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Abstract. Functional encryption (FE for short) can be used to calcu-
late a function output of a message, without revealing other informa-
tion about the message. There are mainly two types of security def-
initions for FE, exactly simulation-based security (SIM-security) and
indistinguishability-based security (IND-security). Both of them have
some limitations: FE with SIM-security supporting all circuits cannot
be constructed for unbounded number of ciphertext and/or key queries,
while IND-security is sometimes not enough: there are examples where
an FE scheme is IND-secure but not intuitively secure. In this paper, we
present a new security definition which can avoid the drawbacks of both
SIM-security and IND-security, called indistinguishability-based security
against probabilistic queries (pIND-security for short), and we give an FE
construction for all circuits which is secure for unbounded key/ciphertext
queries under this new security definition. We prove that this new se-
curity definition is strictly between SIM-security and IND-security, and
provide new applications for FE which were not known to be constructed
from IND-secure or SIM-secure FE.

Keywords: functional encryption, probabilistic queries, indistinguishability-
based security, provable security

1 Introduction

Functional encryption (FE) was first introduced by Boneh et al in 2011 [BSW11],
which can calculate the function output f(m) given the encrypted message
Enc(m), and leaks nothing else about the message m. Functional encryption is
a mighty cryptographic primitive, and can be considered as a generalization of
attribute-based encryption, predicate encryption and inner product encryption.

Functional encryption is also an important method for computing on en-
crypted data, especially for cloud computing [KLM+18,RSG+19,MSH+19]. Us-
ing functional encryption, the cloud server can take ciphertexts as input, and
outputs the required computation result as plaintext. This is different from ho-
momorphic encryption, where the result is a ciphertext that requires additional
decryption procedure and may not be suitable for some applications.



2 Geng Wang, Shi-Feng Sun, Zhedong Wang and Dawu Gu

Informally, a functional encryption scheme consists of four algorithms: despite
the normally defined algorithms Setup,Enc,Dec as in public key encryption, there
is another algorithm KeyGen in functional encryption, which takes the master
secret key and a function f ∈ F as input, and outputs a function key skf . In
the decryption algorithm, function key skf instead of the master secret key is
used, and the function value f(m) instead of the message m itself is returned.
(See Section 2 for the formal definition.)

There are mainly two types of security definitions for functional encryption:
indistinguishability-based security (IND-security) and simulation-based security
(SIM-security). However, both of them have their own drawbacks. We first briefly
introduce the two types of security notions, then show why it is necessary to
define a new type of security notions between them.

1.1 Overview of Security Notions for FE

The standard IND-security is equivalent to the natural notion of semantic secu-
rity in public key encryption, and is also defined for many other cryptographic
primitives, such as identity-based and attribute-based encryption. But for func-
tional encryption, it has been pointed out that IND-security is not the strongest
security definition. We first informally recall the definition of IND-security for
FE:

An adversary A cannot distinguish between a ciphertext for m0 and a ci-
phertext for m1, even if allowed to query secret keys {skf} for polynomial many
different functions {f ∈ F}, providing that f(m0) = f(m1). (We say that A is
“admissible” if it only makes queries such that f(m0) = f(m1).)

It seems to be natural for the restriction f(m0) = f(m1), since A can trivially
determine whether the ciphertext is for m0 or m1 otherwise. However, such a
restriction leads to the counter-intuitive example given in [O’N10,BSW11] and
refined in [AGVW13]:

Example 1.1 ([BSW11,AGVW13]). Let F be a family of one-way permutation-
s. Suppose that PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) is a secure public-key
encryption scheme. Then the following FE construction for F is IND-secure:

– Setup(1λ): Let (PKE.pk,PKE.sk)← PKE.KeyGen(1λ), and return PK =
PKE.pk,MSK = PKE.sk.

– Enc(PK,m): Return PKE.Enc(PK,m).
– KeyGen(MSK, f): Return (MSK, f).
– Dec(skf , ctm): Let skf = (MSK, f), return f(PKE.Dec(MSK, ctm)).

However, each skf totally leaks m, while f(m) does not leak m (since f is one-
way).

It is not difficult to understand why such a counter-example exists: since the
adversary is only allowed to query on f such that f(m0) = f(m1), it is not
allowed to make any single key query if F is a family of one-way permutations.
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In [BSW11], the authors defined a stronger security notion, called simulation-
based security to handle such cases. Informally speaking, SIM-security implies
that there exists a simulator that, given only the length of m and the function
outputs {f(m)}, but not m itself, can simulate the role of the challenger in the
real game. However, SIM-security is so strong that it suffers from the following
impossible results:

(1) [BSW11]: SIM-secure FE for P/poly cannot be constructed for unbounded
ciphertext queries before a single key query;

(2) [AGVW13]: SIM-secure FE for P/poly cannot be constructed for unbound-
ed key queries before a single ciphertext query.

These impossible results hold even under the random oracle model [AKW18].
Indeed, there are already some constructions for simulation-based FE schemes,
but they only work for either bounded ciphertext queries or bounded key queries
(which means that the number of ciphertext/key queries must be pre-determined
at the Setup phase) [GVW12,GJKS15,ALMT20]. However, for applications in
the real world, we need to know how an FE scheme already proven to be SIM-
secure performs when handling unbounded ciphertext and key queries. Therefore,
a natural question is that: is there a new security notion between IND-security
and SIM-security that overcomes the above drawbacks? Intuitively, the new se-
curity notion should satisfy the following properties:

– The new security notion must avoid the counter-intuitive example in Exam-
ple 1.1;

– There must be a construction of FE for P/poly under the new security notion
that supports both unbounded ciphertext and key queries;

– Any SIM-secure FE scheme should satisfy the new security notion, so that
we are able to discuss the unbounded ciphertext/key security for existing
SIM-secure schemes;

– The new security notion should be stronger than IND-security, so that the
properties for IND-security also hold for this new security notion.

Next, we show how to define this new security notion by modifying the exist-
ing IND-security definition. We note that, the problem in the counter-example
can be handled for IND-security, if we loose the restriction on the adversary, such
that A is still allowed to make query f even if f is a one-way permutation. We
start from the distributional indistinguishable security (DI-security), first intro-
duced in [AM18], by letting the input of ciphertext queries be a pair of message
distributions M0,M1, instead of a pair of messages m0,m1. For example, let M0

be the uniform distribution of messages such that the first bit is 0, and M1 be the
uniform distribution of messages such that the first bit is 1. When the adversary
submits M0,M1 to the challenger, the challenger first randomly chooses a bit b,
and then samples m←Mb.

Now we show that why the counter-example can no longer satisfy the DI-
security definition which allows probabilistic ciphertexts. We only need to con-
struct an adversary A which queries the challenger with a pair of message dis-
tributions, instead of a pair of messages, such that A can break the scheme in
Example 1.1.
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– Let b be a hardcore predicate of f , we let A submit two distributions: M0

is uniform on all strings with b(m) = 0, M1 is uniform on all strings with
b(m) = 1. (More details can be found in Section 5.)

– Now A can make queries on f for the one-way permutation f , since f(M0)
and f(M1) are computationally indistinguishable by the property of hard
core predicate.

– A can calculate PKE.Dec(skf , ctmb
) and check its first bit to successfully

recover b.

On computational indistinguishability and queries with trapdoors. However,
DI-security is not enough, mainly because the usage of computational indistin-
guishability in its security definition. We point out that it is not easy to include
computational indistinguishability inside a security game. Below we show the d-
ifficulties we discovered while attempting to define a new security notion through
probabilistic queries, and that how we solved them. We first give an example,
where distributional indistinguishability fails to handle.

Example 1.2. Let PKE be a public key encryption scheme. We explicitly write
the randomness used in the encryption algorithm: PKE.Enc(pk,m; r), let R be
the space of random seeds where r ← R. We define function class F as follows:

fpk(m, r) ∈ F ⇔ ∃(pk, sk)← PKE.KeyGen, fpk(m, r) = PKE.Enc(pk,m; r).

Let FE be a functional encryption scheme for F , and we consider the security
notion which allows message distributions instead of messages.

We construct an adversary A which makes following queries:

– A runs PKE.KeyGen to get (pk, sk).
– Then, A submits fpk as a key query.
– A chooses random m0,m1, and submits M0,M1 which are uniform distribu-

tions on {m0} ×R and {m1} ×R.

Now we have that fpk(M0)← PKE.Enc(pk,m0) and fpk(M1)← PKE.Enc(pk,
m1), hence the two distributions: f(M0) and f(M1) are computationally indis-
tinguishable according to the IND-CPA security of PKE. However, the adversary
A can easily distinguish between a ciphertext in f(M0) and f(M1) since it holds
the secret key sk.

Although in [AM18], the authors constructed DI-secure FE for all polynomial-
sized circuits, we show here that DI-security cannot be satisfied for a function
family with trapdoors1, which makes a contradictory. The main reason for this
problem is that the notion of computational indistinguishability was not well-
defined as in [AM18]: it must be made clear for which party it is to distinguish

1 We also note that a trapdoor may not only be hidden in the function, but also in
the messages. We slightly modify the function in Example 1.2, and let f be defined
as: f(pk,m, r) = PKE.Enc(pk,m; r), and Mb = {pk} × {mb} × R, so f(M0) and
f(M1) are distributions with trapdoor, and the trapdoor is hidden in the message
distribution, not the function.
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between the two distributions, and how much information it has. In Example 1.2,
since an adversary may cheat, we cannot let A be the distinguisher. However, A
is the only one who has the secret key sk, and for any other party, f(M0) and
f(M1) are indistinguishable, which meets the same difficulties.

This is why we must extend computational indistinguishability into a stronger
notion for such a security notion of FE to be well-defined. We informally state
what it means by saying that two distributions are strictly computationally
indistinguishable even considering trapdoors.

Definition 1.1. (informal) Let D be a p.p.t. algorithm that outputs a pair of
distributions D0, D1, we say that distributions from D are strictly computational-
ly indistinguishable, if there is no auxiliary string aux corresponding with D0, D1

such that (D0, aux) and (D1, aux) are computational distinguishable.

Note that the auxiliary string aux can be viewed as the trapdoor in distri-
butions D0, D1.

Now, we revisit Example 1.2. We consider A as the algorithm which outputs
fpk(M0) and fpk(M1) as a pair of distributions, and we let sk be the auxiliary
string aux. So we can easily construct B that distinguish between sk, fpk(M0)
and sk, fpk(M1), thus fpk(M0) and fpk(M1) cannot satisfy the condition of strict
computational indistinguishability.

This additional auxiliary string has no affect on function families without
trapdoors. Just consider PKE, for (pk, sk)← PKE.KeyGen, sk can be the auxil-
iary string if pk is fixed, but if we choose random pk, then there is no such aux
as long as PKE has semantic security (we note that aux is not a variable, hence
cannot be sk). Otherwise, aux becomes a “master trapdoor” which is unrelated
to the randomness used in PKE.KeyGen. Let A be an adversary which distin-
guishes between (D0, aux) and (D1, aux), then Aaux(.) = A(., aux) (with aux
hardwired in the adversary) can break the semantic security of PKE. We shall
give a formal explanation for this case in Section 6.

The need for probabilistic function queries. It seems that everything is right
with a new definition for computational indistinguishability. However, since we
consider trapdoor functions, we extend Example 1.2 to construct another exam-
ple just like Example 1.1:

Example 1.3. Let F be defined as in Example 1.2, and PKE′ be a semantic
secure public key encryption scheme, then the following FE construction for F
is IND-secure even if we consider probabilistic ciphertext queries:

– Setup(1λ): Let (PKE′.pk∗,PKE′.sk∗)← PKE′.Setup(1λ), and returns PK =
PKE′.pk∗, MSK = PKE′.sk∗.

– Enc(PK, (m, r)): Return PKE′.Enc(PK,m‖r).
– KeyGen(MSK, f): Return (MSK, f).
– Dec(skf , ctm): Parse skf = (MSK, f), decrypt m‖r = PKE′.Dec(MSK, ctm),

and return f(m, r).

However, each skf totally leaks m, while f(m, r) does not leak m (since f is the
encryption of a semantic secure PKE).
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The counter-example above holds, since if we allow the adversary to make
even a single query, it can first use PKE.Setup to generate a pair pk, sk, and then
query the function key for fpk = PKE.Enc(pk, .; .) ∈ F , hence having the abili-
ty to trivially distinguish between fpk(M0) and fpk(M1). (To match Definition
1.1 above, we can trivially construct a distinguisher B with sk as the auxil-
iary string.) Since the adversary cannot make any queries, the same problem in
Example 1.1 also occurs.

In order to avoid such counter-examples, we must allow probabilistic queries
not only in the ciphertext query, but also in key queries. Each time the adversary
makes a probabilistic key query F , the challenger first samples f ← F , then
returns both f and skf to the adversary. We construct an adversary A which
makes following queries (including probabilistic key queries):

– We let A submit two distributions: M0 is uniform on all strings which first
bit is 0, M1 is uniform on all strings which first bit is 1.

– A makes a single key query by submitting a distribution F which is uniform
on F , and gets fpk ∈ F .

– A can calculate PKE′.Dec(MSK, ctmb
) and check its first bit to successfully

recover b.

Since fpk is randomly chosen by the challenger, the adversary A cannot get
the corresponding sk. Here, instead of f(M0) and f(M1), we only require that
the distributions F, F (M0) and F, F (M1) be strictly computationally indistin-
guishable (sampling from F, F (Mb) means sampling f ← F , m ← Mb and
returning f, f(m).) By our definition, the auxiliary string aux is only related
to the distribution F, F (Mb) but independent from how the challenger chooses
fpk ← F (thus independent with either pk or sk).

Now we finished the discussion of rationality for probabilistic queries. We can
see that such a security notion can be well-defined, and also avoids the counter-
intuitive examples in Example 1.1, 1.2 and 1.3. We call the new security notion
indistinguishability-based security against probabilistic queries (pIND-security),
and show that it is weaker than SIM-security but stronger than IND-security.

Construction of pIND-secure FE for P/poly. In this paper, we also give a
construction of pIND-secure FE for P/poly, which allows unbounded number of
both ciphertext and key queries. Concretely, we show that a fully pIND-secure
FE scheme for P/poly can be constructed from a selective IND-secure FE scheme,
while the latter can be constructed from both indistinguishability obfuscation
[GGH+13] and well-founded assumptions [JLS21,GP21,WW21]. We note that,
although the existence of iO is a strong assumption, unbounded IND-secure FE
for P/poly is more than sufficient in constructing iO [AJ15]. So the FE scheme
we construct has stronger security without stronger assumptions.

1.2 Related Works

FE for randomized functionalities. Functional encryption for randomized func-
tionalities (rFE) was introduced in [GJKS15]. The authors gave both SIM-based
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and IND-based security notions for rFE. We note that, since the authors also
used computational indistinguishability to define IND-based security for rFE, the
same problems occur as we pointed out in Example 1.2, so that the IND-security
of rFE given by [GJKS15] cannot handle trapdoors or public-key encryption.
By moving our definition (and construction, using the generic transformation
of [AW17]) into the randomized case, these problems can be solved to get a
well-defined pIND-based security for rFE.

Distributional Indistinguishability for FE. In [AM18], the authors gave the
definition of distributional indistinguishability (DI) for FE, which is previously
discussed on garbled circuit and randomized encodings [GHRW14,LPST16], and
also gave a construction for DI-secure FE from standard IND-secure FE. Our
security definition shares some similarities with theirs, such as allowing the ad-
versary to submit two message distributions, rather than two messages, in the
ciphertext query. However, since the DI definition does not allow probabilistic
key queries, it still suffers from Example 1.2 and 1.3 which we pointed out above
(see also the discussion in Section 6). Moreover, we also give a pIND-secure FE
construction for P/poly with adaptive security, while the construction in [AM18]
only satisfies selective security.

Function-private public key FE. Probabilistic key queries are also considered
in the function-privacy of public key FE [BRS13,PMR19,BCJ+19] as in our work.
However, we do not consider function-privacy: In our definition, the function
chosen by the challenger is always known to the adversary. It is interesting that
whether we can extend our security definition to handle function-privacy.

Other security definitions for FE. There are some other security definitions in
early works of functional encryption. In [BO13], the authors gave some new secu-
rity definitions compared with IND-security, but without a general construction.
In [BF13], the authors considered the cases where a trapdoor is hidden in the
function family F supported by FE (instead of function-key queries, which we
consider in this paper), and made new security definitions that are even stronger
than SIM-security. However, in this paper, we mainly focus on the case where
the function family F is P/poly, so we will not consider this problem.

2 Preliminaries

Notations. x← χ for a distribution χ means that x is sampled from χ. x← X for
a set X means that x is uniformly random chosen from X. x ← X for a p.p.t.
algorithm X means that x is a random output of X , where the abbreviation
p.p.t. stands for probabilistic polynomial time. We say that ε is negligible in λ,
if ε < 1/Ω(λc) for any c > 0 with sufficiently large λ. [n] for n ∈ Z+ is the set
{1, ..., n}.

2.1 Functional Encryption and Security Definitions

Definition 2.1. A functional encryption scheme FE for a function family F
consists of the following four algorithms (let M be the message space):
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– Setup(1λ): output a pair (PK,MSK).
– KeyGen(MSK, f): for f ∈ F , output a function key SKf .
– Enc(PK,m): for m ∈M, output a ciphertext CTm.
– Dec(SKf ,CTm): output the function value f(m).

FE is correct if for any (PK,MSK)← Setup(1λ), SKf ← KeyGen(MSK,f),
CTm ← Enc(PK,m), the probability that Dec(SKf ,CTm) 6= f(m) is negligible.

Now we give the definition for both IND-security and SIM-security of func-
tional encryption.

Definition 2.2. An 1-CT adaptive IND-CPA-security game for an FE scheme
is defined as follows:

– Setup: The challenger runs Setup(1λ) and returns PK to the adversary.
– Phase 1: The adversary chooses f ∈ F and gives it to the challenger. The

challenger generates skf ← KeyGen(MSK, f) and returns skf to the adver-
sary. This can be repeated adaptively for any polynomial times.

– Challenge: The adversary chooses two messages of identical length m0,m1

and gives it to the challenger. The challenger randomly chooses b ← {0, 1},
generates ct← Enc(PK,mb) and returns ct to the adversary.

– Phase 2: Same as Phase 1.
– Output: The adversary outputs a bit b′, and the winning advantage for the

adversary is defined by AdvIND(A) = |Pr(b′ = b)− 1/2|.

An adversary A is said to be admissible, if for any query f in Phase 1 or Phase
2, f(m0) = f(m1). FE is said to be ad-IND-secure if for any p.p.t. admissible
adversary A, AdvIND(A) is negligible.

For the selective IND-security (sel-IND-security), we require that A submits
m0,m1 to the challenger at the beginning of the game.

For the many-CT version of the game, we let the adversary submits any poly-
nomial number of pairs of messages in the challenge phase, say (m1

0,m
1
1), ..., (mq

0,
mq

1), such that f(mi
0) = f(mi

1) for any query f and i ∈ [q]. In the challenge
phase, the challenger samples b← {0, 1} and returns (Enc(PK,mi

b))i∈[q].

It is not hard to show that 1-CT IND-security implies many-CT IND-security
through hybrid arguments. In [ABSV15], the authors showed that any sel-IND
secure FE scheme which is sufficiently expressive can be turned into an ad-IND
secure FE scheme. Even if the FE scheme is not expressive enough, we can
still use the standard complexity leverage method [BB04] to prove the ad-IND-
security, if we assume the sub-exponential hardness of the underlying hardness
assumptions.

Next, we give the simulation-based security definition.

Definition 2.3. Let FE be a functional encryption scheme for a function family
F . Consider a p.p.t. adversary A = (A1,A2) and a stateful p.p.t. simulator Sim.
Let Um(.) denote a universal oracle, such that Um(f) = f(m). Consider the
following two experiments:
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ExprealFE,A(1λ) ExpidealFE,A(1λ)

1. (PK,MSK)← FE.Setup(1λ); 1. PK← Sim(1λ);

2. (m, st)← AFE.KeyGen(MSK,.)
1 (PK); 2. (m, st)← ASim(.)

1 (PK);

3. CT← FE.Enc(PK,m); 3. CT← SimUm(.)(1λ, 1|m|);

4. α← AFE.KeyGen(MSK,.)
2 (PK,CT, st); 4. α← ASimUm(.)(.)

2 (PK,CT, st);
5. Output m,α. 5. Output m,α.

We call a stateful simulator algorithm Sim admissible if, on each input f ,
Sim makes just a single query to its oracle Um(.) on f itself. The functional
encryption scheme FE is then said to be adaptive simulation-based secure (ad-
SIM-secure) if there is an admissible stateful p.p.t. simulator Sim such that for
every p.p.t. adversary A = (A1,A2), the two experiments are computationally
indistinguishable.

For the selective SIM-security (sel-SIM-security), we require that A submits
m to the challenger at the beginning of the game.

3 Indistinguishability-based Security against Probabilistic
Queries

3.1 Definition for pIND Security

First, we give a formal definition for the idea of strict computational indistin-
guishability introduced in Section 1. We say that a distribution F is efficiently
samplable, if there exists a p.p.t. algorithm F which output follows F . Moreover,
sampling from F means to run F with random seed and fetch its output, so we
can use F to represent F if there is no confusion.

Definition 3.1. Let D be a p.p.t. algorithm that outputs a pair of efficiently
samplable distributions D0, D1. We say that distributions from D are strictly
computationally indistinguishable, if for any p.p.t. algorithm S which outputs
a pair of efficiently samplable distributions S0, S1 and an auxiliary string aux,
either:

(1) there exists a p.p.t. algorithm P which distinguishes between the output
of D and S (without aux), which means that Pr(P(D0, D1) = 1|(D0, D1) ←
D)− Pr(P(S0, S1) = 1|(S0, S1, aux)← S) is non-negligible;

or
(2) there is no p.p.t. algorithm B which distinguishes between aux, S0 and

aux, S1, which means that Pr(B(aux, s0) = 1|s0 ← S0)−Pr(B(aux, s1) = 1|s1 ←
S1) must be negligible.

Without loss of generality, we let the auxiliary string aux contains the two
distributions S0, S1 (in the form of sampling algorithms), so the distinguisher B
knows exactly the two distributions.
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Since there must be no restriction on how D works, we cannot suppose that
aux is output by D, hence we introduce another algorithm S which outputs
both the pair of distributions and the auxiliary string aux. In most cases, we
can simply suppose that S acts similar as D. However, since no p.p.t. algorithm
can determine whether two distributions are equal or even statistical indistin-
guishable, in order to get a formal definition, we simply let the outputs of D and
S be computationally indistinguishable.

Next, we use the idea of strict computational indistinguishability to define
our new definition for functional encryption.

Definition 3.2. Given message space M and function space F , an 1-CT adap-
tive pIND-CPA-security game for an FE scheme is defined as the following:

– Setup: The challenger runs Setup(1λ) and returns PK to the adversary.
– Phase 1: The adversary chooses an efficiently samplable distribution F on the

function space F , and gives the sampling algorithm to the challenger. The
challenger samples f ← F , generates skf = KeyGen(MSK, f) and returns
f, skf to the adversary. This can be repeated adaptively for any polynomial
times.

– Challenge: The adversary chooses two efficiently samplable distributions M0,
M1 on the message space M which contain messages of same length, and
gives the sampling algorithms to the challenger. The challenger randomly
chooses b← {0, 1}, m←Mb, generates ctm ← Enc(PK,m) and returns ctm
to the adversary.

– Phase 2: Same as Phase 1.
– Output: The adversary outputs b′, and the winning advantage for the adver-

sary is defined by AdvpIND(A) = |Pr(b′ = b)− 1/2|.

An adversary A is said to be admissible, if the two distributions (Fi, Fi(M0))i∈[Q]

and (Fi, Fi(M1))i∈[Q] are strictly computationally indistinguishable, Q is the
number of KeyGen queries. FE is said to be ad-pIND-secure if for any p.p.t.
admissible adversary A, AdvpIND(A) is negligible.

For the selective pIND-security (sel-pIND-security), we require that A submits
M0,M1 to the challenger at the beginning of the game.

For the many-CT version of the game, we let the adversary submits any poly-
nomial number of pairs of messages in the challenge phase, say (M1

0 ,M
1
1 ), ..., (Mq

0 ,
Mq

1 ), and the admissability is changed to: (Fi, Fi(M
1
0 ), ..., Fi(M

q
0 ))i∈[Q] and (Fi,

Fi(M
1
1 ), ..., Fi(M

q
1 ))i∈[Q] are strictly computationally indistinguishable. In the

challenge phase, the challenger samples b← {0, 1} and returns (Enc(PK,mi
b))i∈[q].

We note that when sampling from the distribution (Fi, Fi(Mb))i∈[Q], we only
sample once from each Fi and Mb, so the elements from the distribution are in
fact dependent with each other.

Now we present a lemma by applying the contrapositive of strict computa-
tional indistinguishability onto pIND-security definition. This lemma is useful in
the following proofs.
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Lemma 3.1. For an adversary A in the pIND-CPA-security game, we define
the trace of A as:

trA = (M0,M1, (Fi, fi, fi(m))i∈[Q]).

Then FE is pIND-secure, if and only if for every p.p.t. A such that AdvpIND(A)
is non-negligible (not necessarily admissible), there exists a p.p.t. sampling algo-
rithm T which outputs the distribution:

(aux, b̄← {0, 1}, m̄← M̄b̄, tr = (M̄0, M̄1, (F̄i, f̄i, f̄i(m̄))i∈[Q])),

and a p.p.t. algorithm B where:

– (1) For any p.p.t. algorithm P, Pr(P(trA) = 1)−Pr(P(tr) = 1) is negligible;
– (2) aux is independent with the following conditional distributions: m̄|M̄0, M̄1;
f̄1|F̄1;...;f̄Q|F̄Q (which can be considered as the randomness used in the
choice of m̄, f̄1, ..., f̄Q);

– (3) Pr(B(aux, tr) = b̄)− 1/2 is non-negligible.

Proof. If FE is pIND-secure, then A with non-negligible advantage must be non-
admissible, which means that (Fi, Fi(M0))i∈[Q] and (Fi, Fi(M1))i∈[Q] are not
strictly computationally indistinguishable.

By the definition of strict computational indistinguishability, there is a sam-
pling algorithm S which outputs (F̄i, F̄i(M̄0))i∈[Q], (F̄i, F̄i(M̄1))i∈[Q], aux, such
that:

(1) The output of S except aux are computationally indistinguishable with
(Fi, Fi(M0))i∈[Q], (Fi, Fi(M1))i∈[Q];

(2) There exists B which distinguishes between aux, (F̄i, F̄i(M̄0))i∈[Q] and

aux, (F̄i, F̄i(M̄1))i∈[Q].

Let T do the following: first sample S0, S1, aux from S, then sample b̄ ←
{0, 1}, f̄i ← F̄i, m̄← M̄b̄, and return (aux, b̄, m̄, t̄r = (M̄0, M̄1, (F̄i, f̄i, f̄i(m̄))i∈[Q])).
Since in the pIND-CPA-security game, the challenger samples from Fi and Mb

honestly, we can see that t̄r is computationally indistinguishable with trA, and
aux is independent with the choice of f̄i and m̄, which means that aux is inde-
pendent with m̄|M̄0, M̄1; f̄1|F̄1;...;f̄Q|F̄Q, hence satisfies all three conditions.

Now, suppose that there exists T ,B satisfies all three conditions. Let S runs
T and outputs aux and the two distributions (F̄i, F̄i(M̄0))i∈[Q], (F̄i, F̄i(M̄1))i∈[Q],

which are computationally indistinguishable with (Fi, Fi(M0))i∈[Q], (Fi, Fi(M1))i∈[Q].

Then, we sample random b̄ ← {0, 1}, m̄ ← M̄b̄, f̄i ← F̄i, i ∈ [Q], and let
(aux, (M̄0, M̄1, (F̄i, f̄i, f̄i(m̄))i∈[Q])) be the input of B, then B distinguishes the
two distributions (F̄i, F̄i(M̄0))i∈[Q], (F̄i, F̄i(M̄1))i∈[Q]. By the definition of strict

computational indistinguishability, (Fi, Fi(M0))i∈[Q] and (Fi, Fi(M1))i∈[Q] can-
not be strictly computationally indistinguishable, which means that any adver-
sary A with non-negligible advantage cannot be admissible. ut

For the many-CT version of the game, we define the trace trA as:

((M i
0,M

i
1)i∈[q], (Fk, fk, fk(m1), ..., fk(mq))k∈[Q]).
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It is not hard to show that the result is the same as the 1-CT case.
In a general case, it seems to be hard to determine whether two distribution-

s are strictly computationally indistinguishable, especially with the auxiliary
string. But if the function class is a cryptographic primitive such as hash family
or public key encryption, we can use its security definition to prove the indistin-
guishability. We give more details in Section 5 and Section 6.

3.2 Relationship between Different Security Definitions

In this section, we show that pIND-security satisfies the four properties we dis-
cussed in Section 1.1, which means that pIND-security can be used to avoid the
drawbacks for both SIM-security and IND-security.

Theorem 3.1. If FE is SIM-secure, then FE is pIND-secure.

Proof. Let A be any pIND adversary, we can construct a SIM adversary EA as
follows (for the real experiment):

– When A outputs a key query F , E chooses f ← F and gives f to the
challenger C. When the challenger returns skf , E returns f, skf to A.

– When A outputs the ciphertext query M0,M1, E first chooses b ← {0, 1}
and gives m←Mb to the challenger C.

– When C returns a ciphertext CT , CT is returned to A directly.
– When A outputs the guess b′, E outputs b′ along with the trace: trA =

(M0,M1, (F1, f1, f1(m)), ..., (FQ, fQ, fQ(m))).

Since b′ is the same as the output of A in the sel-pIND game, Pr(b′ = b)− 1/2 is
non-negligible iff AdvpIND(A) is non-negligible.

Now consider the ideal experiment with simulator S. Differ from the real
experiment, we let the random bit and sampled message be b̃, m̃, output be b̃′,
the trace by t̃rA, and t̃rA is computationally indistinguishable with trA by the
SIM-based security of the FE scheme. So Pr(b̃′ = b̃) − 1/2 is non-negligible iff
AdvpIND(A) is non-negligible.

Using Lemma 3.1, we only need to construct the algorithm B and a sampling
algorithm T which samples (aux, b̄, m̄, tr).

Let T run the ideal experiment with adversary EA and simulator SUm̃(.).
When S queries Um̃(f), it directly returns f(m̃) to S (since m̃ is chosen by EA),
and let b̄ = b̃, m̄ = m̃, tr = t̃rA. Finally, let aux = (rA, rS), where rA, rS are the
randomness used in A,S.
B(aux = (rA, rS), tr = (M̄0, M̄1, (F̄i, f̄i, f̄i(m̄))i∈[Q])) is constructed from

A,S with rA, rS as their randomness:

– B first runs A with randomness rA. When A outputs the ciphertext query
M̃0, M̃1, first check M̃0 = M̄0, M̃1 = M̄1, otherwise abort. S is run with
randomness rS .

– When A outputs the i-th key query F̃i, first check F̃i = F̄i, otherwise abort.
Send f̄i to S, and when S queries Um̃, return f̄i(m̄) to S. Return f̄i and skf̄i
generated by S to A.
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– When S returns a ciphertext CT , CT is returned to A directly.
– When A outputs the guess b̃′, return b̄′ = b̃′.

It is easy to see that if B never aborts, the output distribution is the same
as EA in the ideal game, which means that Pr(B(aux, tr) = b) − 1/2 is non-
negligible iff AdvpIND(A) is non-negligible, hence FE satisfies pIND-security. The
non-abortness directly follows from the fact that the queries from A in both B
and T are uniquely determined by the same randomness used by A, E ,S, so that
M̃0, M̃1, F̃1, ..., F̃Q in B are exactly the same as M̄0, M̄1, F̄1, ..., F̄Q contained in
tr generated from T . Thus we finish the proof. ut

Theorem 3.2. If FE is pIND-secure, then FE is IND-secure.

Proof. For any admissible IND adversary A, we construct a pIND adversary A′
as follows:

– WhenA submitsm0,m1,A′ submitsM0,M1 such thatMb(mb) = 1,Mb(m
′) =

0 for m′ 6= mb, b ∈ {0, 1}.
– When A submits f , A′ submits F such that F (f) = 1, F (f ′) = 0 for f ′ 6= f ,
f(m0) = f(m1).

– When A outputs a bit b′, A′ also outputs b′.

If AdvpIND(A′) is non-negligible, then there exists B, aux and tr = (M̄0, M̄1, (F̄i,
f̄i, f̄i(m̄))i∈[Q]), such that Pr(B(aux, tr) = b̄) − 1/2 is non-negligible. Also, tr
is indistinguishable from trA, which means that sampling from M̄0, M̄1 and
F̄i always outputs fixed values m̄0, m̄1, f̄i, where f̄i(m̄0) = f̄i(m̄1) for i ∈ [Q]
(otherwise trA and tr can easily be distinguished). So tr is independent from b̄,
also aux is independent from b̄ by Lemma 3.1. Thus Pr(B(aux, tr) = b̄)−1/2 = 0,
which makes a contradiction.

So for every A′ defined above, AdvpIND(A′) is negligible, which means that
AdvIND(A) is negligible. ut

Now we show that 1-CT pIND-security implies many-CT pIND-security, so
that our new definition can really bypass the impossible result in [BSW11].

Theorem 3.3. If FE is 1-CT pIND-secure, then FE is many-CT pIND-secure.

Proof. We define a sequence of games:
Gi: the first i ciphertext queries always choose mi ← M0 despite whether b

is. Suppose that A makes a total of q ciphertext queries, then G0 is the original
game, and the advantage for A in Gq is always 0.

If the advantage for A in G0 is non-negligible, then there exists i ∈ [q] such
that the advantage of A to distinguish between Gi−1 and Gi is non-negligible.
Then we construct an 1-CT pIND adversary Ai as follows:

– For (M j
0 ,M

j
1 )j∈[q], we define M0(x),M1(x) be two sampling algorithms with

a single input x ∈ [q], which sample from Mx
0 and Mx

1 . Thus M0(x),M1(x)
contains all information about (M j

0 ,M
j
1 )j∈[q].
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– When A submits (M j
0 ,M

j
1 )j∈[q], submit M0(i),M1(i) to the challenger and

get the ciphertext CT ; sample mj ← M j
0 for j < i, mj ← M j

1 for j > i, let
CTj ← Enc(PK,mj) for j 6= i and CTi = CT , return (CT1, ..., CTq) to A.

– When A submits a key query F , directly pass it to the challenger and return
(f, skf ) to A.

– When A outputs b′, output b′.

So AdvpIND(Ai) is non-negligible. By the 1-CT pIND security, there exist Ti
and Bi satisfying Lemma 3.1, let (aux, tri) be sampled by Ti, we write tri =
(M̄0(i), M̄1(i), (F̄k, f̄k, f̄k(m̄i))k∈[Q]), and since M̄0(i), M̄1(i) are indistinguish-
able from M0(i),M1(i), we write the q pairs of distributions extracted from
M̄0(i), M̄1(i) as (M̄ j

0 , M̄
j
1 )j∈[q].

We first sample (m̄j ← M̄ j
b )j 6=i and calculate (f̄k(m̄j))j 6=i,k∈[Q]. Let B pro-

ceed the same as Bi except that we let the input tr = ((M̄ j
0 , M̄

j
1 )j∈[q], (F̄k, f̄k,

f̄k(m̄1), ..., f̄k(m̄q))k∈[Q]). So (aux, b̄, (m̄i)i∈[q], tr) can be sampled by Ti with s-
light modification, aux is independent from the choices of (m̄j)j∈[q] and (f̄k)k∈[Q],
and Pr(B(aux, tr) = b̄)−1/2 is non-negligible, since the outputs of B and Bi are
the same. Thus we finish the proof. ut

4 Fully pIND-secure FE from IND-based FE schemes

We already show that pIND-secure FE can support unbounded ciphertext. The
problem remaining is to show the existence of adaptive pIND-secure FE scheme
for P/poly which supports unbounded key, so that our new security definition can
avoid the [AGVW13] impossibility result. We show that the [ABSV15] generic
transformation, which transforms selective IND-secure FE schemes into adaptive
IND-secure ones, can be extended into pIND-security. In fact, we prove a result
stronger than expected: we can transform any selective IND-secure FE scheme
into an adaptive pIND-secure FE scheme.

Technical Overview. In [ABSV15], the authors constructed an adaptive IND-
secure FE scheme for any function class F (even if F = P/poly) from an IND-
secure private-key FE scheme for F with 1-CT query and unbounded key queries,
and a “sufficiently expressive” selective IND-secure FE scheme, here private-key
FE means that the encryption algorithm uses master secret key instead of master
public key.

To prove the existence of IND-secure private-key FE with 1-CT and un-
bounded key queries, [ABSV15] relies on several results in the literature. First, in
[GVW12], the authors constructed a 1-key, unbounded-CT SIM-secure private-
key FE scheme for P/poly, which is also a 1-key, unbounded-CT IND-secure
private-key FE scheme. In [BS15], the authors gave the generic transformation
from private-key FE to function-private private-key FE, here function-private
means that the function f is hidden from the adversary even given the function
key skf . (A private-key FE without function-privacy is also called message-
private.) Then, one can swap KeyGen and Enc in a function-private private-key
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FE with 1-key and unbounded-CT, to obtain a private-key FE with unbounded-
key and 1-CT.

The same method can easily be extended to pIND-security. Similar with
[ABSV15], we can construct an adaptive pIND-secure FE scheme from pIND-
secure private-key FE scheme and IND-secure (public-key) FE scheme, and by
Theorem 3.1 in this paper (extended to private-key settings), we can show the
existence of a 1-key, unbounded-CT message-private pIND-secure private-key
FE scheme for P/poly. What left for us is to transform a pIND-secure message-
private private-key FE scheme into a pIND-secure function-private private-key
FE scheme.

The idea of this construction is similar to the one in [BS15], but more compli-
cated since we consider probabilistic queries. The [BS15] construction used two
symmetric keys k, k′ to hide the two functions f0, f1 correspondingly in both the
message-private and function-private game. However, in our pIND-secure set-
tings, in message-private game, the adversary learns an exact function f , while
in function-private game, the adversary learns only two distributions F0 and
F1 (see the formal definition below). So we need three keys k, k′, k′′ to encrypt
f, F0, F1 correspondingly, and an additional game to switch between them, while
the other parts of the proof is similar to [BS15].

Finally, combining all components together, we can construct an adaptive
pIND-secure FE scheme for P/poly.

Before further discussions, first we give formal definitions for both message-
private and function-private private-key functional encryption with pIND-security.

Definition 4.1. A private-key functional encryption scheme skFE for a function
family F consists of the following four algorithms (let M be the message space):

– Setup(1λ): output the master secret key MSK.
– KeyGen(MSK, f): for f ∈ F , output a function key SKf .
– Enc(MSK,m): for m ∈M, output a ciphertext CTm.
– Dec(SKf ,CTm): output the function value f(m).

FE is correct if for any MSK← Setup(1λ), SKf ← KeyGen(MSK,f), CTm ←
Enc(MSK,m), the probability of Dec(SKf ,CTm) 6= f(m) is negligible.

Next, we define the (message-private) pIND-based security and function-
private pIND-based security for private-key FE schemes.

Definition 4.2. Given message space M and function space F , a q-CT (or
unbounded-CT), Q-key (or unbounded-key) adaptive (message-private) pIND-
CPA-security game for a private-key FE scheme is defined as the following:

– Setup: The challenger runs Setup(1λ) to get MSK, and randomly samples a
bit b← {0, 1}.

– Query Phase: The adversary can adaptively makes the following two types of
queries:
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• Key Query: The adversary chooses a p.p.t. sampling algorithm F which
output is in F , and gives it to the challenger. The challenger samples
f ← F , generates skf = KeyGen(MSK, f) and returns f, skf to the ad-
versary. This can be repeated adaptively for any polynomial times.

• Ciphertext Query: The adversary chooses two p.p.t. sampling algorithms
M0,M1 which outputs are in M and gives them to the challenger. The
challenger randomly chooses m←Mb, generates ctm ← Enc(PK,m) and
returns ctm to the adversary.

The number of key queries is bounded by Q or unbounded; the number of
ciphertext queries is bounded by q or unbounded.

– Output: The adversary outputs b′, and the winning advantage for the adver-
sary is defined by AdvpIND(A) = |Pr(b′ = b)− 1/2|.

Let q,Q be the number of ciphertext queries and key queries, we write the
i-th key query and the chosen function by F i, f i, the j-th ciphertext query and
the chosen message by M j

0 ,M
j
1 ,m

j.
An adversary A is said to be admissible, if the two distributions (F i, F i(M1

0 ),
..., F i(Mq

0 ))i∈[Q] and (F i, F i(M1
1 ), ..., F i(Mq

1 ))i∈[Q] are strictly computationally

indistinguishable. We say that skFE is a (message-private) pIND-secure private-
key FE if for any p.p.t. admissible adversary A, AdvpIND(A) is negligible.

Lemma 4.1. For a (message-private) pIND adversary A for a secret key FE
scheme, define the trace of A as:

trA = ((M j
0 ,M

j
1 )j∈[q], (F

i, f i, f i(m1), ..., f i(mq))i∈[Q]).

Then skFE is a (message-private) pIND-secure private-key FE, if and only if
for every p.p.t. A such that AdvpIND(A) is non-negligible, there exists a p.p.t.
algorithm T which outputs the following distribution:

(aux, b̄, (m̄j)j∈[q], tr = ((M̄ j
0 , M̄

j
1 , )j∈[q], (F̄

i; f̄ i, f̄ i(m̄1), ..., f̄ i(m̄q))i∈[Q])),

where b̄ ← {0, 1}, m̄j ← M̄ j

b̄
for j ∈ [q], f̄ i ← F̄ i for i ∈ [Q], and a p.p.t.

algorithm B, which satisfies:

– (1) For any p.p.t. algorithm P, Pr(P(trA) = 1)−Pr(S(tr) = 1) is negligible;
– (2) aux is independent with the following conditional distributions: m̄j |M̄ j

0 , M̄
j
1 ,

j ∈ [q]; f̄ i|F̄ i, i ∈ [Q];
– (3) Pr(B(aux, tr) = b̄)− 1/2 is non-negligible.

Proof. The proof is similar to Lemma 3.1 and we omit the details. ut

Definition 4.3. Given message space M and function space F , a q-CT (or
unbounded-CT), Q-key (or unbounded-key) adaptive function-private pIND-CPA-
security game for a private-key FE scheme is defined as the following:

– Setup: The challenger runs Setup(1λ) to get MSK, and randomly samples a
bit b← {0, 1}.
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– Query Phase: The adversary can adaptively makes the following two types of
queries:
• Key Query: The adversary chooses two p.p.t. sampling algorithms F0, F1

which output is in F , and gives it to the challenger. The challenger
samples f ← Fb, generates skf = KeyGen(MSK, f) and returns skf to
the adversary. This can be repeated adaptively for any polynomial times.

• Ciphertext Query: The adversary chooses two p.p.t. sampling algorithms
M0,M1 which outputs are in M and gives them to the challenger. The
challenger randomly chooses m←Mb, generates ctm ← Enc(PK,m) and
returns ctm to the adversary.

The number of key queries is bounded by Q or unbounded; the number of
ciphertext queries is bounded by q or unbounded.

– Output: The adversary outputs b′, and the winning advantage for the adver-
sary is defined by AdvpIND(A) = |Pr(b′ = b)− 1/2|.

Let q,Q be the number of ciphertext queries and key queries, we write the
i-th key query and the chosen function by F i0, F

i
1, f

i, the j-th ciphertext query
and the chosen message by M j

0 ,M
j
1 ,m

j.
An adversary A is said to be admissible, if the two distributions (F i0(M1

0 ),
..., F i0(Mq

0 ))i∈[Q] and (F i1(M1
1 ), ..., F i1(Mq

1 ))i∈[Q] are strictly computationally in-
distinguishable. We say that skFE is a function-private pIND-secure private-key
FE if for any p.p.t. admissible adversary A, AdvpIND(A) is negligible.

Lemma 4.2. For a function-private pIND adversary A for a secret key FE
scheme, define the trace of A as:

trA = ((M j
0 ,M

j
1 )j∈[q], (F

i
0, F

i
1, f

i(m1), ..., f i(mq))i∈[Q]).

Then skFE is a function-private pIND-secure private-key FE, if and only if for
every p.p.t. A such that AdvpIND(A) is non-negligible, there exists a p.p.t. algo-
rithm T which outputs the following distribution:

(aux, b̄, (m̄j)j∈[q], tr = ((M̄ j
0 , M̄

j
1 )j∈[q], (F̄

i
0, F̄

i
1, f̄

i(m̄1), ..., f̄ i(m̄q))i∈[Q])),

where b̄ ← {0, 1}, m̄j ← M̄ j

b̄
for j ∈ [q], f̄ i ← F̄ i

b̄
for i ∈ [Q], and a p.p.t.

algorithm B, which satisfies:

– (1) For any p.p.t. algorithm S, Pr(S(trA) = 1)−Pr(S(tr) = 1) is negligible;
– (2) aux is independent with the following conditional distributions: m̄j |M̄ j

0 , M̄
j
1 ,

j ∈ [q]; f̄ i|F̄ i0, F̄ i1, i ∈ [Q];
– (3) Pr(B(aux, tr) = b̄)− 1/2 is non-negligible.

Proof. The proof is similar to Lemma 3.1 and we omit the details. ut

We give a lemma on the existence of private-key pIND-secure FE.

Lemma 4.3. There exists a private-key pIND-secure FE with 1-CT and un-
bounded key for P/poly, assuming the existence of one-way functions.
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Proof. By Theorem 3.1 (which can also be applied to private-key FE schemes),
we can show that the SIM-secure private-key FE scheme for P/poly with 1-
key and unbounded-CT queries in [GVW12] is also pIND-secure. If we can lift
this scheme into a function-private pIND-secure private-key FE scheme, we can
simply swap the KeyGen and Enc algorithms to obtain a private-key pIND-secure
FE with unbounded-key and 1-CT for P/poly.

The lifting is similar to the one in [BS15]. Let skFE be the pIND-secure
message-private private-key FE scheme, Sym be a symmetric encryption scheme,
PRF be a pseudo-random function family. We construct the pIND-secure function-
private private-key FE as follows:

– Setup(1λ): Generate three symmetric encryption keys k, k′, k′′ ← Sym.KeyGen(1λ),
let skFE.MSK← skFE.Setup(1λ). Return MSK = (k, k′, k′′, skFE.MSK).

– KeyGen(MSK, f): Let f̃ be defined as: f̃(m, r) = f(m). Let c = Sym.Enc(k, f̃),
c′ = Sym.Enc(k′, f̃), c′′ = Sym.Enc(k′′, f̃). Return skFE.KeyGen(skFE.MSK, gc,c′,c′′ ,
where for any c1, c2, c3, gc1,c2,c3(m, k1, k2, k3, r) is defined as follows:

• If k1 6= ⊥, let f ← Sym.Dec(k1, c1), return f(m; r).
• Else if k2 6= ⊥, let f ← Sym.Dec(k2, c2), return f(m; r).
• Else if k3 6= ⊥, let f ← Sym.Dec(k3, c3), return f(m; r).
• Else return ⊥.

– Enc(MSK,m): Sample a random seed r and return ct← skFE.Enc(skFE.MSK,
(m, k,⊥,⊥, r)).

– Dec(sk, ct): return skFE.Dec(sk, ct).

Now we prove the security of the construction above through a hybrid of
games.

Game 0 is the original game.
In Game 1, the challenger first samples a uniform random seed r∗, and

for each ciphertext query, returns skFE.Enc(MSK, (m, k,⊥,⊥, r∗)) instead of
skFE.Enc(MSK, (m, k,⊥,⊥, r)) for a freshly sampled r. Game 0 and Game 1 are
indistinguishable from the pIND-security of skFE. (Note that the distribution
of messages in different ciphertext queries share the same r∗.)

In Game 2, when the adversary makes a key query, instead of sampling
f ← Fb using a random seed, the challenger samples two seeds s0, s1, and uses
PRF(r∗, sb) as the seed to sample f ← Fb. Game 1 and Game 2 are indistin-
guishable from the pseudorandomness of PRF.

In Game 3, for each key query, let c̃′ = Sym.Enc(k′, GF0,s0), c̃′′ = Sym.Enc(k′′,
GF1,s1), returns skFE.KeyGen(MSK, gc,c̃′,c̃′′) instead of skFE.KeyGen(MSK, gc,c′,c′′),
where GFb,sb(m, r) is defined as:

– Sample f ← Fb using the seed PRF(r, sb);
– Return f(m).

Game 2 and Game 3 are indistinguishable from the security of Sym.
In Game 4, we change the ciphertext into skFE.Enc(MSK,m,⊥, k′,⊥, r∗) for

b = 0 and skFE.Enc(MSK,m,⊥,⊥, k′′, r∗) for b = 1. Since fb(m) = GFb
(m, r∗),
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we can see that the trace for skFE is the same in Game 3 and Game 4, so Game
3 and Game 4 are indistinguishable from the security of skFE.

In Game 5, for each key query, let c̃ = Sym.Enc(k,⊥), returns skFE.KeyGen
(MSK, gc̃,c̃′,c̃′′) instead of skFE.KeyGen(MSK, gc,c̃′,c̃′′). Game 4 and Game 5 are
indistinguishable from the security of Sym. Note that the function gc̃,c̃′,c̃′′ is the
same for b = 0 and b = 1 in Game 5.

Now in Game 5, if A is an adversary for the function-private scheme with
non-negligible advantage, there is an adversary A′ which is an adversary for
skFE with non-negligible advantage. By the pIND-based security of skFE, there
exist a sampling algorithm T ′ and an algorithm B′ with non-negligible advantage
which satisfy Lemma 4.1. We write the output of T ′ as:

(aux, b̄′, (m̄′
j
)j∈[q], tr

′
= ((M̄ ′

j
0, M̄

′j
1)j∈[q], (F̄ ′

i
, f̄ ′

i
, f̄ ′

i
(m̄′

1
), ..., f̄ i(m̄′

q
))i∈[Q])).

Since tr
′

is indistinguishable with trA′ , so elements in both tr
′

and trA′

has the same structure, so we can write m̄′
j

= (m̄j ,⊥, k̄′,⊥, r̄∗) for b̄′ = 0

and m̄′
j

= (m̄j ,⊥,⊥, k̄′′, r̄∗) for b̄′ = 1, f̄ ′
i

= gc̄,c̄′,c̄′′ where c̄, c̄′, c̄′′ are Sym
ciphertexts of ⊥, GF̄0,s̄0 , GF̄1,s̄1 defined as above.

Without loss of generalization, we suppose that k̄′, k̄′′ are contained in aux,
since k̄′, k̄′′ are predetermined and independent with the choice of either queried
message or function.

Now we construct T and B from T ′ and B′.
T does the following:

– Call T ′ to get h̄′, aux, b̄′, (m̄′
j
)j∈[q], tr

′
;

– Extract M̄ j
0 , M̄

j
1 , m̄

j from M̄ ′
j
0, M̄

′j
1, m̄

′j , F̄ i0, F̄
i
1 from f̄ ′

i
;

– Sample f̄ i ← F̄ i
b̄′

;

– Return aux, b̄′, (m̄j)j∈[q], tr = ((M̄ j
0 , M̄

j
1 )j∈[q], (F̄

i
0, F̄

i
1, f̄

i(m̄1), ...,
f̄ i(m̄q))i∈[Q])).

B(aux, tr) does the following:

– For each M̄ j
b , j ∈ [q], b ∈ {0, 1}, sampling from M̄ ′

j
b does the following:

• Sample m̄← M̄ j
b ;

• If j = 1, sample a random seed r̄∗, otherwise use the same r̄∗ as in
j′ < j2;

• If b = 0, return m̄′
j

= (m̄,⊥, k̄′,⊥, r̄∗), otherwise return m̄′
j

= (m̄,⊥,⊥, k̄′′, r̄∗).
– For each F̄ i0 and F̄ i1, sampling from F̄ ′

i
does the following:

• Sample two random seeds s̄0, s̄1;
• LetGF̄0,s̄0 andGF̄1,s̄1 be defined as above, and c̄′ = Sym.Enc(k̄′, GF̄0,s̄0), c̄′′ =

Sym.Enc(k̄′′, GF̄1,s̄1);

2 Here we allows different distributions M̄ ′
j
b to include the same randomness r̄∗, which

means that there is a shared inner state between these sampling algorithms. We note
that SIM-secure FE implies pIND-secure FE even considering stateful ciphertext
queries like this, so it will not affect the validity of the proof.
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• Return f̄ ′
i

= gc̄,c̄′,c̄′′ .

– Call B′(aux, ((M̄ ′j0, M̄ ′
j
1)j∈[q], (F̄ ′

i
; f̄ ′

i
, f̄ ′

i
(m̄′

1
), ..., f̄ ′

i
(m̄′

q
))i∈[Q])) to get the

output.

It is not hard to see that B calls B′ exactly with (aux, tr
′
), where tr

′
is defined

as above, and we already know that Pr(B′(aux, tr′) = b̄)− 1/2 is non-negligible.
So we successfully construct T and B satisfies Lemma 4.2. Thus the new scheme
is a function-private pIND-secure private-key FE scheme. ut

Theorem 4.1. There exists a construction for ad-pIND-secure FE for P/poly
from sel-IND-secure FE for P/poly assuming the existence of one-way functions.

Proof. We simply write down the [ABSV15] construction here, and give a high
level proof. The details are similar to the ad-IND-security proof in [ABSV15].
Given the following primitives:

– A sel-IND secure public-key FE scheme for P/poly Sel;
– An ad-pIND secure 1-CT private-key FE scheme for P/poly OneCT;
– A symmetric encryption scheme with pseudorandom ciphertexts Sym;
– A pseudorandom function family PRF.

The adaptive scheme Ad is constructed as follows:

– Setup(1λ): Sample (Sel.PK,Sel.MSK)← Sel.Setup(1λ), and return PK = Sel.PK,
MSK = Sel.MSK.

– KeyGen(MSK, f): Sample CE ← {0, 1}l1(λ), τ ← {0, 1}l2(λ), return skf ←
Sel.KeyGen(Sel.MSK, Gf,CE ,r), Gf,CE ,r(OneCT.MSK,K,Sym.K, β) defined as
follows:
• If β = 1, output Sym.Dec(Sym.K, CE);
• Otherwise, output OneCT.KeyGen(OneCT.MSK, f ;PRFK(τ)).

– Enc(PK,m): Output CT = (CT0 ← OneCT.Enc(OneCT.MSK,m),CT1 ←
Sel.Enc(Sel.MPK, (OneCT.MSK,K, 0λ, 0)).

– Dec(skf ,CT): Output OneCT.Dec(Sel.Dec(skf ,CT1),CT0).

The ad-pIND-security of this construction can be proved by a hybrid of games.
Let Game 0 be the original pIND-CPA game.

In Game 1, CE is replaced by Sym.Enc(Sym.K∗, skf ← OneCT.KeyGen(OneCT.
MSK, f ;PRFK(τ)) for random Sym.K∗. Game 0 and Game 1 are indistinguishable
from the security of Sym.

In Game 2, CT1 is replaced by Sel.Enc(Sel.MPK, (0λ, 0λ,Sym.K∗, 1)). Since
any adversary A distinguishing Game 1 and Game 2 makes only deterministic
ciphertext queries to Sel, we can see that Game 1 and Game 2 are indistinguish-
able from the IND-security of Sel.

In Game 3, PRFK(τ) is replaced by a truly random R. Game 2 and Game 3
are indistinguishable by the pseudorandomness of PRF.

We see that any adversary A which has non-negligible advantage in Game
3 has also a non-negligible advantage in the ad-pIND-CPA game of OneCT.
Then if OneCT is ad-pIND-secure, we can construct B and the input distribution
(h′, aux, trB) for A which satisfies Lemma 3.1, hence Ad is ad-pIND-secure. ut



FE against Probabilistic Queries: Definition, Construction and Applications 21

5 Application of pIND-secure FE: Hashing a Secret Value

Next, we introduce a specific application scenario, which can be constructed
from pIND-secure FE. This application is inspired by Example 1.1, the counter-
example for IND-based security. We show that how we can use pIND-secure FE
to output the hash of a secret value. Like blind signature [Cha82], we name
this new primitive “blind hash”. We first give its syntax, which is similar to the
syntax of functional encryption.

Definition 5.1. A blind hash system consists of the following algorithms:

– Setup(1λ, 1n, 1k): output the public key pk and the main secret key msk. We
require that n ≥ k.

– HashGen(msk, h): for a hash function h : {0, 1}n → {0, 1}k, output its blind-
ed version H.

– Enc(pk,m): output the encrypted message c.

The blind hash system is called correct, if for (pk,msk) ← Setup(λ), H ←
HashGen(msk, h), c← Enc(pk,m), the probability of H(c) 6= h(m) is negligible.

In this definition, we restrict the input length of the hash function to be n
instead of arbitrary length, in order for Enc to be well-defined. We can choose
large enough n, and pad any string with length n′ < n into a string of length n.

We require the one-wayness of a blind hash system.

Definition 5.2. A blind hash system (Setup,HashGen,Enc) is called one-way,
if for any p.p.t. adversary A and a set S of (polynomial number of) universal
one-way hash families, the winning advantage of the following game is negligible:

– Setup: The challenger runs Setup(1λ) and returns pk to the adversary.
– Phase 1: Each time the adversary submits a universal one-way hash family
H ∈ S, the challenger samples h← H, and returns (h,H ← HashGen(msk, h))
to the adversary. This can be repeated for any polynomial numbers of times.

– Challenge: The challenger chooses m ← M, and returns Enc(pk,m) to the
adversary.

– Phase 2: Same as Phase 1.
– Guess: The adversary outputs m′. The winning advantage of A is defined by

Pr(m′ = m).

In this definition, we give a set of universal one-way hash families outside
the game instead of letting them to be chosen by the adversary, since both
the adversary and the challenger are p.p.t., hence cannot have the ability to
determine whether a hash family is universal one-way.

Before we give our construction for the blind hash system, we first introduce
the Goldreich-Levin hardcore predicate for one-way functions.

Definition 5.3. A polynomial time computable predicate b is a hardcore predi-
cate of a function f : {0, 1}n → {0, 1}k, if for any p.p.t. algorithm P, |Prm←{0,1}n
(P(f(m)) = b(m))− 1/2| is negligible.
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Lemma 5.1 (Goldreich-Levin Theorem). If f : {0, 1}n → {0, 1}n is a one-
way function, then b(m, r) = 〈m, r〉 is a predicate of the function g : {0, 1}2n →
{0, 1}2n, g(m‖r) = f(m)‖r.

Now we are ready to construct our blind hash system. Given a functional
encryption scheme FE, the blind hash system is constructed as follows:

– Setup(1λ): Run FE.Setup(1λ) and output the public key pk and the main
secret key msk.

– HashGen(msk, h): Let h̄ be the function which pads the output of h from
k bits into n bits (by filling 0s). Let function gh be defined as: gh(m‖r) =
h̄(m)‖r. Calculate skgh ← FE.KeyGen(msk, gh). Let the blinded hash H(c)
be defined as:
• Let t← FE.Dec(skgh , c);
• Output the first k bits of t.

– Enc(pk,m): Let r ← {0, 1}n, output FE.Enc(pk,m‖r).

Theorem 5.1. Let FE be pIND-based secure, then the construction above is a
one-way blind hash system.

Proof. Let GH be the p.p.t. algorithm that first samples h← H and then outputs
gh (as define above), and M0 (resp. M1) be a p.p.t. algorithm that outputs a
random string m‖r ∈ {0, 1}2n where 〈m, r〉 = 0 (resp. 〈m, r〉 = 1). For each
adversary A′ attacks the one-wayness of the blind hash system, we consider any
pIND adversary A for FE which makes specific queries as follows:

– When A′ submits a query Hj in Phase 1 or Phase 2, A submits GHj , and
gets skgh from inside the blinded hash function H.

– At the challenge phase, A submits (M0,M1) to the challenger, and gets the
challenge ciphertext of A′.

We do not restrict the way that A gives its outputs b′.
By the definition of pIND-based security, if Adv(A) is non-negligible, there

exists a sampling algorithm T and an algorithm B, where (aux, b̄, m̄, tr) ← T ,
tr is computationally indistinguishable from trA, and Pr(B(aux, tr) = b̄) − 1/2
is non-negligible, where tr takes the form as:

tr = (M̄0, M̄1, (F̄i, f̄i, f̄i(m̄))i∈[Q]).

SinceM0,M1 are fixed and each Fi in trA is chosen only from a pre-determined
polynomial size set {GH}H∈S , we can see that the computational indistinguisha-
bility between trA and tr implies that M̄0 = M0, M̄1 = M1, and F̄i = GH for
some H ∈ S. We also write f̄i as gh̄i

where h̄i ∈ H, thus f̄i(m̄) = gh̄i
(m‖r) for

some m, r, and b̄ = 〈m, r〉.
Since aux is independent with the choice of f̄i and m̄, we define Bi(gh̄i

(m‖r)) :=
Bi(aux, tr), so by a standard hybrid argument, Pr(B(aux, tr) = b̄)− 1/2 is non-
negligible, only if there exists Bi, such that Pr(Bi({gh̄i

(m‖r)}i∈[q]) = 〈m, r〉) −
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1/2 is non-negligible. However, from Goldreich-Levin Theorem, 〈m, r〉 is a hard-
core predicate for gh̄i

(m‖r), and since each h̄i is independently chosen from
universal hash families, we have that {gh̄i

(m‖r)}i∈[q] are independent, so 〈m, r〉
is also a hardcore predicate for g(m‖r) := gh̄1

(m‖r)‖...‖gh̄q
(m‖r), which means

that Pr(B′({gh̄i
(m‖r)}i∈[q]) = 〈m, r〉)− 1/2 must be negligible. So we have that

Pr(B(aux, tr) = b̄)− 1/2 is also negligible, hence Adv(A) is negligible.
We know that if a function is one-one, then having a hardcore predicate

implies one-wayness. Since the advantage of A is negligible, if we consider the
function f(m‖r) = skh1

‖...‖skhq
‖ct, ct ← FE.Enc(pk,m‖r), which is a one-one

function, we see that 〈m, r〉 is also its hardcore predicate, so f(m‖r) is one-way.
Since r can be directly generated from FE.Dec(ski, ct) given any ski, we can see
that f(m‖r) is one-way according to the input m, hence the advantage for A′ is
also negligible. Thus we finish the proof. ut

The construction from pIND-secure FE to blind hash systems are quite s-
traightforward. Since pIND-secure FE can be constructed from IND-secure FE
schemes, blind hash systems can be constructed from IND-secure FE schemes.

However, we show that the same method in this section cannot be used to
directly construct blind hash systems from IND-secure FE: let h be a collision-
resistant hash function, and construct the hash family H be: {hk : hk(m) :=
h(k‖m)}. So if A make an admissible query, which means that hk1(m) = hk2(m),
it finds a collision for h, which contradicts the security of h, so A cannot make
any queries. So if the construction above uses an IND-based FE scheme, the
one-way property cannot be satisfied, like what we showed in Example 1.1.

Also, For SIM-based secure FE schemes, as it was proven in [AGVW13], there
is no unbound-key SIM-based secure FE schemes supporting one-way functions,
so SIM-based FE schemes for H cannot be constructed, hence it is impossible
to directly construct blind hash systems from SIM-based FE schemes.

6 Application of pIND-secure FE: Semi-universal Proxy
Re-encryption

Now we give another application scenario which can be constructed from pIND-
secure FE but not other security definitions. We consider proxy re-encryption
(PRE) schemes [BBS98], which can be used to transform a ciphertext encrypt-
ed under a delegator key into one encrypted under a delegatee key, without
leaking the plaintext. However, in most existing PRE constructions, the delega-
tor encryption scheme and the delegatee encryption scheme must be the same:
they cannot re-encrypt a given ciphertext into another ciphertext under another
public-key encryption scheme.

In [DN21], the authors introduced universal proxy re-encryption, and gave
their construction from probabilistic iO, where both the delegator and the del-
egatee can be arbitrary PKE schemes. Here, we discuss a weaker version of
universal PRE, where only the delegatee ciphertext can be encrypted by arbi-
trary PKE schemes, and we call it semi-universal PRE. We now show that semi-
universal PRE can be constructed by pIND-secure FE for P/poly. We note that
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pIND-secure FE for P/poly can be constructed from IND-secure FE for P/poly
as we proved in Section 4, thus our construction of semi-universal PRE also has
a weaker requirement than the existence of piO in the construction of univer-
sal PRE [DN21] (we note that even constructing iO requires sub-exponential
hardness IND-secure FE for P/poly).

We first give the syntax definition of semi-universal PRE.

Definition 6.1. A semi-universal PRE consists of the following algorithms:

– KeyGen(1λ): Output a public-key/secret-key pair (pk, sk).
– Enc(pk,m): For a public key generated from KeyGen(1λ), output a ciphertext
ct for m.

– ReKeyGen(skf , PKE, pkt): Let skf be generated from KeyGen(1λ) and pkt be
a public key of the PKE scheme PKE. This algorithm outputs a re-encryption
key rkf→t.

– ReEnc(rkf→t, ct): Let ct be a ciphertext encrypted by pkf , output a new
ciphertext encrypted by pkt.

– Dec(skf , ct): For a ciphertext ct ← Enc(pkf ,m), output the corresponding
message m.

Let PKE = PKE.KeyGen,PKE.Enc,PKE.Dec be any public key encryption scheme.
A semi-universal PRE scheme is correct, if for (pkf , skf )← KeyGen(1λ), ctf ←
Enc(pkf ,m), both: (1) Dec(skf , ctf ) = m except for a negligible probability; (2)
(pkt, sk, t)← PKE.KeyGen(1λ), rkf→t ← ReKeyGen(skf , PKE, pkt), the cipher-
text ctt ← ReEnc(rkf→t, ctf ) satisfies: PKE.Dec(skt, ctt) = m except for a negli-
gible probability.

We only define a weaker version of the single-hop security of PRE, where
each delegator key must be generated at the setup phase, and allows only static
corruption. For simplicity reason, we assume that the delegatee PKE scheme is
always different from the delegator PKE scheme (which is a pIND-secure FE
scheme as in our construction).

Definition 6.2. For a semi-universal PRE (Setup,Enc,ReKeyGen,ReEnc), let
P be a set of semantic secure PKE scheme, and for any PKE ∈ P, Enc 6= PKE.Enc.
The weak-CRA security of the semi-functional PRE is satisfied if for every ad-
versary A, the winning advantage of the following game is negligible:

– Setup: The adversary asks the challenger to run Setup(1λ) for any polynomial

numbers of times to get (p̂ki, ŝki)i∈[q]. The challenger returns (p̂ki)i∈[q] to the
adversary. Let L be an empty list.

– Phase 1: The adversary can make one of the following types of queries in
arbitrary sequence:

• Type 1: The adversary submits PKE ∈ P. The challenger generates
(pk|L|+1, sk|L|+1)← PKE.KeyGen(1λ), adds the pair (PKE; pk|L|+1) into
L, and returns pk|L|+1 to the adversary.
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• Type 2: The adversary submits PKE ∈ P. The challenger generates
(pk|L|+1, sk|L|+1)← PKE.KeyGen(1λ), adds the pair (PKE; pk|L|+1) into
L, and returns (pk|L|+1, sk|L|+1) to the adversary.

• Type 3: The adversary submits p̂ki, i ∈ [q], and (PKE, pkj) ∈ L. The chal-

lenger runs ReKeyGen(ŝki,PKE, pkj) and returns rki→j to the adversary
if rki→j has not been generated before.

These queries can be repeated adaptively.

– Challenge: The adversary submits p̂ki∗ , i
∗ ∈ [q] and a pair of messages

(m0,m1), providing that for each Type 3 query which returns rki∗→j for some
j, pkj is generated from a Type 1 query. The challenger chooses b← {0, 1},
and returns Enc(p̂ki∗ ,mb) to the adversary.

– Phase 2: Same as Phase 1, under the restriction that for all Type 3 queries

(p̂ki∗ ,PKE, pkj), pkj is generated from a Type 1 query.
– Guess: The adversary outputs b′. The winning advantage of A is defined by
|Pr(b′ = b)− 1/2|.

Now we construct a weak-CRA secure semi-universal PRE from a pIND-
secure functional encryption scheme FE. Let PRF be a pseudorandom function.

– KeyGen(1λ): Output (pk, sk)← FE.Setup(1λ).
– Enc(pk,m): Sample a random seed r, and output ct← FE.Enc(pk,m‖r).
– ReKeyGen(skf ,PKE, pkt): Sample a random key K, and let F (m‖r) := PKE.

Enc(pkt,m;PRF (K, r)). Return FE.KeyGen(skf , F ).
– ReEnc(rkf→t, ct): Output FE.Dec(rkf→t, ct).
– Dec(sk, ct): Let skID ← FE.KeyGen(sk, ID) where ID(m) = m, then output

FE.Dec(skID, ct).

Before we prove the security of the PRE scheme, we first give a lemma to
show that the auxiliary string has no effect in distinguishing a PKE ciphertext
with random key.

Lemma 6.1. Let PKE be a public key encryption scheme with semantic security.
For a pair of messages m0,m1, any p.p.t. algorithm B and auxiliary string aux,
let (pk, sk)← PKE.KeyGen(1λ), c0 ← PKE.Enc(pk,m0), c1 ← PKE.Enc(pk,m1).
Then Pr(B(aux, pk, c0) = 1)− Pr(B(aux, pk, c1) = 1) is negligible.

Proof. Let Baux(., .) be the algorithm B(aux, ., .). We construct a IND-CPA ad-
versary A for PKE, which submits m0,m1 as the challenge messages, and runs
Baux(pk, c) to get the output, then by the semantic security of PKE, the advan-
tage of A is negligible, hence Pr(B(aux, pk, c0) = 1)− Pr(B(aux, pk, c1) = 1) is
negligible. ut

We note that the adversary A in the proof above is non-uniform, so the
scheme PKE must be secure against non-uniform adversaries, which is a rather
standard assumption.

Theorem 6.1. Let FE be pIND-based secure, then the construction above satis-
fies weak-CRA security.
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Proof. Given an adversary A′ for the semi-universal PRE game. We construct
a pIND adversary A for FE as follows:

In the setup phase, suppose that the adversary asks the challenger to run
Setup(1λ) for q times. A randomly choose i′ ← [q], and asks for the FE public

key pk. Let p̂ki′ := pk. For i 6= i′, the challenger runs FE.Setup(1λ) to get

(p̂ki, ŝki). A returns (p̂ki)i∈[q].

When A′ generates a Type 1 query PKE, let FPKE be the following algorithm:

– Run (PKE.pk,PKE.sk)← PKE.KeyGen(1λ);

– Sample a random keyK and return the function f where f(m‖r) := PKE.Enc
(PKE.pk,m;PRF(K, r)).

A submits a KeyGen query FPKE, and gets (f, skf ), where f contains PKE.pk.
Let pk|L|+1 = PKE.pk, store skf|L|+1

:= skf . Return pk|L|+1 and add (PKE, pk|L|+1)
into L.

For a Type 2 query PKE, return (pk|L|+1, sk|L|+1) ← PKE.KeyGen(1λ) di-
rectly while adding (PKE, pk|L|+1) into L.

For a Type 3 query (p̂ki,PKE, pkj), if i = i′ and pkj is generated from Type
2 queries, then return a random guess b′ ← {0, 1} and abort. If i = i′ and pkj
is generated from Type 1 queries, return rki→j := skfj (generated in Type 1

queries). If i 6= i′, return rki→j ← FE.KeyGen(ŝki, fj).

In the challenge phase, if A′ queries for i∗ 6= i′, then return a random guess
b′ ← {0, 1} and abort. Otherwise, let Mb, b ∈ {0, 1} be the algorithm that first
randomly samples r and returns mb‖r. Submit (M0,M1) and get the ciphertext
ct, return ct to A′.

Finally, return the guess b′ from A′.
We can see that A does not abort if and only if i∗ = i′. Since q is poly-

nomial, the non-aborting probability 1/q is non-negligible, so if the advantage
of A′ is non-negligible, the advantage of A is also non-negligible. By the defi-
nition of pIND-based security, there exists a sampling algorithm T and an al-
gorithm B satisfies the definition. We write the output of T as aux, b̄, m̄, tr =
(M̄0, M̄1, (F̄i, f̄i, f̄i(m̄))i∈[Q]).

Since each key query of A is from a polynomial size set {FPKE : PKE ∈ S}
and a ciphertext query Mb samples mb‖r, b ← {0, 1}, we can see that as long
as tr is computationally indistinguishable from trA, F̄i ∈ {FPKE : PKE ∈ S}
and M̄0, M̄1 samples m̄0‖r, m̄1‖r for fixed m̄0, m̄1 and random r. So we rewrite
f̄i(m̄) as f̄i(m̄b̄‖r) = PKE.Enc(pk, m̄b̄;PRF(K, r)), which is indistinguishable
from PKE.Enc(pk, m̄b̄) by the pseudorandomness of PRF.

Since aux is independent from the choice of f̄i, it is also independent from the
choice of pk, by Lemma 6.1, we have that Pr(B(aux, (..., F̄i, f̄i, f̄i(m̄0‖r), ...)) =
1)− Pr(B(aux, (..., F̄i, f̄i, f̄i(m̄1‖r), ...)) = 1) is negligible. By a standard hybrid
argument, we have that Pr(B(aux, tr) = 1|b̄ = 0) − Pr(B(aux, tr) = 1|b̄ =
1) is negligible, hence Pr(B(aux, tr) = b̄) − 1/2 is negligible, which makes a
contradiction. So the advantage of A′ is negligible, thus we finish the proof. ut
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By a discussion similar to Section 5, we can see that SIM-based and IND-
based FE schemes cannot be used to construct semi-universal PRE schemes
directly. We also point out that why semi-universal PRE cannot be directly con-
structed from rFE [GJKS15]. The SIM-based secure rFE in [GJKS15] supports
only selective security, hence cannot satisfy our security definition. (We note
that adaptively SIM-based secure rFE also suffers from the impossible result
of [AGVW13].) For IND-based secure rFE, the authors require that each post-
challenge key query f , where f is a probabilistic function, satisfies that f(m0)
and f(m1) are statically indistinguishable, rather than computationally indis-
tinguishable, hence cannot be satisfied if m0 6= m1 and f is PKE.Enc(pk, .) for a
PKE scheme PKE. Even if we consider only pre-challenge key queries, where the
authors only require that f(m0) and f(m1) are computationally indistinguish-
able, it still cannot handle the case where f is PKE.Enc(pk, .) since the adversary
may hold the secret key sk corresponding to pk. The same thing happens for the
distributional indistinguishability definition [AM18], which also requires f(m0)
and f(m1) to be computationally indistinguishable.

7 Conclusion and Future Works

In this paper, we define a new security notion for FE: indistinguishability-based
security against probabilistic queries (pIND-security). We justify our security
notion from the following four points: (1) Our pIND-security is strictly between
the classical SIM-security and IND-security; (2) Our pIND-security has both 1-CT
to many-CT and selective to adaptive reductions; (3) We give a construction of
fully secure FE for P/poly which satisfies pIND-security; (4) We give applications
that can be directly constructed from pIND-secure FE schemes, but cannot be
constructed from SIM-secure or IND-secure FE schemes in a same way.

We believe that our new definition has more potential applications than what
we showed in this paper. We also hope that this new security notion can be
used to simplify the construction from FE to iO, hence pushing iO further into
practical.
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Coron and Jesper Buus Nielsen, editors, Advances in Cryptology - EURO-
CRYPT 2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30 - May
4, 2017, Proceedings, Part II, volume 10211 of Lecture Notes in Computer
Science, pages 30–61, 2017.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based
encryption without random oracles. In Christian Cachin and Jan Ca-
menisch, editors, Advances in Cryptology - EUROCRYPT 2004, Interna-
tional Conference on the Theory and Applications of Cryptographic Tech-
niques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, volume 3027
of Lecture Notes in Computer Science, pages 223–238. Springer, 2004.

[BCJ+19] James Bartusek, Brent Carmer, Abhishek Jain, Zhengzhong Jin, Tancrède
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