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Abstract. We present the first round-optimal and plausibly quantum-
safe oblivious transfer (OT) and multi-party computation (MPC) pro-
tocols from the computational CSIDH assumption — the weakest and
most widely studied assumption in the CSIDH family of isogeny-based
assumptions. We obtain the following results:

— The first round-optimal maliciously secure OT and MPC protocols
in the plain model that achieve (black-box) simulation-based security
while relying on the computational CSIDH assumption.

— The first round-optimal maliciously secure OT and MPC protocols
that achieves Universal Composability (UC) security in the presence
of a trusted setup (common reference string plus random oracle)
while relying on the computational CSIDH assumption.

Prior plausibly quantum-safe isogeny-based OT protocols (with/without
setup assumptions) are either not round-optimal, or rely on potentially
stronger assumptions.

We also build a 3-round maliciously-secure OT extension protocol where
each base OT protocol requires only 4 isogeny computations. In compar-
ison, the most efficient isogeny-based OT extension protocol till date due
to Lai et al. [Eurocrypt 2021] requires 12 isogeny computations and 4
rounds of communication, while relying on the same assumption as our
construction, namely the reciprocal CSIDH assumption.

1 Introduction

Oblivious transfer (OT) [Rab05, EGL82] is an interactive protocol between two
parties: a sender and a receiver. Informally speaking, an OT protocol involves a
sender holding two messages mg and m;, and a receiver holding a bit b € {0, 1}.
At the end of the protocol, the receiver should only learn the message my and
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nothing about the other message mj_;, while the sender should learn nothing
about the bit b. OT serves as a fundamental building block in cryptography
[Kil88], particularly in secure multi-party computation (MPC) [Yao86, IKO™11,
BL18, GS18]. Round optimal OT protocols imply round-optimal MPC proto-
cols [BL18, GS18, CCGT20] and hence are always desirable.

Quantum-Safe OT. With steady progress in quantum computing, the study
of post-quantum cryptography has gained significant momentum in recent years,
especially in light of Shor’s algorithm [Sho94], which breaks traditional crypto-
graphic assumptions such as factoring and discrete-log. OT protocols are known
from various plausibly quantum-safe assumptions such as lattices [PVW08, BD18,
MR19], codes [DvMNO8, DNM12, MR19], and isogenies of elliptic curves [BOB1S,
Vit18, LGdSG21]. Unfortunately, many isogeny-based OT constructions [BOB1S,
dSGOPS20, Vit18] are now (classically) broken in light of the recent attacks on
the Supersingular Isogeny Diffie-Hellman (SIDH) assumption [CD22, MM22,
Rob22]. Hence, the only plausibly quantum-safe isogeny-based OT construc-
tions are the ones based on the Commutative SIDH (CSIDH) [CLM*18] family
of isogeny-based assumptions, which are not affected by the recent attacks on
SIDH.

The CSIDH Family of Assumptions. The CSIDH family of (plausibly
quantum-safe) isogeny-based assumptions includes the computational CSIDH as-
sumption [CLM™18] (the CSIDH-equivalent of the traditional CDH assumption),
the decisional CSIDH assumption [CSV20, ADMP20, BKW20] (the CSIDH-
equivalent of the traditional DDH assumption), the reciprocal CSIDH assump-
tion [LGASG21], and certain variants of these assumptions [AEK'22]. Of these,
the computational CSIDH assumption is the weakest assumption (equivalently,
the hardest problem to solve). The decisional CSIDH assumption implies the
computational CSIDH assumption, and has been shown to be broken for certain
families of elliptic curves [CSV20]. Finally, the reciprocal CSIDH assumption is
only quantum-equivalent to the computational CSIDH assumption; the corre-
sponding classical equivalence is not known (see discussion in [LGdSG21]).

OT from CSIDH-based Assumptions. Many recent works have constructed
OT protocols from the CSIDH family of isogeny-based assumptions. We broadly
categorize these OT constructions as: (i) OT protocols in the plain model, i.e.,
without any (trusted) setup assumptions, or (ii) OT protocols in the setup model,
i.e., assuming the existence of some (trusted) setup and/or random oracles.

In the plain model, there exist round-optimal OT protocols achieving vari-
ous security notions from the decisional CSIDH assumption [ADMP20, KM20]
and the reciprocal CSIDH assumption [BPS22]. We present a summary of these
protocols in Table 1. In the setup model, round-optimal OT protocols are known
from the decisional CSIDH assumption [ADMP20, BKW20, AMPS21]. A recent
work by Lai et al. [LGdSG21] proposed an elegant OT protocol from the recip-
rocal CSIDH assumption; however, their construction is not round-optimal. We
summarize these protocols in Table 2.



Table 1. Comparison of plausibly quantum-safe maliciously secure OT protocols in the plain model
from the CSIDH family of isogeny-based assumptions

Protocol ‘Computatiomal Assumption‘Rounds‘ Security Model
[ADMP20]-1 decisional CSIDH 2 semantic
[BPS22]-1 reciprocal CSIDH 3 semantic
[KM20] decisional CSIDH 4 simulation-secure
[BPS22]-2 reciprocal CSIDH 4 simulation-secure
Our Protocol-1| computational CSIDH 4 simulation-secure

Table 2. Comparison of plausibly quantum-safe maliciously secure OT protocols in the setup
model from the CSIDH family of isogeny-based assumptions. The protocols of [ADMP20, AMPS21]
are in the CRS model. All other protocols are in the CRS+4random oracle model.

Protocols ‘Computational Assumption‘Rounds‘ Security Model
[ADMP20]-2 decisional CSIDH 2 UC-secure
[BKW20] decisional CSIDH 2 UC-secure
[AMPS21] decisional CSIDH 2 UC-secure
[LGdSG21]-1 reciprocal CSIDH 3 [simulation-secure
[LGdSG21]-2 reciprocal CSIDH 4 UC-secure
Our Protocol-2| computational CSIDH 2 UC-secure

Notably, there exist no (round-optimal) OT protocols in the plain/setup
model from the computational CSIDH assumption, which is the weakest (and
most widely studied) assumption in the CSIDH family of isogeny-based assump-
tions. This motivates us to ask the following question:

Can we design round-optimal OT protocols from computational CSIDH?

1.1 Owur Contributions

In this paper, we answer the above question in the affirmative by presenting the
first round-optimal, maliciously secure, and plausibly quantum safe OT protocols
in various settings from the computational CSIDH assumption. In particular,
we propose two new round-optimal maliciously secure OT protocols in the plain
and common reference string” (CRS) models, while relying on the computational
CSIDH assumption. These also yield the first round-optimal MPC protocols in
the respective settings from the computational CSIDH assumption. Our main
contributions can be summarized as follows.

Round Optimal OT and MPC in the Plain Model. We propose the first
round-optimal (4-round) OT protocol in the plain model while relying on the
computational CSIDH assumption. Our construction satisfies perfect correctness
and simulation-based security against malicious corruption of parties, which is
the strongest notion of OT security that is achievable in the plain model. Our
result is captured by the following (informal) theorem.

" The setup string is structured and it is sampled from a given distribution.



Theorem 1. (Informal) Assuming computational CSIDH, there exists a 4-round
OT protocol in the plain model that achieves perfect correctness and (black-box)
simulation-security against malicious corruption of parties.

In Table 1, we present a comparison of our proposed OT construction with
known constructions of round-optimal OT in the plain model from the CSIDH
family of assumptions. Additionally, by invoking known relationships between
round-optimal OT and MPC in the plain model from [CCG™20], we achieve the
following (informal) corollary.

Corollary 1. (Informal) Assuming computational CSIDH, there exists a 4-round
MPC protocol in the plain model with (black-box) simulation-security against ma-
licious corruption of parties.

This is the first round optimal MPC protocol achieving (black-box) simulation
security in the plain model from the computational CSIDH assumption.

Round-Optimal OT and MPC assuming Trusted Setup. We propose
the first round-optimal (2-round) OT protocol in the CRS plus random oracle
model® while relying on the computational CSIDH assumption. Our construction
satisfies perfect correctness and universal composability (UC)-security against
malicious corruption of parties, which is the strongest notion of OT security
that is achievable in the trusted setup model. Informally, we prove the following
theorem.

Theorem 2. (Informal) Assuming that the computational CSIDH assumption
holds, there exists a 2-round OT protocol in the CRS plus random oracle model
that is UC-secure against malicious corruption of parties.

In Table 2, we present a comparison of our proposed OT construction with known
constructions of round-optimal OT in the trusted setup model from the CSIDH
family of assumptions. Finally, by invoking known relationships between round-
optimal OT and MPC from [GS18], we achieve the following (informal) corollary.

Corollary 2. (Informal) Assuming that the computational CSIDH assumption
holds, there exists a 2-round MPC protocol in the CRS plus random oracle model
that is UC-secure against malicious corruption of parties.

This yields the first construction of round-optimal MPC in the CRS plus random
oracle model from the computational CSIDH assumption.

Efficient OT Extension. As an additional contribution, we propose the first
UC-secure OT extension protocol that relies on the computational CSIDH as-
sumption. Concretely, we show that an optimized variant of the recent 4-round
OT protocol due to Lai et al. [LGdSG21] can be plugged into the OT extension
compiler due to Canetti et al. [CSW20a] to build a UC-secure 3-round OT ez-
tension protocol in the random oracle model. This yields the most efficient (to

8 The random oracles in our protocol are local to each session.



our knowledge) UC-secure OT extension protocol currently known from isogeny-
based assumptions.’

Our construction of OT extension builds upon a maliciously secure base OT
protocol that requires a total of 4 isogeny computations. On the other hand,
the state-of-the-art 4-round maliciously secure protocol of [LGdSG21] incurs 12
isogeny computations, while relying on the same hardness assumption as our
construction (the reciprocal CSIDH assumption).

1.2 Related Work

Lattice-based OT. To the best of our knowledge, the first lattice-based obliv-
ious transfer protocol was designed by Peikert, Vaikuntanathan and Waters
[PVWO08], that relies on LWE [Reg05]. Their OT protocol follows a more generic
framework on dual encryption and achieves round-optimality as well as UC secu-
rity in the CRS model. A recent result of Quach [Qua20] improves the [PVW08]
construction so that the CRS can be reused by multiple OT executions. An-
other recent work by Biischer et al. [BDK'20] provided an instantiation of a
lattice-based OT from additive homomorphic encryption. The OT construction
of Brakerski and Déttling [BD18] provided the first two-round SSP OT (without
a CRS).

An alternative to constructing an OT is to construct an oblivious pseudo-
random function which implies [JLO9] an OT. Albrecht, Davidson, Deo and
Smart [ADDS21] showed how to construct an oblivious pseudorandom func-
tion from ideal lattices using non-interactive zero-knowledge arguments[CSW22,
PS19, CCH™19].

Code-based OT. There are two OT constructions based on the code-based
assumptions [DvMNO8, DNM12]. Both of these constructions use the specific
assumption underlying the McEliece cryptosystems [McE78]. Among these, only
the latter achieves UC security. Recently, Bitansky and Freizeit [BF22] showed
how to realize a statistically sender-private (SSP) OT protocol with semantic
security against a computationally bounded sender and an unbounded receiver
while relying on the learning with parity (LPN) assumption plus Nissan Wigder-
son style derandomization.

Generic OT constructions. Generic approaches to realize OT [BGJT18,
MR19, FMV19, DGH"20] rely on public-key encryption schemes with specific
properties. Unfortunately, known public-key encryption schemes from isogeny-
based assumptions (including the CSIDH family of assumptions) do not satisfy
any of these properties. For example, to use any isogeny-based PKE in the
framework of [MR19], one inherently needs the ability to hash into a curve in
the family of supersingular elliptic curves, which is not known so far (see [Pet17,

9 We note that while prior works on OT from isogenies do not explicitly construct
OT extension protocols, they do yield base OT protocols that can be converted in
a generic manner into full-fledged OT extension protocols.



DMPS19, CPV20, BBD 22, MMP22] for more details). For the constructions of
Badrinarayanan et al. [BGJ™18] and Friolo et al. [FMV19] in the plain model,
one needs a PKE with dense public-key space — this is again not known to exist
from isogeny-based assumptions. Dottling et al. [DGH™'20] provided a generic
approach to obtain 2-round UC-secure OT in the CRS model from protocols sat-
isfying very mild form of security, known as elementary OT — this gives 2-round
OT from LPN [ACPS09]. The work of [AMPS21] also follows a similar route to
build adaptively secure OT from a mild strengthening of elementary OT.

Prior Isogeny-based OT. Prior works [BOB18, dSGOPS20, Vit18, BKW20]
have realized isogeny-based OT constructions from the well-known SIDH as-
sumption and its variants. Unfortunately, these constructions are now (classi-
cally) broken in light of the recent attacks on the SIDH assumption [CD22,
MM22]. The construction of [BKW20] was, in fact, broken in its original form
by an earlier attack proposed in [BKM™21].

Prior works have realized OT protocols in the plain model achieving various
security notions from the decisional CSIDH assumption [ADMP20, KM20] and
the reciprocal CSIDH assumption [BPS22]. The authors of [ADMP20] showed
how to construct a 2-round SSP OT protocol with semantic security against a
computationally bounded sender and an unbounded receiver from the decisional
CSIDH assumption. The authors of [KM20] showed how to construct a 4-round
OT protocol with full-fledged simulation security from any 2-round SSP OT pro-
tocol. The authors of [BPS22] showed how to construct a 3-round statistically
receiver-private (SRP) OT protocol with semantic security against a computa-
tionally bounded receiver and an unbounded sender from the reciprocal CSIDH
assumption. They also showed a construction of 4-round OT protocol with full-
fledged simulation security from any 3-round SRP OT protocol. See Table 1 for
a comparison of our proposed OT protocol in the plain model with these prior
OT protocols.

In the setup model, round-optimal OT protocols are known from the deci-
sional CSIDH assumption [ADMP20, BKW20, AMPS21]. The OT construction
of [BKW20] was not explicitly described, but follows implicitly from the con-
struction of oblivious PRF from decisional CSIDH (plus random oracles) in the
same paper. The work of [AMPS21] presents the first adaptively secure OT pro-
tocol from isogenies. Their protocol is round optimal and relies on decisional
CSIDH assumption. The recent work by Lai et al. [LGdSG21] proposed an ele-
gant OT protocol from the reciprocal CSIDH assumption (plus random oracles);
however, the simulation-secure and UC-secure versions of their construction re-
quire 3 rounds and 4 rounds, respectively, and are hence not round-optimal.

2 Preliminaries

Notation. For a € N such that a > 1, we denote by [a] the set of integers lying
between 1 and a (both inclusive). We use x to denote the security parameter,
and denote by poly(x) and negl(x) any generic (unspecified) polynomial function



and negligible function in x, respectively. For a finite set S, we use s <—r S to
sample uniformly from the set S. For a probability distribution D on a finite set
S, we use s < D to sample from D. We use the notations % and ~ to denote
statistical and computational indistinguishability of distributions, respectively.

2.1 Basic Cryptographic Primitives

Weak Unpredictable Function(wUF)[ADMP20]. Let K, X, and Y be
sets indexed by k. A weak unpredictable function (wUF) family is a family of
efficiently computable functions {F(k,-) : X — Y },cx such that for all PPT
adversaries A we have the following:

Pr[ AT (1%,2*) = F(k,2*)] < negl(x),

where k < K, 2* +<pr X, and F,f is a randomized oracle that when queried
samples < X and outputs (z, F(k, z)).

Weak Pseudorandom Function (WPRF). Let K, X, and Y be sets indexed
by k. A weak pseudorandom function (wWPRF) is a family of efficiently com-
putable functions {F'(k,-) : X — Y }rek such that for all PPT adversaries A we
have the following;:

Pr[ A (1%) = 1] — Pr[A™ (1%) = 1]| < negl(x),

where k g k, F,f is a randomized oracle that when queried samples x < g
X and outputs (z, F(k,z)), and 7® is a randomized oracle that when queried
samples x < X and y < r Y, and outputs (z,y).

2.2 Cryptographic Group Actions

In this section we recall the definitions of cryptographic group actions from
[ADMP20]. We note here that the authors of [ADMP20] use the definitions of
Brassard and Yung [BY91] and Couveignes [Cou06] as starting points to provide
definitions that allow for easy use of isogenies (in particular, isogeny families
such as CSIDH [CLM™18] and CSI-FiSh [BKV19]) in cryptographic protocols.
We begin by recalling the definition of a group action.

Definition 1. (Group Action [BY91, Cou06, ADMP20]). A group G is said to
act on a set X if there is a map *: G x X — X that satisfies:

1. Identity: If e is the identity element of G, then for any x € X, we have
exr=u1.
2. Compatibility: For any g,h € G and any x € X, we have (gh)*x = gx(h*x).

Throughout this paper, we use the abbreviated notation (G, X,*) to denote a
group action.

Remark 1. If (G, X, %) is a group action, for any g € G the map 7y : v — g*z
defines a permutation of X.



Properties of Group Actions. We consider group actions (G, X, ) that sat-
isfy one or more of the following properties:

1. Abelian: The group G is abelian.

2. Transitive: For every x1,x2 € X, there exists a group element g € G such
that xo = g x x1. For such a transitive group action, the set X is called a
homogeneous space for G.

3. Faithful: For each group element g € G, either g is the identity element or
there exists a set element x € X such that x # g% x.

4. Free: For each group element g € G, g is the identity element if and only if
there exists some set element x € X such that x = g x.

5. Regular: Both free and transitive.

Remark 2. If a group action is regular, then for any x € X, the map f, : g — g*x
defines a bijection between G and X; in particular, if G (or X) is finite, then we
must have |G| = |X|.

Effective Group Action (EGA). We now recall the definition of an effec-
tive group action (abbreviated throughout as an EGA) from [ADMP20]. At a
high level, an EGA is an abelian and regular group action with certain special
computational properties that allow it to be useful for cryptographic applica-
tions. Formally, an abelian and regular group action (G, X, %) is effective if the
following properties are satisfied:

1. The group G is finite and there exist efficient (PPT) algorithms for:

(a) Membership testing, i.e., to decide if a given bit string represents a valid
group element in G.

(b) Equality testing, i.e., to decide if two bit strings represent the same group
element in G.

(c) Sampling, i.e., to sample an element g from a distribution G on G. In this
paper, We consider distributions that are statistically close to uniform.

(d) Operation, i.e., to compute gh for any g,h € G.

(e) Inversion, i.e., to compute g~! for any g € G.

2. The set X is finite and there exist efficient algorithms for:

(a) Membership testing, i.e., to decide if a bit string represents a valid set
element.

(b) Unique representation, i.e., given any arbitrary set element z € X, com-
pute a string & that canonically represents x.

3. There exists a distinguished element g € X, called the origin, such that its
bit-string representation is known.

4. There exists an efficient algorithm that given (some bit-string representations
of) any g € G and any x € X, outputs g * x.



Restricted Effective Group Action (REGA). From the point of view of
cryptographic applications, one can view EGA as an abstraction that captures
the CSI-FiSh [BKV19] family of isogenies, where we can compute the group
action operation x efficiently for any element g in the group G. However, this is
not the case for the CSIDH family of isogenies [CLM 18], where we can only
compute the group action operation * efficiently for “certain” elements in the
group G (more specifically, a generating set of small cardinality). To model such
families of isogenies, the authors of [ADMP20] introduced a weaker or restricted
variant of EGA (abbreviated throughput as REGA). We refer the reader to the
full version [BMM™22] for more details on REGA.

Hardness Assumptions over EGA. The definitions of Effective Group Ac-
tion (EGA) and Restricted Effective Group Action (REGA) can be recalled from
[ADMP20]. We now define certain hardness assumptions pertaining to an EGA
following conventions introduced in [ADMP20)].

Definition 2. (Weak Unpredictable EGA [ADMP20]). An EGA (G, X,*) is
weakly unpredictable if the family of functions (more specifically, permutations)
{mg : X = X}geq is weakly unpredictable, where wy is defined as mg : € — g*x.

Definition 3. (Weak Pseudorandom EGA [ADMP20]). An EGA (G, X, *) is
weakly pseudorandom if the family of functions (more specifically, permutations)
{mg : X = X}yeq is weakly pseudorandom, where w4 is defined as wy : © — gxz.

Throughout this paper, we will use the abbreviations wU-EGA and wPR-EGA
to refer to a weak unpredictable and weak pseudorandom (abelian and regu-
lar) EGA, respectively. We can similarly define wU-REGA and wPR-REGA,
where in the corresponding definitions, all group elements are sampled from a
distribution that is statistically close to uniform. Finally, we state the following
theorem (imported from [ADMP20]).

Theorem 3. ([ADMP20]). Assuming that the computational (resp., decisional)
CSIDH assumption holds, there exists a wU-REGA (resp., wPR-REGA).

All of the protocols proposed in this paper can be instantiated using both EGA
and REGA (and hence from both CSI-FiSh [BKV19] and CSIDH [CLM*18]).
For simplicity of representation, we describe our constructions from an EGA;
the corresponding REGA-based constructions follow analogously.

2.3 Oblivious Transfer (OT)

In this section, we present preliminary background material on oblivious trans-
fer (OT) protocols.

The Ideal Functionality for OT. The ideal functionality Fot for any OT
protocol is described in Figure 1. We adopt this description essentially verbatim
from prior works [CLOS02, PVWO08, DGH"20].



Fig. 1. The ideal functionality Fot for Oblivious Transfer

Fot

Fot interacts with an ideal sender S and an ideal receiver R as follows:

— On input (Choose, rec,sid,b) from R where b € {0,1}; if no message of the form
(rec,sid, b) has been recorded in the memory, store (rec,sid,b) and send (rec,sid)
to S.

— On input (Transfer, sen, sid, (mg, m1)) from S with mo, m; € {0,1}", if no message of
the form (sen,sid, (mg, m1)) is recorded and a message of the form (rec,sid,b) is
stored, send (sent,sid,m;) to R and (sent,sid) to S. Ignore future messages with
the same sid.

Two-Round Oblivious Transfer in the CRS Model. We first formally
define a two-round oblivious transfer (OT) protocol in the CRS model. A two-
round OT protocol in the CRS model is a tuple of four algorithms of the form
OT = (Setup, OTR, 0TS, OTD) described below:

— Setup(1*): Takes as input the security parameter £ and outputs a CRS string
crs and a trapdoor td.'°

— OTR(crs,b € {0,1}): Takes as input the crs and a bit b € {0, 1}, and outputs
the receiver’s message ot; and the receiver’s (secret) internal state st.

— OTS(crs, oty, mg, my): Takes as input the crs, the receiver’s message oty, a
pair of input strings (mg, m;), and outputs the sender’s message ots.

— OTD(crs, st,otg): Takes as input the crs, the sender’s message oto, and the
receiver’s internal state st, and outputs a message string m’.

Correctness. A two-round OT protocol in the CRS model is said to be cor-
rect if for any b € {0,1} and any (mg, my), letting (crs,td) <—pg Setup(1”) and
(oty,st) <—r OTR(crs, b), we have OTD(crs, st, OTS(crs, oty, mg, my)) = mp.

Four-Round Oblivious Transfer in the Plain Model. We also formally
define a four-round oblivious transfer (OT) protocol in the plain model. A four-
round OT protocol in the plain model is a tuple of five algorithms of the form

OT = (OTR;,0TS1,0TR,, 0TS, 0TD) described below:

— OTRy(1%,b): Given x and a bit b € {0,1}, output message ot; and (secret)
receiver state stg.

— OTS1(1%, (mg, my),0t1): Given k, a pair of strings (mg, m;), and a message
oty, output message oty and (secret) sender state sts.

10 For standard two-round OT protocols, the setup algorithm need not output a trap-
door td, but we include it for certain security properties described subsequently.

10



— OTRs(stg, ota): Given receiver state stg and a message oty, output message
otz and an updated receiver state stg.

— OTSa(sts, ots): Given sender state sts and message ots, output message oty.

— OTD(stg, oty): Given receiver state stg and message oty, output string m’.

Correctness. A four-round OT protocol in the plain model is said to be correct
if for any bit b € {0,1} and any pair of strings mg, my, letting

(oti,str) = OTRy(1%,0) , (otg,sts) = OTS; (1%, (mg, my), ot1),
(ot3,str) = OTRy(str,0t2) , oty = OTSy(sts, ot3),

and finally
m = O-|_D(S'CR,O'C4)7

we have m’ = m;, with overwhelming probability.

Simulation Security in the Plain Model. We say that any 4-round OT pro-
tocol in the plain model is simulation-secure against maliciously corrupt parties
if it implements the FoT functionality in the plain model. For our construction
of 4-round OT protocol in the plain model, we prove security in the standalone
setting.

UC Security and Simulation Security. We refer the reader to the full ver-
sion [BMM™*22, CSW20b] for the formal definitions of UC security and simula-
tion security of OT protocols in the aforementioned settings, namely two-round
protocols in the CRS model and four-round protocols in the plain model.

3 Round-Optimal UC-Secure OT from wU-EGA

In this section, we demonstrate how to construct a two-round UC-secure OT
protocol in the CRS model based on any weak unpredictable effective group
action (EGA) (Definition 2). For background material on EGA, see Section 2.2.
For simplicity, we begin with a construction of two-round (round optimal) OT
in the CRS model that is UC-secure against a malicious sender but only a semi-
honest receiver. Subsequently, we show how to augment the construction in order
to also achieve UC-security against a malicious receiver.

3.1 Warm-Up: 2-round UC-OT against Semi-Honest Receiver

We provide a brief overview of our protocol. The initial protocol is described
as follows. The crs consists of two set elements (xg,z1) = (go *x z, g1 * ). The
receiver has its input choice bit b. It constructs the OT receiver message z by
sampling a random group element r <—p G as follows:

Z=T*Tp

11



The sender has input messages (mg,m1) € {0,1}*. The sender uses z and the
crs = (xp, 1) to compute the second OT message by sampling random group
elements kg, k1 < r G as follows:

yo = ko *xo, Yo = H(ko*z)® mg,

ylzkl*l‘l, ”yl:H(kl*z)@ml.

The receiver uses the randomness r to decrypt my as follows:
my =Y ® H(r*yp).
Let td denote the trapdoor of the CRS as follows:

crs = (go*z,91 xx), td=gi(g0)"",

The protocol is secure against a malicious sender since z perfectly hides b. If
b =0, then the honest receiver constructs z = r x z5. The same z can be opened
to choice bit b = 1 with randomness 7’ (by using the trapdoor td) as follows:

z=r*xx0="7-(g1(g0) ") xx1 = v’ *x 21 where 7’ = 1g1(go) "

Using the above observation, the simulator constructs z = r*xxg and extracts my
and my using randomness r and 7’ respectively. Next, we argue security against
a semi-honest receiver. We show that if the receiver computes my_; by querying
H(ky * z) to the random oracle then one can build an adversary for breaking
the weak unpredictability property. The details of our reduction can be found in
Section. 3.1. Our reduction requires the knowledge of the receiver’s randomness
r to plug in the challenge instance of the weak unpredictability game into the
sender’s OT messages. Also, z perfectly hides b and as a result the simulator
cannot extract the corrupt receiver’s choice bit b during simulation. These are
the reasons due to which the current construction only attains malicious security
against a corrupt sender. Our construction and proof sketch follows.

The Construction. Let (G, X, ) be a wU-EGA with = being a publicly avail-
able element in the set X. Also let H : X — {0,1}* be a hash function (modeled
in the proof as a random oracle). Our construction is a tuple of four PPT algo-
rithms (Setup, OTR, 0TS, 0TD) as follows:

— Setup(1*): Sample g, g1 < r G and output crs = (g, z1) where
To=go*xT, T1=g1*x.
— OTR(crs, b): Sample uniformly at random r <~ G and compute z = 7 x 2.
Output the receiver message ot; = z and the receiver state st = (b, ).

— OTS(crs, (mg, my),oty): Parse crs = (29, 21) and ot; = z. Sample uniformly
at random ko, k1 < r G and output the sender message ota = (yo, ¥1,Y0,71),
where

Yo = ko * o, Yo = H(ko*z) ® mg,

ylzkl*xl, 'yle(kl*z)EBml.
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— OTD(st,oty): Parse st = (b,r) and ota = (yo,¥1,%,71), and output the
recovered message as

m =y ® H(r*ys).
Correctness. Correctness of the scheme follows by inspection.

Security. We state and prove the following theorem.

Theorem 4. Assuming that (G, X,*) be a wU-EGA and H is a random oracle,
the above construction implements the Fot functionality in the common refer-
ence string + random oracle model against a malicious sender and a semi-honest
receiver.

Security against Malicious Sender (Informal). Note that the receiver’s
choice bit b is hidden statistically. Also, note that z is in fact an equivocal
commitment to b given the “discrete log” of x1 w.r.t. g, i.e. the group element
g1(g90)~!. Hence, the simulator can generate a CRS-trapdoor pair (crs,td) as

crs = (go*z, g1 xx), td=gi(g0) ",

and recover both the sender messages mg and mj.

Security against Semi-Honest Receiver (Informal). We will prove the
following lemma:

Lemma 1. Assuming that (G, X,*) be a wU-EGA and H is a random oracle,
the above construction is UC-secure in the common reference string + random
oracle model against a semi-honest receiver.

Proof. Given an wU-EGA challenge of the form (z,z*,y = k% x), the goal is to
predict y* = kxx*. Suppose A is an adversary that breaks OT security. We show
that there exists an adversary A’ for wu-EGA given A. The reduction proceeds
as follows (the reduction already knows the corrupt receiver’s choice bit b and
output mj, and simulates hash function H as a random oracle):

— Simulate the CRS as crs = (xg,z1) where :
Ty =%, x1_p = .
— On behalf of the receiver, sample r < G and compute z = 7 x x. Output
the receiver message oty = z.
— On behalf of the sender, sample k' < r G and output simulated sender OT

message as oty = (Yo, Y1,70,71) Where

Y=k xxp, w=HE *2)Smp,yi_p =y, Y- <r {0,1}"
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Let E be the event that A queries the random oracle with input k * z. Let
us denote the real world (resp. simulated) OT sender message as oty (resp. ot}).
Then, we denote the advantage of a corrupt receiver breaking sender privacy as
follows.

| Pr[A(oty) — l]fPr[A(ot’Q)%lﬂ

—} A(oty) — 1|E] - Pr[E] + Pr[A(oty) — 1|E] - Pr[E])
—(Pr[A(oty) — 1|E] - Pr[E] — Pr[A(oty) — 1|E] - Pr[E])|
= |(Pr[A(ot2) — 1|E] - Pr[E] — Pr[A(ot}) — 1|E] - Pr[E])
+(Pr[A(otz) — 1|E] - Pr[E] — Pr[A(oty) — 1|E] - Pr[E])|
= | Pr[E] - (PrlA(ot2) — 1|E] — Pr[A(oty) — 1]E])
—Pr[E] - (Pr[A(oty) — 1|E] — Pr[A(oty) — 1|E])|
< Pr[E] - | Pr[A otg)—>1|E]— r[A(oth) — 1|E]|
+Pr[E] - | Pr[A(oty) — 1|E] — Pr[A(oty) — 1|E]|

< Pr[E] + | Pr[A(oty) — 1|E] — Pr[A(oty) — 1|E]|.

where oty is computed honestly following the honest sender algorithm and (mg, m1),
and ot} is computed as described above. The second last inequality follows due
to triangle inequality. Rearranging the terms yields the following inequality :

| Pr[A(ot2) — 1]—Pr[A(ot)) — 1]|—| Pr[A(otz) — 1|E]—Pr[A(oty) — 1|E]| < Pr[E]

Note that the simulation is perfect assuming event E does not occur, since
H is a random oracle and since

yis=y=kxxr=kxxi_yp.

In such a case, an honestly computed ;_ is indistinguishable from a random
~1_p if the adversary A does not query H on kx z. This follows from the random
oracle assumption. Thus the following occurs with negligible probability:

| Pr[A(oty) — 1|E] — Pr[A(oty) — 1|E]| < neg(k).
This reduces the above equation to the following:
| Pr[A(oty) — 1] — Pr[A(oty) — 1]| — neg(x) < Pr[E]

Next, we construct our adversary A’ for wU-EGA provided event E occurs, i.e.
A queries H on k x z. The adversary A distinguishes oty and ot), if it obtains
information about mi_p;. Given the simulated ensemble,

(CI’S,b, mp, ot; = Z7Ot/2 = (y07y17'707'71))7

if A manages to recover message m;_; by querying (conditioned on occurrence
of event F) the random oracle on z* = k * z, then the following holds true:

2 =kxz=kx(rxaxp) =rx(kxaxp) =r*x(kxz*) =r*xy".
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Hence, the adversary A’ recovers (with non-negligible probability)

thereby violating the weak unpredictability of the EGA. Thus, the advantage of
an adversary A’ in the weak unpredictability game will be as follows:

| Pr[A(otz) — 1] — Pr[A(oty) — 1]| < Pr[E] < Pr[A" wins wU-EGA game]

< neg(k).

This completes the proof of Lemma 1 and, hence, the proof of Theorem 4. O

3.2 2-round Maliciously secure UC-OT

We now show how to augment the construction in order to also achieve UC-
security against a malicious receiver. We add security against a malicious re-
ceiver by forcing the receiver to send a non-interactive witness indistinguishable
(NIWTI) proof of knowledge 7 proving correct construction of its OT message
corresponding to the following statement:

Wbe{0,1},reG:z=r*xaxy

The sender verifies the proof as part of the OT protocol. The proof allows a
simulator to extract the choice bit b and randomness r to complete reduction.
The knowledge of r is required for the security reductions among the hybrids.
The NIWI can be performed by applying Fiat-Shamir Transform on the Sigma
protocols of [DG19].'! We refer to the full version [BMM™22] for the complete
protocol. This yields the first round optimal OT from weak unpredictability
property and it can be instantiated based on computational CSIDH assumption.

Additional Requirement. Let (G, X, x) be a wU-EGA with = being a publicly
available element in the set X. We denote the NIWT proof of knowledge (NIWI-
POK) system as follows:

NIWI = (NIWI.Prove, NIWI.Verify),

that is capable of generating proofs for OR relations of the following form with
respect to a tuple (zg,z1,2) € X x X x X:

IreG:(z=r*xzo) V(z=r*xz),

where the tuple (zg, 21, 2) is the proof statement and the witness is a tuple of
the form (r,b) € G x {0,1}.

"1 The recent work of [BDKT22] constructs a similar NIZK. But it is based on the
decisional CSIDH assumption, and is hence insufficient for our purpose.
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Our Protocol-1. Let (G, X, x) be a wU-EGA with z being a publicly available
element in the set X. Also let H : X — {0,1}* be a hash function (modeled
in the proof as a random oracle). Our construction is a collection of four PPT
algorithms (Setup, OTR, OTS,OTD) as follows:

— Setup(1*): Sample g, g1 < r G, and output crs = (x¢, 1), where
To=9go*xT, T1=g1*xT.

— OTR(crs, b): Sample uniformly at random r < G and compute z = r x xy.
Output the receiver message ot; = (z,m) and the receiver state st = (b, r),
where

7 <—p NIWI.Prove((z, z1, 2), (1, 1)).

— OTS(crs, (mg, my),oty): Parse ot; = (z,m) and proceed as follows:
o If NIWI.Verify((zo,x1,2),7) = 0, output L.

e Otherwise, sample uniformly at random kg, k1 <—r G and output the
sender message ota = (yo,¥1,70,71), Where

Yo = ko * o, o = H(ko*2z)® mg,

y1=kixxy, v1=H(ki*2z)®my.

— OTD(st,oty): Parse st = (b,r) and ota = (yo,¥1,7%,71), and output the
recovered message as
m' =, ® H(r*yp).

Correctness. Correctness of the scheme follows by inspection.

Security Proof. The security of our protocol is summarized below.

Theorem 5. Assuming that (G, X, *) is a wU-EGA, NIWI is a NIWI proof of
knowledge, and H is a random oracle, then Protocol-1 (i.e. the above construc-
tion) implements the For functionality in the common reference string + random
oracle model and it is UC-secure against malicious adversaries.

Proof. At a high level, the proof is very similar to the proof for our semi-
honest construction, with the additional guarantees provided by the (NIWI-
POK) system allowing us to prove security against a malicious receiver. The
detailed proof is deferred to the full version [BMM™22].

Instantiation from wU-REGA. We finally note that our constructions and
proofs work in essentially the same way from a restricted EGA provided that
we can sample group elements from a distribution that is statistically close to
uniform over the group G while retaining the ability to efficiently compute the
action. We note that this is plausibly the case with respect to the instantiation
of restricted EGA from CSIDH and other similar isogeny-based assumptions.
We refer the reader to [DG19, ADMP20] for more details.

Leveraging this observation and Theorem 3 together with Theorem 5, we get
the following corollary.
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Corollary 3. If the computational CSIDH assumption holds and if H is a ran-
dom oracle, there exists a 2-round OT protocol that implements the Fot func-
tionality in the common reference string + random oracle model and achieves
UC-security against malicious adversaries.

4 Round-Optimal OT in Plain Model from wU-EGA

In this section we construct our round optimal OT with simulation-based security
in the plain model from wU-EGA assumption.

4.1 Overview

We build upon the two round semi-honest OT protocol from Sec. 3.1. It can
be observed that the receiver’s choice bit b is perfectly hidden in the receiver
OT message ot; = z (computed using randomness g € G), even if the OT
parameters (xo,x1) are generated by a malicious sender. We need to extract
the receiver’s choice bit and randomness to enable simulation security against
a corrupt receiver. We rely on a three round WI proof of knowledge (denoted
as WI) for this purpose, where the receiver proves that for statement (xq,x1, 2)
and witness (g,b) the following holds true:

Cl(($0,$172)7(g7b>):1, iﬁ.Z:g*.’L'b.

We require the WI proof system to be input-delayed where only the last mes-
sage of the WI proof system depends on the statement being proven. We refer
to [BPS22, BMM22] for formal definitions. In our protocol the receiver sends
the first message 7}"' of the proof in the first round, the sender sends the OT
parameters (o, ;) and the second round message m3'' of the proof in the second
round, the receiver computes z and the final round message 73" of the proof as
the third OT message and the sender verifies the proof and sends (yo, y1,70,71)
as the final OT message. The receiver uses (g, b) to decrypt my. The simulator
against a corrupt receiver invokes the witness extractor of WI to extract (g, b).
The knowledge of g also allows us to break wU-EGA assumption when a mali-
cious receiver computes both (mg, m;). Meanwhile, receiver privacy follows the
witness indistinguishability of the proof system. For every z, there always exists
go and ¢y such that z = ggxxg = g1 x x1.

Next, we need to extract a corrupt sender’s input messages (mg, m;) from
(Y0, Y1,70,71) to enable simulation security against a corrupt sender. We rely
on a four round ZK proof of knowledge (denoted as ZK) for this purpose, where
the sender proves that for statement (x, 2o, z1) and witness (go, g1) the following
holds true:

Ca((wo, 1), (90,91)) =1, iff zg = go* 2,21 = g1 * .

We require the ZK proof system to be input-delayed where only the last message
of the WI proof system depends on the statement being proven. We refer to

17



[BPS22, BMM*22] for formal definitions. In our protocol the receiver sends the
first message X of the proof along with 7}¥! in the first round, the sender
sends the OT parameters (g, 1), the second round message 74X of the proof
and mWI in the second round, the receiver computes z and 7y'' and the third
round message 75K of the proof as the third OT message and the sender verifies
the WI proof, computes the final round message of ZK proof as m£X and sends
(Y0, 1,70, 71, m5K) as the final OT message. The receiver verifies the ZK proof
and then computes the output. The simulator against a corrupt sender invokes
the witness extractor of ZK to extract (go, g1) and compute (mg, m1). Meanwhile,
the simulator against a corrupt receiver uses the ZK simulator to simulate the
ZK proof.

The three round input-delayed WI proof system can be obtained[PRS02,
KM20, BPS22] from non-interactive commitment schemes using the protocol of
[FLS99]. The commitment scheme can be obtained from wU-EGA assumption
via injective trapdoor one way function. The four round input-delayed ZK proof
system can be constructed [PRS02, KM20, BPS22] from two-round statistically
hiding commitment scheme which in turn can be constructed'? from wU-EGA.
As a result, we obtain the first round-optimal OT in plain model from wU-EGA
which satisfies simulation security. Formal details of the protocol follows. We
denote our plain model OT protocol as Protocol-2.

4.2 Our Protocol-2

Let WI = (WIly, Wiy, Wl3, Wly) be a three round delayed input WI proof of
knowledge for the following language £; consisting of statement (zg, 21, ), wit-
ness (g,b) and NP verification circuit C; described as follows, where xg,z1,2 €
X,g€ G,be{0,1}.

Cl(($07x17z)a(gab)):17 ifz:g*zb
=0, otherwise

Let ZK = (ZK1, ZKq, ZK3, ZK4, ZK5) be a four round delayed input ZK proof of
knowledge for the following language Lo consisting of statement (x, zg, 1), wit-
ness (go, g1) and NP verification circuit Cy described as follows, where x, zq, 21 €
X7 9o, 91 € G.

CQ((xa‘TOa‘Tl)?(gOagl)) = 17 if To =9go*T,T1 =g1*xX
=0, otherwise

Receiver has choice bit b € {0,1}. Sender has input bit-messages (mg, m;) €
{0,1}. x is a public set element. H : X — {0,1} is the Goldreich-Levin hash
function. We describe our OT protocol as follows:

12 The verifier sends (z0,z1) as the first round message by sampling go, g1 +—r G and
computing o = go * €,x1 = g1 * . The committer commits to bit b by sampling
g and computing the commitment as z = g * zp. The decommitment is (g, ). Bit b
remains perfectly hidden. Binding follows from wU-EGA assumption since openings
(50,0) and (s1,1) for bits 0 and 1 help to find r = sp - s7* such that z1 = 7 x 2.
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— OTRy(1%,b): The receiver performs the following:

e Runs the first round of WI on the security parameter to obtain (m}V!, std'") <
WI,(1%,Cy) for £1 with NP-verification circuit C;.
e Runs the first round of ZK on the security parameter to obtain (77K, st&<) «

ZK;(1%,Cs) for Lo with NP-verification circuit Ca.

e Sendsot; = (7!, 7#K) as the first OT message and saves stg = (b, st}’!, st&¥)

as the internal receiver state.

— OTSy (1%, (mg, my),oty): The sender computes the following:

e Samples gg,g91 < r G and computes the OT parameters as xg = gg *x =
and x1 = g1 * .

e Computes second message of Wl as (73!, st&!) - Wiy (1%,Cy, 7).

e Computes second message of ZK as (15X, stZK) < ZKy (1%, Ca, 77K).

e Sends oty = (CC(), ml,w\QN', W%K) as the second OT message and it stores

sts = (mo, M1, To, 1, 0t1, st st&X) as the internal sender state.

— OTRgy(stgr,ot2): The receiver does the following:

e Samples g +r G and computes z = g x Tp.

e Compute third message of Wl as §"! <~ W3 ((wo, 71, 2), (g, b), st}", 75"
corresponding to statement (xq,x1, ) and witness (g, b).

e Compute third message of ZK as (72X, st&X) « ZK;(stg, 7ZK).

e Sends the third OT message ot3 = (z, 73", 75K) and updates its internal

state as stg = (b, g, st&¥).

— OTSs(sts, otz): The sender computes the following:

e The sender aborts if the WI proof fails to verify on statement (xg, z1, 2),
i.e. Wily((zg, 1, 2), st/ 7¥1) = 0.

e The sender computes the fourth message of ZK as 75K < ZK3((z, o, z1),

(90,91),s S ,W%K) corresponding to statement (x,z(,z1) and witness
(90,91)

e Sample uniformly at random ko, k1 <—r G and compute (yo, Y1, Y0, 71)s
where

Yo = ko * o, o = H(ko*z)® mg,
y1 =kixxy, v1=H(ki *2)®my.

e The sender sends fourth OT message oty = (Yo, y1, 70,71, 721) to the
receiver.

— OTD(stg, otz): The receiver computes the following;:
e The receiver aborts if the ZK proof fails to verify on statement (z, g, x1),
i.e. ZKs((z, z0, 71), stgX, 75K) = 0.

e The receiver parses stg = (b,g) and oty = (yo,¥1,%0, 71, T5K), and out-
puts the recovered message as m’ where

m' =y, ® H(r*y).
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We show that the above protocol provides indistinguishability based secu-
rity against a malicious sender and simulation based security against a corrupt
receiver by proving the following theorem.

Theorem 6. Let WI= (Wh, Wk, Wi5, Wly) be a three round delayed input W1
proof of knowledge for the following language L1, ZK = (ZK1, ZKs, ZK3, ZKy, ZKs)
be a four round delayed input ZK proof of knowledge for the following language
Ly, and (G, X,*) be a wU-EGA, then Protocol-2 (i.e. the above construction)
provides receiver privacy against a malicious sender and provides simulation-
based security against a malicious receiver.

Proof. We first argue that our protocol satisfies simulation-based security against
a corrupt sender and then we argue the same against a corrupt receiver. The
formal proof details can be found in the full version [BMM™22].

Simulation against Corrupt Sender. Assume x; = r*xg. It can be observed
that z perfectly hides b since for every gy € G there exists g = go - r~! such
that z = ggx 9 = g1 *x 1. When b == 0, the WI proof is constructed with the
group element gg such that z = gg*xg. Meanwhile, when b == 1 the WI proof is
constructed using g; as z = g1 xx1 where gg and g, satisfies the above relation. A
malicious sender distinguishing between a run of the OT protocol with receiver
input choice bit b = 0 from a run of the OT protocol with receiver input choice
bit b = 1 breaks the WI property of the proof system. Moreover, the simulator
can extract both mg and my given the trapdoors gg and g;. The simulator obtains
these trapdoors by invoking the ZK witness extractor algorithm Ext?X on 72K,

Simulation against Corrupt Receiver. The simulator invokes the WI wit-
ness extractor algorithm, denoted as Exth, to extract the witness (g, b) from the
proof. The simulator invokes the Fot functionality with the extracted choice
bit b to obtain my. The simulator constructs oty with inputs (mg, m;), where
mi—_p = 0. The ZK proof is constructed by invoking the ZK simulator, denoted
as S?K. An adversary breaks the security of the protocol if the WI proof is ac-
cepting and yet the witness extractor failed to extract a witness, or the corrupt
receiver distinguishes the simulated ZK proof from a real one. In the later case,
it breaks ZK property. In the former case, the corrupt receiver breaks the proof
of knowledge property of the WI protocol. The other case, where the extractor
extracts multiple valid witnesses also leads to an abort by the simulator. That
event occurs when the receiver breaks the wU-EGA property. a

The three round input-delayed WI proof system can be obtained [PRS02,
KM20, BPS22] from non-interactive commitment schemes using the protocol of
[FLS99]. The commitment scheme can be obtained from wU-EGA assumption
via injective trapdoor one way function. The four round input-delayed ZK proof
system can be constructed [PRS02, KM20, BPS22] from two-round statistically
hiding commitment scheme which in turn can be constructed from wU-EGA. As
a result, we obtain the first round-optimal OT in plain model from wU-EGA
which satisfies simulation security. Our result is summarized in Thm. 7.
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Theorem 7. Assuming (G, X,*) is a wU-EGA, there exists a four-round obliv-
ious transfer protocol in the plain model that provides simulation based security
against malicious corruptions of the parties.

5 OT Extension from Reciprocal EGA

In this section, we discuss our three round OT extension protocol following a
roadmap of observations. The maliciously secure OT protocol in [LGdSG21]
fails to achieve UC security in three rounds, and would require four rounds.'?
However, their construction relies on an efficient two round semi-honest OT
protocol. We observe that this semi-honest protocol can be used to implement a
batch of ¢ = O(k) OTs, satisfying malicious security notions which are weaker
than UC-security. This semi-honest to malicious security transformation requires
a few additional checks, incurring O(1) cheap symmetric operations per OT.
Finally, we show that this weaker notion of malicious security suffices for [KOS15]
OT extension by applying the result of [CSW20a]. We begin by introducing some
additional definitions and notations surrounding EGA and REGA.

5.1 Reciprocal EGA and Reciprocal CSIDH

The OT protocol of Lai et al. [LGdSG21] is based on the reciprocal CSIDH
assumption, and relies on crucially on the quadratic twist of an elliptic curve,
which can be computed efficiently in the CSIDH setting (see [LGdSG21] for
details). In this section, we adopt an abstraction of the quadratic twist and the
reciprocal CSIDH assumption in the framework of (R)EGA from [BPS22].

The Twist Map. Let (G, X,x) be an EGA (equivalently an REGA) as de-
scribed above. We define a “twist” as a map 7 : X — X that satisfies the
following properties:

— For any g € G and any # € X we have T(gxz) = g~ x T ().
— For any z € X and any uniform g <—gr G, we have: gxx ~; T (g * ).
— There exists a “twist-invariant” element xg € X such that T (z¢) = zo.

The Reciprocal EGA Assumption. Given an EGA (G, X, *), we say that
the reciprocal assumption holds if for any security parameter x € N and for any
PPT adversary A, the following holds with overwhelmingly large probability:

Pr[Expt™F% (k, A) = 1] < negl(k),
where the experiment Expt™F*(k, A) is as defined in Figure 2.

'3 This was pointed out by the authors of [LGdSG21] in their Eurocrypt 2021 presen-
tation.
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Experiment Expt™E® (k, A):

1. The challenger generates the description of an EGA (G, X, x) along with the
“twist” map 7 : X — X and a special “twist-invariant” element x7 € X.

2. The challenger then samples g < r G, sets © = g x x7, and provides to the
adversary A the tuple (G, X, *, T, z1, ).

3. The adversary A outputs an element z € X.

4. The challenger samples s < pr G and provides to the adversary A the set
element y = s x x.

5. The adversary A eventually outputs a pair of set elements (z0,21) € X x X.

6. Output 1 if (z0,21) = (s * 2,5~ " % z). Output 0 otherwise.

Fig. 2. The Reciprocal EGA Experiment

Remark 3. We can similarly define a reciprocal REGA assumption where, in
the corresponding experiment, all group elements (more concretely, the group
elements g and s) are sampled from a distribution that is statistically close to
uniform over the group G.

Finally, we import the following theorem from [LGdSG21].

Theorem 8. ([LGASG21)). Assuming that the reciprocal CSIDH assumption
holds, there exists an REGA satisfying the reciprocal REGA assumption.

5.2 OT construction of [LGdSG21]

We briefly recall the semi-honest OT construction of [LGASG21]. Let (G, X, ) be
an EGA with x( being a publicly available element in the set X where reciprocal
EGA assumption holds. Let H : X — {0, 1}* be a hash function (modeled in the
proof as a random oracle). Let 7 : X — X denote the twist operation. Receiver
R has input choice bit b € {0,1} and sender has inputs messages (mg,m1) €
{0,1}*. It is a tuple of five PPT algorithms (Setup, OTR,OTS;,0OTD) as follows:

— Setup(1*): Sample a trusted set element z¢ such that 7 (z) = zg. Sample

g <r G and output crs =z = g % xp.
— OTR(crs, b): Sample r +r G and compute z € X as follows:

z=rxxifb=0, z=T(rxz)ifb=1,

Output the receiver message ot; = z and the receiver state st = (b, 7).

— OTS(crs, oty): Sample uniformly at random s < G and compute sender’s
OT message y € X and sender’s random pads - (ag, a1) € {0,1}* as follows:

y=sxx, cg=H(sxz)®mg c1=H(s*xT(2)) ®m.
Send the sender OT message as oty = (y, ¢, ¢1).

— OTD(st,otg): Parse st = (b,r) and ots = (y, co, 1), and recover the output
message mp = ¢ © H(r xy).
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Security against Malicious Sender. At a high level, z perfectly hides the
choice bit b as (r xz) and T (r * x) are statistically indistinguishable. A corrupt
sender’s inputs can even be extracted by a simulator (see [LGdSG21] for details).

Security against Malicious Receiver. A corrupt receiver cannot compute
both mg and m; since it requires to query H on (qo,q1) = (s*z,s* T (z)). Given
q1, one can compute s~ txz = T (2). This breaks the reciprocal EGA assumption
since the adversary computes (s* z, s~ ! x 2) where y = sx x is generated by the
challenger after it receives adversarially generated set element z € X. However,
the simulator is unable to extract a corrupt receiver’s input choice bit since it is
statistically hidden.

To achieve security against a malicious receiver, the work of [LGdSG21] adds
an interactive challenge-proof-verify mechanism. The sender computes a chal-
lenge that challenges the receiver to prove that it knows randomness r such that
z=rxxor z="T(rxz). Upon receiving the challenge, the receiver decrypts my,
and computes the proof using randomness r. It sends the proof to the sender,
who verifies it and completes the protocol. The proof is sent in the third round
of the protocol, thus blowing up the round complexity to three rounds. This
approach successfully extracts a corrupt receiver’s input if it computes a correct
proof to the sender’s challenger. However, their challenge-proof-verify mecha-
nism incurs an additional overhead of 7 isogeny computation. We note that this
3 round maliciously secure OT construction suffices for simulation-based secu-
rity but they would need an additional round for UC security. We refer to their
Eurocrypt presentation for details.

5.3 Constructing OT Extension Protocols from Reciprocal (R)EGA

We build an inexpensive challenge-proof-verify mechanism on top of the above
semi-honest by relying only on symmetric key operations to obtain custom OT
protocols. These custom OT protocols are used to instantiate the maliciously
secure base OT protocols in the [KOS15] (KOS) OT extension paradigm using
ideas from [CSW20a].

Observations from [CSW20a]. The work of [CSW20a] (abbreviated hence-
forth as CSW) made crucial observations that suffices for the base-OT protocols
in KOS: 1) The base OT protocols are run in a batch of £ = O(k) > 3u OTs
together, where p is the statistical security parameter. Simulation based secu-
rity should hold for non-aborting parties for the batch together. 2) A corrupt
sender is allowed to launch selective failure attack on the base-OTs since the
receiver possesses random choice bits. 3) The base-OT protocols needs to sat-
isfy simulation-based security only for non-aborting parties, in case of an abort
semantic security suffices. The OT functionality Fsp.roT with selective failure
attack, which is weaker than UC-OT functionality, suffices for the base OT in
KOS. We show a technique that builds upon the semi-honest OT protocol of
[LGASG21] to implement FsrroT against malicious adversaries. OQur transfor-
mation only relies on cheap symmetric key operations. This reduces our isogeny
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computations for each base OT to 5 and it also yields the first OT extension
protocol based on isogenies.

Overview. We build upon the semi-honest protocol of [LGASG21]. Recall that
their two round protocol (described in Sec. 5.2) is secure against a malicious
sender and a semi-honest receiver since the simulator fails to extract the cor-
rupt receiver’s input. They add a challenge-proof-verify mechanism to tackle a
malicious receiver but that doubles their isogeny computations. Instead, we take
a different route and construct the same challenge-proof-verify mechanism by
solely relying on symmetric key operations. Our mechanism is inspired from the
the work of CSW and we describe it as follows.

Let us denote the two messages of the OT sender for the ith OT as pg ; and
p1.; respectively. Let Hy : X — {0,1}%, Hy : {0,1}* — {0,1}", Hs : {0,1}%" —
{0,1}*, Hy : {0,1}%* — {0,1}" be different hash functions (modeled in the proof
as a random oracle). Let us denote the choice bit of the receiver for the ith OT
as b;. The sender constructs a challenge chall; using the two messages as follows:

chall; = uo; ® w13, where ug; = Ha(4,p0,), w1, = Ha(i,p1,4)-

The receiver is required to compute the response as ug ; and send it back to the
sender as the proof. The receiver decrypts pp, ; and computes ug; as follows:

uo,; = chall; - b; ® Ha(py, i)-

Note that the receiver needs to query the random oracle Hs in order to compute
up,; correctly and hence the simulator successfully extracts b; if the receiver
computes the correct response ug ;. However, a corrupt sender can extract b; by
constructing chall; maliciously. It samples a random chall; and sends it to the
receiver. If the receiver responds with the correct ug ; then the sender sets b; = 0
else it sets b; = 1.

We tackle this problem by relying on the observation that the OT protocol
can allow selective failure attack and it can allow the sender to guess O(k)
choice bits of the receiver. This suffices for the KOS base OT protocols. Using
this observation we make the sender prove that the batch of ¢ challenges were
correctly computed. The sender computes the response ans of receiver proof
using a random oracle H3 as follows:

ans = H3(U0)1, up,2, - - - UO)g).

The sender sends proof of correct computation by sending the proof pf = Hs(ans)
to the receiver alongwith the challenger. The sender sets the output of £ random
OTs as (ap,a;) where ag = {ao,i}ic) and a1 = {a1,;}ieq is defined as follows
for i € [€]:

ao; = Hy(ans,poi), a1 = Hy(ans,pi ;).

Upon receiving the sender’s OT message, the receiver computes py, ; correspond-
ing to its choice bit b;. It computes {uo,; }ie[g and recomputes ans to verify pf. If
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the verification succeeds then the receiver sends ans to the sender as the response
and computes the OT output as ap, ; = Ha(ans, py, ;). If a corrupt receiver com-
putes the correct ans then a simulator extracts every {b;};c| by observing the
queries made to Hs and Hs. Without computing the correct ans the corrupt
receiver cannot compute the OT output as, ;. Hence, the simulator successfully
extracts all the choice bits of the receiver if the receiver needs to compute the
output of any single OT. Meanwhile, a corrupt sender can launch a selective fail-
ure attack only if it correctly guesses the value of receiver computed ans to verify
pf. This is performed by guessing the ug ; values computed by the receiver and for
that the sender needs to guess the receiver’s choice bit in the OT protocols. The
base OT protocols in KOS are random OTs. The sender guesses k choice bits of
the receiver with only 27" probability. Thus, our OT protocol allows selective
failure attack and it implements the Fsp.roT functionality. Formal details of our
protocol follows and the security proof is deferred to the full version [BMM™22].

Our Protocol-3. Let (G, X, %) be an EGA with xq being a publicly available
element in the set X where reciprocal EGA assumption holds. Also let H; : X —
{0,1}%, Hy : {0,1}* — {0,1}*, H3 : {0,1}** — {0,1}*, H, : {0,1}%% — {0,1}*
be different hash functions (modeled in the proof as a random oracle). Our
construction is a tuple of five PPT algorithms (Setup, OTRy, 0TS, OTRy, OTS5):

— Setup(1*): Sample a trusted set element zo such that 7T (x¢) = xo. Sample
g <r G and output crs =z = g * xg.
— OTRy(crs, b): Sample r +x G* and compute z € X* as follows for i € [¢]:

zi:ri*a:ifbizo, Zi:T(’I"i*J?) ifbi:L

Output the receiver message ot; = z and the receiver state st = (b, r).
— OTS; (crs, oty ): Sample uniformly at random s < G* and compute sender’s

OT message y € X’ and sender’s random inputs messages as (po,p1) €
{0,1}%*# as follows for i € [(]:

yi =si*x, po;=Hi(i,six2) p1i=Hi(i,5%T(2)).
Compute the challenge chall for receiver proof as follows for ¢ € [¢]:
chall; = up; ®u1,;, where ug; = Ha(i,p0:), u1,i = Ha(i,p1,)-

Compute the response ans = Hz(ug, 1, Uo,2; - - - Uo,¢) of receiver proof. Com-
pute the sender’s proof pf = Ha(ans). Send the sender OT message as
oty = (y, chall, pf). Store (ans, po, p1) as the internal state.

— OTRga(st,otg): Parse st = (b,r) and otz = (y,chall, pf), and recover the
output pads p = {p;};cjq as follows for i € [¢] as p; = Hi(r; xy;). Compute
the intermediate proof response as follows for ¢ € [{]: u} = chall;-b;®H2(i,p;),
and compute the receiver’s proof response ans’ as ans’ = Hg(uj, ub, ... up).
The receiver aborts if Hy(ans') # pf. Else, the receiver responds to the
sender’s challenge by sending ot3 = ans’ to the sender. The receiver computes
the OT output as m = {m;},c;q = {Ha(ans',p;)}icpq for i € [{]. Output
(b, m) as the random OT receiver output.
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— OTSs(ans, otg): Parse oty = ans’. The sender aborts if ans’ # ans. Else, the
sender sets the output as (ap,a;) where ag = {ao i }icyg and a; = {a1,i}icqy
is defined as follows for i € [{]:

ag,; = Hy(ans,po i), a1, = Hy(ans,p1;).

Further Optimizations. It can be observed that the sender can reuse the
randomness s for multiple OT protocols by using reusing the same y for all the
OT protocols. This translates into a poly(x) loss in the security parameter since
the reduction to reciprocal EGA assumption needs to guess the session where a
corrupt receiver breaks the assumption. The security loss can be compensated
by increasing the security parameter accordingly. This optimization reduces the
number of isogeny computations to 4 for each OT. Meanwhile, the semi-honest
OT protocol of [LGASG21] requires 5 isogeny computations.
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