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Abstract. In a blind signature scheme, a user can obtain a digital sig-
nature on a message of her choice without revealing anything about the
message or the resulting signature to the signer. Blind signature schemes
have recently found applications for privacy-preserving web browsing and
ad ecosystems, and as such, are ripe for standardization. In this paper, we
show that the recent proposed standard of Denis, Jacobs and Wood [17,
16] constitutes a strongly one-more-unforgeable blind signature scheme
in the random-oracle model under the one-more-RSA assumption. Fur-
ther, we show that the blind version of RSA-FDH proposed and analyzed
by Bellare, Namprempre, Pointcheval and Semanko [6] does not satisfy
blindness when the public key is chosen maliciously, but satisfies a weaker
notion of a blind token.

1 Introduction

A blind signature scheme is a digital signature scheme that allows the signature
recipient to obtain a digital signature on a message of the recipient’s choice with-
out revealing this message to the signer. The key feature of a blind signature
protocol is that the resulting signature cannot be linked to a particular protocol
run. If the recipient ran the protocol n times and, as a result, produced n signa-
tures and provided them to the signer in a randomly permuted order, the signer
would not be able to identify which signature corresponded to which protocol
run any better than by guessing at random. Just as in a regular digital signature
scheme, in order to verify a signature, a verifier (a third party, distinct from the
signer or the signature recipient) runs a non-interactive verification algorithm.
Applications. Blind signatures were first introduced by David Chaum [13, 14].
The motivating application was untraceable electronic cash (ecash) [13, 15]: a
bank can issue electronic coins by issuing blind signatures. A message represents
a coin’s serial number, while the bank’s signature on it attests that it is indeed a
valid coin. The fact that it was issued via a blind signing protocol means that one
cannot trace which coin was issued to which user, and therefore cannot surmise
how a particular user Alice spent her money.

Blind signatures protect a user’s privacy even while ensuring they are quali-
fied for a particular transaction. For example, suppose that a user has convinced
a server that he is a human (rather than a bot) by solving a CAPTCHA. Then
the server may issue such a user a blind signature (or several blind signatures)
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that allow this user to convince other servers that he is a human and not a bot
without needing to perform additional CAPTCHAs; however, even if all these
servers compare transaction logs, they cannot tell which user it was. This sim-
ple scenario is of a growing importance in practice; for example, in is used in
VPN by Google One1, Apple’s iCloud Private Relay2 and Apple’s Safari browser
proposal for privacy-preserving click measurements3.
Definitions. A blind signature scheme must satisfy correctness, blindness, and
strong one-more unforgeability [28, 25, 1, 33]. Correctness means that an honest
verifier will always accept a signature issued by an honest signer to an honest
recipient; here, by “honest" we mean one that follows the prescribed algorithms.
Blindness, as we explained above, means that the malicious signer learns nothing
about a message during the signing protocol, and a signature cannot be linked
to the specific protocol execution in which it was computed. This must hold
even if the signer’s public key is chosen maliciously. Finally, strong one-more
unforgeability means that, if an adversary acts as the recipient n times, then it
cannot produce n+1 distinct message-signature pairs better than with negligible
probability. It is important that unforgeability hold even when the adversary
engages in several sessions with the signer at the same time; i.e. it is important
that unforgeability should hold in the concurrent setting.
Standardization. Blind signatures have been studied for almost forty years. They
have well-understood definitions of security [28, 25, 1, 33]. Numerous construc-
tions have also been proposed [13, 27, 28, 5, 6, 3, 2, 11, 19, 23, 24]. Finally, as we
argued above, they are highly desirable in practice. Of course, even a well-
understood cryptographic primitive should not get adopted for widespread use
without undergoing a thorough standardization process through software stan-
dardization bodies such as the IETF.

The first proposed IETF standard for a blind signature scheme is the RSA-
BSSA proposal by Denis, Jacobs and Wood [17, 16]. The scheme they proposed
for standardization is, in a nutshell, the blind version of RSA-PSS [8, 9, 29, 30]
along the lines proposed by Chaum [13, 14]. However, as the analysis in this
paper makes clear, care must be taken to ensure that the message being signed
comes from a high-entropy distribution; in the event that it doesn’t, a random
salt value must be appended to it.

The key generation and verification algorithms are (essentially) the same as
in RSA-PSS, except that, in case the message msg does not come from a high-
entropy distribution, a salt value rand must be concatenated to the message
msg. More precisely, if msg does not come from a high-entropy distribution, this
paper’s analysis recommends that the blind signing algorithm consist of three
steps: first, on input a message msg and the RSA public key (N, e), the user
chooses a random salt value rand and computes an RSA-PSS encoding m of
msg ◦rand (where ‘◦’ denotes concatenation), picks a blinding value r and sends
the value z = mre mod N to the signer. Using his secret key d, the signer

1
https://one.google.com/about/vpn/howitworks

2
https://www.apple.com/privacy/docs/iCloud_Private_Relay_Overview_Dec2021.PDF

3
https://webkit.org/blog/11940/pcm-click-fraud-prevention-and-attribution-sent-to-advertiser/
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computes s = zd mod N and sends it to the user, who derives the signature
σ = s/r mod N ; it is easy to see that σe = se/re = z/re = m mod N , and
thus, constitutes a valid RSA-PSS signature on the user’s message msg ◦ rand.
In case msg comes from a high-entropy distribution, rand is not needed, and
m is computed as a PSS encoding of msg; the rest of the signing algorithm is
the same. As we will see in Section 4, either the high entropy of msg, or the
additional salt value rand are necessary to ensure that the scheme is provably
blind in the event that the signer’s key was chosen maliciously. This has resulted
in IETF discussions on amending the draft4.

As pointed out by Denis, Jacobs and Wood [17, 16], the message-response
(i.e., two-move) structure of this protocol makes it desirable. The security game
for strong one-more unforgeability for a two-move protocol is the same whether
in the sequential or the concurrent setting. In contrast, a recent result [10] gave
an attack on popular three-move blind signature protocols (such as the blind
version of the Schnorr signature [31, 28, 32] or anonymous credentials light [4])
in the concurrent setting, making them poor candidates for standardization.
Moreover, a three-message (or more) protocol would require the signer to keep
state, which is a significant complication when it comes to system design, making
the concurrently secure blind signature schemes of Abe [2] and Tessaro and
Zhu [35] less suitable in practice.

The choice of blind RSA-PSS over blind RSA-FDH [6] is motivated by the
popularity of (non-blind) RSA-PSS, ensuring that, at least as far as verifying
the signatures is concerned, no new software need be developed. That way, even
unsophisticated participants have easy access to the digital tools they need to
take advantage of the privacy-preserving features offered by blind signatures.

Why standardize and adopt an RSA-based scheme now, instead of a post-
quantum one? Indeed it is possible that, with the advent of quantum computing,
decades from now another scheme will have to replace this RSA-based one.
Yet, this will have no consequences on today’s clients and servers if the users’
privacy is protected even from quantum computers (for example, if it holds
unconditionally). The consequences to the servers are minimized because a blind
signature ceases to be relevant after a relatively brief amount of time, so the
lifetime of a signing key would be measured in weeks rather than years.

This paper’s contributions and organization. We show that the proposed RSA-
BSSA standard [16] constitutes a one-more unforgeable blind signature scheme.
One-more unforgeability holds in the random-oracle model under the one-more-
RSA assumption introduced by Bellare, Namprempre, Pointcheval and Semanko
(BNPS) [6]. Blindness of the RSA-BSSA holds in the random-oracle model.

We also show that Chaum-BNPS’s blind RSA-FDH [14, 6] is not blind in the
malicious-signer model, i.e., it can only be shown to be blind if the signer’s key
pair is generated honestly (see Section 4.4). However, we show in Section 4.4
that even in the case of a malicious signer, it satisfies the weaker notion of a
blind token which we introduce in Section 2.3.

4
https://github.com/cfrg/draft-irtf-cfrg-blind-signatures/pull/105
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The rest of this paper is organized as follows: In Section 2 we recall the
definition of security for blind signature schemes. Our definitions are tailor-
made for two-move blind signature schemes, because in the case of two-move
signatures the issues of composition with other protocols go away (as discussed
above). Other than that, our definitions are standard [28, 33, 25, 1]. We include
bibliographic notes explaining that at the end of Sections 2.1 and 2.2 that provide
definitions of one-more unforgeability and blindness, respectively.

In Section 3 we give an overview of RSA-BSSA. We begin by giving a basic
version of the scheme, in which the blind signature that a user obtains is a
standard RSA-PSS signature on the user’s message msg (i.e. there is no rand).
We also give two modifications of the basic scheme: a variant in which the signer’s
RSA public key (N, e) is enhanced in a way that ensures that the exponent e
is relatively prime to ϕ(N) using a technique of Goldberg, Reyzin, Sagga and
Baldimtsi [21]. Finally, in Section 3.3 we give the variant that corresponds to the
RSA-BSSA proposal from February 2022 [16]; in this variant, the public key is
a standard RSA public key (N, e) and the signature on a message msg consists
of a salt rand and the PSS signature on (msg ◦ rand).

In Section 4 we justify the salt rand: we show why it is difficult to prove
that the basic scheme is blind without introducing additional assumptions, and
show that, in the random-oracle model, both modifications give rise to blind
signature schemes. We also show that the basic scheme is a blind token. Finally,
in Section 5 we show that the basic scheme and both variants are one-more-
unforgeable under the one-more-RSA assumption in the random-oracle model.

2 Definition of a two-move blind signature scheme

The definition of a blind signature scheme we provide here applies only to two-
move blind signatures; see prior work for more general definitions [8, 9, 29, 30].
First, in Definition 1 let us give the input-output specification for the five algo-
rithms that constitute a two-move blind signature scheme. The key generation
algorithm KeyGen and the signature verification algorithm Verify have the same
input-output behavior as in a regular digital signature scheme.

The signing algorithm is broken down into three steps: (1) The signature
recipient runs the Blind algorithm to transforms a message msg into its blinded
form blinded_msg; blinded_msg is sent to the signer. (2) The signer runs the
algorithm BSig(SK , blinded_msg) to compute its response blinded_sig, and
then sends it to the signature recipient. (3) The signature recipient uses the
algorithm Finalize to transform blinded_sig into a valid signature σ on its
message msg. More precisely:

Definition 1 (Input-output specification for a two-move blind signa-
ture scheme). Let S = (KeyGen,Blind,BSig,Finalize,Verify) be a set of poly-
nomial-time algorithms with the following input-output specifications:

KeyGen(1k)→ (PK ,SK ) is a probabilistic algorithm that takes as input 1k (the
security parameter represented in unary) and outputs the public signature
verification key PK and a secret signing key SK .
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Blind(PK , msg) → (blinded_msg, inv) is a probabilistic algorithm that takes
as input the public key PK and a string msg and outputs a blinded message
blinded_msg (which will be sent to the signer) and an auxiliary string inv

(which will be used by Finalize to derive the final signature σ).
BSig(SK , blinded_msg) → blinded_sig is an algorithm (possibly a prob-

abilistic one) that takes as input the secret signing key SK and a string
blinded_msg and outputs a blinded signature blinded_sig.

Finalize(PK , inv, blinded_sig) → σ is an algorithm that takes as input the
public signature verification key PK , an auxiliary string inv and a blinded
signature and outputs a signature σ.

Verify(PK , msg, σ) is an algorithm that either accepts or rejects.

Next, let us define what it means for S to constitute a correct blind signature
scheme. On a high level, correctness means that if a signature σ was produced
after both the signature recipient and the signer followed their corresponding
algorithms, then this signature will be accepted by Verify. More formally:

Definition 2 (Correct two-move blind signature). Let S = (KeyGen,Blind,
BSig,Finalize, Verify) be a set of polynomial-time algorithms that satisfy the
input-output specification for a two-move blind signature scheme (Definition 1).
S constitutes a correct two-move blind signature scheme if for all k, (PK ,SK )
output by KeyGen(1k), strings msg, (blinded_msg, inv) output by Blind(PK , msg),
blinded_sig output by BSig(SK , blinded_msg), and σ output by Finalize(PK ,
inv, blinded_sig), Verify(PK , msg, σ) accepts.

2.1 Strong one-more unforgeability

As discussed above, a blind signature scheme must satisfy one-more unforgeabili-
ty: an adversarial user who obtained ` signatures from the signer cannot produce
` + 1 distinct message-signature pairs. Since we are limiting our attention to
two-move blind signatures, the security experiment that captures it can allow
the adversary oracle access to the algorithm BSig(SK , ·). More formally:

Definition 3 (Strong one-more-unforgeability). Let S = (KeyGen,Blind,
BSig,Finalize,Verify) be a set of polynomial-time algorithms that satisfy the input-
output specification for a two-move blind signature scheme (Definition 1). For
an oracle Turing machine A, the success probability pSA(k) of A in breaking the
strong one-more unforgeability of S is the probability that A is successful in the
following experiment parameterized by k:

Experiment set-up The key pair is generated: (PK ,SK )← KeyGen(1k).
Adversary’s execution The adversary A is given oracle access to BSig(SK , ·)

and is run on input PK ; ABSig(SK ,·)(PK ) terminates with a set of message-
signature pairs on its output tape: ((msg1, σ1), . . . , (msgn, σn)), and a set of
query-response pairs on its query tape:

((blinded_msg1, blinded_sig1), . . . , (blinded_msg`, blinded_sig`)).
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The success criterion The number of distinct message-signature pairs (msgi,
σi) such that Verify(PK , msgi, σi) = 1 is at least ` + 1, i.e. A outputs more
distinct signatures than the number of queries it made to BSig.

S satisfies the strong one-more-unforgeability property if for any polynomial-time
adversary A, the value pSA(k) is negligible.

The history of this definition. Chaum’s original blind signatures papers [13, 14]
did not contain a formal definition; in fact, they preceded the formal definition
of security for a digital signature scheme.

The regular definition of unforgeability for digital signature schemes [22] does
not apply to blind signatures. In the regular definition, the adversary wins the
unforgeability game if it produces a signature on a message that the challenger
never signed. However, the challenger in the blind signature game has no way
of knowing which messages it has signed — that’s the whole point of blindness,
and ideally, we want it to hold unconditionally.

Thus, Pointcheval and Stern [27, 28] came up with the notion of one-more
unforgeability in which the adversary is considered successful if it outputs more
distinct signed messages than the number of blind signing sessions it partici-
pated in. Pointcheval and Stern considered a more general structure of a blind
signing protocol, not just the message-response exchange a-la our Blind, BSig,
Finalize structure, and thus the issue of self-composition (i.e. what happened if
the messages from the signer were adversarially interleaved with those of the ad-
versarial users) needed to be carefully defined in their work. But, as Bellare et al.
observed [6], for a protocol that has this simple two-move (i.e. message-response)
structure, self-composition is for free, and so the one-more-unforgeability game
can be formalized in relatively simple terms.

A stronger definition of unforgeability for blind signatures was given by
Schröder and Unruh [33]. They consider the case when the adversary observes
the inputs and outputs of honest users who engage in ` blind signing protocols to
obtain signatures on fewer than ` distinct messages (i.e. some message is getting
signed more than once). The adversary should not be able to get a signature on
an additional message by directing honest users to get more than one signature
on the same message. Schröder and Unruh showed that Pointcheval and Stern’s
one-more-unforgeability definition is not sufficient to prevent the adversary from
taking advantage of honest users this way; but strong one-more unforgeability
is. Following their work, strong one-more unforgeability is the standard notion
of unforgeability for blind signature schemes.

Our formulation of strong one-more unforgeability in Definition 3 uses Defini-
tion 6.1 of Bellare et al. [6], which is their definition of one-more unforgeability, as
a starting point. Their formulation is tailored specifically to one-more unforge-
ability of the blind RSA-FDH, while ours generally applies to any two-move
protocol consisting of Blind, BSig, and Finalize. We also modified the success
criterion to correspond to strong one-more unforgeability.

One might wonder why the security game is for only one signer. Indeed, we
could extend the game to require that the adversary specify a number of signers
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and interact with each signer before outputting a set of message-signature pairs.
The adversary would be deemed successful if, for one of the signers, the number
of valid message-signature pairs from this signer produced by the adversary was
greater than the number of the adversary’s queries to this signer. It is easy to see
that extending the security game to such a multi-signer scenario would not make
the definition stronger: a scheme that satisfies one-more unforgeability with one
signer will also satisfy it with multiple (say, n) signers. The reduction would
randomly pick one of the signers and would set up the game so that it knows
the secret key of all but the selected signer; the selected signer is the one from
the one-more-unforgeability challenger with one signer. If the adversary succeeds
and the reduction guessed the signer correctly, then the reduction will succeed
as well; since the guess is correct with probability 1/n, this shows that the two
definitions are equivalent up to a security loss of 1/n. Although not addressed
explicitly in the literature cited above, this is well-understood in the context of
regular digital signatures [20] and thus it is the single-signer definitions that are
standard in the blind signatures literature.

2.2 Blindness

Finally, a blind signature scheme must satisfy blindness, that is, it should be
impossible to determine which query to the (adversarial) signer resulted in the
(honest) signature recipient deriving a particular message-signature pair. For this
security game, the adversary picks the public key adversarially; it also picks two
messages whose signatures the challenger will try to obtain. The challenger will
try to obtain signatures on these messages in random order selected by picking
a random bit b; the adversary’s goal is to tell in what order. The adversary gets
to see the resulting signatures before producing an output.

A trivial strategy for the adversary would be to issue a valid signature in
response to one of the queries but not the other. In order to rule out this strategy,
the challenger allows the adversary to see the resulting signatures only if both
of them verify. If one (or both) of the signatures does not verify, the adversary
will have to guess the bit b based on its view of the interaction with the user in
the blind signing protocol.

The formal definition below applies only to two-move blind signature schemes,
but it can be generalized to any protocol structure.

Definition 4 (Blindness). Let S = (KeyGen,Blind,BSig,Finalize,Verify) be a
set of polynomial-time algorithms that satisfy the input-output specification for
a two-move blind signature scheme (Definition 1). For an interactive algorithm
A, let qSA(k, b) be the probability that A outputs 0 in the following experiment
parameterized by k and the bit b:

A is invoked A(1k) selects a public key PK (whose length is appropriate for
the security parameter k) and two messages msg0 and msg1.

A acts as the blind signer For i ∈ {0, 1}, the challenger computes the val-
ues (blinded_msgi, invi) ← Blind(PK , msgi) and sends (blinded_msgb,
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blinded_msg1−b) to A, receiving (blinded_sigb, blinded_sig1−b) in re-
sponse.

A receives the signatures For i ∈ {0, 1}, the challenger computes

σi = Finalize(PK , invi, blinded_sigi)

If Verify(PK , msg0, σ0) = Verify(PK , msg1, σ1) = 1, it sends (σ0, σ1) to A;
else it sends ⊥ to A.

A’s output A outputs some value output.

A’s advantage AdvSA(k) in breaking the blindness of S is defined as AdvSA(k) :=
|qSA(k, 0)−qSA(k, 1)|. S satisfies blindness if for any probabilistic polynomial-time
A, AdvSA(k) is negligible.

The history of this definition. The first formalization of the blindness property of
a digital signature scheme was given by Juels, Luby and Ostrovsky [25]; in this
initial formulation, the public key for the scheme was generated honestly. Ab-
dalla, Namprepre and Neven [1] improved the definition by considering a signer
who is already adversarial at key generation time; they also gave a more careful
treatment of the compositional issues. The definition given above corresponds
to the Abdalla et al. version of the blindness definition as it applies to the case
of a two-move signing protocol. It is considered standard in the literature.

Again, one might wonder why the number of messages in the security game
is limited to just two, msg0 and msg1; and why the user just interacts with
the signer A once. It is relatively straightforward to show that extending the
definition to allow more than two messages or to give the signer more chances
to interact with the challenger will not strengthen the definition: a reduction
playing middleman between the multi-message or multi-interaction adversary
and the two-message single interaction challenger will inherit a non-negligible
fraction of the adversary’s advantage.

2.3 A new definition: Blind tokens

In certain applications, the messages being signed are chosen at random from
some message space M. If all goes well during the signing protocol, the user
gets a unique authenticated token, i.e. a signature on this random message. This
token should be blind, i.e. unlinkable to the specific interaction with the signer
in which it was obtained. If for some reason the signing protocol fails to return
a valid signature on this message, the message may be discarded.

Let us formalize the blindness requirement of such applications by introduc-
ing a new cryptographic primitive: a blind token scheme. A blind token scheme
will have the same input-output specification as a blind signature scheme, and
must also be strongly one-more unforgeable; however, the notion of blindness
it needs to satisfy is somewhat weaker. Unlike the blind signature blindness
experiment, here the two messages msg0 and msg1 are picked from the same
distribution M. The adversary has some influence on how they are picked: M
takes as input the adversary’s public key PK as well as some auxiliary input
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aux . In the full version of this paper [26], we also give a version of this definition
that corresponds to the one-more unforgeability, rather than strong one-more
unforgeability.

Definition 5 (Strongly unforgeable blind token scheme). Let S = KeyGen,
Blind,BSig,Finalize, Verify be a set of polynomial-time algorithms that satisfy the
input-output specification for a two-move blind signature scheme (Definition 1)
and the strong one-more unforgeability property (Definition 3). LetM be a mes-
sage sampling algorithm that, on input the security parameter 1k, a public key
PK , and auxiliary input aux , outputs a string msg.

For an interactive algorithm A and an efficient message sampling algorithm
M, let qS,MA (k, b) be the probability that A outputs 0 in the following experiment
parameterized by the security parameter k and the bit b:

A is invoked A(1k) selects a public key PK (whose length is appropriate for
the security parameter k), and auxiliary input aux for the message sampling
algorithm.

A acts as the blind signer For i ∈ {0, 1}, let msgi ← M(1k,PK , aux ) be
messages randomly selected by the challenger, who then proceeds to compute
the values (blinded_msgi, invi)← Blind(PK , msgi) and send (blinded_msgb,
blinded_msg1−b) to A, receiving (blinded_sigb, blinded_sig1−b) in re-
sponse.

A receives the signatures For i ∈ {0, 1}, the challenger computes

σi = Finalize(PK , invi, blinded_sigi)

If Verify(PK , msg0, σ0) = Verify(PK , msg1, σ1) = 1, it sends (msg0, σ0, msg1, σ1)
to A; else it sends ⊥ to A.

A’s output A outputs some value output.

A’s advantage AdvS,MA (k) is defined as AdvS,MA (k) := |qS,MA (k, 0)−qS,MA (k, 1)|.
S is a strongly unforgeable blind token scheme for message space M if for any
probabilistic polynomial-time A, AdvS,MA (k) is negligible.

The motivation for this definition. This definition is new; generally, when an-
alyzing proposed standards, introducing new notions of security is a bad idea.
An algorithm adapted for practical use should satisfy a notion of security that
is well-understood and established. Unfortunately, as we will see in Section 4.4,
at least one scheme that is already used in practice does not satisfy the estab-
lished definition of a blind signature scheme; however, we show that it satisfies
Definition 5, and therefore can still be used securely in some limited applications.

In the ecash application as originally envisioned by Chaum, the message msg
is simply a string that is sampled uniformly at random; it should be long enough
that it is unlikely that the same string can be sampled twice. Once the user
obtains the signature σ on msg, the pair (msg, σ) can be viewed as an e-coin. msg
is the coin’s serial number, while σ can be thought of as its proof of validity.
However, if the user fails to obtain σ for this msg, then msg has no value and can
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be discarded. The reason that blind tokens give users of this system the desired
privacy is that each user draws the serial numbers for her coins from exactly the
same distribution as all the other users.

3 The RSA-BSSA scheme

Let us review the blind signature scheme from the RSA blind signature scheme
with appendix (RSA-BSSA) proposal by Denis, Jacobs and Wood [17, 16].
High-level description of the basic scheme. In the RSA-PSS signature scheme [8,
9, 29, 30], the signature on a message M is the RSA inverse of a special encod-
ing (called the PSS encoding) m of M . At a high level, the basic version of
RSA-BSSA is reminiscent of Chaum’s original blind signature scheme: it is the
blind version of the RSA-PSS signature scheme. Following RSA-PSS, the key
generation algorithm generates an RSA key pair PK = (N, e), SK = d, where
ed ≡ 1 mod ϕ(N). Following Chaum, in order to obtain a blind signature on
a message M , the user first generates a PSS encoding m of M , then blinds it
using a random r ← Z∗N obtaining z = mre mod N , which is (hopefully) an
element of Z∗N that is distributed independently of M . Then he gets from the
signer the blinded signature y = zd mod N , and unblinds it to obtain and output
s = yr−1 mod N . To verify a signature s on a message M , follow the same algo-
rithm as RSA-PSS verification: check that the PSS decoding of m = se mod N
is the message M . Let us fill in the missing details.
Hash functions. For the PSS encoding, the scheme will use two cryptographic
hash functions Hash and MGF the same way that PSS does. Both Hash and MGF
take as input a string of bytes S and an integer `, and output a string of ` bytes.
In the security analysis, both will be treated as random oracles. Even though
their input-output specifications and security requirements match, it may be
helpful to have functions with different implementations because, as their names
suggest, the function Hash will potentially take a long string S and output a
shorter string; while MGF (which stands for “mask generation function”) will
take as input a short “seed” string and output a longer one.
Other subroutines. Since we are analyzing not just an algorithm but a proposed
standard, it is important to note that any software program implementing this
standard will have to recognize two distinct types: integers (on which integer
operations are performed) and strings of bytes (that lend themselves to string
operations, such as concatenation and exclusive-or). I2OSP is a procedure that
converts an integer into an octet string (an octet is just the IETF terminology
for the eight-bit byte). On input an integer and the desired length `, it outputs
the binary representation of the integer using ` octets if ` is sufficiently large, or
fails otherwise. OS2IP reverses this process: given a string, it interprets it as the
binary representation of an integer and outputs that integer.
Parameters. The scheme is parameterized by k, which is the bit length of the
RSA modulus (strictly speaking, there are two parameters: kLen and kBits,
representing its length in bytes and in bits, respectively; but for the purposes of
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the analysis the bit length is sufficient). The value emLen = d(k− 1)/8e denotes
the number of octets needed to represent a PSS encoding; i.e., a PSS encoding
will always take up exactly k − 1 bits.

As in PSS, the choice of the functions Hash and MGF and the parameters
hLen and sLen are additional design choices (parameters, if you will) that define
an instantiation of the scheme. The value hLen denotes the length in octets of the
output of the hash function Hash that’s used in the scheme. It is important that
hLen be set up in such a way that, in the random oracle model, the probability
that two distinct inputs to Hash(·, hLen) yield the same output (i.e. collide) be
minuscule; an adversary whose running time is t can generate at most t such
inputs; thus 24hLen needs to be a generous upper bound on t. The value sLen
denotes the length (in octets) of the salt of the PSS encoding.

Our security analysis requires that emLen ≥ max(2hLen, hLen + sLen) + 2.
PSS encoding and decoding procedures. Recall that, in RSA-PSS, the signing
algorithm is broken down into two steps. The first step does not involve the
secret key: it simply encodes the input message in a special way. The second
step uses the secret key in order to compute the signature corresponding to the
encoding obtained in step one. Analogously, signature verification consists of two
steps as well: the first step uses the public key in order to compute what may
turn out to be an encoding of the message; the second step verifies that the
string obtained in step one is indeed a valid encoding of the message.

When describing RSA-BSSA below, we invoke the encoding and decoding
procedures from the IETF standard [30]: PSSEncode(msg, `) is the function
that, on input a message msg and an integer `, produces a string EM (encoded
message) of d`/8e octets whose ` rightmost bits constitute a PSS encoding
of msg. PSSVerify(msg, EM, `) verifies that EM is consistent with the output of
PSSEncode(msg, `). For an RSA modulus of bit length k, the PSS scheme will
use ` = k − 1, so EM will be of length emLen = d(k − 1)/8e.

Specifically (but briefly), PSSEncode(msg, `) works as follows: first, hash msg

to obtain mHash = Hash(msg, hLen), and pick a random string salt of length
sLen bytes (octets). Compute H = Hash(064 ◦ mHash ◦ salt), and use it to
compute a mask dbMask = MGF(H, emLen − hLen − 1) and use it to mask the
salt: maskedDB = DB⊕ dbMask, where DB is salt padded (to make sure that the
resulting string is of the correct length) with a pre-defined string. Then output
the encoded message EM = maskedDB ◦H ◦ 0xBC.

In turn, PSSVerify(msg, EM, `) begins by parsing EM = maskedDB ◦H ◦ 0xBC.
Then it computes dbMask as above to unmask salt from maskedDB (it rejects if
the padding was incorrect) and verifies that H = Hash(064 ◦ mHash ◦ salt) for
mHash = Hash(msg, hLen). See the full version of this paper for details about the
history of PSS. In Appendix B we provide a more detailed description of the
verification algorithm for PSS.

3.1 The basic scheme

We begin by describing the basic scheme in which the user obtains from the signer
an RSA-PSS signature on the message msg. As usual, the scheme consists of a
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key generation algorithm, a protocol for obtaining signatures, and a signature
verification algorithm.

Key generation The key generation algorithm is the standard RSA key gener-
ation: The public key is PK = (N, e), where N is an RSA modulus of length
k (k is given as input to the key generation algorithm, in unary, i.e. 1k),
and e is relatively prime to ϕ(N). The secret key is SK = (N, d) such that
ed ≡ 1 mod ϕ(N). The exact specification is as described in the PKCS#1
standard.

Blind signing protocol The protocol consists of three algorithms: Blind, BSig,
and Finalize. On input a message msg that the client wishes to get a signature
for, the client runs Blind(PK , msg) and obtains (blinded_msg, inv). The
server runs the algorithm BSig(SK , blinded_msg) and outputs a blinded
signature blinded_sig. The user runs Finalize(PK , msg, blinded_sig, inv)
to derive the signature σ. The three algorithms are as follows:
Blind(PK , msg) Compute a PSS encoding of msg: EM = PSSEncode(msg, k −

1), and let m = OS2IP(EM) be the corresponding integer. Next, sample
r ← Z∗N , compute z = mre mod N , and make sure that z ∈ Z∗N . Com-
pute rinv = r−1 mod N , and output (z, rinv ) as octet strings, i.e., output
blinded_msg = I2OSP(z, kLen), inv = I2OSP(rinv , kLen).

BSig(SK , blinded_msg) First, check that the string blinded_msg is of bit
length k, and reject if it is not. Next, convert into a k-bit integer m =
OS2IP(blinded_msg). Output the binary representation of s = md mod
N , i.e. blinded_sig = I2OSP(s, kLen).

Finalize(PK , msg, blinded_sig, inv) Convert blinded_sig and inv into
integers using the OS2IP procedure: z = OS2IP(blinded_sig), rinv =
OS2IP(inv); compute s = zrinv mod N . The signature is the binary rep-
resentation of s, i.e. σ = I2OSP(s, kLen). Finally, if PSSVerify(PK , msg, σ),
then output σ, else fail.

Verification The verification algorithm calls PSSVerify(PK , msg, σ). (Described
in more detail in Appendix B.)

The following theorem follows easily by inspection:

Theorem 1. The RSA-BSSA scheme is correct.

As we will show in Section 5, it also satisfies one-more unforgeability under
the one-more-RSA assumption [6]. However, as we will explain in more detail in
Section 4, it is not clear whether or not this construction satisfies blindness.

3.2 RSA-BSSA, version A

The basic construction described above (Section 3.1) results in a perfectly blind
signing protocol whenever PK = (N, e) where the public exponent e is relatively
prime to ϕ(N): in that case, for any m ∈ Z∗N , selecting r ← Z∗N uniformly at
random and outputting z = mre ensures that z is a uniformly random element
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of Z∗N . This is because, of course, if there exists d such that ed ≡ 1 mod ϕ(N),
then for each z ∈ Z∗N , there exists a unique r = (z/m)d such that z = mre.

Thus, in order to ensure blindness, it is sufficient to ensure that e is relatively
prime to ϕ(N). Consider the following variant of RSA-BSSA, in which a public
key contains a proof that e is relatively prime to ϕ(N) as described by Goldberg,
Reyzin, Sagga and Baldimtsi [21].

It will require the additional parameter κ, which is a statistical security
parameter. Further, it will require a function Rk that, on input three inte-
gers, outputs a random integer 0 ≤ a < 2k−1; such Rk can be constructed,
for example, from MGF. Let e′ be a prime that is small enough that check-
ing that (N, e) ∈ Le′ can be done efficiently, where Le′ = {(N, e) | N, e >
0 and no prime less than e′ divides e}. In practice, e is often prime and small
enough that setting e′ = e works. We let e′ be a system-wide parameter, so each
procedure below receives it as input. Finally, let ` = dκ/ log2(e′)e.

Key generation On input the desired modulus length k and a statistical se-
curity parameter κ, run the RSA key generation algorithm as in the basic
protocol (Section 3.1) to obtain (N, e) and d. Next, compute a proof π that
e is relatively prime to ϕ(N), as follows: for 1 ≤ i ≤ `, let ai = Rk(N, e, i),
compute bi = ai

d mod N , and let π = b1, . . . , b`.
The public key is PK = (N, e, π), the secret key is SK = (N, d).

Blind signing protocol Before running the signing protocol, the user verifies
that the public key PK = (N, e, π) is well-formed: let π = b1, . . . , b`; for
1 ≤ i ≤ `, check that bei = Rk(N, e, i) mod N . If one of the checks fails, fail.
Else, run the Blind, BSig, and Finalize algorithms as described in Section 3.1.

Verification As in Section 3.1, return PSSVerify(PK , msg, σ).

3.3 RSA-BSSA, version B

As we will see in Section 4.2, another way to ensure blindness is to modify
the construction in such a way that the value mHash incorporated into the PSS
encoding of the message to be signed reveals nothing about this message. This
calls for a simple modification of the basic protocol that requires that, instead
of invoking the signing protocol directly on the message msg, the user invokes
it on the message msg′ = msg ◦ rand, where rand is a random value of κ bits,
where κ is a security parameter. More precisely:

Key generation Run the RSA key generation algorithm as in the basic proto-
col (Section 3.1) to obtain PK = (N, e) and SK = d.

Blind signing protocol The user generates a random string rand of κ bits,
and runs the signing protocol in Section 3.1 on input msg′ = msg◦rand, and
obtains from it the signature σ′ on the message msg′. Output the signature
σ = (σ′, rand).

Verification Following Section 3.1, on input msg and σ = (σ′, rand), the ver-
ification algorithm makes sure that rand consists of κ bits, rejects if it
does not, and then returns the output of PSSVerify(PK , msg′, σ′), where
msg′ = msg ◦ rand.
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4 Blindness of RSA-BSSA

In the blindness experiment, the adversary picks the modulus N ; thus we cannot
assume that it is a proper RSA modulus. Therefore, in order to understand how
much information such an adversary can learn in the blindness experiment, we
must consider the structure of the group Z∗N for arbitrary N .

Lemma 1. Let N > 1 be any odd integer, let N =
∏`
i=1 p

αi
i be is its prime

factorization. Then Z∗N is of size ϕ(N) =
∏`
i=1 ϕ(p

αi
i ) =

∏`
i=1 p

αi−1
i (pi − 1) is

isomorphic to Zϕ(pα1
1 ) × Zϕ(pα2

2 ) × . . .× Zϕ(pα`` ).

For the proof, we refer to Section 7.5 of Shoup [34]. The lemma implies that
every element x ∈ Z∗N can be viewed as a vector (x1, . . . , x`) ∈ Z

p
α1−1
1 (p1−1)

×
Z
p
α2−1
2 (p2−1)

× . . .× Z
p
α`−1

` (p`−1)
, and vice versa.

Let ΨN denote this isomorphism; when N is clear from the context, we will
write it as Ψ . Moreover, there is a (not necessarily efficient) algorithm that
computes ΨN , as follows: on input x ∈ Z∗N , compute xi = x mod pαii , and then
find χi ∈ Z

p
αi−1

i (pi−1)
such that x = gχii , where gi is a generator of Z∗

p
αi
i

(it
exists by Theorem 7.28 in Shoup [34]).

We also refer the reader to Shoup [34] for the Chinese Remainder Theorem;
below, by CRT (x1, . . . , x`) we denote the element x ∈ ZN such that x = xi mod

pαii , where N =
∏`
i=1 p

αi
i is the prime factorization of N .

Definition 6 (Roots and residues). Let N and e be any positive integers,
and let m ∈ Z∗N . Let the set RootsN,e(m) = {s ∈ Z∗N | se = m}. Let the set
ResiduesN,e = {m ∈ Z∗N | RootsN,e(m) 6= ∅}.

Lemmas 2, 3 and 4, and Corollaries 1 and 2 are well-known; for completeness,
their proofs are included in the full version of this paper [26].

Lemma 2. Let N > 1 be any odd integer. If an integer e is relatively prime
to ϕ(N), then the distribution D0(N, e) = {r ← Z∗N : r} is identical to the
distribution D1(N, e) = {r ← Z∗N : re}.

Lemma 3. Let p > 2 be a prime number, and let e ≥ 2 and α ≥ 1 be integers.
Let g = gcd(e, pα−1(p−1)). Then for any m ∈ Residuespα,e, |Rootspα,e(m)| = g.
I.e. either m /∈ Residuespα,e), or it has exactly g eth roots.

Corollary 1. Let p > 2 be a prime number, and let e > 1 and α ≥ 1 be integers.
Let g = gcd(e, pα−1(p − 1)), and let q = pα−1(p − 1)/g. Let m ∈ Residuespα,e,
and let s ∈ Rootspα,e(m). Then Rootspα,e(m) = {sk | 0 ≤ k ≤ g − 1, sk =
Ψ−1(σ + kq)}, where σ = Ψ(s).

Lemma 4. Let N > 1 be an odd integer, and let
∏`
i=1 p

αi
i be its prime factor-

ization. Let e > 1 be an integer. Let gi = gcd(e, pαi−1i (pi − 1)). Then for any
m ∈ ResiduesN,e, |RootsN,e(m)| =

∏`
i=1 gi.
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Corollary 2. Let N > 1 be an odd integer, and let
∏`
i=1 p

αi
i be its prime fac-

torization. Let e > 1 be an integer. Let gi = gcd(e, pαi−1i (pi − 1)), and let
qi = pαi−1i (pi − 1)/gi. Let m ∈ ResiduesN,e, let s be its eth root, and let
Ψ(s) = (σ1, . . . , σ`). Then RootsN,e(m) = {CRT (s1,k1 , . . . , s`,l`) | ∀1 ≤ i ≤
`, 0 ≤ ki ≤ gi − 1, si,ki = Ψ−1

p
αi
i

(σi + kiqi)}.

Lemma 5. Let N > 1 be an odd integer, and e > 1 be an integer. Then r selected
as follows is a uniformly random element of Z∗N : first, select y uniformly at
random from ResiduesN,e. Then, select r uniformly at random from RootsN,e(y).

Proof. By Lemma 4, every element of ResiduesN,e has the same number of roots,
and so selecting a random element of ResiduesN,e and then picking one of its
roots at random is equivalent to picking a random element of Z∗N . ut

Lemma 6. Let N > 1 be an odd integer, and e > 1 be an integer. Let m ∈
ResiduesN,e. Let z be selected uniformly at random from ResiduesN,e; let y =
z/m. Then y is a uniformly random element of ResiduesN,e.

Proof. Let y ∈ ResiduesN,e. y is selected whenever the experiment chooses z =
my; this happens with probability 1/|ResiduesN,e|. ut

In our analysis below, it will be important that even if the adversary picks
an eth root u of the value z = mre (recall that z is what the signature recipient
sends to the signer in order to get the message signed), it still cannot alter the
distribution of the resulting signature. We will see that the signature s = u/r is
a member of RootsN,e(m) that is independent of u as long as r had been picked
uniformly at random. In other words, as long as r is picked uniformly at random,
s is random as well, no matter what the adversary does. This is captured in the
following lemma:

Lemma 7. Let N > 1 be an odd integer, and e > 1 be an integer. Then for all
m, z ∈ ResiduesN,e, u ∈ RootsN,e(z), the following outputs a uniformly random
element of RootsN,e(m): pick r ← RootsN,e(z/m), output u/r.

Proof. Consider N = pα for some prime p; the general case follows via the
Chinese Remainder Theorem. Let s0 be the smallest (in absolute value) ele-
ment of Rootspα,e(m), and let r0 be the smallest element of Rootspα,e(z/m). Let
Ψ(s0) = σ, Ψ(r0) = ρ, Ψ(u) = υ, g = gcd(e, pα−1(p−1)), and q = pα−1(p−1)/g.

By Corollary 1, Rootspα,e(m) = {sk | 0 ≤ k ≤ g − 1, sk = Ψ−1(σ + kq)}.
Since u/r0 is an eth root of m, u/r0 = Ψ−1(σ+ nq) for some 0 ≤ n < g. Also by
Corollary 1, Rootspα,e(m/z) = {rk | 0 ≤ k ≤ g−1, rk = Ψ−1(ρ+kq)}. Selecting
rk uniformly at random corresponds to picking k ← {0, . . . , g−1}, and results in
outputting u/rk = Ψ−1(υ−(ρ+kq)) = Ψ−1((υ−ρ)−kq) = Ψ−1((σ+nq)−kq) =
Ψ−1(σ + (n− k)q). Since k is random, n− k mod g is also a random element of
{0, . . . , g− 1}, and therefore the output rku = s(n−k) mod g is uniformly random
element of Rootspα,e(m). ut
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4.1 Blindness of the signing protocol

Let us consider A’s interaction with the blindness challenger, and then analyze
what information A learns as a result of this interaction. For simplicity, below we
omit the integer-to-string conversions and, when clear from context that integers
in question are elements of Z∗N , we omit “modN .”

A is invoked A(1k) selects a public key PK = (N, e) and two messages msg0
and msg1.

A acts as the blind signer For j ∈ {0, 1}, the challenger computes EMj =
PSSEncode(msgj , k − 1); let mj = OS2IP(EMj) be the corresponding integer.
Next, sample rj ← ZN , compute zj = mjr

e
j . Compute invj = r−1j . The

challenger sends to A the values zb and z1−b.
A receives the signatures Upon receipt of ub and u1−b from the signer, the

challenger computes s0 = u0/r0 and s1 = u1/r1. If both signatures verify,
i.e. se0 = m0 and se1 = m1, it sends (s0, s1) to A; else it sends ⊥ to A.

A’s output A outputs some value output.

Claim 1 If e is relatively prime to ϕ(N), then z0 and z1 (sent to A while it is
acting as the blind signer) are both random elements of Z∗N and are distributed
independently of b, m0 and m1.

Proof. Follows immediately from Lemma 2. ut

Claim 2 If e is relatively prime to ϕ(N), then A’s view after receiving the sig-
natures is independent of the bit b.

Proof. A already knows, based on the values ub and u1−b it sent to the challenger
in the previous step, whether it will receive the signatures or ⊥. If it receives the
signatures, then there are unique values r0,b, r1,b consistent with either b ∈ {0, 1},
and they were equally likely to have been chosen; see Lemma 2. If A does not
receive the signatures, then A learns nothing. ut

If e is not relatively prime to ϕ(N), then there are two cases, based on whether
the signatures output by Finalize pass verification. The easy case is when the
signatures output by Finalize do not both pass verification; then, the challenger
sends ⊥ to the adversary and thus no additional information is revealed in this
step. Let us show that:

Claim 3 If both signatures verify, se0 = m0 and se1 = m1, then A’s view in the
blindness experiment is independent of b.

Proof. Let us condition on the event that the signatures pass verification. In this
case, the values m0, m1 computed by the challenger, as well as the value zb and
z1−b the challenger sent to the signer must all be in the set ResiduesN,e. Let us
consider a series of experiments.

Our first experiment is the case of running the blindness challenger with
b = 0: The challenger begins by sampling m0 and m1 as PSS encodings of
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msg0 and msg1. Then, it samples r0 ← Z∗N , r1 ← Z∗N , computes z0 = m0r
e
0

and z1 = m1r
e
1, and sends (z, z′) = (z0, z1) to the adversary. The adversary

responds with (u0, u1), and the challenger computes the signatures s0 = u0/r0
and s1 = u1/r1.

By Lemma 5, instead of choosing r0 and r1 uniformly at random from Z∗N
and then setting z0 = re0m0 and z1 = re1m1, one could equivalently choose y0,
y1 uniformly at random from ResiduesN,e, and then let z0 = y0m0, z1 = y1m1,
r0 ← RootsN,e(y0), r1 ← RootsN,e(y1); let us call the resulting experiment A0.
By Lemma 6, this is equivalent to choosing z0 and z1 uniformly at random from
ResiduesN,e, and letting r0 ← RootsN,e(z0/m0), r1 ← RootsN,e(z1/m1); let us
call the resulting experiment B0. By Lemma 7, this is equivalent to picking z0
and z1 uniformly at random from ResiduesN,e and sending the adversary the
pair (z, z′) = (z0, z1), and upon receipt of u0 and u1 such that ue0 = z0 and
ue1 = z1, outputting s0 ← RootsN,e(m0), s1 ← RootsN,e(m1); let us call the
resulting experiment C0.

Let us obtain a new experiment, C1, by modifying C0: let (z, z′) = (z1, z0),
while everything else stays the same. C1 gives the adversary identical view to
C0. Let B1 be the same as B0 except for (z, z′) = (z1, z0); by Lemma 7, the
adversary’s view here is identical to C1. Let A1 be identical to A0 except (z, z′) =
(z1, z0); by Lemma 6, it is identical to B1. Finally, by Lemma 5, A1 gives the
adversary the same view as the challenger when b = 1. ut

Rephrasing Claims 1, 2 and 3, we get the following two lemmas:

Lemma 8. Let EArelprime be the event that A playing the blindness game with
the challenger for the basic version of RSA-BSSA sets PK = (N, e) such that e
is relatively prime to ϕ(N). Conditioned on EArelprime , A receives the same view
in the blindness experiment for b = 0 as for b = 1.

Lemma 9. Let EAgoodsigs be the event that in the blindness game with adversary
A, the challenger for the basic version of RSA-BSSA obtains two signatures
that pass verification. Conditioned on EAgoodsigs , A receives the same view in the
blindness experiment for b = 0 as for b = 1.

When blindness might not hold. Based on the above analysis, the only situation
in which A’s view may depend on b is when e is not relatively prime to ϕ(N)
and the challenger fails to output two valid signatures. In this situation, zb may
leak enough information about mb that it might be possible to infer whether
mb = PSSEncode(msg0) or mb = PSSEncode(msg1), revealing b.

For example, for a prime p such that e | p − 1, x and y are in the same eth
residue class modulo p if there exists r ∈ Z∗p such that x = yre mod p. There
are e distinct eth residue classes modulo p when e | p − 1; they correspond to
the e values of Ψp(x) mod e. Thus, determining eth residue class modulo p of an
unknown x provides log e bits of information about x.

Suppose N =
∏`
i=1 pi such that e | pi − 1 for 1 ≤ i ≤ `, where each pi is

a distinct prime number. Then zb = mbr
e mod pi is the same eth residue class

as mb mod pi. Thus, zb reveals ` log e bits of information about mb. If each pi
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is only slightly larger than e, then z reveals (in the information-theoretic sense)
more than half the bits of mb. It is unclear how these information-theoretic
bits correspond to physical bits; therefore, we must consider the worst case,
in which they reveal a significant number of bits of the encoded message EM.
Especially devastating would be the case when the revealed bits correspond to
H and the bits of maskedDB just to the left of H; by XORing those bits with
MGF(H, lenDB), A can recover salt, and check whether H = Hash(M ′) where
M ′ encodes mHash = Hash(msg0, hLen) with salt (which corresponds to b = 0)
or mHash = Hash(msg1, hLen) with salt (which corresponds to b = 1).

As we will see below, variants A and B of RSA-BSSA prevent this situation in
two distinct ways. Variant A makes it extremely unlikely that e is not relatively
prime to ϕ(N). Variant B ensures that recovering mHash does not help in checking
whether it corresponds to msg0 or msg1: any value mHash is equally likely to
correspond to either, depending on the choice of the randomizer rand.

4.2 Blindness of variants A and B

Theorem 2. RSA-BSSA, Version A, satisfies blindness (Definition 4).

Proof. This follows by the soundness of the proof due to Goldberg et al. [21]. ut

Theorem 3. RSA-BSSA, Version B, satisfies blindness in the random-oracle
model (Definition 4).

Proof. For j ∈ {0, 1}, letmj be the integer that corresponds to PSSEncode(msgj◦
randj) for a random string randj of κ bits, and zj = mjr

e
j . Let (z, z′) = (zb, z1−b)

be the values that the challenger sends to the adversary A in the blindness ex-
periment with the bit b. In order to see that (z, z′) are distributed independently
of the bit b it is sufficient to show that mHashb = Hash(msgb ◦ randb, hLen) is
distributed independently of b for a randomly chosen randb, since PSSEncode
just feeds its input string to Hash.

Let us model Hash as a random oracle. Consider a modified blindness exper-
iment in which the challenger also controls the random oracle Hash:

A is invoked A(1k) selects a public key PK = (N, e) and msg0 and msg1.
A acts as the blind signer For j ∈ {0, 1}, compute EMj = PSSEncode(msgj ,

k−1) differently from the blindness challenger, as follows: instead of picking
randj first, and then setting mHashj , leave randj undefined for now and
let mHashj be a random string of length 8hLen. Next, follow the protocol
and let mj = OS2IP(EMj) be the corresponding integer. Next, sample rj ←
Z∗N , compute zj = mjr

e
j mod N and make sure zj ∈ Z∗N . Compute invj =

r−1j mod N . The challenger sends to A the values zb and z1−b.
A receives the signatures Upon receipt of ub and u1−b from the signer, the

challenger checks that zj = uej for each j ∈ {0, 1}; if these fail, send ⊥ to A.
If these checks pass, then choose random κ-bit strings rand0 and rand1 and
set the random oracle so that mHashj = Hash(msgj ◦ randj , hLen); if setting
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the random oracle this way fails (i.e., the value Hash(msgj ◦ randj , hLen) is
already defined), then this experiment fails.
Else, for each j ∈ {0, 1}, compute sj = uj/rj and send (s0, s1) to A.

A queries Hash Since in this modified blindness experiment, the challenger con-
trols the random oracle, we must also describe how it handles the adversary’s
queries to Hash. As usual, when A queries a value (v, `) such that Hash(v, `)
has not yet been defined, respond with a random string of length 8`; when
querying for a string whose value has already been defined, return that value.

A’s output At the end of its execution, A produces some output. At that
point, if rand0 and rand1 are still undefined, choose random κ-bit strings
rand0 and rand1 and set the random oracle so that mHashj = Hash(msgj ◦
randj , hLen); if setting the random oracle this way fails (i.e., the value
Hash(msgj ◦ randj , hLen) is already defined), then this experiment fails.

Our theorem will follow by putting together the following three claims:

Claim 4 Conditioned on the event that the modified blindness experiment does
not fail, the view A receives in the modified blindness experiment above is inde-
pendent of the bit b.

Claim 5 Conditioned on the event that the modified blindness experiment does
not fail, the view A receives in the modified blindness experiment above is iden-
tical to the view it receives in the actual blindness experiment.

Claim 6 Let A’s running time be t. Then the modified blindness experiment
fails with probability O(t2−κ).

To see that the theorem follows from the claims, consider a sequence of
experiments: (1) blindness game with b = 0; (2) modified blindness game with
b = 0; (3) modified blindness game with b = 1; (4) blindness game with b = 1.
(1) and (2) are indistinguishable by combining Claims 5 and 6; similarly (3) and
(4). (2) and (3) are indistinguishable by combining Claims 4 and 6.

We conclude our proof of the theorem by proving these claims.
Proof of Claim 4. This claim follows by construction. Note that in the step

when A acts as the blind signer, the challenger does not even need to have b
already defined: it can set mHashb and mHash1−b without knowing b and compute
mb and m1−b from them; similarly it can sample rb and compute zb. If it needs
to know b in the step where A receives the signatures, the challenger is already
assured that m0 and m1 are both in ResiduesN,e, and so by Lemma 9, A’s view
is independent of b.

Proof of Claim 5. In the random-oracle model, the only difference between
the modified experiment above and the real blindness experiment is the point in
time in which the values rand0 and rand1 are defined: whether they are already
defined when A acts as the blind signer, or whether this does not happen until
the step where A receives the signatures or (in the event it does not) the output
step. If we condition on the event that the modified experiment does not fail,
then we know that A has never over the course of its execution queried Hash on
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the values (msg0 ◦ rand0, hLen) and (msg1 ◦ rand1, hLen). In that case, whether
rand0 and rand1 were already defined or not, is independent of A’s view, and
therefore the modified blindness experiment is identical to the original one.

Proof of Claim 6. The modified experiment fails if the adversary ever queries
Hash on input (msgj ◦ randj , hLen) for j ∈ {0, 1}. In t steps, A may query at
most t such strings. randj is a random κ-bit string, so the probability it’s among
the t that A has queried, is t2−κ. ut

4.3 The basic version is a blind token scheme

Theorem 4. The basic version of RSA-BSSA is a strongly unforgeable blind
token scheme (Definition 5) under the one-more-RSA assumption.

Proof. First, note that the basic version of RSA-BSSA satisfies the input-output
specification for a two-move blind signature scheme (Definition 1) and the strong
one-more unforgeability property (Definition 3). The first follows by inspection;
the second, by Theorem 6. Thus, it is sufficient to show that for any A, the view
in the experiment described in Definition 5 is independent of the bit b.

Note that in the blind token security game, unless the challenger obtains
two valid signatures, the adversary’s view is independent of b based on how the
game unfolds. Thus, an adversary A guessing b correctly in that game more often
than half the time must be one for whom the challenger obtains two valid signa-
tures. Then consider the following reduction B that plays the (usual) blindness
game with a blind signature challenger for RSA-BSSA and uses A to contradict
Lemma 9: it obtains from A the values (N, e) and the auxiliary data needed to
sample the messages msg0 and msg1 and proceeds to sample them. Then it sends
(N, e) and msg0 and msg1 to its challenger, and from then on, it passes messages
back and forth from its challenger to A, and outputs whatever A outputs. If A
is successful, then B is successful. But A can only be successful (as we observed
above) when the challenger outputs two valid signatures, and by Lemma 9, un-
der these circumstances B cannot be successful, which is a contradiction. ut

4.4 Blindness of Chaum-RSA-FDH

Consider Bellare et al. [6]’s version of Chaum blind signature; we will call it
Chaum-RSA-FDH from now on. Chaum-RSA-FDH works as follows: Following
RSA-FDH, the key generation algorithm generates an RSA key pair PK =
(N, e), SK = d, where ed ≡ 1 mod ϕ(N). Following Chaum, in order to obtain a
blind signature on a message M , the user first blinds it using a random r ← Z∗N
obtaining z = Hash(M)re mod N . Then he sends z to the signer and gets back
the blinded signature y = zd mod N , and unblinds it to obtain and output s =
yr−1 mod N . The resulting value passes RSA-FDH verification: se = yer−e =
zr−e = Hash(M)rer−e = Hash(M).

Let (N, e) be such that e is not relatively prime to ϕ(N). Let U = {u | ue ≡
1 mod N}; by Lemma 4, when e divides some prime factors of N , |U | ≥ e. Let ≡e
be the following equivalence relation: a ≡e b if there exist α, β and u ∈ U such
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that a = αeu mod N and b = βeu mod N . It is easy to see that ≡e partitions
Z∗N into |U | equivalence classes. There is an efficient algorithm that, on input
the factorization of N , a and b, determines whether a ≡e b. Moreover, for any
a, r ∈ Z∗N , a ≡e are.

In order to break blindness of Chaum-RSA-FDH, the adversary picks (N, e)
such that it knows the factorization of N , and such that e | ϕ(N). Next, it
picks two messages M0 and M1 to send to the challenger, such that 1 6≡e
Hash(M0) 6≡e Hash(M1) 6≡e 1. The challenger computes z0 = Hash(M0)r

e
0 and

z1 = Hash(M1)r
e
1, and sends them to the adversary in random order: (zb, z1−b).

In order to determine the bit b, the adversary checks whether zb ≡e Hash(M0);
if so, it returns 0, else it returns 1.
Bibliographic note. Before the community settled on what is now considered to
be the right definition of blindness [1], the definition due to Juels, Ostrovsky
and Luby [25] was the standard one. That definition’s security experiment for
blindness did not envision that the adversarial signer may generate the signing
key in a malicious way, rather than following the key generation algorithm.
Bellare, Namprempre, Pointcheval and Semanko showed that the Chaum-RSA-
FDH scheme was a secure blind signature under the old definition [25]. As we
saw, their result does not hold under the more modern definition of blindness that
came several years after their paper came out. Fortunately, Chaum-RSA-FDH is
a strongly one-more-unforgeable blind token scheme, i.e., it satisfies Definition 5.

Theorem 5. The Chaum-RSA-FDH scheme described in Section 4.4 is a strong-
ly one-more-unforgeable blind token scheme for any efficiently samplable message
spaceM.

Proof. (Sketch) It is easy to see that the scheme satisfies the input-output struc-
ture and the correctness requirements. As for strong one-more unforgeability:
Bellare, Namprempre, Pointcheval and Semanko [6] showed that it was one-
more-unforgeable under the one-more-RSA assumption. Strong one-more un-
forgeability follows because RSA-FDH is deterministic, i.e., there is a unique
signature corresponding to each message. Thus we just need to show that for
any A, A’s advantage in the blind token experiment described in Definition 5 is
negligible; in fact we will see that it is 0.

Let A be an adversary playing the blind token game; let us consider the
view A receives given a fixed b ∈ {0, 1}. When it is first invoked (step 1), it
produces PK = (N, e) and some string aux . Next (step 2), msg0 and msg1 are
selected by the challenger by running M(1k,PK , aux ); let x0 = Hash(msg0)
and x1 = Hash(msg1). Let r0 and r1 be sampled at random from Z∗N , and let
z0 = x0r

e
0 and z1 = x1r

e
1 be the blinded messages the challenger sends to A

(step 3), and let s0 and s1 be the values A sends in return — the order in which
they are sent depends on b (step 4). Next (step 5) if se0 = z0 and se1 = z1, the
challenger computes σ0 = s0/r0 and σ1/r1 and sends to the adversary the values
(msg0, σ0) and (msg1, σ1), else it sends it ⊥.

Consider an alternative pair of experiments for b ∈ {0, 1}; here the challenger
is computationally unbounded. The challenger begins by selecting msg0 and msg1
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fromM(1k,PK , aux ). We have two cases: Case A, in which there exist (σ0, σ1)
such that σe0 = Hash(msg0) and (σ1)

e = Hash(msg1); and Case B, in which the
pair exist (σ0, σ1) does not exist. Since this challenger is unbounded, it identifies
which case it is in, and acts as follows:

In Case A, in Step 2, the challenger picks z and z∗ uniformly at random
from Z∗N and sends (z, z∗) to A. It receives (s, s∗). In step 5, if se 6= z or
(s∗)e 6= (z∗)e, then it sends ⊥ to A. Else, it samples valid signatures σ0 and
σ1 for msg0 and msg1, respectively, and sends to the adversary A the values
(msg0, σ0) and (msg1, σ1).

In Case B, the challenger follows the protocol.
It is easy to see that, in the alternative experiment, the adversary’s view is

independent of b. To see that the alternative experiment gives A a view that’s
identical to the blind token game in Case A, note that the challenger choosing
r0 = s/σ0 and r1 = s∗/σ1 in step 3 corresponds to having b = 0 in the blind
token game, while choosing r0 = s∗/σ0 and r1 = s/σ1 corresponds to b = 1.
Since r0 and r1 are chosen uniformly at random, the two options are equally
likely. In Case B, since one or both signatures don’t exist, the adversary’s view
is independent of b as well, since the pair of messages (msg0, msg1) is just as
likely as (msg1, msg2). ut

5 Unforgeability of RSA-BSSA

Recall that an algorithmA is said to break the security of a cryptographic scheme
in the random-oracle model [7] if its success probability is non-negligible when
a specific component of the scheme, typically a hash function, is replaced by a
random oracle. Security in the random-oracle model means that no polynomial-
time algorithm can break the scheme in the random-oracle model.

A proof of security in the random-oracle model does not, in fact, imply a
proof of security in the plain model (i.e. where no component of the scheme is
modeled as a random oracle) [12]. However, it is considered evidence of security
that’s good enough in practice.

In a random-oracle-based reduction, the reduction is typically privy to all
the hash function queries the adversary issues. Another privilege that such a
reduction has (in the standard, so-called “programmable” random-oracle model
— these different flavors are explored by Fischlin et al. [18]) is that it can an-
swer such a query with any value it desires. Since the adversary expects the
answers to its queries to be truly random, as long as the reduction’s responses
are distributed at random (or are indistinguishable from random), the adver-
sary’s success probability will be as high when interacting with the reduction as
when attacking the scheme.

We will prove strong one-more unforgeability of RSA-BSSA in the random-
oracle model under the one-more-RSA assumption introduced by Bellare, Nam-
prempre, Pointcheval and Semanko [6]. They also showed that the one-more-RSA
assumption (stated formally in Appendix A) holds if an only if the following
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problem, called the alternative chosen-target RSA inversion (RSA-ACTI) prob-
lem, is hard:

Definition 7 (RSA-ACTI [6]). Let A be an oracle Turing machine. For the
security parameter k, let the experiment Exprsa−acti

A (k) be defined as follows:

RSA key pair generation The challenger generates an RSA public key (N, e)
and secret key d corresponding to the security parameter k. Let us define the
following oracles:
1. The RSA inversion oracle OI(·, N, d) that, on input y ∈ Z∗N , returns x

such that xe = y mod N ; i.e., it returns yd mod N where ed ≡ 1 mod
ϕ(N).

2. An oracle OR(·, N) that, when queried, issues a random RSA inversion
challenge point, i.e. a random element of Z∗N . By yi, let us denote the
outcome of the ith such query.

A is invoked The challenger invokes AOI(·,N,d),OR(·,N)(N, e) and responds to
its oracle queries. Eventually, A terminates.

A’s success criterion Let ` be the number of queries A issued to OI(·, N, d).
Let (y1, . . . , yn) be the values A received from OR(·, N). Let (z1, . . . , zn) be
A’s output. For 1 ≤ i ≤ n, zi is correct if zei = yi mod N . A is successful if
|{i : zi is correct}| ≥ `+ 1.

By Advrsa−acti
A (k) we denote the probability that A is successful in Exprsa−acti

A (k).
The RSA-ACTI problem is hard if for any probabilistic polynomial-time A,
Advrsa−acti

A (k) is negligible.

Theorem 6. Let A be an algorithm that breaks strong one-more unforgeability
of the basic RSA-BSSA scheme (Definition 3) where both Hash(·, `) and MGF(·, `)
are random oracles for every integer `. Let tA(k) be an upper bound on its run-
ning time; let pA(k) be its success probability.

Then there exists an algorithm B that solves the RSA-ACTI problem (Defi-
nition 7) in tB(k) = O(poly(k) + tA(k)) time with probability pB(k) = pA(k) −
Θ(t2A(k)2

−8hLen).

This theorem, i.e. the unforgeability of the basic RSA-BSSA scheme, implies
unforgeability of variants A and B. For variant A, the additional proof that’s
part of the public key can be simulated in the random-oracle model as shown by
Goldberg et al. [21]. For variant B, unforgeability follows from that of the basic
scheme, since a signature in variant B on message msg with randomness rand is
also a signature in the basic scheme on message msg ◦ rand.

Corollary 3. Let A be an algorithm that breaks strong one-more unforgeability
of RSA-BSSA variants A or B (Definition 3) where both Hash(·, `) and MGF(·, `)
are random oracles for every integer `. Let tA(k) be an upper bound on its run-
ning time; let pA(k) be its success probability.

Then there exists an algorithm B that solves the RSA-ACTI problem (Defi-
nition 7) in tB(k) = O(poly(k) + tA(k)) time with probability pB(k) = pA(k) −
Θ(t2A(k)2

−8hLen).
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Proof. (of Theorem 6) Let qAHash(PK ;R), qAMGF(PK ;R) and qABSig(PK ;R) be the
number of queries A makes to Hash, MGF and BSig respectively when interacting
with it challenger on input a specific public key PK ; R denotes the randomness
of the experiment (i.e., both the random tape of A and that of the challenger).
When PK and R are clear from context, we will write qAHash, q

A
MGF and qABSig.

Without loss of generality, let us assume that A’s output is either empty
(i.e., A fails to win the game) or consists solely of qABSig + 1 message-signature
pairs that pass verification. Let us call such an A a “high-achieving adversary"
in the sequel. The reason we can assume that A is high-achieving is that, if it’s
not, we could modify A into an algorithm A′ that verifies A’s output and, if A
succeeded, outputs the first qABSig + 1 pairs that pass verification. By definition
of one-more unforgeability, A′ succeeds with the same probability as A, and has
a comparable running time.

We will construct the reduction B that will use a high-achieving A as a
subroutine.
Input to the reduction. The reduction plays the role of the attacker in experiment
Exprsa−acti

B (k). Thus, it takes as input the RSA public key (N, e) that had been
generated by RSA’s key generation on input the security parameter k.
The oracle the reduction may use. As described in Definition 7, B has access to
two oracles:

1. The RSA inversion oracle OI(·, N, d) that, on input y ∈ Z∗N , returns x such
that xe = y mod N ; i.e., it returns yd mod N where ed ≡ 1 mod ϕ(N).

2. An oracle OR(·, N) that, when queried, issues a random RSA inversion chal-
lenge point, i.e. a random element of Z∗N . By yi, let us denote the outcome
of the ith such query.

How the reduction interacts with A. The adversary A is attacking the strong one-
more unforgeability property of the RSA-BSSA scheme as described in Defini-
tion 3. Thus,A will need to receive PK as input; the reduction sets PK = (N, e),
where (N, e) is its own input. Since the reduction is in the random-oracle model,
A will expect oracle access to Hash and MGF, which B will respond to as de-
scribed below. A will also engage with the signer in the blind signing protocol;
in the case of RSA-BSSA, this will involve oracle access to BSig(SK , ·); below,
we describe how B will handle this as well. Finally, A terminates and produces
some output; below, we describe how B uses A’s output to compute a solution
to the RSA-ACTI problem.
How the reduction will handle A’s queries to Hash(·, ·). A relevant query to
Hash(·, ·) is (v, `) such that ` = hLen and the first eight bytes of v are all 0.

Let (v, `) be a query that is not relevant. A value v that is derived as part
of signature verification must begin with 64 0s; if v is not of that form, we
know that we will never encounter the need to calculate Hash(v, hLen) as part
of verifying a signature. (A detailed description of the signature verification
algorithm provided in Appendix B clarifies this point; see Step 6.) We also know
that for any length ` 6= hLen, Hash(v, `) is not computed as part of signature
verification. Thus, there is no need to prepare a response to this query in any
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special way. In response to (v, `), the reduction returns a randomly sampled
string h of ` bytes and stores ((v, `), h) for future reference.

In contrast, the response to the ith relevant query is set up in such a way that,
should that query be part of the successful verification of one of the signatures
returned by the adversary, it should allow the reduction to invert RSA at a
challenge point yi.

More precisely: Let the ith relevant query to Hash be the pair (vi, hLen).
Parse vi as follows: vi = 064 ◦ mHashi ◦ salti. Implicitly, mHashi is computed
from some unknown Mi, and salti are the last lenSalt bits of vi.

Our goal is to ensure that, if the adversary ever returns (M,σ) that passes
the verification algorithm such that mHash = mHashi, and salt = salti, then
σe = yir

e
i mod N for some challenge point yi and a value ri known to the

reduction. Then the reduction can invert RSA at yi by outputting σ/ri.
First, the reduction obtains the challenge yi by querying OR(·, N). Next, it

samples from Z∗N until it finds a value ri such that, for wi = yir
e
i , wi < 2k−1 (i.e.

k − 1 bits are sufficient to encode it) and the binary representation of wi ends
in the byte 0xBC. In expectation, it will take between 256 and 512 attempts to
find such ri, depending on how close N is to 2k: at least half the time, wi < 2k−1,
and conditioned on that, it starts with 0xBC one in every 256 tries.

Next, execute the following steps that determine how to fixMGF in one point,
and what value to return in response to this query. The goal is to ensure that,
if (M,σ) is a message-signature pair accepted by the verification algorithm, and
vi = 064 ◦ mHash ◦ salt is the input to Hash computed as part of verification
(i.e. it is the value M ′ computed in Step 6 and queried in Step 7 of the detailed
verification algorithm in Appendix B), then σe mod N = wi.

1. Set EMi = I2OSP(wi, emLen) (recall that emLen = d(k − 1)/8e).
2. Parse EMi = maskedDBi ◦Hi ◦0xBC (as described in Step 2 of the verification

procedure in Appendix B). Since the reduction used the sampling procedure
above to obtain wi, EMi ends in the byte 0xBC.

3. In order to ensure that DBi that will be computed in Step 4 (of the detailed
verification procedure) contains the same salt value as vi, carry out the
following steps:
– Let mHashi and salti be the strings of hLen and sLen bytes, respectively,

such that vi = 064 ◦ mHashi ◦ salti.
– Let DBi = 0a ◦ 0x01 ◦ salti, where a = 8(lenDB − 1− sLen).
– Let dbMask′i = DBi ⊕ maskedDBi. Note that dbMask′i must start with 0p,

since DBi starts with 0s, and the fact that maskedDB is the beginning of
the string output by I2OSP ensures that it begin with p 0s. Let dbMaski
be the result of replacing the first p bits of dbMask′i with random bits.

– If MGF(Hi, lenDB) is already defined, fail. Else, set it to the value
dbMaski.

4. Set Hash(vi, hLen) = Hi, save (i, vi, wi, ri, Hi) for future reference.

Return Hi.
How the reduction will handle A’s queries to MGF(·, ·). Let u be a query to MGF.
Case 1: MGF(u, `) is already fixed as a result of a previous query to Hash or MGF;
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then return the value MGF(u, `). Case 2: MGF(u, `) is not yet fixed; then return
a random string of ` octets.

How the reduction will handle A’s queries to BSig(SK , ·). Once blinded_msg
from the adversaryA is received, computem = OS2IP(blinded_msg). Ifm ≥ N ,
then it fails. Otherwise, it sendsm to its RSA inversion oracleOI(·, N, d). In turn,
OI(m,N, d) returns s such that se = m mod N . B computes blinded_sig =
I2OSP(s, kLen) and returns it to A.
How the reduction will process A’s output. At the end of its execution, the ad-
versary A outputs a set of message-signature pairs {(Mj , σj)}. First, B verifies
these message-signature pairs, as follows: it runs the verification algorithm as de-
scribed in Appendix B. When the verification algorithm queries Hash and MGF
for a value previously queried by A, Hash and MGF return the same string as
was returned to A. When the verification algorithm queries Hash and MGF for
a value not previously queried by A, Hash and MGF return random strings.

Next, B fails if some message-signature pair (Mj , σj) is accepted by the ver-
ification algorithm, and yet A had not made the queries to Hash and MGF that
the verification algorithm just made when verifying (σj ,Mj).

Else, B proceeds as follows. Recall that n is the number of queries that B has
made to its challenge oracle, i.e. the number of challenge points yj that B has
received. For 1 ≤ i ≤ n, initialize zi = ⊥. Next, for each j such that (Mj , σj)
is accepted by the verification algorithm, find i such that σej mod N ≡ wi. (If
no such i exists, fail.) Then σej = yir

e
i mod N , so yi = (σj/ri)

e and so B has
inverted RSA at yi; set zi = σj/ri.
B outputs z1, . . . , zn.

Analysis of the reduction. To conclude our proof of security, we need to prove the
following three claims. First, we show that an adversary that wins the strong
one-more-forgery game against RSA-BSSA must (other than with very small
probability) query MGF and Hash for all the values that will be queried over
the course of the verification of its signatures. This will allow us to assume
that we are dealing with the adversary that always makes these queries prior to
outputting its signatures and makes sure that verification accepts; we will call
such an adversary a “make-sure” adversary. More formally:

Claim 7 Let A be a high-achieving adversary that wins the strong one-more-
forgery game against RSA-BSSA in the random-oracle model with probability
pA(k). Let E be the event that A wins the game and for each of the message-
signature pairs it produced, it issued the queries to both MGF(·, lenDB) and
Hash(·, hLen) needed for verifying the message-signature pair some time during
the course of its execution. Then Pr[E] ≥ pA(k)−Θ(t2A(k)2

−8hLen).

Next, we show that for a “make-sure” A, our reduction succeeds. This is
done in two steps: (1) showing that the view that the reduction provides for A is
identical to its view in the one-more-forgery game in the random-oracle model;
(2) showing that whenever a “make-sure" A is successful, the reduction succeeds
in the RSA-ACTI game. More formally:
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Claim 8 Let A be any adversary. In the random-oracle model, the view that
A receives when interacting with the strong one-more unforgeability game chal-
lenger for RSA-BSSA is identical to the one A obtains in an interaction with
the reduction B whenever B does not fail while answering A’s queries. Moreover,
the probability that B fails while answering a query from A is O(t2(k)2−8hLen).

Claim 9 Let A be an adversary that wins the strong one-more unforgeability
game against RSA-BSSA in the random-oracle model with probability pA(k).
Then B wins the RSA-ACTI game with probability pA(k)−Θ(t2A(k)2

−8hLen).

The proofs of Claims 7, 8 and 9 are in the full version of this paper [26]. ut
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A Statement of computational hardness assumptions

Bellare, Namprempre, Pointcheval and Semanko [5, 6] introduced the RSA known-
target inversion problem (RSA-KTI) defined below; the definition we give here
is identical to theirs:

Definition 8 (Known-Target Inversion Problem: RSA-KTI [6]). Let A
be an oracle Turing machine. For the security parameter k and any function
m:N 7→ N, let the experiment Exprsa−kti

A,m (k) be defined as follows:

RSA key pair generation The challenger generates an RSA public key (N, e)
and secret key d corresponding to the security parameter k. Let OI(·, N, d) be
the RSA inversion oracle; i.e., on input y ∈ Z∗N , it returns x = yd mod N .

Challenge values are selected For 1 ≤ i ≤ m(k) + 1, pick yi ← Z∗N .
A is invoked The challenger invokes AOI(·,N,d)(N, e, k, y1, . . . , ym(k)+1) and re-

sponds to its oracle queries. Eventually, A terminates.
A’s success criterion A is successful if (1) it issued no more thanm(k) queries

to OI(·, N, d); and (2) A output is (z1, . . . , zm(k)+1) such that, for all 1 ≤
i ≤ m(k) + 1, zei = yi mod N .

By Advrsa−kti
A,m (k) we denote the probability that A is successful in Exprsa−kti

A,m (k).
The RSA-KTI[m] problem is hard if for any probabilistic polynomial-time A,
Advrsa−kti

A,m (k) is negligible; the RSA-KTI problem is hard if the RSA-KTI[m]
problem is hard for any polynomially bounded m.
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Assumption A1 (One-more-RSA Assumption [6]) The known-target in-
version problem RSA-KTI is intractable.

Bellare et al. then reduced breaking the assumption (i.e., solving RSA-KTI)
to solving the seemingly easier RSA-ACTI problem stated in Definition 7. (See
Theorems 4.1 and 5.4 in Bellare et al. [6].) Thus, to prove security of the scheme,
it is sufficient to give a polynomial-time reduction that breaks RSA-ACTI with
access to an adversary A attacking the scheme.

B The verification algorithm, step by step

For the security analysis, it is helpful to recall all the steps that the signature
verification algorithm will take (rather than deferring to subroutines that are
defined elsewhere). The notation 0xUV , where U and V are hexadecimal digits,
denote the value of an octet, or byte; e.g., 0x3a corresponds to the binary string
00111100. The symbol ◦ denotes concatenation. Using the PSS encoding from
the PKCS#1 standard [29, 30], verifying a signature σ for a message M consists
of the following steps (note: these steps are equivalent to those in the PKCS#
standard, but not described in exactly the same way):

1. Compute the encoded message EM = I2OSP(σe mod N, emLen). Specifically,
I2OSP will reject if σe mod N is greater than 28emLen ; else, it outputs emLen =
d(k − 1)/8e octets that, when viewed as a binary integer, equal σe mod N .
Note that, whenever k − 1 is not a multiple of 8, this will always result in
having EM (viewed as a bit string) start with up to 7 zeroes. Let 0 ≤ p ≤ 7
be such that for maximal positive integer m, k − 1 = 8m+ (8− p). I.e. p is
the number of extra bits we get when converting the bit representation of a
k − 1-but integer into the byte representation of the same integer.

2. If EM doesn’t end in the byte 0xBC, reject. Else, parse EM as follows: the first
lenDB = emLen − hLen − 1 bytes are the string maskedDB; the next hLen
bytes are the string H, and the last byte, as we already know, is 0xBC. To
summarize, EM = maskedDB ◦H ◦ 0xBC.

3. Let dbMask = MGF(H, lenDB).
4. Let DB′ = maskedDB⊕ dbMask; let DB be the same string as DB′ except that

the first p bits are set to 0. (This is because, since we set p to be 0 ≤ p ≤ 7
be such that for some integer m, k− 1 = 8m+ (8− p), the first p bits of the
byte encoding of a k − 1-bit integer are always 0, so the value we “unmask"
starts at bit p+ 1.)

5. If DB does not start with lenDB − 1 − sLen 0x00 octets followed by 0x01,
then reject. Else, let salt be the last sLen octets of DB. To summarize,
DB = 0x00 . . . 0x00 ◦ 0x01 ◦ salt.

6. Let M ′ = 064 ◦ mHash ◦ salt, where mHash = CRHF(M). (As usual, by 064

we denote a binary string of 64 zeroes; we can also think of it as a string of
eight bytes, each set to 0x00.)

7. If H = Hash(M ′, hLen), accept, else, reject.


