
σmi + sia

⊤w1

]
1
, c2,i =

[
−σ + sia

⊤w2

]
1
, c3,i =

[
−nσ + sia

⊤w3

]
1
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Party P
(i)
MSK−SSLE realising Fκ,η

SSLE:

Set C,R,K ← ∅, send setup to FSnC and wait for (input, crs,mpk). Upon receiving:

– register: send keygen to FSnC and wait for its reply (key, skγ). Store K ← K ∪
{skγ}.

– A request to generate a new secret key from FSnC: accepts if there is no election
currently in progress.

– (key_request, j, n) from FSnC: return (registered, j) and set R← R ∪ {(j, n)}.

– (elect, eid): send (ch_request) to FSnC. When it replies with (challenge, eid, c),
if there exists skγ ∈ K such that 1 ← MKS.Dec(c, γ,mpk, skγ), return
(outcome, eid, 1). Otherwise return (outcome, eid, 0). Add C ← C ∪ {(c, eid)}.

– (reveal, eid): if (eid, c) ∈ C and 1 ← KS.Dec(c, i,mpk, skγ) for some skγ ∈ K,
prove π ←$ NIZK.PDec(mpk, c, γ, skγ) and broadcast (claim, eid, π, γ). Other-
wise broadcast (claim, eid,⊥).

– (claim, eid, π, γ) from Pj : if (j, γ) ∈ R and 1 ← NIZK.VDec(crs,mpk, c, γ, π)
return (result, eid, j), otherwise (rejected, eid, j)

Fig. 9. Reduction of Fκ,η
SSLE to the Setup and Challenge functionality FSnC

Finally he publish these encrypted values together with c0,i = [sia]1 in plain and
a NIZK. At this point everyone can locally set c0 as the product of the c0,i’s and
compute ElGamal encryptions of c1, c2, c3 that are respectively the products of
c1,i, c2,i and c3,i. The last step would then be to decrypt these three remaining
components. To this aim we assume that the secret key x of the ElGamal public
key h = gx was previously t-shared among all users, which allows us to perform
a threshold decryption.

To complete the protocol we have to show how to distribute the setup and key
generation of our FE scheme. For ease of exposition, we first present a protocol
assuming an ideal setup functionality in Section 5.2, and then in Section 5.3 we
show how this functionality can be UC-realized. In conclusion we point out that,
as in the general construction in Section 4, we have to maintain a set S of keys
that cannot be generated in order to keep the protocol simulatable, resulting
occasionally in elections without leaders.

5.2 SSLE protocol with Ideal Setup Functionality

In Figure 11 we show a protocol that securely realizes the Fκ,η
SSLE ideal function-

ality. To this end we use the following building blocks:

– The FE scheme for orthogonality in Fig. 3, denoted FE which we use to
instantiate a modular KS scheme.

– NIZKs for RDDH ,RLR and RDec. For readability, we suppress the crs from
the inputs of the prover and verifier algorithm.
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– A functionality FSK that distributes public and private keys of our OFE
scheme, and t-share a threshold ElGamal secret key – sending privately the
share f(j) to Pj and publicly kj = gf(j).

– A random beacon F ch
CT returning G,H,Q with G,H ∼ U(G2

1) and Q ⊆ [N ],
|Q| = ℓ such that the probability that Q is contained in the set of corrupted
parties is smaller than 2−κ. Note that t < N/2 implies ℓ ≤ κ.

Each user maintains (or recovers from the public state) four sets C,R, S,K re-
spectively containing previous challenges, currently registered users, forbidden
keys and owned secret keys.

Elections begin by invoking F ch
CT which returns (G,H,Q). In steps 6-8 users

in Q interpret (G,H) = (gθ, hθ · [σ]1) as an ElGamal encryption with σ ∼ U(Fq),
sample mi ∈ [n], si ∈ Fq and produce encrypted shares of the challenge compo-
nents. Then they sample ri and ρi to re-randomize these ciphertexts. Interest-
ingly we observe that using the same randomness for the last two components
does not affect security.

Next, in steps 11-15 we let Q0 ⊆ Q be the set of users who replied with a
correct NIZK. Observe that, calling s, r, ρ,m the sum of the respective shares
si, ri, ρi and mi over Q0, then G1 = gr+θm and G2 = gρ+θ. In order to decrypt
each user produces K1,i,K2,i that will open, through a Shamir reconstruction in
the exponent, to hr+θm and hρ+θ.

In steps 16-20, users locally multiply the elements sent by the committee and
reconstruct, interpolating at the exponent, K1 = hr+θm and K2 = hρ+θ. Since∏
µ∈Q0

c1,µ = hr+θm
[
mσ + sa⊤w1

]
1

H−1
∏

µ∈Q0

c2,µ = h−ρ−θ
[
−σ + sa⊤w2

]
1

H−n
∏

µ∈Q0

c3,µ = h−n(ρ+θ)
[
−nσ + sa⊤w3

]
1

applying K1,K2 they finally obtain all the components of the challenge c. At
the end of an election (lines 20-22) each user verify whether or not he won by
attempting to decrypt the produced challenge with the keys he stored in K.

When a user wins and is instructed through a reveal command to claim
victory, he sends both the elements K1,K2 previously computed and a proof of
knowledge of a secret key skγ,j which decrypts the challenge to 1. The first part
is required as we don’t want to store on chain the threshold decryption. This
may sound insecure at first, as another user could come up with different K ′

1,K
′
2

that let him win. Interestingly, in the proof of security we show that being able
to do so implies breaking the selective security of our OFE.

Theorem 2 The protocol in Fig. 11 (t, ϑ)-threshold securely realizes Fκ,η
SSLE in

the (FCT,FSK)-hybrid model under the SXDH assumption, for t = ⌊N/2⌋ and
ϑ(n) = ⌊n/2⌋
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The Setup and Key Generation Functionality FSK

n ← 0, S ← ∅, g ←$ G1, f ←$ Fq[x]<t, mpk, msk ←$ FE.Setup(1λ, 3). Fix
h ← gf(−1), kj ← gf(j), pp← (mpk, g, h, (kj)

N−1
j=0 ), leak (setup_leak, pp, f(j))j∈M

and wait for (setup_infl,w∗
α, f

∗)3α=1 from the adversary Z. Calling mpk =
(z0, zα)

3
α=1, msk = (wα)

3
α=1, set

mpk← (z0, zα · zw
∗
α

0 )3α=1, msk← (wα +w∗
α)

3
α=1, f ← f + f∗

and update pp. Upon receiving:

– (setup) from Pj : Send (input, pp, f(j)) to Pj .

– (update, γ, n) from honest players: S ← S ∪ {γ + δn : δ ∈ [κ]}.

– (keygen) from Pj : Broadcast (key_request). while n ∈ S, increase n by 1. Set
skn,δ ← FE.KeyGen(yn,δ,msk) and send (key, (skn,δ)

κ−1
δ=0 ) to Pj .

– (infl, (w∗
i )

3
i=1) from the adversary Z: For each key sk = (d, d) sent to Pj asso-

ciated to a vector y, compute sk′ = (d · [y1w∗
1 + y2w

∗
2 + y3w

∗
3 ]d , d) and send

(key_update, sk′) to Pj . Update msk setting wα ← wα +w∗
α.

Fig. 10. Functionality FSK among users P1, . . . , PN and environment Z which in Pro-
tocol 11 performs the setup and distributes keys on request

5.3 Realising the Setup

Here we describe how to realize the functionality FSK deployed in Protocol 11.
First of all, in order to emulate private communication channels, not available

in our model but necessary to distribute secret parameters, we use an IND-
CPA encryption scheme (AE.Setup,AE.Enc,AE.Dec). Second, as our NIZKs are
randomised sigma protocols compiled with Fiat-Shamir, they only need access
to a random oracle and in particular there is no need to instantiate a crs. Next,
we need to distribute the secret key of the Threshold ElGamal scheme. This is
addressed by deploying standard techniques from verifiable secret sharing.

Finally we have to generate the public and secret keys of the FE scheme in
Figure 3. To this aim, recall that

mpk = [a]1 , (
[
a⊤wα

]
1
)3α=1, skyγ,δ

= [r(w1 + γw2 + δw3)]2 , [r]2 .

Fixing [a]1 and [r]2, which can be generated through a random beacon, the
remaining components of these keys depends linearly on wα. Therefore we can
again select a random committee and let each member Pi sample wα,i ←$ F2

q.
At a high level to produce either mpk or a secret key, users provide shares of it,
which are then locally multiplied. When reconstructing a secret key moreover
the receiver checks the shares and complain if they are malformed.

More in detail in our construction we will use

– NIZKs for REnc,RDec and the ideal functionality FLin
zk .

– Two random beacons F stp
CT and F sk

CT returning respectively (Q, z0, g) and
(dδ)

κ−1
δ=0 with z0 ∼ U(F2

q), g ∼ U(G1), dδ ∼ U(G2) and Q ⊆ [N ], |Q| = ℓ
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Party P
(i)
SSLE,κ realising Fκ,η

SSLE:

Call C,R, S,K ← ∅, n← 0. Send setup to FSK, wait for the reply (input, pp, f(i))
and parse pp = mpk, g, h, k0, . . . , kN−1, with mpk = [a]1,

[
a⊤w1

]
1
,
[
a⊤w2

]
1
,[

a⊤w3

]
1

together with bilinear groups description. Upon receiving:

1 : (register): Send keygen to FSK and wait for (key, skn); Add K ← K ∪ skn

2 : (key_requested, j) from FSK: Wait for all elected leader to reveal themselves.
3 : While n ∈ S, n← n+ 1; R← R ∪ {(j, n)}, n← n+ 1; Return (registered, j)

4 : (elect, eid): Send (toss, eid) to F ch
CT

5 : (tossed, eid,G,H,Q) from F ch
CT, if i ∈ Q:

6 : Sample si, ri, ρi ←$ Fq and mi ←$ [n] and compute:

7 : G1,i ← griGmi , G2,i ← gρi , c0,i ← [sia]1 , c1,i ← hriHmi ·
[
sia

⊤w1

]
1

8 : c2,i ← h−ρi ·
[
sia

⊤w2

]
1
, c3,i ← h−nρi ·

[
sia

⊤w3

]
1

9 : πLR,i ← NIZK.PLR(S, (c0,i, c1,i, c2,i, c3,i, G1,i, G2,i), [n], (si, ri, ρi,mi))

10 : Broadcast (msg, eid, c0,i, c1,i, c2,i, c3,i, G1,i, G2,i, πLR,i)

11 : (msg, eid, c0,ν , c1,ν , c2,ν , c3,ν , G1,ν , G2,ν , πLR,ν) from Pν :
12 : Let Q0 ⊆ Q be the set of ν such that πLR,ν is accepted

13 : G1 ←
∏

ν∈Q0
G1,ν , G2 ← G ·

∏
ν∈Q0

G2,ν , K1,i ← G
f(i)
1 , K2,i ← G

f(i)
2

14 : πDDH,i ← NIZK.PDDH ((g,G1, G2), (ki,K1,i,K2,i), f(i))

15 : Broadcast (open, eid,K1,i,K2,i, πDDH,i)

16 : (open, eid,K1,ν ,K2,ν , πDDH,ν) with valid proof, from a set Z ⊆ [N ] of t parties:

17 : Reconstruct Kj ←
∏

ν∈Z Kλν
j,ν with λν the Lagrange coefficient for Z

18 : c0 ←
∏

µ∈Q0
c0,µ, c1 ← K−1

1 ·
∏

µ∈Q0
c1,µ, c2 ← H−1K2 ·

∏
µ∈Q0

c2,µ

19 : c3 ← H−nKn
2 ·

∏
µ∈Q0

c3,µ, c← (c0, c1, c2, c3)

20 : If there exists skγ,δ ∈ K which decrypts c to 1:

21 : Return (outcome, eid, 1) and store C ← C ∪ {(eid,K1,K2)}
22 : Else return (outcome, eid, 0).

23 : (reveal, eid): If there exists (eid,K1,K2) ∈ C: compute c as in steps 18, 19
24 : Find skγ,δ ∈ K which decrypts the challenge c to 1

25 : Get π ← NIZK.PDec(mpk, c, (γ, δ), skγ,δ) and send (claim, eid, π,K1,K2, γ, δ)

26 : Else broadcast an error message (claim, eid,⊥)

27 : (claim, eid, π,K1,K2, γ, δ) from Pν : compute c as in steps 18, 19
28 : If (ν, γ) ∈ R and π is accepted: Send (update, γ, n) to FSK

29 : Update S ← S ∪ {γ + δ′n : δ′ ∈ [κ]} and return (result, eid, ν)

30 : Else: return (rejected, eid, ν)

Fig. 11. Protocol P (i)
SSLE,κ. S ∈ G7,4

1 represents the linear operations in lines 6-8.
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such that the probability of Q containing only corrupted users is smaller
than 2−λ. Notice that t < N/2 implies ℓ ≤ λ.

In steps 1-6 members of the committee sample a polynomial fi used for the
VSS, and shares wi,α. The proof in line 4 guarantees that the adversary is aware
of the plaintext fi(j) encrypted, preventing decryption-oracle attacks.

In lines 7-15 users test the VSS by checking if the exponents of hµ, (ki,µ)
N−1
i=0

lies in the right Reed-Solomon code. A standard test is to check orthogonality
with a codeword in the dual space RS⊥F,N+1,t. Next, consistency with si,µ = fµ(i)
and ki,µ is checked. If it fails the player will complain (lines 10-13) and remove
Pµ from the committee.

Next, the generation of a new secret key begins by querying F sk
CT, line 20,

which returns (dδ)
k−1
δ=0 , interpreted as the randomness of requested OFE keys.

In lines 21-25 members of the committee generate the secret key share d
(i)
n,δ

and privately send it to the receiver. Again a NIZK is added to prevent any
decryption-oracle attack.

Observe now that, for every µ ∈ Q

(z0, z1,µ, z2,µ, z2,µ) = [a]1 ,
[
a⊤w1,µ

]
1
,
[
a⊤w2,µ

]
1
,
[
a⊤w3,µ

]
1

is a master public key for our OFE scheme, and (d
(µ)
n,δ, dδ) is a secret key for

(1, n, δ) in the same scheme. Hence the recipient, lines 26-31, verifies this key
share by checking if it is able to decrypt an encryption of 0. Somewhat surpris-
ingly in the proof of security we show that this is enough to ensure correctness
of the key.

Finally, if the above check fails, the recipient broadcasts a complaint mes-
sage exposing the malformed key. Every user then checks the complaint and, if
legitimate, remove Pµ from the committee.

Theorem 3 Protocol {P (i)
SK : i ∈ [N ]} securely realises FSK in the (FCT,Fzk)

hybrid model under the SXDH assumption for the class of PPT environments Z
that statically corrupt up to ⌊N/2⌋ players.

6 Efficiency considerations

Overall communication costs of our protocol are summarised in Table 2. As men-
tioned in the previous section, however most of these messages are not required
for verification and, in particular, they do not need to be stored on chain.

More in detail, for the VSS to generate the ElGamal public and secret keys,
only aggregated elements h, k0, . . . , kN−1 have to be placed on-chain, as those are
the only ones required to verify the secret sharing. Next, during elections, we have
to store the partial ciphertexts and related NIZKs sent by the committee, as these
components are necessary to reconstruct the election’s ciphertext. However, our
specific OFE and protocol allow the winner to aggregate the expensive threshold
decryption, without the need to also post a proof of correctness. Note that the
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Party P
(i)
SK realising FSK:

Initially set n ← 0, S ← ∅. Create (pki, ski) ←$ AE.Setup(1λ), broadcast
(user_key, pki), send (toss)→ F stp

CT and wait for its reply (tossed, Q, z0, g)

1 : If i ∈ Q: Sample fi ←$ Fq[x]<t, w1,i,w2,i,w3,i ←$ F2
q

2 : Compute hi ← gfi(−1), kj,i ← gfi(j) and zα,i ← z
wα,i

0 for j ∈ [N ], α ∈ [3]

3 : cj,i ←$ AE.Enc(fi(j), pkj) with randomness rj,i

4 : πj,i ←$ NIZK.PEnc(cj , pkj , fi(j), rj,i)

5 : Broadcast (msg, hi, (kj,i, cj,i, πj,i)
N−1
j=0 )

6 : Send (prove, (zα,i)
3
α=1, (wα,i)

3
α=1) to FRLin

zk

7 : When Pµ → (msg, hµ, kj,µ, cj,µ, πj,µ)
N−1
j=0 , FRLin

zk → (proof, µ, zα,µ)
3
α=1 for µ ∈ Q0:

8 : Set kµ = (hµ, k0,µ, . . . , kN−1,µ) and sample v←$ RS⊥
F,N+1,t.

9 : If kv
µ ̸= 1 or some πj,µ is rejected: remove µ from Q0.

10 : Decrypt si,µ ← AE.Dec(ci,µ, pki, ski). If gsi,µ ̸= ki,µ:
11 : π ← NIZK.PDec(pki, ci,µ, si,µ, ski), and broadcast (complain, si,µ, µ, π)

12 : Upon receiving (complain, µ, si,µ, π) from Pj :
13 : If π is accepting and gsi,µ ̸= ki,µ, remove µ from Q0.
14 : Compute and store zα ←

∏
µ∈Q0

zα,µ, h←
∏

µ∈Q0
hµ, kj ←

∏
µ∈Q0

kj,µ

15 : mpk← (z, z1, z2, z3), pp← (mpk, h, k0, . . . , kN−1), si ←
∏

µ∈Q0
si,µ

Fig. 12. Realisation FSK, Initial setup phase

same property does not hold for the first round, since together with the partial
ciphertexts one would have to aggregate the corresponding NIZKs with more
sophisticated tools. Finally we remark that it is also possible to avoid storing
encrypted secret keys for our OFE on chain, using the chain only for disputes.

As shown in the Table, while election requires low communications, the setup
is more expensive, requiring 252 MB for 214 users. However, this is supposed to
be performed rarely. Once this is done, our protocol allows new users to join
providing them a new secret key, without updating the key material of other
users. This registration takes only 73 KB of communication. Letting users leave
the system on the other hand introduces some inefficiencies. The problem is that
users who go away may still be elected, causing some elections to end without a
winner. An obvious, but expensive, way to completely remove this problem is to
perform a new setup every time that one or more users leave. However, one can
also make a trade-off leaving the possibility that some elections finish without
a winner, and redo the setup only when this probability (which for L inactive
users out of N registered users is L/N) becomes too high.

Comparison with [BEHG20] We now compare our UC-secure construction
with the shuffle-based solution in [BEHG20], which we briefly recall here. Es-
sentially the public state contains a list of Diffie-Hellman pairs (Ki,1,Ki,2), one
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Party P
(i)
SK realising FSK upon receiving:

17 : (setup): Return (input, pp, si)

18 : (update, n, γ): set S ← {γ + δn : δ ∈ [κ]}

19 : (keygen): Broadcast (key_request)

20 : (key_request) from Pj : Send (toss, rid|j) to F sk
CT and return (key_requested, j)

21 : (tossed, rid|j, (dδ)κ−1
δ=0 ) from F sk

CT, if i ∈ Q:
22 : While n ∈ S, increase n← n+ 1

23 : d
(i)
n,δ ← [w1,i + nw2,i + δw3,i]dδ , d

(i)
n ← (d

(i)
n,δ)

κ−1
δ=0

24 : ci ←$ AE.Enc(d
(i)
n , pkj) with randomness ri

25 : πi ←$ NIZK.PEnc(ci, pkj ,d
(i)
n , ri); Broadcast (key_partial, ci, πi, j, n)

26 : (key_partial, cµ, πµ, i, n) with accepting πµ from Pµ for µ ∈ Qn:

27 : for all µ ∈ Qn get (d
(µ)
n,δ)

κ−1
δ=0 ← AE.Dec(ci, ski)

28 : If e(z0,d
(µ)
n,δ) ̸= e(z1,µ · zn2,µ · zδ3,µ, dδ):

29 : Remove µ from Q and compute π a proof that cµ encrypts (d
(µ)
n,δ)

κ−1
δ=0

30 : Broadcast (key_complain, µ, n, δ, (d
(µ)
n,δ)

κ−1
δ=0 , π)

31 : Set skn,δ ←
(∏

µ∈Qn
d
(µ)
n,δ, dδ

)
and return (key, (skn,δ)

κ−1
δ=0 )

32 : (key_complain, µ, n, δ, (sk
(µ)
n,δ)

κ−1
δ=0 , π) from Pj with accepting π:

33 : Perform the test on line 28. If the two terms differ:
34 : Remove µ from Qn, and Pµ’s share from mpk

35 : For each key received sk let dµ be Pµ’s share

36 : Parse sk = (d, d), return (key_update, (d · d−1
µ , d))

Fig. 13. Realisation FSK, Key Distribution phase

for every user, and Pi’s secret key is a discrete log ki such that Ki,2 = Kki
i,1.

An election is performed by choosing one of those tuples through the random
beacon and the leader claims victory by revealing its secret key. To achieve
unpredictability, each time a pair is added by a user, he sends a shuffled and
re-randomized list along with a NIZK. Note that every election involves at least
the registration of the previous winner, who has “burnt” her secret key, if she
desires to stay. Moreover, this implies that the protocol requires at each round
as many shuffles as the number of new users. Notably, all the lists and NIZKs
have to be posted on chain in order to ensure verifiability.

In the high communication solution, denoted N -shuffle, each shuffles costs 2n
group elements, while the more efficient and less secure one, denoted

√
N -shuffle,

costs 2
√
n elements.
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Procedure Number of elements sent Size

Fq G1 G2 off-chain on-chain

VSS for ElGamal 2λN 2λN + 2λ – 252 MB 1.05 MB
Distribute mpk 3λ 2λ – 20.5 KB 20.5 KB

Election, 1st Round κ(6 + 2 logn) κ(7 + logn) – 34.0 KB 34.0 KB

Election, 2nd Round 2(t+ 1) 2(t+ 1) – 1.57 MB –
Election, Claim 1 2 3 256 B 256 B

Registration λ – 2κλ+ 2λ 73.3 KB –

Table 2. Communication costs of our scheme, using ElGamal in place of the generic
IND-CPA encryption. Size is computed assuming log |Fq| = 256, log |G1| = 512,
log |G2| = 256, log |GT | = 3072, λ = 80, κ = logN , t = ⌊N/2⌋ and N = 214.

In light of the requirement in [Lab19] to support O(log2 N) new users per
round, we compare these solutions evaluating the cumulative cost of several
elections, interleaving between every two a fixed amount of registrations. In
Fig. 6 we provide the communication costs for such a scenario where we assume
to start with 214 users and then perform: 10 registrations for each election in
the first column, 20 in the second column, and 30 in the third one. Furthermore
we let the same number of new users who joined the system leave it after each
election. Note that, as mentioned earlier, this means some elections may have to
be repeated in our case as users who leave may still be elected.

We remark that in those plots, the costs of the shuffle-based solutions do
not even include the costs of setup15, as it can be done only once in contrast to
ours where we need to occasionally refresh the secret key material. In spite of
that, the cost of our setup is quickly compensated by our lighter registration and
election procedure, which makes our solution more suited to dynamic scenarios.

More efficient SSLE with Game Based Security We now remark that
communication complexity can be further reduced in our construction at the
cost of giving up UC security yet achieving the game-based security notion.

As we would not need any more to simulate each election, every secret key
can now be produced without artificially skipping some of them. For the same
reason, the NIZKs need not to be simulation-extractable, which allow us to use
Bulletproofs for the range proofs. This reduces on-chain costs to O(κ log logN).

Finally, when giving up UC security users who voluntarily leave the system
can be handled by asking such users to reveal their own secret keys upon leaving,
as done in [BEHG20]. This way, if a revoked user happens to be elected, everyone
can detect it and immediately proceed to generate a new election’s ciphertext. To
keep round complexity low, one can also prepare several challenges per election,

15 I.e. the cost to generate a shuffled list containing the pairs of the initial users. This
has cost O(n2) if everyone performs a shuffle, or O(κn) using an approach similar
to ours where a random committee of κ users shuffle the initial list
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order them, remove those that can be decrypted with keys of users who left,
and set the current challenge as the first of the remaining ones. This solution
only works for non-UC security though, as the simulator should now generate
on request honest user’s secret key that are consistent with previous elections.
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Fig. 14. Cumulative communication costs in this work and [BEHG20]. Initially the
number of users is N = 214 and between every two elections 10 (left column), 20
(middle column) or 30 (right column) registrations occur, while the same amount of
already registered users leave.
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